JP2021127472A - Corrosion suppression method in power-generating plant - Google Patents

Corrosion suppression method in power-generating plant Download PDF

Info

Publication number
JP2021127472A
JP2021127472A JP2020021229A JP2020021229A JP2021127472A JP 2021127472 A JP2021127472 A JP 2021127472A JP 2020021229 A JP2020021229 A JP 2020021229A JP 2020021229 A JP2020021229 A JP 2020021229A JP 2021127472 A JP2021127472 A JP 2021127472A
Authority
JP
Japan
Prior art keywords
power plant
suppressing corrosion
steam
chemical
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020021229A
Other languages
Japanese (ja)
Inventor
宇広 原
Takahiro Hara
宇広 原
孝次 根岸
Koji Negishi
孝次 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020021229A priority Critical patent/JP2021127472A/en
Publication of JP2021127472A publication Critical patent/JP2021127472A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

To provide a corrosion suppression method in a power-generating plant capable of suppressing corrosion in a region other than a liquid phase region in the power-generating plant.SOLUTION: In a method for suppressing corrosion of an apparatus in a gas phase or in a gas-liquid two-phase in a power-generating plant for generating steam in a steam generation part, and generating power by rotating a turbine by steam, an agent is injected, containing a metal element, having a boiling point lower than a temperature of the steam generation part, and having a boiling point higher than a temperature of the apparatus during operation.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、発電プラントの腐食抑制方法に関する。 An embodiment of the present invention relates to a method for suppressing corrosion of a power plant.

腐食は発電プラントを構成する機器構造材料及び配管などの金属材料が、環境中の液体または気体と化学反応を起こすことで、金属状態からイオンや酸化物など他の化学形態に変化する事象であり、構造材料の機能低下を引き起こす経年劣化事象のひとつである。鉄構造材を例に水存在下において発生する代表的な腐食反応を式1に示す。
Fe→Fe2++2e …(式1)
Corrosion is an event in which metal materials such as equipment structural materials and pipes that make up a power plant change from a metallic state to other chemical forms such as ions and oxides by causing a chemical reaction with a liquid or gas in the environment. , It is one of the aged deterioration events that cause functional deterioration of structural materials. Equation 1 shows a typical corrosion reaction that occurs in the presence of water, taking an iron structural material as an example.
Fe → Fe 2+ + 2e … (Equation 1)

式1はFeの酸化反応であると同時に電子の放出反応である。電子は単独では非常に不安定であるため、腐食発生環境では式1の反応とともに電子を消費する反応も同時に発生する。水存在下での腐食における電子の消費反応の例を式2、式3に示す。
2HO+O+4e→4OH …(式2)
2H+2e→H …(式3)
Equation 1 is an oxidation reaction of Fe and an electron emission reaction at the same time. Since electrons are extremely unstable by themselves, in a corrosion-generating environment, a reaction that consumes electrons occurs at the same time as the reaction of Equation 1. Examples of electron consumption reactions in corrosion in the presence of water are shown in Equations 2 and 3.
2H 2 O + O 2 + 4e → 4OH … (Equation 2)
2H + + 2e → H 2 … (Equation 3)

上記式で示したように腐食反応には電子の発生量と同量の電子の消費反応が発生しなければならない。そのため、発電所などの腐食を極力低減する必要がある環境では、腐食を抑制するために、電子の消費反応を発生させる酸素などの酸化剤を低減する処理が実施されている。具体的には大気環境にある水にはおよそ7から10ppmの酸素が溶解しているが、これを数ppbほどに低減させることで、腐食を低減している。 As shown in the above formula, the corrosion reaction must generate an electron consumption reaction in the same amount as the amount of electrons generated. Therefore, in an environment such as a power plant where it is necessary to reduce corrosion as much as possible, a treatment for reducing an oxidizing agent such as oxygen that causes an electron consumption reaction is carried out in order to suppress corrosion. Specifically, about 7 to 10 ppm of oxygen is dissolved in water in the atmospheric environment, and by reducing this to about several ppb, corrosion is reduced.

さらに水素、アンモニアなどを添加することで環境の酸化性を低減し、腐食性をさらに低減することができる。水素、アンモニアなどの成分は液相のみの環境では液相内に存在するが、高温で気相が共存する環境では大部分が気相に移行し、液相内の水素、アンモニア濃度が低下する。一方で、水素は気相に移行しやすい特性があることから、酸化性低減を目的とした水素施工が可能な対象機器は、発電所の復水器、給水配管、給水加熱器、原子炉の炉内構造物など、内部が水環境となる機器が対象となる。 Further, by adding hydrogen, ammonia, etc., the oxidizing property of the environment can be reduced, and the corrosiveness can be further reduced. In an environment with only a liquid phase, components such as hydrogen and ammonia are present in the liquid phase, but in an environment where a gas phase coexists at a high temperature, most of the components shift to the gas phase, and the hydrogen and ammonia concentrations in the liquid phase decrease. .. On the other hand, since hydrogen has the property of easily shifting to the gas phase, the target equipment for hydrogen construction for the purpose of reducing oxidative properties is the condenser of power plants, feed water pipes, feed water heaters, and nuclear reactors. Equipment that has a water environment inside, such as structures inside a reactor, is targeted.

これに対し、タービンと給水加熱器をつなげる抽気系配管は、水蒸気の気相と、凝縮した水の二相環境であり、水素、アンモニアなどの成分は気相に移行してしまうため、液相の酸化性が増大し腐食性が高い環境である。この抽気系に対する水処理技術としては、不純物除去を目的とした除去フィルタに関する技術、除去フィルタの運用方法に関する技術、抽気系の異物沈殿除去に関する技術など、異物除去に関する提案がなされているが、防食を主目的とする技術は提案されていない。 On the other hand, the extraction system piping that connects the turbine and the water supply heater is a two-phase environment of water vapor and condensed water, and components such as hydrogen and ammonia move to the gas phase, so the liquid phase. It is an environment where the oxidizing property of hydrogen is increased and it is highly corrosive. As water treatment technology for this bleed air system, there have been proposals for foreign matter removal, such as a technology related to a removal filter for the purpose of removing impurities, a technology related to the operation method of the removal filter, and a technology related to the removal of foreign matter precipitates in the bleed air system. No technology has been proposed whose main purpose is.

特開2013−181668号公報Japanese Unexamined Patent Publication No. 2013-181668

防錆剤や水質調整を始めとする防食技術は液相領域で有効であるが、気相や気液二層領域等の液相に接しない機器の防食が不十分または、煩雑である。 Anticorrosion techniques such as rust preventives and water quality adjustment are effective in the liquid phase region, but anticorrosion of equipment that does not come into contact with the liquid phase such as the gas phase or the gas-liquid two-layer region is insufficient or complicated.

そこで、本発明の目的は、発電プラントにおける液相領域以外の領域における腐食を抑制することのできる発電プラントの腐食抑制方法を提供することにある。 Therefore, an object of the present invention is to provide a method for suppressing corrosion of a power plant capable of suppressing corrosion in a region other than the liquid phase region of the power plant.

実施形態の発電プラントの腐食抑制方法は、蒸気発生部において蒸気を発生させ、この蒸気によりタービンを回転させて発電する発電プラントの、気相または気液二相環境にある機器の腐食を抑制する方法であって、金属元素を含み、前記蒸気発生部の温度以下の沸点を有し、運転時の前記機器の温度以上の沸点を有する薬剤を注入することを特徴とする。 The method for suppressing corrosion of a power plant of the embodiment is to suppress the corrosion of equipment in a gas-phase or gas-liquid two-phase environment of a power plant that generates steam by generating steam at a steam generating part and rotating a turbine with the steam to generate power. The method is characterized in that a chemical containing a metal element, having a boiling point equal to or lower than the temperature of the vapor generating portion, and having a boiling point equal to or higher than the temperature of the device during operation is injected.

実施形態に係る発電プラントの腐食抑制方法を説明するための沸騰水型原子力発電所の構成を示す図。The figure which shows the structure of the boiling water type nuclear power plant for demonstrating the corrosion suppression method of the power plant which concerns on embodiment.

以下、図面を参照して、実施形態に係る発電プラントの腐食抑制方法ついて説明する。 Hereinafter, a method for suppressing corrosion of a power plant according to an embodiment will be described with reference to the drawings.

図1は、発電プラントの一例として、沸騰水型原子力炉(BWR)を用いた発電プラントの構成を模式的に示した図である。 FIG. 1 is a diagram schematically showing the configuration of a power plant using a boiling water reactor (BWR) as an example of a power plant.

図1において、復水器1で水に戻された水は、給水ポンプ2にて送られ、低圧給水加熱器3、脱気器4、高圧給水加熱器5を経て加熱され、原子炉圧力容器6内へ流入する。原子炉圧力容器6内へ流入した水は、炉心によって加熱されて蒸気となり、主蒸気配管8を通って高圧タービン9に誘導される。 In FIG. 1, the water returned to water by the condenser 1 is sent by the feed water pump 2, heated through the low pressure feed water heater 3, the deaerator 4, and the high pressure feed water heater 5, and is heated in the reactor pressure vessel. It flows into 6. The water flowing into the reactor pressure vessel 6 is heated by the core to become steam, which is guided to the high-pressure turbine 9 through the main steam pipe 8.

高圧タービン9にて蒸気からエネルギーが取り出された後、湿分分離(加熱)器10で湿分が除去され、この後、さらに低圧タービン11に誘導され、低圧タービン11にて蒸気からエネルギーが取り出される。 After the energy is extracted from the steam by the high-pressure turbine 9, the moisture is removed by the moisture separator (heater) 10, and then the energy is further guided to the low-pressure turbine 11 and the energy is extracted from the steam by the low-pressure turbine 11. Is done.

低圧タービン11には、低圧タービン抽気系配管12が設けられており、低圧タービン11から抽気された蒸気が低圧給水加熱器3に送られ、給水の加熱に利用される。また、湿分分離器10には、湿分分離器抽気系配管13が設けられており、湿分分離器10から抽気された蒸気が脱気器4に送られ、給水の脱気に利用される。また、高圧タービン9には、高圧タービン抽気系配管14が設けられており、高圧タービン9から抽気された蒸気が高圧給水加熱器5に送られ、給水の加熱に利用される。 The low-pressure turbine 11 is provided with a low-pressure turbine bleed system pipe 12, and steam extracted from the low-pressure turbine 11 is sent to the low-pressure feed water heater 3 and used for heating the feed water. Further, the moisture separator 10 is provided with a moisture separator bleed system pipe 13, and steam extracted from the moisture separator 10 is sent to the deaerator 4 to be used for degassing the water supply. NS. Further, the high-pressure turbine 9 is provided with a high-pressure turbine extraction system pipe 14, and steam extracted from the high-pressure turbine 9 is sent to the high-pressure feed water heater 5 and used for heating the feed water.

上記の構成のうち、主蒸気配管8内等は、主に水蒸気の気相となるが、低圧タービン抽気系配管12、湿分分離器抽気系配管13、高圧タービン抽気系配管14等の抽気系配管は、水蒸気の気相と、凝縮した水の気液二相環境となっている。この場合、低圧タービン抽気系配管12の部分の温度は約75℃程度、湿分分離器抽気系配管13の部分の温度は約120〜140℃程度、高圧タービン抽気系配管14の部分の温度は約200℃程度となっている。 Of the above configurations, the inside of the main steam pipe 8 and the like is mainly the gas phase of steam, but the bleed system such as the low pressure turbine bleed system pipe 12, the moisture separator bleed system pipe 13, and the high pressure turbine bleed system pipe 14. The piping has a vapor phase of water vapor and a gas-liquid two-phase environment of condensed water. In this case, the temperature of the low-pressure turbine bleed system pipe 12 is about 75 ° C., the temperature of the moisture separator bleed air pipe 13 is about 120 to 140 ° C, and the temperature of the high-pressure turbine bleed air pipe 14 is about 120 to 140 ° C. It is about 200 ° C.

各タービンで発生する凝縮水は、ドレン配管へと移行し、給水加熱器で熱交換をされた後に、給水と合流する。ドレン配管で腐食発生した鉄酸化物を始めとする腐食生成物は、冷却水とともに原子炉圧力容器6内へ移行し、原子炉構造材へ蓄積する。原子炉構造材への腐食生成物の堆積は、熱効率の低下や、放射性物質の取込み増加などの問題が生じることから、腐食生成物の低減が求められる。 The condensed water generated in each turbine moves to the drain pipe, exchanges heat with the feed water heater, and then merges with the feed water. Corrosion products such as iron oxides that are corroded in the drain pipe move into the reactor pressure vessel 6 together with the cooling water and accumulate in the reactor structural material. Accumulation of corrosion products on reactor structural materials causes problems such as a decrease in thermal efficiency and an increase in the uptake of radioactive materials, so reduction of corrosion products is required.

この問題に対応するためには、第一に蒸気発生部(蒸気発生器)で揮発し、堆積しないこと、第二に腐食抑制対象である機器表面に残留すること、第三に腐食を抑制する環境を提供できること、の三点の特徴を持つ薬剤の注入により対応することが可能である。 In order to deal with this problem, firstly, it volatilizes and does not accumulate in the steam generator (steam generator), secondly, it remains on the surface of the equipment that is the target of corrosion suppression, and thirdly, it suppresses corrosion. It is possible to respond by injecting a drug that has the three characteristics of being able to provide an environment.

第一の条件である蒸気発生部(蒸気発生器)での堆積防止のためには、薬剤が蒸気発生部(蒸気発生器)で気相へと移行する必要があるため、薬剤の沸点が蒸気発生部(蒸気発生器)の温度以下であることが求められる。蒸気発生部(蒸気発生器)の温度は約270℃程度のため、第一条件を満たすには、薬剤の沸点は270℃以下となる。 In order to prevent deposition at the steam generator (steam generator), which is the first condition, the chemical must move to the vapor phase at the steam generator (steam generator), so the boiling point of the chemical is steam. It is required to be below the temperature of the generator (steam generator). Since the temperature of the steam generator (steam generator) is about 270 ° C., the boiling point of the drug is 270 ° C. or lower in order to satisfy the first condition.

第二の条件である腐食抑制の対象機器表面で薬剤が残留するためには、薬剤が液相または固相として存在する必要がある。第二条件を満たすには、薬剤が対象機器温度以上の沸点を持つか、あるいは対象機器温度において分解され、液体または固体になる必要がある。対象機器の温度は75℃〜220℃であるため、薬剤の沸点はこの温度域以上、分解温度はこの温度域以下となる。 In order for the drug to remain on the surface of the device subject to corrosion suppression, which is the second condition, the drug must exist as a liquid phase or a solid phase. To satisfy the second condition, the drug must have a boiling point above the target device temperature or be decomposed at the target device temperature to become a liquid or solid. Since the temperature of the target device is 75 ° C. to 220 ° C., the boiling point of the drug is above this temperature range and the decomposition temperature is below this temperature range.

また、第三の条件である腐食抑制環境の提供のためには、薬剤が腐食を抑制する効果を有していることが必要である。腐食を抑制する効果としては以下の2つが挙げられる。
1.自身が酸化剤となる、または環境中の酸素を酸化剤として用いることで構造材表面に酸化物または水酸化物の緻密な皮膜(不働態皮膜)を生成する。
2.構造材表面に付着し、構造材と水または蒸気の接触を阻害する。
Further, in order to provide a corrosion suppressing environment, which is the third condition, it is necessary that the chemical having an effect of suppressing corrosion. The following two can be mentioned as the effect of suppressing corrosion.
1. 1. By using itself as an oxidant or by using oxygen in the environment as an oxidant, a dense film of oxides or hydroxides (passivation film) is formed on the surface of the structural material.
2. It adheres to the surface of the structural material and hinders the contact between the structural material and water or steam.

第三の条件を満たすには、薬剤が上記効果のうち、少なくとも一つ以上を有する必要がある。 In order to satisfy the third condition, the drug must have at least one of the above effects.

また、BWRでは、その水質が規定により厳しく管理されている。例えば、日本の水化学管理指針では、塩素イオン濃度や硫酸イオン濃度の基準値が定められており、水質中の各イオン濃度を基準値未満にすることが定められていることから、上記のような元素が含有されていないことが望ましい。そのため、薬剤に含まれる金属以外の元素は、プラントへの影響が少ない酸素、窒素、水素、炭素、リン等で構成されていることが好ましい。 In addition, in BWR, the water quality is strictly controlled by regulations. For example, Japan's water chemistry management guidelines stipulate standard values for chlorine ion concentration and sulfate ion concentration, and stipulate that each ion concentration in water quality should be less than the standard value. It is desirable that no element is contained. Therefore, it is preferable that the element other than the metal contained in the chemical is composed of oxygen, nitrogen, hydrogen, carbon, phosphorus, etc., which have little influence on the plant.

薬剤に含まれる金属元素は、薬剤またはその分解生成物が構造材表面に残留することで前述した構造材の腐食速度を低下させる効果を有する必要がある。 The metal element contained in the chemical must have the effect of reducing the corrosion rate of the structural material described above by the chemical or its decomposition product remaining on the surface of the structural material.

これらの条件を満たす薬剤としては、例えば酸化オスミウム(VIII)などが挙げられる。酸化オスミウム(VIII)の沸点は、約130℃であるため、270℃の蒸気発生部(蒸気発生器)では気体となり主蒸気系と移行後、温度が130℃以下となったところで凝縮し、構造材表面の溶液に溶解する。酸化オスミウム(VIII)は酸化剤として作用するため、本効果により薬剤が存在する構造材表面では皮膜が生成され、腐食が抑制される。 Examples of the drug satisfying these conditions include osmium oxide (VIII) and the like. Since the boiling point of osmium oxide (VIII) is about 130 ° C, it becomes a gas in the steam generator (steam generator) at 270 ° C, and after migrating to the main steam system, it condenses when the temperature drops below 130 ° C and has a structure. Dissolve in the solution on the surface of the material. Since osmium tetroxide (VIII) acts as an oxidant, this effect forms a film on the surface of the structural material in which the agent is present, and corrosion is suppressed.

上記条件を満たす薬剤としては他に、酸化ルテニウム(VIII)(沸点40℃)や、ヘキサカルボニルタングステン(沸点170℃)、ヘキサカルボニルモリブデン(沸点156℃)、ペンタカルボニル鉄(沸点103℃)等の金属カルボニルがある。また、その他、例えば、ニッケル、チタン、マンガン、クロム等の金属を含む薬剤等も使用することができる。 Other agents that satisfy the above conditions include ruthenium oxide (VIII) (boiling point 40 ° C), hexacarbonyl tungsten (boiling point 170 ° C), hexacarbonyl molybdenum (boiling point 156 ° C), pentacarbonyl iron (boiling point 103 ° C), and the like. There is a metal carbonyl. In addition, for example, chemicals containing metals such as nickel, titanium, manganese, and chromium can also be used.

次に、薬剤の施工方法について説明する。薬剤の施工方法は、薬剤の性質によって運転中のプラントの任意の箇所から注入することができる。薬剤が水に溶解する場合、薬剤を溶解させた溶液を水と接する機器から発電プラントに注入することが可能である。薬剤が水に不溶、または難溶の場合、薬剤を沸点以上に加熱することで気体にし、その気体を蒸気または気液二相流と接する機器から発電プラントに注入することができる。 Next, the method of applying the chemical will be described. The method of applying the chemical can be injected from any part of the operating plant depending on the nature of the chemical. When the drug dissolves in water, the solution in which the drug is dissolved can be injected into the power plant from a device that comes into contact with water. If the drug is insoluble or sparingly soluble in water, the drug can be heated above its boiling point to a gas, which can be injected into the power plant from equipment in contact with steam or gas-liquid two-phase flow.

発電プラントが停止している状態においても、前述の方法による注入が可能であるが、発電プラント停止期間においては発電プラント内の水及び蒸気の温度を任意の温度に設定することが可能であるため、施工対象機器の温度を薬剤の沸点以下に調整することで、運転中の機器温度に関わらず、施工対象機器に薬剤を施工することができる。 Even when the power plant is stopped, injection by the above method is possible, but the temperature of water and steam in the power plant can be set to any temperature during the power plant stop period. By adjusting the temperature of the equipment to be constructed below the boiling point of the chemical, the chemical can be applied to the equipment to be constructed regardless of the temperature of the equipment during operation.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1……復水器、2……給水ポンプ、3……低圧給水加熱器、4……脱気器、5……高圧給水加熱器、6……原子炉圧力容器、8……主蒸気配管、9……高圧タービン、10……湿分分離器、11……低圧タービン、12……低圧タービン抽気系配管、13……湿分分離器抽気系配管、14……高圧タービン抽気系配管。 1 ... Condenser, 2 ... Water pump, 3 ... Low pressure feed water heater, 4 ... Degasser, 5 ... High pressure feed water heater, 6 ... Reactor pressure vessel, 8 ... Main steam piping , 9 ... High pressure turbine, 10 ... Moisture separator, 11 ... Low pressure turbine, 12 ... Low pressure turbine extraction system piping, 13 ... Moisture separator extraction system piping, 14 ... High pressure turbine extraction system piping.

Claims (8)

蒸気発生部において蒸気を発生させ、この蒸気によりタービンを回転させて発電する発電プラントの、気相または気液二相環境にある機器の腐食を抑制する方法であって、
金属元素を含み、前記蒸気発生部の温度以下の沸点を有し、運転時の前記機器の温度以上の沸点を有する薬剤を注入することを特徴とする発電プラントの腐食抑制方法。
It is a method of suppressing corrosion of equipment in a gas-phase or gas-liquid two-phase environment of a power generation plant that generates steam by generating steam in a steam generating section and rotating a turbine with the steam to generate power.
A method for suppressing corrosion of a power plant, which comprises injecting a chemical containing a metal element, having a boiling point equal to or lower than the temperature of the steam generating portion, and having a boiling point equal to or higher than the temperature of the equipment during operation.
請求項1に記載の発電プラントの腐食抑制方法であって、
前記薬剤が、前記金属元素と、酸素、窒素、水素、炭素、リンのみからなる物質であることを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to claim 1.
A method for suppressing corrosion in a power plant, wherein the chemical is a substance consisting only of the metal element and oxygen, nitrogen, hydrogen, carbon, and phosphorus.
請求項1または2に記載の発電プラントの腐食抑制方法であって、
前記薬剤が、タングステン、モリブデン、オスミウム、ルテニウム、鉄、の元素のうち、少なくとも1つ以上を含むことを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to claim 1 or 2.
A method for suppressing corrosion of a power plant, wherein the chemical contains at least one of the elements of tungsten, molybdenum, osmium, ruthenium, and iron.
請求項1乃至3何れか一項に記載の発電プラントの腐食抑制方法であって、
前記薬剤または前記薬剤を含む溶液を、発電プラント内の水に接する機器から注入することを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to any one of claims 1 to 3.
A method for suppressing corrosion of a power plant, which comprises injecting the drug or a solution containing the drug from an apparatus in contact with water in the power plant.
請求項1乃至3何れか一項に記載の発電プラントの腐食抑制方法であって、
前記薬剤または前記薬剤を含む溶液をまたは蒸気を、発電プラント内の蒸気に接する機器から注入することを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to any one of claims 1 to 3.
A method for suppressing corrosion of a power plant, which comprises injecting the drug or a solution containing the drug or steam from a device in contact with steam in the power plant.
請求項1乃至3何れか一項に記載の発電プラントの腐食抑制方法であって、
前記薬剤を液体または気体として、または前記薬剤を含む溶液または蒸気をプラント内で加熱することで、前記機器に施工することを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to any one of claims 1 to 3.
A method for suppressing corrosion of a power plant, which comprises applying the chemical to the equipment by heating the chemical as a liquid or gas, or by heating a solution or vapor containing the chemical in the plant.
請求項6に記載の発電プラントの腐食抑制方法であって、
発電プラントの停止中に、前記薬剤、またはプラント内の水または蒸気、若しくは前記機器の温度を調整することで、前記薬剤の施工対象を調節することを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to claim 6.
A method for suppressing corrosion of a power plant, which comprises adjusting the application target of the chemical by adjusting the temperature of the chemical, water or steam in the plant, or the equipment while the power plant is stopped.
請求項1乃至7何れか一項に記載の発電プラントの腐食抑制方法であって、
前記機器が、抽気系配管を含むことを特徴とする発電プラントの腐食抑制方法。
The method for suppressing corrosion of a power plant according to any one of claims 1 to 7.
A method for suppressing corrosion of a power plant, wherein the equipment includes bleed air piping.
JP2020021229A 2020-02-12 2020-02-12 Corrosion suppression method in power-generating plant Pending JP2021127472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021229A JP2021127472A (en) 2020-02-12 2020-02-12 Corrosion suppression method in power-generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021229A JP2021127472A (en) 2020-02-12 2020-02-12 Corrosion suppression method in power-generating plant

Publications (1)

Publication Number Publication Date
JP2021127472A true JP2021127472A (en) 2021-09-02

Family

ID=77488046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021229A Pending JP2021127472A (en) 2020-02-12 2020-02-12 Corrosion suppression method in power-generating plant

Country Status (1)

Country Link
JP (1) JP2021127472A (en)

Similar Documents

Publication Publication Date Title
AU2010222160B2 (en) Method and system for controlling water quality in power generation plant
JP5637867B2 (en) Plant operating method and system
JP4898877B2 (en) Corrosion prevention method for carbon steel members
JP5059325B2 (en) Method and apparatus for inhibiting corrosion of carbon steel
JP6006261B2 (en) Oxidative decontamination agent for removing high radioactive oxide layer on metal surface and production method thereof, and oxidative decontamination method using said oxidative decontamination agent
JP2021127472A (en) Corrosion suppression method in power-generating plant
KR101410012B1 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
JP6579894B2 (en) Nitric oxide decomposition equipment, power generation system
JPWO2009025330A1 (en) Method for suppressing adhesion of radioactive substance and apparatus for suppressing adhesion
JP2010229543A (en) Method of forming nickel ferrite film onto carbon steel member
JP2008007851A (en) Method for forming corrosion inhibition film and nuclear power generation plant
JP2018145514A (en) Corrosion control method of power plant, and power plant
JP2007131913A (en) Anticorrosive for reducing erosion or corrosion, and method for reducing the same
JPS6151758B2 (en)
RU2543573C1 (en) Intracircuit passivation method of steel surfaces of fast neutron nuclear reactor
KR101418919B1 (en) Corrosion-resistant member and method for producing same
JP6829148B2 (en) Corrosion reduction method for power plants and their corrosion reduction equipment
JP2008150684A (en) Anticorrosive for reducing erosion and corrosion, and reduction method therefor
JP2020101378A (en) Corrosion prevention method for nuclear reactor
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
JPS61149501A (en) Method of preventing stress corrosion cracking of rotor disk in nuclear power plant turbine
JP2022048742A (en) Method for inhibiting corrosion of plant
KR20150033049A (en) Method for reforming metal surface of cooling or circulating system of nuclear or thermal power plant
Pierson et al. How to simulate acid corrosion of Alloy 600 steam generator tubes
JPS6279396A (en) Radioactivity reducing method of nuclear power plant