JP2021124242A - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
JP2021124242A
JP2021124242A JP2020017866A JP2020017866A JP2021124242A JP 2021124242 A JP2021124242 A JP 2021124242A JP 2020017866 A JP2020017866 A JP 2020017866A JP 2020017866 A JP2020017866 A JP 2020017866A JP 2021124242 A JP2021124242 A JP 2021124242A
Authority
JP
Japan
Prior art keywords
heat transfer
flow path
ridges
surface side
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020017866A
Other languages
Japanese (ja)
Other versions
JP2021124242A5 (en
JP7181241B2 (en
Inventor
要 山口
Kaname Yamaguchi
要 山口
智浩 四方
Tomohiro Shikata
智浩 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2020017866A priority Critical patent/JP7181241B2/en
Priority to EP21751027.0A priority patent/EP4098965A4/en
Priority to CN202180011114.4A priority patent/CN115003979A/en
Priority to PCT/JP2021/003494 priority patent/WO2021157514A1/en
Publication of JP2021124242A publication Critical patent/JP2021124242A/en
Publication of JP2021124242A5 publication Critical patent/JP2021124242A5/ja
Application granted granted Critical
Publication of JP7181241B2 publication Critical patent/JP7181241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a plate type heat exchanger capable of obtaining sufficient heat exchange performance even when a first liquid and a second liquid having different characteristics are heat-exchanged.SOLUTION: A plate type heat exchanger includes a plurality of heat transfer plate pairs which have first surfaces and second surfaces and in which the first surfaces are overlapped in a first direction so as to oppose each other. The plurality of heat transfer plate pairs form first flow channels between the first surfaces and second flow channels between the second surfaces by overlapping the second surfaces so as to oppose each other. By repeating irregularities so that a bottom and a top extending along a second direction in each of the opposed first surfaces are alternately aligned in a third direction, each of the heat transfer plate pairs has a plurality of top pairs constituted by the opposed tops and aligned in the third direction. The opposed tops are opposed to each other at an interval in at least one top pair among the plurality of top pairs, and the opposed tops are abutted on each other in the remaining top pairs.SELECTED DRAWING: Figure 13

Description

本発明は、複数の伝熱プレートが重ね合わされたプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger in which a plurality of heat transfer plates are superposed.

従来から、図20に示すような、複数の伝熱プレート501が重ね和されたプレート式熱交換器500が知られている(特許文献1参照)。具体的に、各伝熱プレート501では、一方の面の凹部と他方の面の凸部とが表裏の関係となり且つ一方の面の凸部と他方の面の凹部とが表裏の関係となるように、交互に繰り返される同じ大きさの凹部と凸部とが両面に配置されている。そして、この伝熱プレート501が重ね合わされることで、伝熱プレート501の重ね合わせ方向において、第一流体が流通可能な第一流路Raと第二流体が流通可能な第二流路Rbとが、各伝熱プレート501を介して交互に形成される。これら第一流路Raと第二流路Rbとの流路断面積は、同じである。 Conventionally, as shown in FIG. 20, a plate-type heat exchanger 500 in which a plurality of heat transfer plates 501 are stacked and summed is known (see Patent Document 1). Specifically, in each heat transfer plate 501, the concave portion on one surface and the convex portion on the other surface have a front-back relationship, and the convex portion on one surface and the concave portion on the other surface have a front-back relationship. In addition, concave portions and convex portions of the same size that are alternately repeated are arranged on both sides. Then, by superimposing the heat transfer plates 501, in the stacking direction of the heat transfer plates 501, the first flow path Ra through which the first fluid can flow and the second flow path Rb through which the second fluid can flow can be arranged. , Alternately formed through each heat transfer plate 501. The flow path cross-sectional areas of the first flow path Ra and the second flow path Rb are the same.

このプレート式熱交換器500では、第一流体が第一流路Raを流れると共に第二流体が第二流路Rbを流れることで、第一流路Raと第二流路Rbとを隔てている伝熱プレート501を通じて第一流体と第二流体とが熱交換する。 In this plate heat exchanger 500, the first fluid flows through the first flow path Ra and the second fluid flows through the second flow path Rb, so that the first flow path Ra and the second flow path Rb are separated from each other. The first fluid and the second fluid exchange heat through the heat plate 501.

実用新案登録第3222546号公報Utility Model Registration No. 3222546

上記のプレート式熱交換器500において、一方の流体(第一流体)として、例えば、熱交換によって層変化する流体(第二流体と特性の異なる流体)が用いられる場合、第一流体が第二流体と熱交換することによって第一流路を規定する伝熱プレート501の面上に液膜が形成されるため、十分な熱交換性能を得るためには、第一流路Raでの第一流体の流速を第二流路Rbでの第二流体の流速に比べて大きくすることで前記液膜の流れを乱す必要がある。 In the above plate type heat exchanger 500, when, for example, a fluid whose layer changes by heat exchange (a fluid having different characteristics from the second fluid) is used as one fluid (first fluid), the first fluid is the second. Since a liquid film is formed on the surface of the heat transfer plate 501 that defines the first flow path by exchanging heat with the fluid, in order to obtain sufficient heat exchange performance, the first fluid in the first flow path Ra It is necessary to disturb the flow of the liquid film by increasing the flow velocity as compared with the flow velocity of the second fluid in the second flow path Rb.

しかし、第一流路Raと第二流路Rbとの流路断面積が同じであるため、第一流体の流速を第二流体の流速に比べて十分に大きくし難く、即ち、第一流体と第二流体との流速の差が十分に生じず、これにより、上記のプレート式熱交換器500において十分な熱交換性能が得られなかった。 However, since the flow path cross-sectional area of the first flow path Ra and the second flow path Rb is the same, it is difficult to make the flow velocity of the first fluid sufficiently larger than the flow velocity of the second fluid, that is, with the first fluid. A sufficient difference in flow velocity from the second fluid did not occur, and as a result, sufficient heat exchange performance could not be obtained in the above-mentioned plate heat exchanger 500.

そこで、本発明は、特性の異なる第一流体と第二流体とを熱交換させる場合にも十分な熱交換性能が得られるプレート式熱交換器を提供することを課題とする。 Therefore, it is an object of the present invention to provide a plate type heat exchanger capable of obtaining sufficient heat exchange performance even when heat exchange between a first fluid and a second fluid having different characteristics.

本発明のプレート式熱交換器は、
第一面と該第一面に対して反対向きの第二面とをそれぞれ有し且つ前記第一面と直交する第一方向において前記第一面同士が対向するように重ね合わされる二つの伝熱プレートによって構成される伝熱プレート対を複数備え、
前記複数の伝熱プレート対が前記第一方向において前記第二面同士が対向するように重ね合わされた状態において、対向する第一面間のそれぞれに第一流体が前記第一方向と直交する第二方向に流通可能な第一流路が形成されると共に、対向する第二面間のそれぞれに第二流体が前記第二方向に流通可能な第二流路が形成され、
前記複数の伝熱プレート対に含まれる複数の伝熱プレートのそれぞれにおいて、
前記第一面は、前記第二方向に沿って延びる少なくとも一つの第一面側凸条及び前記第二方向に沿って延びる少なくとも一つの第一面側凹条を有し、
前記第二面は、前記第一面の前記第一面側凸条と表裏の関係にある少なくとも一つの第二面側凹条及び前記第一面の前記第一面側凹条と表裏の関係にある少なくとも一つの第二面側凸条を有し、
各伝熱プレート対では、前記対向する第一面のそれぞれにおいて前記第一面側凸条と前記第一面側凹条とが前記第一方向及び前記第二方向のそれぞれと直交する第三方向に交互に並ぶことで、対向する第一面側凸条によって構成される凸条対が前記第三方向に複数並び、
前記第三方向に並ぶ複数の凸条対のうちの少なくとも一つの凸条対である第一凸条対では、前記対向する第一面側凸条同士が前記第一方向に間隔をあけて対向し、前記複数の凸条対のうちの残りの凸条対である第二凸条対では、前記対向する第一面側凸条同士が互いに当接している。
The plate heat exchanger of the present invention
Two transmissions that have a first surface and a second surface opposite to the first surface, and are superposed so that the first surfaces face each other in the first direction orthogonal to the first surface. Equipped with multiple heat transfer plate pairs composed of heat plates
In a state where the plurality of heat transfer plate pairs are superposed so that the second surfaces face each other in the first direction, the first fluid is orthogonal to the first direction between the first surfaces facing each other. A first flow path that can flow in two directions is formed, and a second flow path that allows the second fluid to flow in the second direction is formed between the two opposing surfaces.
In each of the plurality of heat transfer plates included in the plurality of heat transfer plate pairs,
The first surface has at least one first surface side ridge extending along the second direction and at least one first surface side recess extending along the second direction.
The second surface has at least one second surface side recess having a front and back relationship with the first surface side convex groove on the first surface, and a front and back relationship between the first surface side recess on the first surface. Has at least one second side ridge in
In each heat transfer plate pair, the third direction in which the first surface side convex and the first surface side concave are orthogonal to each of the first direction and the second direction on each of the facing first surfaces. By alternately arranging the ridges in the third direction, a plurality of ridge pairs composed of the ridges on the first surface side facing each other are lined up in the third direction.
In the first ridge pair, which is at least one of the plurality of ridge pairs arranged in the third direction, the facing first surface side ridges face each other with a gap in the first direction. However, in the second ridge pair, which is the remaining ridge pair among the plurality of ridge pairs, the facing first surface side ridges are in contact with each other.

このように、第一凸条対において第一面側凸条同士が間隔をあけて対向することで、該位置において対向する第一面側凸条同士が当接する場合に比べて第一流路を規定する伝熱プレート(第一面)の第一方向の間隔が大きくなるため第一流路の流路断面積が大きくなると共に、第一凸条対と対応する位置(即ち、第三方向の同じ位置)での第二流路を規定する伝熱プレート(第二面)の第一方向の間隔が小さくなるため、第二流路の流路断面積が小さくなり、これにより、第一流路と第二流路との流路断面積の差が大きくなる。このため、第一流路を流れる第一流体の流速と第二流路を流れる第二流体の流速の差を大きくし易くなり、その結果、特性の異なる第一流体と第二流体とを熱交換させる場合においても、十分な熱交換性能が得られる。 In this way, in the first ridge pair, the first surface side ridges face each other with a gap, so that the first flow path is formed as compared with the case where the first surface side ridges facing each other at the position are in contact with each other. Since the distance between the specified heat transfer plates (first surface) in the first direction is increased, the cross-sectional area of the first flow path is increased, and the position corresponding to the first ridge pair (that is, the same in the third direction) is increased. Since the distance in the first direction of the heat transfer plate (second surface) that defines the second flow path at the position) becomes smaller, the flow path cross-sectional area of the second flow path becomes smaller, and thus the first flow path and the first flow path. The difference in the cross-sectional area of the flow path from the second flow path becomes large. Therefore, it becomes easy to increase the difference between the flow velocity of the first fluid flowing through the first flow path and the flow velocity of the second fluid flowing through the second flow path, and as a result, heat exchange between the first fluid and the second fluid having different characteristics. Sufficient heat exchange performance can be obtained even when the fluid is allowed to flow.

前記プレート式熱交換器では、
前記第一凸条対を構成する前記第一面側凸条は、該第一面側凸条を前記第三方向に横断する溝部を前記第二方向の途中位置に少なくとも一つ有してもよい。
In the plate heat exchanger,
The first surface side ridges constituting the first ridge pair may have at least one groove portion that crosses the first surface side ridges in the third direction at an intermediate position in the second direction. good.

このように、第一凸条対を構成する第一面側凸条にリブ状の部位(溝部)を設けることで、該部位の強度を向上させることができる。 As described above, by providing the rib-shaped portion (groove portion) on the first surface side convex strip forming the first convex strip pair, the strength of the portion can be improved.

また、前記プレート式熱交換器において、
前記対向する第二面のうちの一方の第二面の複数の第二面側凸条のそれぞれと、前記対向する第二面のうちの他方の第二面の複数の第二面側凸条のそれぞれとは、互いに接触しないように前記第三方向にずれた位置に配置されてもよい。
Further, in the plate heat exchanger,
Each of the plurality of second surface side ridges on one of the two opposing second surfaces and the plurality of second surface side ridges on the other second surface of the opposite second surfaces. Each of the above may be arranged at a position deviated in the third direction so as not to come into contact with each other.

かかる構成によれば、対向する第二面において、対向する第二面側凸条同士が接触しないように互いに第三方向にずれているため、対向する第二面間に形成される第二流路を第二流体が第二方向に流れるときに第二流体の第三方向への移動も可能となり、これにより、第二流体の流れ(流量)における第三方向の偏りが抑えられ、その結果、前記偏りに起因する熱交換性能の低下を防ぐことができる。 According to such a configuration, in the facing second surfaces, the ridges on the opposite second surface sides are displaced from each other in the third direction so as not to contact each other, so that the second flow formed between the facing second surfaces is formed. When the second fluid flows in the second direction through the path, the second fluid can also move in the third direction, which suppresses the bias in the third direction in the flow (flow rate) of the second fluid, and as a result. , It is possible to prevent a decrease in heat exchange performance due to the bias.

この場合、
前記一方の第二面の前記第二面側凸条が前記他方の第二面の前記第二面側凹条と対向すると共に前記一方の第二面の前記第二面側凹条が前記他方の第二面の前記第二面側凸条と対向することが好ましい。
in this case,
The second surface side convex of the one second surface faces the second surface side concave of the other second surface, and the second surface side concave of the one second surface faces the other. It is preferable to face the second surface side ridge on the second surface of the above.

かかる構成によれば、第二方向から見て第二流路が蛇行するように第三方向に延び(図13参照)、これにより、第三方向の各位置において、対向する第二面同士の間隔(第一方向の間隔)が一定又は略一定となるため、第二流体の流れにおける第三方向の偏りがより抑えられ、これにより、前記偏りに起因する熱交換性能の低下をより確実に防ぐことができる。 According to such a configuration, the second flow path extends in the third direction so as to meander when viewed from the second direction (see FIG. 13), whereby, at each position in the third direction, the second surfaces facing each other extend. Since the interval (interval in the first direction) is constant or substantially constant, the bias in the third direction in the flow of the second fluid is further suppressed, whereby the deterioration of the heat exchange performance due to the bias is more reliably performed. Can be prevented.

また、前記プレート式熱交換器では、
前記対向する第二面のうちの少なくとも片方の第二面は、前記第二方向と交差する方向に延びる少なくとも一つの障壁用凸条を有し、
前記障壁用凸条は、相手側の第二面の前記複数の第二面側凸条と当接してもよい。
Further, in the plate heat exchanger,
At least one second surface of the opposing second surfaces has at least one barrier ridge extending in a direction intersecting the second direction.
The barrier ridge may come into contact with the plurality of second surface side ridges on the second surface on the other side.

かかる構成によれば、第二流体が第二流路、詳しくは、第二面側凹条に沿って流れるときに障壁用凸条に衝突して第二流体の流れに乱れ(乱流等)が生じるため、熱交換性能が向上する。 According to this configuration, when the second fluid flows along the second flow path, specifically, the second surface side concave groove, it collides with the barrier ridge and is disturbed by the flow of the second fluid (turbulent flow, etc.). Therefore, the heat exchange performance is improved.

この場合、
前記少なくとも一つの障壁用凸条は、前記対向する第二面のそれぞれに配置され、
前記対向する第二面のうちの前記一方の第二面の前記少なくとも一つの障壁用凸条と、前記対向する第二面のうちの前記他方の第二面の前記少なくとも一つの障壁用凸条とは、前記第二方向において異なる位置に配置されることが好ましい。
in this case,
The at least one barrier ridge is arranged on each of the opposing second surfaces.
The at least one barrier ridge on the one second surface of the opposing second surface and the at least one barrier ridge on the other second surface of the opposing second surface. Is preferably arranged at different positions in the second direction.

対向する第二面のそれぞれの障壁用凸条が第二方向の同じ位置に配置されると、この位置における第二流路の流路幅(第一方向の寸法)が小さく又は無くなって第二流路の流通抵抗が大きくなり過ぎる。しかし、上記構成のように、一方の第二面の障壁用凸条と他方の第二面の障壁用凸条との第二方向の位置を異ならせることで各位置での流路幅を確保して第二流路の流通抵抗が大きくなり過ぎることを防ぎつつ、一方の第二面と他方の第二面とのそれぞれに設けられた障壁用凸条のそれぞれに第二流体が衝突することで第二流路における第二流体の流れに十分な乱れを生じさせることができる。 When the respective barrier ridges on the facing second surfaces are arranged at the same position in the second direction, the flow path width (dimension in the first direction) of the second flow path at this position becomes smaller or disappears, and the second The flow resistance of the flow path becomes too large. However, as in the above configuration, the flow path width at each position is secured by different positions of the barrier ridge on one second surface and the barrier ridge on the other second surface in the second direction. The second fluid collides with each of the barrier ridges provided on each of the second surface of one side and the second surface of the other while preventing the flow resistance of the second flow path from becoming too large. Can cause sufficient turbulence in the flow of the second fluid in the second flow path.

さらに、
前記対向する第二面のそれぞれにおいて、前記障壁用凸条の頂部と各第二面側凸条の頂部との前記第一方向の位置は、同じであることがより好ましい。
Moreover,
It is more preferable that the positions of the tops of the barrier ridges and the tops of the two side ridges in the first direction on each of the facing second surfaces are the same.

かかる構成によれば、第二流路において第二方向に連通した領域、即ち、第二流体が第二方向に流れるときに、伝熱プレートに衝突せずに通過できる領域が生じないため(図13参照)、第二流体の流れの偏りの発生を防ぐことができ、これにより、前記流れの偏りに起因する熱交換性能の低下を防ぐことができる。 According to such a configuration, there is no region communicating in the second direction in the second flow path, that is, a region through which the second fluid can pass without colliding with the heat transfer plate when flowing in the second direction (FIG. FIG. 13), it is possible to prevent the occurrence of the bias of the flow of the second fluid, and thereby it is possible to prevent the deterioration of the heat exchange performance due to the bias of the flow.

以上より、本発明によれば、特性の異なる第一流体と第二流体とを熱交換させる場合にも十分な熱交換性能が得られるプレート式熱交換器を提供することができる。 From the above, according to the present invention, it is possible to provide a plate type heat exchanger that can obtain sufficient heat exchange performance even when heat exchange is performed between the first fluid and the second fluid having different characteristics.

図1は、本実施形態に係るプレート式熱交換器の斜視図である。FIG. 1 is a perspective view of a plate heat exchanger according to the present embodiment. 図2は、前記プレート式熱交換機の分解斜視図である。FIG. 2 is an exploded perspective view of the plate type heat exchanger. 図3は、前記プレート式熱交換器が備える第一伝熱プレートを第一面側から見た図である。FIG. 3 is a view of the first heat transfer plate included in the plate heat exchanger as viewed from the front surface side. 図4は、前記第一伝熱プレートを第二面側から見た図である。FIG. 4 is a view of the first heat transfer plate viewed from the second surface side. 図5は、前記プレート式熱交換器が備える第二伝熱プレートを第一面側から見た図である。FIG. 5 is a view of the second heat transfer plate included in the plate heat exchanger as viewed from the front surface side. 図6は、前記第二伝熱プレートを第二面側から見た図である。FIG. 6 is a view of the second heat transfer plate viewed from the second surface side. 図7は、図3においてVIIで示す囲まれた部位の拡大図である。FIG. 7 is an enlarged view of the enclosed portion shown by VII in FIG. 図8は、図4においてVIIIで示す囲まれた部位の拡大図である。FIG. 8 is an enlarged view of the enclosed portion shown by VIII in FIG. 図9は、図7におけるIX−IX位置での断面図である。FIG. 9 is a cross-sectional view taken at the IX-IX position in FIG. 図10は、図5においてXで示す囲まれた部位の拡大図である。FIG. 10 is an enlarged view of the enclosed portion indicated by X in FIG. 図11は、図6においてXIで示す囲まれた部位の拡大図である。FIG. 11 is an enlarged view of the enclosed portion indicated by XI in FIG. 図12は、図11におけるXII−XII位置での断面図である。FIG. 12 is a cross-sectional view taken along the line XII-XII in FIG. 図13は、複数の伝熱プレートが重ね合わされた状態の横断面における一部拡大図である。FIG. 13 is a partially enlarged view of a cross section of a state in which a plurality of heat transfer plates are superposed. 図14は、図13におけるXIV−XIV位置での断面図である。FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG. 図15は、前記プレート式熱交換器の流路構成を説明するための図である。FIG. 15 is a diagram for explaining a flow path configuration of the plate heat exchanger. 図16は、第一流路内での第一流体の流れを示す図である。FIG. 16 is a diagram showing the flow of the first fluid in the first flow path. 図17は、第二流路内での第二流体の流れを示す図である。FIG. 17 is a diagram showing the flow of the second fluid in the second flow path. 図18は、他実施形態に係る伝熱プレートにおける主伝熱部の一部拡大図である。FIG. 18 is a partially enlarged view of a main heat transfer portion in the heat transfer plate according to another embodiment. 図19は、図18におけるXIX−XIX位置での断面図である。FIG. 19 is a cross-sectional view taken at the XIX-XIX position in FIG. 図20は、従来のプレート式熱交換器の縦断面図である。FIG. 20 is a vertical cross-sectional view of a conventional plate heat exchanger.

以下、本発明の一実施形態について、図1〜図17を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 17.

本実施形態に係るプレート式熱交換器(以下、単に「熱交換器」とも称する。)は、図1及び図2に示すように、所定の方向に重ね合わされる複数の伝熱プレート2、3を備える。また、熱交換器1は、複数の伝熱プレート2、3を前記所定の方向の外側から挟み込む一対のフレームプレート(端部プレート)4を備える。これら複数の伝熱プレート2、3における各伝熱プレート2、3間に、流体A、Bの流通可能な流路Ra、Rbが形成されている。具体的な構成は、以下の通りである。 As shown in FIGS. 1 and 2, the plate heat exchanger according to the present embodiment (hereinafter, also simply referred to as “heat exchanger”) has a plurality of heat transfer plates 2, 3 which are superposed in a predetermined direction. To be equipped with. Further, the heat exchanger 1 includes a pair of frame plates (end plates) 4 that sandwich the plurality of heat transfer plates 2 and 3 from the outside in the predetermined direction. Flow paths Ra and Rb through which fluids A and B can flow are formed between the heat transfer plates 2 and 3 in the plurality of heat transfer plates 2 and 3. The specific configuration is as follows.

本実施形態の熱交換器1は、三つ以上の矩形状の伝熱プレート2、3を備え、これら三つ以上の伝熱プレート2、3は、二種類の伝熱プレートを含む。以下の説明では、二種類の伝熱プレート2、3のうちの一方の伝熱プレートを第一伝熱プレート2とも称し、二種類の伝熱プレート2、3のうちの他方の伝熱プレートを第二伝熱プレート3とも称する。また、伝熱プレート2、3が重ね合わされる方向(所定の方向)を直交座標系のX軸方向(第一方向)とし、伝熱プレート2、3の短辺方向を直交座標系のY軸方向(第三方向)とし、伝熱プレート2、3の長辺方向を直交座標系のZ軸方向(第二方向)とする。 The heat exchanger 1 of the present embodiment includes three or more rectangular heat transfer plates 2 and 3, and these three or more heat transfer plates 2 and 3 include two types of heat transfer plates. In the following description, one of the two types of heat transfer plates 2 and 3 is also referred to as the first heat transfer plate 2, and the other heat transfer plate of the two types of heat transfer plates 2 and 3 is referred to as the first heat transfer plate 2. Also referred to as the second heat transfer plate 3. Further, the direction in which the heat transfer plates 2 and 3 are overlapped (predetermined direction) is the X-axis direction (first direction) of the Cartesian coordinate system, and the short side direction of the heat transfer plates 2 and 3 is the Y-axis of the Cartesian coordinate system. The direction is defined as the direction (third direction), and the long side direction of the heat transfer plates 2 and 3 is defined as the Z-axis direction (second direction) of the Cartesian coordinate system.

これら二種類の伝熱プレート、即ち、第一伝熱プレート2と第二伝熱プレート3とは、共通する構成を有する。このため、以下では、先ず、第一伝熱プレート2及び第二伝熱プレート3の共通する構成について説明する。 These two types of heat transfer plates, that is, the first heat transfer plate 2 and the second heat transfer plate 3, have a common configuration. Therefore, in the following, first, the common configuration of the first heat transfer plate 2 and the second heat transfer plate 3 will be described.

伝熱プレート2、3は、図2〜図6に示すように、第一面Sa1、Sb1と該第一面Sa1、Sb1に対して反対向きの第二面Sa2、Sb2とを有する伝熱部20、30と、伝熱部20、30の外周縁の全域から該伝熱部20、30と面交差する方向に延出する環状の嵌合部21、31と、を備える。本実施形態の伝熱プレート2、3は、金属プレート(薄板)がプレス成型されることによって形成されている。 As shown in FIGS. 2 to 6, the heat transfer plates 2 and 3 are heat transfer portions having first surfaces Sa1 and Sb1 and second surfaces Sa2 and Sb2 opposite to the first surfaces Sa1 and Sb1. 20 and 30 and annular fitting portions 21 and 31 extending from the entire outer peripheral edge of the heat transfer portions 20 and 30 in a direction intersecting the heat transfer portions 20 and 30. The heat transfer plates 2 and 3 of the present embodiment are formed by press-molding a metal plate (thin plate).

伝熱部20、30は、X軸方向と直交する方向に広がり、X軸方向に厚みを有する。このため、X軸方向に重ね合わされる複数の伝熱プレート2、3の各伝熱部20、30における第一面Sa1、Sb1及び第二面Sa2、Sb2は、X軸方向に並ぶ。本実施形態の伝熱部20、30は、X軸方向から見てZ軸方向に長尺な矩形状である(図3〜図6参照)。 The heat transfer portions 20 and 30 spread in a direction orthogonal to the X-axis direction and have a thickness in the X-axis direction. Therefore, the first surfaces Sa1 and Sb1 and the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the plurality of heat transfer plates 2 and 3 superposed in the X-axis direction are arranged in the X-axis direction. The heat transfer portions 20 and 30 of the present embodiment have a long rectangular shape in the Z-axis direction when viewed from the X-axis direction (see FIGS. 3 to 6).

また、伝熱部20、30は、凹部22、32及び凸部23、33を有する。本実施形態の伝熱部20、30は、第一面Sa1、Sb1及び第二面Sa2、Sb2のそれぞれに、複数の凹部22、32及び複数の凸部23、33を有する。 Further, the heat transfer portions 20 and 30 have concave portions 22 and 32 and convex portions 23 and 33. The heat transfer portions 20 and 30 of the present embodiment have a plurality of concave portions 22 and 32 and a plurality of convex portions 23 and 33 on the first surfaces Sa1 and Sb1 and the second surfaces Sa2 and Sb2, respectively.

本実施形態の伝熱プレート2、3は、上述のように、金属プレートがプレス成型されることによって形成されている。このため、伝熱部20、30の第一面Sa1、Sb1の凹部22、32と、伝熱部20、30の第二面Sa2、Sb2の凸部23、33とは、表裏の関係にある。また、伝熱部20、30の第一面Sa1、Sb1の凸部23、33と、伝熱部20、30の第二面Sa2、Sb2の凹部22、32とは、表裏の関係にある。即ち、伝熱部20、30において、第一面Sa1、Sb1で凹部22、32を構成する部位が第二面Sa2、Sb2で凸部23、33を構成し、第一面Sa1、Sb1で凸部23、33を構成する部位が第二面Sa2、Sb2で凹部22、32を構成する。 The heat transfer plates 2 and 3 of the present embodiment are formed by press-molding a metal plate as described above. Therefore, the concave portions 22 and 32 of the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the convex portions 23 and 33 of the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are in a front-to-back relationship. .. Further, the convex portions 23 and 33 of the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the concave portions 22 and 32 of the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are in a front-to-back relationship. That is, in the heat transfer portions 20 and 30, the portions forming the concave portions 22 and 32 on the first surfaces Sa1 and Sb1 form the convex portions 23 and 33 on the second surfaces Sa2 and Sb2, and the convex portions 23 and 33 are formed on the first surfaces Sa1 and Sb1. The portions forming the portions 23 and 33 form the recesses 22 and 32 with the second surfaces Sa2 and Sb2.

具体的に、伝熱部20、30は、Z軸方向の中央に配置される主伝熱部25、35と、開口200、201、202、203、300、301、302、303を有する開口周縁部200p、201p、202p、203p、300p、301p、302p、303pと、主伝熱部25、35と開口周縁部200p、201p、202p、203p、300p、301p、302p、303pとの間に配置される堰部26、36と、を有する。 Specifically, the heat transfer portions 20 and 30 have an opening peripheral edge having main heat transfer portions 25 and 35 arranged in the center in the Z-axis direction and openings 200, 201, 202, 203, 300, 301, 302 and 303. It is arranged between the main heat transfer portions 25, 35 and the opening peripheral portion 200p, 201p, 202p, 203p, 300p, 301p, 302p, 303p. It has a weir portion 26, 36 and the like.

本実施形態の伝熱部20、30は、Z軸方向の一端部及び他端部のそれぞれに少なくとも二つの開口200、201、202、203、300、301、302、303を有する。より具体的に、伝熱部20、30は、Z軸方向の一端部に二つの開口200、203、300、303を有し、Z軸方向の他端部に二つの開口201、202、301、302を有する。 The heat transfer portions 20 and 30 of the present embodiment have at least two openings 200, 201, 202, 203, 300, 301, 302 and 303 at one end and the other end in the Z-axis direction, respectively. More specifically, the heat transfer portions 20 and 30 have two openings 200, 203, 300 and 303 at one end in the Z-axis direction and two openings 201, 202 and 301 at the other end in the Z-axis direction. , 302.

これら伝熱部20、30の一端部にある二つの開口200、203、300、303は、Y軸方向に間隔をあけて配置されている。また、伝熱部20、30の他端部にある二つの開口201、202、301、302は、Y軸方向に間隔をあけて配置されている。 The two openings 200, 203, 300, and 303 at one end of the heat transfer portions 20 and 30 are arranged at intervals in the Y-axis direction. Further, the two openings 201, 202, 301 and 302 at the other ends of the heat transfer portions 20 and 30 are arranged at intervals in the Y-axis direction.

伝熱部20、30の一端部における一方の開口200、300の開口周縁部200p、300p、及び伝熱部20、30の他端部における一方の開口201、301の開口周縁部201p、301pは、第一面Sa1、Sb1側から見て窪んでいる。一方、開口周縁部200p、201p、300p、301pは、第二面Sa2、Sb2側から見て膨出している。 The opening peripheral portions 200p and 300p of one opening 200 and 300 at one end of the heat transfer portions 20 and 30 and the opening peripheral edges 201p and 301p of one opening 201 and 301 at the other end of the heat transfer portions 20 and 30 , The first surface is dented when viewed from the Sa1 and Sb1 sides. On the other hand, the opening peripheral edges 200p, 201p, 300p, and 301p are bulging when viewed from the second surface Sa2 and Sb2 side.

これら第二面Sa2、Sb2側から見て膨出した各開口周縁部200p、201p、300p、301pのX軸方向の変位量(X軸方向の位置)は、隣り合う伝熱プレート2、3の開口周縁部200p、201p、300p、301pと当接するように設定されている。 The amount of displacement (position in the X-axis direction) of each of the opening peripheral edges 200p, 201p, 300p, and 301p that bulges from the side of the second surface Sa2 and Sb2 in the X-axis direction is the amount of displacement (position in the X-axis direction) of the adjacent heat transfer plates 2 and 3. It is set to come into contact with the opening peripheral portions 200p, 201p, 300p, and 301p.

これに対し、伝熱部20、30の一端部における他方の開口203、303の開口周縁部203p、303p、及び伝熱部20、30の他端部における他方の開口202、302の開口周縁部202p、302pは、第一面Sa1、Sb1側から見て膨出している。一方、開口周縁部202p、203p、302p、303pは、第二面Sa2、Sb2側から見て窪んでいる。 On the other hand, the opening peripheral edges 203p and 303p of the other openings 203 and 303 at one end of the heat transfer portions 20 and 30, and the opening peripheral edges of the other openings 202 and 302 at the other ends of the heat transfer portions 20 and 30. 202p and 302p are bulging when viewed from the front surface Sa1 and Sb1 sides. On the other hand, the opening peripheral edges 202p, 203p, 302p, and 303p are recessed when viewed from the second surface Sa2, Sb2 side.

これら第一面Sa1、Sb1側から見て膨出した各開口周縁部202p、203p、302p、303pのX軸方向の変位量(X軸方向の位置)は、隣り合う伝熱プレート2、3の開口周縁部202p、203p、302p、303pと当接するように設定されている。尚、図3〜図6において、第一面Sa1、Sb1及び第二面Sa2、Sb2のそれぞれにおける凹凸関係を明確にすべく、窪んでいる開口周縁部200p、201p、202p、203p、300p、301p、302p、303p、及び堰部26、36において窪んでいる部位(後述する第一面側凹部225、325及び第二面側凹部226、326)の底部(最も窪んでいる部位)にドットを付している。 The amount of displacement (position in the X-axis direction) of each of the opening peripheral edges 202p, 203p, 302p, 303p that bulges when viewed from the first surface Sa1 and Sb1 side is the heat transfer plates 2 and 3 adjacent to each other. It is set to abut the opening peripheral edges 202p, 203p, 302p, and 303p. In addition, in FIGS. 3 to 6, in order to clarify the uneven relationship on each of the first surface Sa1, Sb1 and the second surface Sa2, Sb2, the recessed opening peripheral edges 200p, 201p, 202p, 203p, 300p, 301p. , 302p, 303p, and the bottom (most recessed part) of the recessed portions (first surface side recesses 225, 325 and second surface side recesses 226, 326 described later) in the weir portions 26, 36. doing.

本実施形態の伝熱部20、30において、Z軸方向の一端部にある一方の開口200、300と、Z軸方向の他端部にある一方の開口201、301とは、対角位置にある。また、Z軸方向の一端部にある他方の開口203、303と、Z軸方向の他端部にある他方の開口202、302とは、対角位置にある。 In the heat transfer portions 20 and 30 of the present embodiment, one opening 200, 300 at one end in the Z-axis direction and one opening 201, 301 at the other end in the Z-axis direction are diagonally positioned. be. Further, the other openings 203 and 303 at one end in the Z-axis direction and the other openings 202 and 302 at the other end in the Z-axis direction are at diagonal positions.

主伝熱部25、35は、X軸方向から見て矩形状の部位である。この主伝熱部25、35は、図3、図5、図7、図9、図10、及び図12に示すように、第一面Sa1、Sb1に、Z軸方向に沿って延びる少なくとも一つの第一流路形成用凹条(第一面側凹条)221、321と、Z軸方向に沿って延びる少なくとも一つの第一流路形成用凸条(第一面側凸条)231、331と、Z軸方向と交差する方向に延びる少なくとも一つの障壁裏側凹条223、323と、を有する。本実施形態の主伝熱部25、35は、第一面Sa1、Sb1に、複数の第一流路形成用凹条221、321と、複数の第一流路形成用凸条231、331と、複数の障壁裏側凹条223、323と、を有する。これら複数の第一流路形成用凹条221、321及び複数の障壁裏側凹条223、323は、上述の伝熱部20、30の複数の凹部22、32に含まれる。また、複数の第一流路形成用凸条231、331は、上述の伝熱部20、30の複数の凸部23、33に含まれる。 The main heat transfer portions 25 and 35 are rectangular portions when viewed from the X-axis direction. As shown in FIGS. 3, 5, 7, 9, 10, and 12, at least one of the main heat transfer portions 25 and 35 extends along the Z-axis direction on the first surfaces Sa1 and Sb1. One first flow path forming recess (first surface side concave) 221 and 321 and at least one first flow path forming convex (first surface side convex) 231 and 331 extending along the Z-axis direction. , With at least one barrier backside recess 223, 323 extending in a direction intersecting the Z-axis direction. The main heat transfer portions 25, 35 of the present embodiment include a plurality of first flow path forming recesses 221 and 321 and a plurality of first flow path forming protrusions 231 and 331 on the first surfaces Sa1 and Sb1. It has recesses 223 and 323 on the back side of the barrier. The plurality of first flow path forming recesses 221 and 321 and the plurality of barrier backside recesses 223 and 323 are included in the plurality of recesses 22 and 32 of the heat transfer portions 20 and 30 described above. Further, the plurality of protrusions 231 and 331 for forming the first flow path are included in the plurality of protrusions 23 and 33 of the heat transfer portions 20 and 30 described above.

尚、図7及び図10において、第一面Sa1、Sb1における凹凸関係を明確にすべく、窪んでいる第一流路形成用凹条221、321及び障壁裏側凹条223、323の底部(最も窪んでいる部位)にドットを付している。 In addition, in FIGS. 7 and 10, in order to clarify the unevenness relationship on the first surfaces Sa1 and Sb1, the bottoms (most concaves) of the recessed first flow path forming recesses 221 and 321 and the barrier backside recesses 223 and 323 are recessed. Dots are attached to the part).

複数の障壁裏側凹条223、323それぞれは、主伝熱部25、35におけるY軸方向の一端から他端まで連続して延びている。本実施形態の複数の障壁裏側凹条223、323のそれぞれは、Y軸方向に真っ直ぐに延びている。 Each of the plurality of barrier backside recesses 223 and 323 extends continuously from one end to the other end of the main heat transfer portions 25 and 35 in the Y-axis direction. Each of the plurality of barrier backside recesses 223 and 323 of the present embodiment extends straight in the Y-axis direction.

これら複数の障壁裏側凹条223、323は、Z軸方向に間隔をあけて配置されている。本実施形態の複数の障壁裏側凹条223、323は、Z軸方向の一端(図3及び図5における上端)に配置された障壁裏側凹条223A、323Aを除き、Z軸方向に等間隔に配置されている。この一端に配置された障壁裏側凹条223A、323Aと、該障壁裏側凹条223A、323AとZ軸方向に隣り合う障壁裏側凹条223、323との間隔は、他の位置でZ軸方向に隣り合う障壁裏側凹条223、323同士の間隔の半分又は略半分である。 The plurality of barrier backside recesses 223 and 323 are arranged at intervals in the Z-axis direction. The plurality of barrier backside recesses 223 and 323 of the present embodiment are evenly spaced in the Z-axis direction except for the barrier backside recesses 223A and 323A arranged at one end in the Z-axis direction (upper end in FIGS. 3 and 5). Have been placed. The distance between the barrier backside recesses 223A and 323A arranged at one end of the barrier backside recesses 223A and 323A and the barrier backside recesses 223A and 323 adjacent to the barrier backside recesses 223A and 323A in the Z-axis direction is in the Z-axis direction at other positions. The distance between the adjacent dents 223 and 323 on the back side of the barrier is half or approximately half.

このように配置される複数の障壁裏側凹条223、323は、第一面Sa1、Sb1側において、主伝熱部25、35を、Z軸方向に並ぶ複数の領域(第一面側分割領域)D1に区画する。本実施形態の障壁裏側凹条223、323は、例えば、六つであり、主伝熱部25、35を七つの第一面側分割領域D1に区画する。 The plurality of barrier backside recesses 223 and 323 arranged in this way have a plurality of regions (first surface side divided regions) in which the main heat transfer portions 25 and 35 are arranged in the Z-axis direction on the first surface Sa1 and Sb1 sides. ) Divide into D1. The barrier back side recesses 223 and 323 of the present embodiment are, for example, six, and the main heat transfer portions 25 and 35 are divided into seven first surface side division regions D1.

複数の第一面側分割領域D1のそれぞれでは、複数の第一流路形成用凹条221、321が、それぞれZ軸方向に延び且つY軸方向に間隔をあけて配置され、複数の第一流路形成用凸条231、331のそれぞれが、Y軸方向に隣り合う第一流路形成用凹条221、321間においてZ軸方向に延びている。即ち、各第一面側分割領域D1において、第一流路形成用凹条221、321と第一流路形成用凸条231、331とがY軸方向に交互に並んでいる。 In each of the plurality of first surface side division regions D1, a plurality of first flow path forming recesses 221 and 321 are respectively extended in the Z-axis direction and arranged at intervals in the Y-axis direction, and the plurality of first flow paths are arranged. Each of the forming ridges 231 and 331 extends in the Z-axis direction between the first flow path forming dents 221 and 321 adjacent to each other in the Y-axis direction. That is, in each of the first surface side divided regions D1, the first flow path forming recesses 221 and 321 and the first flow path forming protrusions 231 and 331 are alternately arranged in the Y-axis direction.

これら複数の第一流路形成用凹条221、321と複数の第一流路形成用凸条231、331とのそれぞれは、第一面側分割領域D1におけるZ軸方向の一端から他端まで延びている。このため、各第一流路形成用凹条221、321における障壁裏側凹条223、323側の端は、該障壁裏側凹条223、323に繋がっている。 Each of the plurality of first flow path forming recesses 221 and 321 and the plurality of first flow path forming protrusions 231 and 331 extend from one end to the other end in the Z-axis direction in the first surface side division region D1. There is. Therefore, the ends of the barrier backside recesses 223 and 323 in the first flow path forming recesses 221 and 321 are connected to the barrier backside recesses 223 and 323.

また、第一面側分割領域D1において、各第一流路形成用凹条221、321の深さと、障壁裏側凹条223、323の深さとは、同じである。即ち、各第一流路形成用凹条221、321の底部のX軸方向における位置と、障壁裏側凹条223、323の底部のX軸方向における位置とは、同じである。 Further, in the first surface side divided region D1, the depths of the first flow path forming recesses 221 and 321 and the depths of the barrier backside recesses 223 and 323 are the same. That is, the positions of the bottoms of the first flow path forming recesses 221 and 321 in the X-axis direction and the positions of the bottoms of the barrier backside recesses 223 and 323 in the X-axis direction are the same.

本実施形態の各第一面側分割領域D1では、第一流路形成用凹条221、321のY軸方向の中央位置と、第一流路形成用凸条231、331のY軸方向の中央位置とが等間隔(同じピッチ)となるように、第一流路形成用凹条221、321と第一流路形成用凸条231、331とがY軸方向に交互に配置されている(図7、図9、図10、及び図12参照)。そして、これら交互に並ぶ第一流路形成用凹条221、321と第一流路形成用凸条231、331とによって構成される凹凸群のY軸方向の中央に位置する第一流路形成用凸条231、331のY軸方向の中央位置が、伝熱部20、30のY軸方向の中央位置においてZ軸方向に延びる縦中心線CLに対してY軸方向に1/2ピッチずれるように、前記凹凸群が配置されている(図3及び図5参照)。尚、前記の1ピッチは、隣り合う第一流路形成用凹条221、321と第一流路形成用凸条231、331との前記中央位置同士の間隔である(図9及び図12の符号P参照)。 In each of the first surface side division regions D1 of the present embodiment, the center position of the first flow path forming recesses 221 and 321 in the Y-axis direction and the center position of the first flow path forming protrusions 231 and 331 in the Y-axis direction. The first flow path forming recesses 221 and 321 and the first flow path forming protrusions 231 and 331 are alternately arranged in the Y-axis direction so that the two are at equal intervals (same pitch) (FIG. 7, FIG. 9), 10 and 12). Then, the first flow path forming ridges 221 and 321 arranged alternately and the first flow path forming ridges 231 and 331 are located in the center of the uneven group formed by the first flow path forming ridges 231 and 331 in the Y-axis direction. The center position of 231 and 331 in the Y-axis direction is shifted by 1/2 pitch in the Y-axis direction with respect to the vertical center line CL extending in the Z-axis direction at the center position of the heat transfer portions 20 and 30 in the Y-axis direction. The uneven group is arranged (see FIGS. 3 and 5). The 1 pitch is the distance between the central positions of the adjacent first flow path forming recesses 221 and 321 and the first flow path forming protrusions 231 and 331 (reference numerals P in FIGS. 9 and 12). reference).

また、各第一面側分割領域D1に配置される複数の第一流路形成用凸条231、331は、頂部のX軸方向における位置(高さ)の異なる二種類の第一流路形成用凸条、具体的には、第一の第一流路形成用凸条(以下、「第一凸条」と称する。)231A、331Aと、第一凸条231A、331Aより高い第二の第一流路形成用凸条(以下、「第二凸条」と称する。)231B、331Bと、を含む。 Further, the plurality of first flow path forming protrusions 231 and 331 arranged in each first surface side dividing region D1 have two types of first flow path forming protrusions having different positions (heights) of the tops in the X-axis direction. Articles, specifically, the first ridges for forming the first flow path (hereinafter referred to as "first ridges") 231A and 331A, and the second first flow path higher than the first ridges 231A and 331A. Includes forming ridges (hereinafter referred to as "second ridges") 231B and 331B.

各第一面側分割領域D1において、第二凸条231B、331Bは、第一凸条231A、331Aに対して一つ置きに配置されている。即ち、Y軸方向に隣り合う第二凸条231B、331Bの間のそれぞれに、第一凸条231A、331Aが一つずつ配置されている。 In each first surface side division region D1, the second ridges 231B and 331B are arranged every other one with respect to the first ridges 231A and 331A. That is, one first ridge 231A and one 331A are arranged between the second ridges 231B and 331B adjacent to each other in the Y-axis direction.

本実施形態の主伝熱部25、35において、各第一面側分割領域D1の構成は同じである。このため、各第一面側分割領域D1の第一凸条231A、331AがZ軸方向に真っ直ぐに並び(即ち、同一直線上に並び)、各第一面側分割領域D1の第二凸条231B、331BがZ軸方向に真っ直ぐに並び、各第一面側分割領域D1の第一流路形成用凹条221、321がZ軸方向に真っ直ぐに並ぶ。 In the main heat transfer portions 25 and 35 of the present embodiment, the configuration of each first surface side divided region D1 is the same. Therefore, the first ridges 231A and 331A of each first surface side division area D1 are arranged straight in the Z-axis direction (that is, they are arranged on the same straight line), and the second ridges of each first surface side division area D1 are arranged. 231B and 331B are arranged straight in the Z-axis direction, and the first flow path forming recesses 221 and 321 of each first surface side dividing region D1 are arranged straight in the Z-axis direction.

また、この主伝熱部25、35は、図4、図6、図8、図9、図11、及び図12に示すように、第二面Sa2、Sb2において、第一面Sa1、Sb1の第一流路形成用凸条231、331の裏側に形成される第二流路形成用凹条(第二面側凹条)222、322と、第一面Sa1、Sb1の第一流路形成用凹条221、321の裏側に形成される第二流路形成用凸条(第二面側凸条)232、332と、を有する。また、主伝熱部25、35は、第二面Sa2、Sb2において、第一面Sa1、Sb1の障壁裏側凹条223、323の裏側に形成される障壁用凸条233、333を有する。即ち、主伝熱部25、35は、第二面Sa2、Sb2に、Z軸方向に沿って延びる少なくとも一つの第二流路形成用凹条222、322と、Z軸方向に沿って延びる少なくとも一つの第二流路形成用凸条232、332と、を有する。また、主伝熱部25、35は、第二面Sa2、Sb2に、Z軸方向と交差する方向に延びる少なくとも一つの障壁用凸条233、333を有する。本実施形態の主伝熱部25、35は、第二面Sa2、Sb2に、複数の第二流路形成用凹条222、322と、複数の第二流路形成用凸条232、332と、複数の障壁用凸条233、333と、を有する。これら複数の第二流路形成用凹条222、322は、上述の伝熱部20、30の複数の凹部22、32に含まれる。また、複数の第二流路形成用凸条232、332及び複数の障壁用凸条233、333は、上述の伝熱部20、30の複数の凸部23、33に含まれる。 Further, as shown in FIGS. 4, 6, 8, 9, 11, and 12, the main heat transfer portions 25 and 35 have the first surfaces Sa1 and Sb1 on the second surfaces Sa2 and Sb2. The second flow path forming recesses (second surface side recesses) 222 and 322 formed on the back side of the first flow path forming protrusions 231 and 331, and the first flow path forming recesses on the first surfaces Sa1 and Sb1. It has ridges 232 and 332 for forming a second flow path (convex on the second surface side) formed on the back side of the strips 221 and 321. Further, the main heat transfer portions 25 and 35 have barrier ridges 233 and 333 formed on the back side of the barrier back side recesses 223 and 323 of the first surfaces Sa1 and Sb1 on the second surfaces Sa2 and Sb2. That is, the main heat transfer portions 25 and 35 have at least one second flow path forming recess 222 and 222 extending along the Z-axis direction and at least one extending along the Z-axis direction on the second surfaces Sa2 and Sb2. It has one second flow path forming ridge 232, 332, and the like. Further, the main heat transfer portions 25 and 35 have at least one barrier ridge 233,333 extending in a direction intersecting the Z-axis direction on the second surfaces Sa2 and Sb2. The main heat transfer portions 25 and 35 of the present embodiment have a plurality of recesses 222 and 322 for forming the second flow path and a plurality of protrusions 232 and 332 for forming the second flow path on the second surfaces Sa2 and Sb2. , With a plurality of barrier ridges 233,333. The plurality of recesses 222 and 222 for forming the second flow path are included in the plurality of recesses 22 and 32 of the heat transfer portions 20 and 30 described above. Further, the plurality of ridges 232 and 332 for forming the second flow path and the plurality of ridges 233 and 333 for barriers are included in the plurality of protrusions 23 and 33 of the heat transfer portions 20 and 30 described above.

尚、図8及び図11において、第一面Sa1、Sb1における凹凸関係を明確にすべく、窪んでいる第一流路形成用凹条221、321及び障壁裏側凹条223、323の底部(最も窪んでいる部位)にドットを付している。 In addition, in FIGS. 8 and 11, in order to clarify the unevenness relationship on the first surfaces Sa1 and Sb1, the bottoms (most concaves) of the recessed first flow path forming recesses 221 and 321 and the barrier backside recesses 223 and 323 are recessed. Dots are attached to the part).

複数の障壁用凸条233、333それぞれは、主伝熱部25、35におけるY軸方向の一端から他端まで連続して延びている。本実施形態の複数の障壁用凸条233、333のそれぞれは、Y軸方向に真っ直ぐに延びている。 Each of the plurality of barrier ridges 233 and 333 extends continuously from one end to the other end in the Y-axis direction of the main heat transfer portions 25 and 35. Each of the plurality of barrier ridges 233,333 of the present embodiment extends straight in the Y-axis direction.

これら複数の障壁用凸条233、333は、Z軸方向に間隔をあけて配置されている。本実施形態の複数の障壁用凸条233、333は、Z軸方向の一端(図4及び図6における上端)に配置された障壁用凸条233A、333Aを除き、Z軸方向に等間隔に配置されている。この一端に配置された障壁用凸条233A、333Aと、該障壁用凸条233A、333Aに対してZ軸方向に隣り合う障壁用凸条233、333との間隔は、他の位置でZ軸方向に隣り合う障壁用凸条233、333同士の間隔の半分又は略半分である。 These plurality of barrier ridges 233 and 333 are arranged at intervals in the Z-axis direction. The plurality of barrier ridges 233, 333 of the present embodiment are evenly spaced in the Z-axis direction, except for the barrier ridges 233A and 333A arranged at one end (upper end in FIGS. 4 and 6) in the Z-axis direction. Have been placed. The distance between the barrier ridges 233A and 333A arranged at one end of the barrier ridges 233A and 333A and the barrier ridges 233 and 333 adjacent to the barrier ridges 233A and 333A in the Z-axis direction is the Z axis at other positions. The distance between the barrier ridges 233 and 333 adjacent to each other in the direction is half or approximately half.

このように配置される複数の障壁用凸条233、333は、第二面Sa2、Sb2側において、主伝熱部25、35を、Z軸方向に並ぶ複数の領域(第二面側分割領域)D2に区画する。本実施形態の障壁用凸条233、333は、例えば、六つ配置され、主伝熱部25、35を七つの第二面側分割領域D2に区画する。本実施形態の各第二面側分割領域D2は、第一面Sa1、Sb1の複数の第一面側分割領域D1における対応する第一面側分割領域D1の裏側に形成されている。 The plurality of barrier ridges 233, 333 arranged in this way have a plurality of regions (second surface side divided regions) in which the main heat transfer portions 25 and 35 are arranged in the Z-axis direction on the second surface Sa2 and Sb2 sides. ) Divide into D2. Six barrier ridges 233 and 333 of the present embodiment are arranged, for example, and the main heat transfer portions 25 and 35 are divided into seven second surface side division regions D2. Each second surface side division area D2 of the present embodiment is formed on the back side of the corresponding first surface side division area D1 in the plurality of first surface side division areas D1 of the first surface Sa1 and Sb1.

複数の第二面側分割領域D2のそれぞれでは、複数の第二流路形成用凹条222、322が、それぞれZ軸方向に延び且つY軸方向に間隔をあけて配置され、複数の第二流路形成用凸条232、332のそれぞれが、Y軸方向に隣り合う第二流路形成用凹条222、322間においてZ軸方向に延びている。即ち、各第二面側分割領域D2において、第二流路形成用凹条222、322と第二流路形成用凸条232、332とがY軸方向に交互に並んでいる。 In each of the plurality of second surface side division regions D2, the plurality of recesses 222 and 222 for forming the second flow path are respectively extended in the Z-axis direction and arranged at intervals in the Y-axis direction, and the plurality of second passages are arranged. Each of the flow path forming protrusions 232 and 332 extends in the Z-axis direction between the second flow path forming recesses 222 and 322 adjacent to each other in the Y-axis direction. That is, in each of the second surface side divided regions D2, the recesses 222 and 322 for forming the second flow path and the ridges 232 and 332 for forming the second flow path are alternately arranged in the Y-axis direction.

これら複数の第二流路形成用凹条222、322と複数の第二流路形成用凸条232、332とのそれぞれは、第二面側分割領域D2におけるZ軸方向の一端から他端まで延びている。このため、各第二流路形成用凸条232、332における障壁用凸条233、333側の端は、該障壁用凸条233、333に繋がっている。 Each of the plurality of recesses 222 and 322 for forming the second flow path and the plurality of protrusions 232 and 332 for forming the second flow path are from one end to the other end in the Z-axis direction in the second surface side division region D2. It is extending. Therefore, the ends of the ridges 232 and 332 for forming the second flow path on the side of the ridges 233 and 333 for the barrier are connected to the ridges 233 and 333 for the barrier.

また、第二面側分割領域D2において、各第二流路形成用凸条232、332の高さと、障壁用凸条233、333の高さとは、同じである。即ち、各第二流路形成用凸条232、332の頂部のX軸方向における位置と、障壁用凸条233、333の頂部のX軸方向における位置とは、同じである。 Further, in the second surface side divided region D2, the heights of the ridges 232 and 332 for forming the second flow path and the heights of the ridges 233 and 333 for the barrier are the same. That is, the positions of the tops of the second flow path forming ridges 232 and 332 in the X-axis direction and the positions of the tops of the barrier ridges 233 and 333 in the X-axis direction are the same.

本実施形態の各第二面側分割領域D2では、第二流路形成用凹条222、322のY軸方向の中央位置と、第二流路形成用凸条232、332のY軸方向の中央位置とが等間隔(同じピッチ)となるように、第二流路形成用凹条222、322と第二流路形成用凸条232、332とがY軸方向に交互に配置されている(図8、図9、図11、及び図12参照)。そして、これら交互に並ぶ第二流路形成用凹条222、322と第二流路形成用凸条232、332によって構成される凹凸群のY軸方向の中央に位置する第二流路形成用凹条222、322のY軸方向の中央位置が、伝熱部20、30の縦中心線CLに対してY軸方向に1/2ピッチずれるように、前記凹凸群が配置されている(図4及び図6参照)。尚、前記の1ピッチは、隣り合う第二流路形成用凹条222、322と第二流路形成用凸条232、332との前記中央位置同士の間隔である(図9及び図12の符号P参照)。 In each of the second surface side division regions D2 of the present embodiment, the central position of the second flow path forming recess 222 and 322 in the Y-axis direction and the second flow path forming protrusion 232 and 332 in the Y-axis direction. The recesses 222 and 322 for forming the second flow path and the protrusions 232 and 332 for forming the second flow path are alternately arranged in the Y-axis direction so that the central positions are at equal intervals (same pitch). (See FIGS. 8, 9, 11, and 12). Then, for forming the second flow path, which is located at the center in the Y-axis direction of the concavo-convex group composed of the dents 222 and 322 for forming the second flow path and the ridges 232 and 332 for forming the second flow path that are alternately arranged. The concavo-convex group is arranged so that the center position of the recesses 222 and 222 in the Y-axis direction is deviated by 1/2 pitch in the Y-axis direction with respect to the vertical center lines CL of the heat transfer portions 20 and 30 (FIG. 4 and FIG. 6). The one pitch is the distance between the central positions of the adjacent second flow path forming recesses 222 and 322 and the second flow path forming protrusions 232 and 332 (FIGS. 9 and 12). See symbol P).

また、各第二面側分割領域D2に配置される複数の第二流路形成用凹条222、322は、底部のX軸方向における位置(深さ)の異なる二種類の第二流路形成用凹条、具体的には、第一の第二流路形成用凹条(以下、「第一凹条」と称する。)222A、322Aと、第一凹条222A、322Aより深い第二の第二流路形成用凹条(以下、「第二凹条」と称する。)222B、322Bと、を含む。この第一凹条222A、322Aは、第一面Sa1、Sb1の第一凸条231A、331Aの裏側に形成され、第二凹条222B、322Bは、第一面Sa1、Sb1の第二凸条231B、331Bの裏側に形成されている。 Further, the plurality of second flow path forming recesses 222 and 222 arranged in each second surface side division region D2 form two types of second flow paths having different positions (depths) in the X-axis direction of the bottom portion. Recesses, specifically, the first recess for forming the second flow path (hereinafter referred to as "first recess") 222A, 222A and the second recess deeper than the first recess 222A, 222A. Includes a second flow path forming recess (hereinafter referred to as "second recess") 222B and 222B. The first dents 222A and 322A are formed on the back side of the first ridges 231A and 331A of the first surfaces Sa1 and Sb1, and the second ridges 222B and 322B are the second ridges of the first surfaces Sa1 and Sb1. It is formed on the back side of 231B and 331B.

各第二面側分割領域D2において、第二凹条222B、322Bは、第一凹条222A、322Aに対して一つ置きに配置されている。即ち、Y軸方向に隣り合う第二凹条222B、322Bの間のそれぞれに、第一凹条222A、322Aが一つずつ配置されている。 In each second surface side division region D2, the second recess 222B and 222B are arranged every other one with respect to the first recess 222A and 222A. That is, one first recess 222A and one 222A is arranged between the second recesses 222B and 222B adjacent to each other in the Y-axis direction.

本実施形態の主伝熱部25、35において、各第二面側分割領域D2の構成は同じである。このため、各第二面側分割領域D2の第一凹条222A、322AがZ軸方向に真っ直ぐに並び(即ち、同一直線上に並び)、各第二面側分割領域D2の第二凹条222B、322BがZ軸方向に真っ直ぐに並び、各第二面側分割領域D2の第二流路形成用凸条232、332がZ軸方向に真っ直ぐに並ぶ。 In the main heat transfer portions 25 and 35 of the present embodiment, the configuration of each second surface side divided region D2 is the same. Therefore, the first recesses 222A and 322A of each second surface side division area D2 are arranged straight in the Z-axis direction (that is, they are arranged on the same straight line), and the second recesses of each second surface side division area D2 are arranged. 222B and 222B are arranged straight in the Z-axis direction, and the ridges 232 and 332 for forming the second flow path of each second surface side dividing region D2 are arranged straight in the Z-axis direction.

堰部26、36は、図3〜図6に示すように、伝熱部20、30において、Z軸方向における主伝熱部25、35の一方側と他方側とにそれぞれ配置されている。即ち、伝熱部20、30は、一対の堰部26、36を有する。本実施形態の各堰部26、36は、主伝熱部25、35との境界を底辺とし、伝熱部20、30におけるZ軸方向の一端部又は他端部に配置される二つの開口200、201、202、203、300、301、302、303の中間位置を頂点とする三角状の部位である。 As shown in FIGS. 3 to 6, the weir portions 26 and 36 are arranged on one side and the other side of the main heat transfer portions 25 and 35 in the Z-axis direction in the heat transfer portions 20 and 30, respectively. That is, the heat transfer portions 20 and 30 have a pair of weir portions 26 and 36. Each of the weirs 26 and 36 of the present embodiment has two openings arranged at one end or the other end in the Z-axis direction of the heat transfer portions 20 and 30 with the boundary with the main heat transfer portions 25 and 35 as the base. It is a triangular portion having an intermediate position of 200, 201, 202, 203, 300, 301, 302, and 303 as an apex.

これら一対の堰部26、36のそれぞれは、第一面Sa1、Sb1又は第二面Sa2、Sb2に沿って開口200、201、202、203、300、301、302、303から主伝熱部25、35に向かう流体A、Bの流れをY軸方向に拡散させ、又は、第一面Sa1、Sb1又は第二面Sa2、Sb2に沿って主伝熱部25、35から開口200、201、202、203、300、301、302、303に向かう流体A、Bの流れをY軸方向に集束させる部位である(図16及び図17参照)。 Each of these pair of weir portions 26, 36 has openings 200, 201, 202, 203, 300, 301, 302, 303 along the first surface Sa1, Sb1 or the second surface Sa2, Sb2 to the main heat transfer portion 25. , The flow of the fluids A and B toward 35 is diffused in the Y-axis direction, or the openings 200, 201 and 202 are opened from the main heat transfer portions 25 and 35 along the first surface Sa1, Sb1 or the second surface Sa2 and Sb2. , 203, 300, 301, 302, 303 to focus the flows of fluids A and B in the Y-axis direction (see FIGS. 16 and 17).

具体的に、各堰部26、36は、第一面Sa1、Sb1に、複数の第一面側凹部225、325と、複数の第一面側凸部235、335とを有する。これら第一面側凹部225、325と第一面側凸部235、335とは、Z軸方向に対して一方側に傾斜する方向と他方側に傾斜する方向との各方向において交互に配置されている。これら複数の第一面側凹部225、325は、上述の伝熱部20、30の複数の凹部22、32に含まれ、複数の第一面側凸部235、335は、上述の伝熱部20、30の複数の凸部23、33に含まれる。 Specifically, each of the weir portions 26, 36 has a plurality of first surface side concave portions 225 and 325 and a plurality of first surface side convex portions 235 and 335 on the first surface Sa1 and Sb1. The first surface side concave portions 225 and 325 and the first surface side convex portions 235 and 335 are alternately arranged in each direction of inclining to one side and inclining to the other side with respect to the Z-axis direction. ing. The plurality of first surface side concave portions 225 and 325 are included in the plurality of concave portions 22 and 32 of the above-mentioned heat transfer portions 20 and 30, and the plurality of first surface side convex portions 235 and 335 are the above-mentioned heat transfer portions. It is included in the plurality of convex portions 23 and 33 of 20 and 30.

また、各堰部26、36は、第二面Sa2、Sb2に、複数の第二面側凹部226、326と、複数の第二面側凸部236、336とを有する。これら複数の第二面側凹部226、326と複数の第二面側凸部236、336とのそれぞれは、第一面Sa1、Sb1において対応する位置の第一面側凹部225、325又は第一面側凸部235、335の裏側に形成されている。具体的に、第二面側凹部226、326と第二面側凸部236、336とは、Z軸方向に対して一方側に傾斜する方向と他方側に傾斜する方向との各方向において交互に配置されている。これら複数の第二面側凹部226、326は、上述の伝熱部20、30の複数の凹部22、32に含まれ、複数の第二面側凸部236、336は、上述の伝熱部20、30の複数の凸部23、33に含まれる。 Further, each of the weir portions 26 and 36 has a plurality of second surface side concave portions 226 and 326 and a plurality of second surface side convex portions 236 and 336 on the second surface Sa2 and Sb2. The plurality of second surface side recesses 226 and 326 and the plurality of second surface side convex portions 236 and 336, respectively, are the first surface side recesses 225, 325 or the first at corresponding positions on the first surfaces Sa1 and Sb1. It is formed on the back side of the surface side convex portions 235 and 335. Specifically, the second surface side concave portion 226, 326 and the second surface side convex portion 236, 336 alternate in each direction of the direction of inclining to one side and the direction of inclining to the other side with respect to the Z-axis direction. Is located in. The plurality of second surface side concave portions 226 and 326 are included in the plurality of concave portions 22 and 32 of the above-mentioned heat transfer portions 20 and 30, and the plurality of second surface side convex portions 236 and 336 are the above-mentioned heat transfer portions. It is included in the plurality of convex portions 23 and 33 of 20 and 30.

第一伝熱プレート2及び第二伝熱プレート3は、いずれも以上のように構成される伝熱部20、30を有する。 Both the first heat transfer plate 2 and the second heat transfer plate 3 have heat transfer portions 20 and 30 configured as described above.

続いて、第一伝熱プレート2及び第二伝熱プレート3の異なる構成について説明する。 Subsequently, different configurations of the first heat transfer plate 2 and the second heat transfer plate 3 will be described.

第一伝熱プレート2の嵌合部21は、伝熱部20の外周縁から第一面Sa1側に延出する(図2及び図3参照)。これに対し、第二伝熱プレート3の嵌合部31は、伝熱部30の外周縁から第二面Sb2側に延出する(図2及び図6参照)。 The fitting portion 21 of the first heat transfer plate 2 extends from the outer peripheral edge of the heat transfer portion 20 toward the first surface Sa1 (see FIGS. 2 and 3). On the other hand, the fitting portion 31 of the second heat transfer plate 3 extends from the outer peripheral edge of the heat transfer portion 30 toward the second surface Sb2 (see FIGS. 2 and 6).

以上のように構成される第一伝熱プレート2と第二伝熱プレート3とは、図2に示すように、互いの第一面Sa1、Sb1同士を対向させ、又は、互いの第二面Sa2、Sb2同士を対向させるようにX軸方向に交互に重ね合わされる。即ち、複数の伝熱プレート2、3のそれぞれは、伝熱部20、30の第一面Sa1、Sb1を、X軸方向の一方側において隣り合う伝熱プレート2、3の伝熱部20、30の第一面Sa1、Sb1と対向させると共に、伝熱部20、30の第二面Sa2、Sb2を、X軸方向の他方側において隣り合う伝熱プレート2、3の伝熱部20、30の第二面Sa2、Sb2と対向させる。 As shown in FIG. 2, the first heat transfer plate 2 and the second heat transfer plate 3 configured as described above have their first surfaces Sa1 and Sb1 facing each other, or their second surfaces. Sa2 and Sb2 are alternately overlapped in the X-axis direction so as to face each other. That is, each of the plurality of heat transfer plates 2 and 3 has the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 adjacent to each other on one side in the X-axis direction. The heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 adjacent to each other on the other side in the X-axis direction while facing the first surfaces Sa1 and Sb1 of 30 and the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. The second surface Sa2 and Sb2 of the above surface are opposed to each other.

このとき、重ね合わされた複数の伝熱プレート2、3では、X軸方向に隣り合う伝熱プレート2、3のうちの一方の伝熱プレート2、3の嵌合部21、31が、X軸方向に隣り合う伝熱プレート2、3のうちの他方の伝熱プレート2、3の嵌合部21、31と嵌合している。 At this time, in the plurality of heat transfer plates 2 and 3 stacked, the fitting portions 21 and 31 of one of the heat transfer plates 2 and 3 adjacent to each other in the X-axis direction are the X-axis. It is fitted with the fitting portions 21, 31 of the other heat transfer plates 2, 3 of the heat transfer plates 2, 3 adjacent to each other in the direction.

具体的に、X軸方向に並ぶ複数の伝熱プレート2、3において、第一面Sa1、Sb1同士が対向するように隣り合う二つの伝熱プレート(第一伝熱プレート2と第二伝熱プレート3)が重ね合わされることで伝熱プレート対5が構成され、この伝熱プレート対5は、複数形成されている(図2参照)。これら複数の伝熱プレート対5は、第二面Sa2、Sb2同士が対向するように重ね合わされている。この重ね合わせにおいて、複数の伝熱プレート対5は、一つ置きにX軸方向に延びる仮想線周りに180°回転した状態で重ね合わされている。 Specifically, in a plurality of heat transfer plates 2 and 3 arranged in the X-axis direction, two heat transfer plates (first heat transfer plate 2 and second heat transfer plate 2) adjacent to each other so that the first surfaces Sa1 and Sb1 face each other. The heat transfer plate pairs 5 are formed by superimposing the plates 3), and a plurality of the heat transfer plate pairs 5 are formed (see FIG. 2). These plurality of heat transfer plate pairs 5 are superposed so that the second surfaces Sa2 and Sb2 face each other. In this superposition, the plurality of heat transfer plate pairs 5 are superposed in a state of being rotated by 180 ° around a virtual line extending in the X-axis direction every other one.

これら各伝熱プレート対5では、対向する第一面Sa1、Sb1の対応する(具体的には、Z軸方向における同じ位置の)第一面側分割領域D1同士が対向する。そして、この対向する第一面側分割領域D1(第一面Sa1、Sb1)のそれぞれにおいて第一流路形成用凹条221、321と第一流路形成用凸条231、331とがY軸方向に交互に並ぶことで、図13に示すように、対向する第一流路形成用凸条231、331によって構成される凸条対6がY軸方向に複数並ぶ。 In each of these heat transfer plate pairs 5, the corresponding first surface side division regions D1 (specifically, at the same position in the Z-axis direction) of the opposite first surfaces Sa1 and Sb1 face each other. Then, in the facing first surface side divided regions D1 (first surfaces Sa1, Sb1), the first flow path forming recesses 221 and 321 and the first flow path forming protrusions 231 and 331 are formed in the Y-axis direction. By arranging them alternately, as shown in FIG. 13, a plurality of ridge pairs 6 formed by facing first flow path forming ridges 231 and 331 are lined up in the Y-axis direction.

このY軸方向に並ぶ複数の凸条対6では、少なくとも一つの凸条対(第一凸条対)6Aでは、対向する第一凸条231A、331A同士がX軸方向に間隔をあけて対向し、残りの凸条対(第二凸条対)6Bでは、対向する第二凸条231B、331Bが互いに当接している。本実施形態の伝熱プレート対5では、第一凸条対6Aと第二凸条対6Bとは、Y軸方向に交互に配置されている。 In the plurality of ridge pairs 6 arranged in the Y-axis direction, in at least one ridge pair (first ridge pair) 6A, the first ridges 231A and 331A facing each other face each other with an interval in the X-axis direction. However, in the remaining ridge pairs (second ridge pairs) 6B, the second ridges 231B and 331B facing each other are in contact with each other. In the heat transfer plate pair 5 of the present embodiment, the first ridge pair 6A and the second ridge pair 6B are alternately arranged in the Y-axis direction.

また、各伝熱プレート対5において、対向する第一面Sa1、Sb1の複数の障壁裏側凹条223、323のそれぞれが対向している。これにより、図14に示すように、第一面Sa1、Sb1間の障壁裏側凹条223、323と対応する位置に、Y軸方向に沿って伝熱部20、30の一端から他端まで延びる柱状の空間S1が形成されている。 Further, in each heat transfer plate pair 5, the plurality of barrier backside recesses 223 and 323 of the facing first surfaces Sa1 and Sb1 face each other. As a result, as shown in FIG. 14, the heat transfer portions 20 and 30 extend from one end to the other end along the Y-axis direction at positions corresponding to the barrier backside recesses 223 and 323 between the first surfaces Sa1 and Sb1. A columnar space S1 is formed.

また、隣り合う伝熱プレート対5では、上述のように、一方の伝熱プレート対5が他方の伝熱プレート対5に対してX軸方向に延びる仮想線周りに180°回転した状態で隣り合っている。そして、第二面Sa2、Sb2において、Z軸方向の一端にある第二面側分割領域D2のZ軸方向の寸法は、他の第二面側分割領域D2のZ軸方向の寸法の半分又は略半分である。このため、対向する第二面Sa2、Sb2の第二面側分割領域D2同士は、Z軸方向にずれた状態で対向している。 Further, in the adjacent heat transfer plate pairs 5, as described above, one heat transfer plate pair 5 is adjacent to the other heat transfer plate pair 5 in a state of being rotated 180 ° around a virtual line extending in the X-axis direction. Matching. Then, in the second surfaces Sa2 and Sb2, the dimension of the second surface side division region D2 at one end in the Z axis direction in the Z axis direction is half of the dimension of the other second surface side division region D2 in the Z axis direction or It's about half. Therefore, the second surface side division regions D2 of the opposite second surfaces Sa2 and Sb2 face each other in a state of being displaced in the Z-axis direction.

本実施形態の隣り合う伝熱プレート対5において、一方の伝熱プレート対5の第二面Sa2、Sb2の第二面側分割領域D2と、他方の伝熱プレート対5の第二面Sa2、Sb2の第二面側分割領域D2とは、Z軸方向に半ピッチ(他よりZ軸方向の間隔の小さな障壁用凸条233、333間の間隔に相当する距離)ずれた状態で対向している。即ち、対向する第二面Sa2、Sb2のうちの一方の第二面Sa2、Sb2の各障壁用凸条233、333と、他方の第二面Sa2、Sb2の各障壁用凸条233、333とは、Z軸方向において異なる位置に配置されている。本実施形態の例では、一方の第二面Sa2、Sb2の各障壁用凸条233、333と、他方の第二面Sa2、Sb2の各障壁用凸条233、333とは、Z軸方向において半ピッチずつずれた位置に配置されている。 In the adjacent heat transfer plate pairs 5 of the present embodiment, the second surface Sa2 of one heat transfer plate pair 5, the second surface side divided region D2 of Sb2, and the second surface Sa2 of the other heat transfer plate pair 5. The second surface side division region D2 of Sb2 is opposed to the second surface side division region D2 in a state of being deviated by a half pitch in the Z-axis direction (distance corresponding to the distance between the barrier protrusions 233 and 333, which are smaller in the Z-axis direction than the others). There is. That is, the ridges 233, 333 for each barrier of the second surface Sa2, Sb2 of the two opposing surfaces Sa2, Sb2, and the ridges 233, 333 for each barrier of the other second surfaces Sa2, Sb2. Are arranged at different positions in the Z-axis direction. In the example of the present embodiment, the ridges 233, 333 for each barrier of one second surface Sa2 and Sb2 and the ridges 233 and 333 for each barrier of the other second surface Sa2 and Sb2 are in the Z-axis direction. They are arranged at positions that are offset by half a pitch.

このとき、一方の第二面Sa2、Sb2の各障壁用凸条233、333が、他方の第二面Sa2、Sb2においてY軸方向に間隔をあけて並ぶ複数の第二流路形成用凸条232、332のそれぞれと当接すると共に、他方の第二面Sa2、Sb2の各障壁用凸条233、333が、一方の第二面Sa2、Sb2においてY軸方向に間隔をあけて並ぶ複数の第二流路形成用凸条232、332のそれぞれと当接する。これにより、図13に示すように、第二面Sa2、Sb2間に形成される第二流路Rbにおいて、Y軸方向における伝熱部20、30の一端から他端までZ軸方向に真っ直ぐに流れることができる領域がなくなる。即ち、第二流体Bが、伝熱部20、30のZ軸方向における一端から他端まで流れる間に、対向する第二面Sa2、Sb2のうちのいずれかの第二面Sa2、Sb2の障壁用凸条233、333とぶつかる。 At this time, the barrier ridges 233 and 333 on one of the second surfaces Sa2 and Sb2 are arranged on the other second surface Sa2 and Sb2 at intervals in the Y-axis direction. A plurality of ridges 233, 333 for barriers of the other second surfaces Sa2 and Sb2 are arranged at intervals in the Y-axis direction on one of the second surfaces Sa2 and Sb2 while abutting on each of the 232 and 332. It comes into contact with each of the two flow path forming ridges 232 and 332. As a result, as shown in FIG. 13, in the second flow path Rb formed between the second surfaces Sa2 and Sb2, the heat transfer portions 20 and 30 in the Y-axis direction are straightened in the Z-axis direction from one end to the other end. There is no area where it can flow. That is, while the second fluid B flows from one end to the other end of the heat transfer portions 20 and 30 in the Z-axis direction, the barrier of the second surfaces Sa2 and Sb2 of any of the two opposing surfaces Sa2 and Sb2. It collides with the ridges 233 and 333.

また、対向する第二面Sa2、Sb2のZ軸方向における障壁用凸条233、333の無い位置においては、一方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれと、他方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれとは、互いの接触しないようにY軸方向にずれた位置に配置されている。 Further, at a position where the barrier ridges 233 and 333 do not exist in the Z-axis direction of the opposite second surfaces Sa2 and Sb2, a plurality of second flow path forming ridges 232 and 332 on one of the second surfaces Sa2 and Sb2 are formed. And each of the plurality of second flow path forming ridges 232 and 332 of the other second surfaces Sa2 and Sb2 are arranged at positions shifted in the Y-axis direction so as not to come into contact with each other.

本実施形態の伝熱部20、30では、第二流路形成用凹条222、322のY軸方向の中心と、該第二流路形成用凹条222、322と隣り合う第二流路形成用凸条232、332のY軸方向の中心との距離を1ピッチとしたときに、各第二面側分割領域D2における第二流路形成用凹条222、322と第二流路形成用凸条232、332との配置が、縦中心線CLを対称軸にした線対称な配置に対して1/2ピッチずれている(図4及び図6参照)。このため、一方の第二面Sa2、Sb2の第二流路形成用凸条232、332と他方の第二面Sa2、Sb2の第二流路形成用凹条222、322とが対向すると共に一方の第二面Sa2、Sb2の第二流路形成用凹条222、322と他方の第二面Sa2、Sb2の第二流路形成用凸条232、332とが対向するように、対向する第二面のそれぞれの第二流路形成用凹条222、322と第二流路形成用凸条232、332とが配置されている。即ち、対向する第二面Sa2、Sb2は、各第二面側分割領域D2における第二流路形成用凹条222、322及び第二流路形成用凸条232、332の配置がそれぞれ1ピッチずれた状態で対向している。 In the heat transfer portions 20 and 30 of the present embodiment, the center of the recesses 222 and 222 for forming the second flow path in the Y-axis direction and the second flow path adjacent to the recesses 222 and 222 for forming the second flow path are adjacent to each other. When the distance from the center of the forming ridges 232 and 332 in the Y-axis direction is one pitch, the second flow path forming recesses 222 and 322 and the second flow path are formed in each second surface side division region D2. The arrangement with the ridges 232 and 332 is shifted by 1/2 pitch with respect to the line-symmetrical arrangement with the vertical center line CL as the axis of symmetry (see FIGS. 4 and 6). Therefore, the ridges 232 and 332 for forming the second flow path on one of the second surfaces Sa2 and Sb2 and the dents 222 and 322 for forming the second flow path on the other surfaces Sa2 and Sb2 face each other and one side. The second flow path forming recess 222, 322 of the second surface Sa2, Sb2 and the second flow path forming convex line 232, 332 of the other second surface Sa2, Sb2 face each other. The recesses 222 and 322 for forming the second flow path and the ridges 232 and 332 for forming the second flow path are arranged on each of the two surfaces. That is, on the opposite second surfaces Sa2 and Sb2, the arrangement of the second flow path forming recesses 222 and 322 and the second flow path forming protrusions 232 and 332 in each of the second surface side division regions D2 is one pitch, respectively. They are facing each other in a misaligned state.

以上のように複数の伝熱プレート2、3が重ね合わされて伝熱プレート群が構成されることで、第一面Sa1、Sb1間のそれぞれに第一流体AがZ軸方向に流通可能な第一流路Raが形成されると共に、第二面Sa2、Sb2間のそれぞれに第二流体BがZ軸方向に流通可能な第二流路Rbが形成される。 As described above, a plurality of heat transfer plates 2 and 3 are superposed to form a heat transfer plate group, so that the first fluid A can flow between the first surfaces Sa1 and Sb1 in the Z-axis direction. Along with the formation of the one flow path Ra, the second flow path Rb through which the second fluid B can flow in the Z-axis direction is formed between the second surfaces Sa2 and Sb2, respectively.

また、この伝熱プレート群においては、伝熱部20、30の対応する位置にある開口200、201、202、203、300、301、302、303がX軸方向に連なる。また、互いに対向し且つ相手方に向けて膨出する開口周縁部200p、201p、202p、203p、300p、301p、302p、303p同士が当接する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される(図2及び図15参照)。 Further, in this heat transfer plate group, openings 200, 201, 202, 203, 300, 301, 302, and 303 at corresponding positions of the heat transfer portions 20 and 30 are connected in the X-axis direction. Further, the opening peripheral portions 200p, 201p, 202p, 203p, 300p, 301p, 302p, and 303p that face each other and bulge toward the other party come into contact with each other. As a result, the first inflow path Pa1 that supplies the first fluid A to the first flow path Ra, the first outflow path Pa2 that causes the first fluid A to flow out from the first flow path Ra, and the second fluid B to the second flow path Rb. A second inflow path Pb1 for supplying the fluid and a second outflow path Pb2 for discharging the second fluid B from the second flow path Rb are formed (see FIGS. 2 and 15).

一対のフレームプレート4のそれぞれは、伝熱プレート2、3より厚く、熱交換器1の強度を確保している。 Each of the pair of frame plates 4 is thicker than the heat transfer plates 2 and 3 to ensure the strength of the heat exchanger 1.

具体的に、一対のフレームプレート4のうちの一方のフレームプレート4Aは、図1及び図2に示すように、X軸方向と直交する方向に広がる厚板状のプレート本体41Aと、プレート本体41Aの外周縁の全域から該プレート本体41Aと面交差する方向に延出するフレーム嵌合部42Aと、プレート本体41Aから延びる複数のノズル43と、を備える。 Specifically, as shown in FIGS. 1 and 2, one of the frame plates 4A of the pair of frame plates 4 has a thick plate-shaped plate body 41A extending in a direction orthogonal to the X-axis direction and a plate body 41A. A frame fitting portion 42A extending from the entire outer peripheral edge of the plate body 41A in a direction intersecting with the plate body 41A, and a plurality of nozzles 43 extending from the plate body 41A are provided.

プレート本体41Aは、伝熱プレート2、3の伝熱部20、30と対応する形状であり、本実施形態のプレート本体41Aは、Z軸方向に長尺な矩形状である。 The plate body 41A has a shape corresponding to the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3, and the plate body 41A of the present embodiment has a long rectangular shape in the Z-axis direction.

このプレート本体41Aは、X軸方向から見て、第一流入路Pa1、第一流出路Pa2、第二流入路Pb1、第二流出路Pb2のそれぞれと重なる位置に、Z軸方向に貫通する貫通孔を有する。即ち、本実施形態のプレート本体41Aは、四隅に貫通孔を有する。 The plate body 41A has a through hole penetrating in the Z-axis direction at a position overlapping each of the first inflow path Pa1, the first outflow path Pa2, the second inflow path Pb1, and the second outflow path Pb2 when viewed from the X-axis direction. Have. That is, the plate body 41A of the present embodiment has through holes at the four corners.

フレーム嵌合部42Aは、プレート本体41Aの外周縁から伝熱プレート2、3側に延出する。 The frame fitting portion 42A extends from the outer peripheral edge of the plate body 41A to the heat transfer plates 2 and 3 sides.

複数のノズル43のそれぞれは、筒状の部位であり、プレート本体41Aの各貫通孔と対応する位置からX軸方向に延びている。各ノズル43の中空部は、プレート本体41Aの貫通孔と連通している。これにより、各ノズル43の中空部は、第一流入路Pa1、第一流出路Pa2、第二流入路Pb1、又は第二流出路Pb2と連通している。 Each of the plurality of nozzles 43 is a tubular portion, and extends in the X-axis direction from a position corresponding to each through hole of the plate body 41A. The hollow portion of each nozzle 43 communicates with the through hole of the plate body 41A. As a result, the hollow portion of each nozzle 43 communicates with the first inflow path Pa1, the first outflow path Pa2, the second inflow path Pb1, or the second outflow path Pb2.

一対のフレームプレート4のうちの他方のフレームプレート4Bは、X軸方向と直交する方向に広がる厚板状のプレート本体41Bと、プレート本体41Bの外周縁の全域から該プレート本体41Bと面交差する方向に延出するフレーム嵌合部42Bと、を備える。 The other frame plate 4B of the pair of frame plates 4 intersects the plate main body 41B extending in the direction orthogonal to the X-axis direction and the plate main body 41B from the entire outer peripheral edge of the plate main body 41B. A frame fitting portion 42B extending in the direction is provided.

プレート本体41Bは、伝熱プレート2、3の伝熱部20、30と対応する形状であり、本実施形態のプレート本体41Bは、Z軸方向に長尺な矩形状である。 The plate body 41B has a shape corresponding to the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3, and the plate body 41B of the present embodiment has a long rectangular shape in the Z-axis direction.

フレーム嵌合部42Bは、プレート本体41Bの外周縁から伝熱プレート2、3と反対側、即ち、伝熱プレート2、3から離れる側に延出する。 The frame fitting portion 42B extends from the outer peripheral edge of the plate body 41B to the side opposite to the heat transfer plates 2 and 3, that is, to the side away from the heat transfer plates 2 and 3.

以上のように構成される一対のフレームプレート4A、4Bは、伝熱プレート群をX軸方向の外側から挟み込む。 The pair of frame plates 4A and 4B configured as described above sandwich the heat transfer plate group from the outside in the X-axis direction.

このとき、一方のフレームプレート4Aのフレーム嵌合部42Aは、X軸方向に隣接する伝熱プレート2の嵌合部21に外嵌する。一方、他方のフレームプレート4Bのフレーム嵌合部42Bは、X軸方向に隣接する伝熱プレート3の嵌合部31に外嵌される。 At this time, the frame fitting portion 42A of one frame plate 4A is externally fitted to the fitting portion 21 of the heat transfer plate 2 adjacent in the X-axis direction. On the other hand, the frame fitting portion 42B of the other frame plate 4B is externally fitted to the fitting portion 31 of the heat transfer plate 3 adjacent in the X-axis direction.

本実施形態の熱交換器1において、隣り合うフレームプレート4と伝熱プレート2、3との当接した部分同士、及び、隣り合う伝熱プレート2、3の当接した部分同士は、ロウ付けされている。これにより、複数の伝熱プレート2、3及び一対のフレームプレート4が一体的(機械的)に接続されるとともに、隣り合う伝熱プレート2、3の対向面間(当接部分)が封止される。 In the heat exchanger 1 of the present embodiment, the abutting portions of the adjacent frame plates 4 and the heat transfer plates 2 and 3 and the abutting portions of the adjacent heat transfer plates 2 and 3 are brazed. Has been done. As a result, the plurality of heat transfer plates 2, 3 and the pair of frame plates 4 are integrally (mechanically) connected, and the facing surfaces (contact portions) of the adjacent heat transfer plates 2, 3 are sealed. Will be done.

以上のように構成される熱交換器1において、外部から第一流入路Pa1に供給された第一流体Aは、図2及び図15に示すように、第一流入路Pa1から複数の第一流路Raのそれぞれに流入する。そして、第一流体Aは、複数の第一流路Raのそれぞれにおいて伝熱部20、30の対角位置に配置された開口202、203、302、303間をZ軸方向に流れ、第一流出路Pa2に流出する(図16参照)。これに対し、外部から第二流入路Pb1に供給された第二流体Bは、第二流入路Pb1から複数の第二流路Rb、Rb1のそれぞれに流入する。そして、第二流体Bは、複数の第二流路Rb、Rb1のそれぞれにおいて伝熱部20、30の対角位置に配置された開口200、201、300、301間をZ軸方向に流れ、第二流出路Pb2に流出する(図17参照)。 In the heat exchanger 1 configured as described above, the first fluid A supplied from the outside to the first inflow path Pa1 is a plurality of first streams from the first inflow path Pa1 as shown in FIGS. 2 and 15. It flows into each of the roads Ra. Then, the first fluid A flows in the Z-axis direction between the openings 202, 203, 302, and 303 arranged at diagonal positions of the heat transfer portions 20 and 30 in each of the plurality of first flow paths Ra, and flows through the first outflow path. It flows out to Pa2 (see FIG. 16). On the other hand, the second fluid B supplied from the outside to the second inflow path Pb1 flows into each of the plurality of second flow paths Rb and Rb1 from the second inflow path Pb1. Then, the second fluid B flows in the Z-axis direction between the openings 200, 201, 300, and 301 arranged at diagonal positions of the heat transfer portions 20 and 30 in each of the plurality of second flow paths Rb and Rb1. It flows out to the second outflow path Pb2 (see FIG. 17).

このとき、第一流路Raを流通する第一流体Aと、第二流路Rb、Rb1を流通する第二流体Bは、第一流路Raと第二流路Rb、Rb1とを仕切る伝熱プレート2、3(伝熱部20、30)を介して熱交換する。これにより、第一流体Aは、第一流路Ra内でZ軸方向に流通する過程において、凝縮或いは蒸発する。 At this time, the first fluid A flowing through the first flow path Ra and the second fluid B flowing through the second flow paths Rb and Rb1 are heat transfer plates that separate the first flow path Ra from the second flow paths Rb and Rb1. Heat is exchanged via a few (heat transfer units 20, 30). As a result, the first fluid A condenses or evaporates in the process of flowing in the first flow path Ra in the Z-axis direction.

尚、本実施形態の熱交換器1では、第一流体Aとして、フロン等の熱交換によって相変化する流体が用いられ、第二流体として、水等が用いられるが、これらに限定されない。 In the heat exchanger 1 of the present embodiment, a fluid whose phase changes due to heat exchange such as chlorofluorocarbon is used as the first fluid A, and water or the like is used as the second fluid, but the present invention is not limited thereto.

以上の熱交換器1のように、第一凸条対6Aにおいて第一凸条231A、331A(第一流路形成用凸条231、331)同士がX軸方向に間隔をあけて対向することで、該位置において対向する第一流路形成用凸条231、331同士が当接する場合に比べ、第一流路Raを規定する伝熱プレート2、3(第一面Sa1、Sb1)のX軸方向の間隔が大きくなる(図13参照)。このため、第一流路Raの流路断面積が大きくなる。 As in the above heat exchanger 1, in the first ridge pair 6A, the first ridges 231A and 331A (the ridges 231 and 331 for forming the first flow path) face each other with a gap in the X-axis direction. In the X-axis direction of the heat transfer plates 2, 3 (first surfaces Sa1, Sb1) defining the first flow path Ra, as compared with the case where the first flow path forming ridges 231 and 331 facing each other at the position are in contact with each other. The interval increases (see FIG. 13). Therefore, the flow path cross-sectional area of the first flow path Ra becomes large.

一方、第一凸条対6Aにおいて第一凸条231A、331A同士がX軸方向に間隔をあけて対向することで、該位置において対向する第一凸条231A、331A同士が当接する場合に比べ、該第一流路Raと隣り合う第二流路RbのY軸方向における該第一凸条対6Aと対応する位置において、該第二流路Rbを規定する伝熱プレート2、3(第二面Sa2、Sb2)のX軸方向の間隔が小さくなる(図13参照)。このため、第二流路Rbの流路断面積が小さくなる。 On the other hand, in the first ridge pair 6A, the first ridges 231A and 331A face each other with a gap in the X-axis direction, so that the first ridges 231A and 331A facing each other at the position are in contact with each other. , The heat transfer plates 2, 3 (second) that define the second flow path Rb at the position corresponding to the first ridge pair 6A in the Y-axis direction of the second flow path Rb adjacent to the first flow path Ra. The distance between the surfaces Sa2 and Sb2) in the X-axis direction becomes smaller (see FIG. 13). Therefore, the flow path cross-sectional area of the second flow path Rb becomes small.

これにより、熱交換器1において、第一凸条対6Aにおいて対向する第一凸条231A、331A同士が当接する場合に比べ、第一流路Raと第二流路Rbとの流路断面積の差が大きくなる。このため、第一流路Raを流れる第一流体Aの流速と第二流路Rbを流れる第二流体Bの流速の差を大きくし易くなり、その結果、例えば上記のようにフロンと水とのように特性の異なる第一流体Aと第二流体Bとを熱交換させる場合においても、十分な熱交換性能が得られる。 As a result, in the heat exchanger 1, the flow path cross-sectional area of the first flow path Ra and the second flow path Rb is larger than that in the case where the first ridges 231A and 331A facing each other in the first ridge pair 6A are in contact with each other. The difference becomes large. Therefore, it becomes easy to increase the difference between the flow velocity of the first fluid A flowing through the first flow path Ra and the flow velocity of the second fluid B flowing through the second flow path Rb, and as a result, for example, between freon and water as described above. Sufficient heat exchange performance can be obtained even when the first fluid A and the second fluid B having different characteristics are exchanged for heat.

また、本実施形態の熱交換器1では、対向する第二面Sa2、Sb2のZ軸方向における障壁用凸条233、333の配置されていない位置において、一方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれと、他方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれとは、互いに接触しないようにY軸方向にずれた位置に配置されている。 Further, in the heat exchanger 1 of the present embodiment, at positions where the barrier ridges 233 and 333 are not arranged in the Z-axis direction of the opposite second surfaces Sa2 and Sb2, there are a plurality of one of the second surfaces Sa2 and Sb2. The Y-axis so that each of the second flow path forming ridges 232 and 332 of the above and each of the plurality of second flow path forming ridges 232 and 332 of the other second surfaces Sa2 and Sb2 do not come into contact with each other. It is located at a position shifted in the direction.

このため、対向する第二面Sa2、Sb2間に形成される第二流路Rbを第二流体BがZ軸方向に流れるときに第二流体BのY軸方向への移動も可能となる。即ち、対向する第二面Sa2、Sb2の第二流路形成用凸条232、332同士が接触(当接)していると、この第二流路形成用凸条232、332同士の接触部位によって第二流体Bが第二流路RbをZ軸方向に流れる(第二流路形成用凹条222、322や第二流路形成用凸条232、332に沿って流れる)際の第二流体BのY軸方向への移動が規制される。これにより、第二流体Bの流れ(流量)におけるY軸方向の偏りが抑えられ、その結果、前記偏りに起因する熱交換性能の低下を防ぐことができる。 Therefore, when the second fluid B flows in the Z-axis direction through the second flow path Rb formed between the opposite second surfaces Sa2 and Sb2, the second fluid B can also move in the Y-axis direction. That is, when the ridges 232 and 332 for forming the second flow path of the opposite second surfaces Sa2 and Sb2 are in contact (contact) with each other, the contact portion between the ridges 232 and 332 for forming the second flow path is contacted. Second when the second fluid B flows in the second flow path Rb in the Z-axis direction (flows along the second flow path forming recess 222, 322 and the second flow path forming convex line 232, 332). The movement of the fluid B in the Y-axis direction is restricted. As a result, the bias in the Y-axis direction in the flow (flow rate) of the second fluid B is suppressed, and as a result, the deterioration of the heat exchange performance due to the bias can be prevented.

また、本実施形態の熱交換器1では、対向する第二面Sa2、Sb2のうちの一方の第二面Sa2、Sb2の第二流路形成用凸条232、322が他方の第二面Sa2、Sb2の第二流路形成用凹条222、322とが対向すると共に一方の第二面Sa2、Sb2の第二流路形成用凹条222、322が他方の第二面Sa2、Sb2の第二流路形成用凸条232、332と対向する。かかる構成によれば、Z軸方向から見て第二流路Rbが蛇行するようにY方向に延び(図13参照)、これにより、Y軸方向の各位置において、対向する第二面Sa2、Sb2同士の間隔(X軸方向の間隔)が一定又は略一定となる。このため、第二流体Bの流れにおけるY軸方向の偏りがより抑えられ(換言すると、Y軸方向の一部の領域に集中することが抑えられ)、これにより、前記偏りに起因する熱交換性能の低下をより確実に防ぐことができる。 Further, in the heat exchanger 1 of the present embodiment, the ridges 232 and 322 for forming the second flow path of one of the two opposing surfaces Sa2 and Sb2, the second surface Sa2 and Sb2, are the other second surface Sa2. , Sb2's second flow path forming recess 222,322 faces each other, and one second surface Sa2, Sb2's second flow path forming recess 222,322 is the other second surface Sa2, Sb2. It faces the ridges 232 and 332 for forming two flow paths. According to such a configuration, the second flow path Rb extends in the Y direction so as to meander when viewed from the Z-axis direction (see FIG. 13), whereby, at each position in the Y-axis direction, the second surface Sa2, which faces each other, The distance between Sb2s (distance in the X-axis direction) is constant or substantially constant. Therefore, the bias in the Y-axis direction in the flow of the second fluid B is further suppressed (in other words, the concentration in a part of the Y-axis direction is suppressed), and as a result, heat exchange due to the bias is suppressed. It is possible to prevent the deterioration of performance more reliably.

また、本実施形態の熱交換器1では、第二面Sa2、Sb2は、Z軸方向と交差する方向に延びる複数の障壁用凸条233、333を有し、各障壁用凸条233、333は、相手側の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれと当接する。かかる構成によれば、第二流体Bが第二流路Rbを流れる、詳しくは、第二流路形成用凹条222、322に沿って流れるときに、障壁用凸条233、333に衝突して第二流体Bの流れに乱れ(乱流等)が生じ、これにより、熱交換性能(熱交換効率)が向上する。 Further, in the heat exchanger 1 of the present embodiment, the second surfaces Sa2 and Sb2 have a plurality of barrier ridges 233 and 333 extending in a direction intersecting the Z-axis direction, and each barrier ridge 233,333. Is in contact with each of the plurality of second flow path forming ridges 232 and 332 on the second surface Sa2 and Sb2 on the other side. According to this configuration, when the second fluid B flows through the second flow path Rb, specifically, along the second flow path forming recesses 222 and 322, it collides with the barrier ridges 233 and 333. As a result, turbulence (turbulence, etc.) occurs in the flow of the second fluid B, which improves the heat exchange performance (heat exchange efficiency).

熱交換器1において、対向する第二面Sa2、Sb2のそれぞれの障壁用凸条233、333がZ軸方向の同じ位置に配置されると、この位置における第二流路Rbの流路幅(X軸方向の寸法)が小さく又は無くなって第二流路Rbの流通抵抗が大きくなり過ぎる。しかし、本実施形態の熱交換器1のように、対向する第二面Sa2、Sb2のうちの一方の第二面Sa2、Sb2の複数の障壁用凸条233、333のそれぞれと、他方の第二面Sa2、Sb2の複数の障壁用凸条233、333のそれぞれとが、Z軸方向において異なる位置に配置されていると(図14参照)、Z軸方向の各位置での流路幅を確保して第二流路Rbの流通抵抗が大きくなり過ぎることを防ぎつつ、一方の第二面Sa2、Sb2と他方の第二面Sa2、Sb2とのそれぞれに設けられた各障壁用凸条233、333に第二流体Bが衝突することで第二流路Rbにおける第二流体Bの流れに十分な乱れを生じさせることができる。 In the heat exchanger 1, when the barrier protrusions 233 and 333 of the opposite second surfaces Sa2 and Sb2 are arranged at the same position in the Z-axis direction, the flow path width of the second flow path Rb at this position ( The dimension in the X-axis direction) becomes small or disappears, and the flow resistance of the second flow path Rb becomes too large. However, like the heat exchanger 1 of the present embodiment, each of the plurality of barrier ridges 233,333 of one of the two opposing surfaces Sa2 and Sb2, the second surface Sa2 and Sb2, and the other second surface Sa2 and Sb2. When the plurality of barrier protrusions 233 and 333 of the two surfaces Sa2 and Sb2 are arranged at different positions in the Z-axis direction (see FIG. 14), the flow path width at each position in the Z-axis direction is increased. While securing and preventing the flow resistance of the second flow path Rb from becoming too large, the ridges 233 for each barrier provided on one of the second surfaces Sa2 and Sb2 and the other second surface Sa2 and Sb2, respectively. When the second fluid B collides with 333, the flow of the second fluid B in the second flow path Rb can be sufficiently turbulent.

また、本実施形態の熱交換器1では、対向する第二面Sa2、Sb2のそれぞれにおいて、障壁用凸条233、333の頂部と各第二流路形成用凸条232、332の頂部232t、332tのX軸方向の位置が同じである。かかる構成によれば、第二流路RbにおいてZ軸方向に連通した領域、即ち、第二流体BがZ軸方向に流れるときに、伝熱プレート2、3に衝突せずに通過できる領域が生じない(図13参照)。即ち、第二流体Bは、一方の第二面Sa2、Sb2の第二流路形成用凹条222、322内(換言すると、一方の第二面Sa2、Sb2の隣り合う第二流路形成用凸条232、332間)を流れた場合でも、他方の第二面Sa2、Sb2の第二流路形成用凹条222、322内(換言すると、他方の第二面Sa2、Sb2の隣り合う第二流路形成用凸条232、332間)を流れた場合でも、障壁用凸条233、333と衝突する。これにより、第二流体Bの流れの偏り(詳しくは、前記衝突せずに通過できる領域に流れが集中することによる偏り)の発生を防ぐことができ、その結果、前記流れの偏りに起因する熱交換性能の低下を防ぐことができる。 Further, in the heat exchanger 1 of the present embodiment, on the opposite second surfaces Sa2 and Sb2, the tops of the barrier ridges 233 and 333 and the tops of the second flow path forming ridges 232 and 332 are 232t. The position of 332t in the X-axis direction is the same. According to this configuration, a region communicating in the Z-axis direction in the second flow path Rb, that is, a region that allows the second fluid B to pass through without colliding with the heat transfer plates 2 and 3 when flowing in the Z-axis direction. It does not occur (see FIG. 13). That is, the second fluid B is used in the recesses 222 and 222 for forming the second flow path of one of the second surfaces Sa2 and Sb2 (in other words, for forming the second flow path adjacent to the second surface Sa2 and Sb2 of one side). Even when the fluid flows between the ridges 232 and 332), it is inside the recesses 222 and 322 for forming the second flow path of the other second surfaces Sa2 and Sb2 (in other words, the other second surfaces Sa2 and Sb2 are adjacent to each other. Even when the fluid flows between the two flow path forming ridges 232 and 332), it collides with the barrier ridges 233 and 333. As a result, it is possible to prevent the occurrence of a bias in the flow of the second fluid B (specifically, a bias due to the flow being concentrated in the region where the second fluid B can pass without collision), and as a result, it is caused by the bias in the flow. It is possible to prevent deterioration of heat exchange performance.

尚、本発明のプレート式熱交換器は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The plate heat exchanger of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.

上記実施形態の熱交換器1では、障壁用凸条233、333は、対向する第二面Sa2、Sb2のそれぞれに複数配置されているが、この構成に限定されない。障壁用凸条233、333は、対向する第二面Sa2、Sb2のうちの何れか一方の面のみに配置されていてもよい。また、障壁用凸条233、333は、第二面Sa2、Sb2に無くてもよく、一つのみ配置されていてもよい。 In the heat exchanger 1 of the above embodiment, a plurality of barrier ridges 233 and 333 are arranged on the opposite second surfaces Sa2 and Sb2, but the configuration is not limited to this. The barrier ridges 233 and 333 may be arranged only on one of the opposite second surfaces Sa2 and Sb2. Further, the barrier ridges 233 and 333 may not be provided on the second surfaces Sa2 and Sb2, and only one may be arranged.

また、上記実施形態の障壁用凸条233、333は、Y軸方向において伝熱部20、30の一端から他端まで真っ直ぐ延びているが、この構成に限定されない。障壁用凸条233、333は、Z軸方向と交差する方向に延びていればよい。また、障壁用凸条233、333は、伝熱部20、30におけるY軸方向の一部の範囲(領域)に配置されていてもよい。また、障壁用凸条233、333は、一箇所又は複数個所で屈曲や湾曲等していてもよい。また、障壁用凸条233、333は、断続的に延びていてもよい。 Further, the barrier ridges 233 and 333 of the above embodiment extend straight from one end to the other end of the heat transfer portions 20 and 30 in the Y-axis direction, but are not limited to this configuration. The barrier ridges 233 and 333 may extend in a direction intersecting the Z-axis direction. Further, the barrier ridges 233 and 333 may be arranged in a partial range (region) in the Y-axis direction of the heat transfer portions 20 and 30. Further, the barrier ridges 233 and 333 may be bent or curved at one or a plurality of places. Further, the ridges 233 and 333 for the barrier may be extended intermittently.

また、上記実施形態の障壁用凸条233、333の頂部は、X軸方向において第二流路形成用凸条232、322の頂部と同じ位置、即ち、障壁用凸条233、333と第二流路形成用凸条232、322の高さは、同じであるが、この構成に限定されない。障壁用凸条233、333の頂部は、第二流路形成用凸条232より高くてもよく、低くてもよい。 Further, the tops of the barrier ridges 233 and 333 of the above embodiment are at the same positions as the tops of the second flow path forming ridges 232 and 322 in the X-axis direction, that is, the barrier ridges 233, 333 and the second. The heights of the flow path forming ridges 232 and 322 are the same, but the height is not limited to this configuration. The tops of the barrier ridges 233 and 333 may be higher or lower than the second flow path forming ridge 232.

また、上記実施形態の熱交換器1における各流路形成用凹条(第一流路形成用凹条221、321、第二流路形成用凹条222、322)及び各流路形成用凸条(第一流路形成用凸条231、331、第二流路形成用凸条232、332)は、各分割領域D1、D2のY軸方向における一端から他端まで配置され、それぞれがZ軸方向に真っ直ぐ延びているが、この構成に限定されない。各流路形成用凹条221、222、321、322及び各流路形成用凸条231、232、331、332は、Z軸方向に対して傾斜していてもよく、一箇所又は複数個所で屈曲や湾曲等していてもよい。即ち、各流路形成用凹条221、222、321、322及び各流路形成用凸条231、232、331、332は、Z軸方向に沿って延びていればよい。また、各流路形成用凹条221、222、321、322及び各流路形成用凸条231、232、331、332は、分割領域D1、D2又は伝熱部20、30におけるZ軸方向の一部の範囲(領域)に配置されていてもよい。また、各流路形成用凹条221、222、321、322及び各流路形成用凸条231、232、331、332は、断続的に延びていてもよい。 Further, the recesses for forming each flow path (the recesses 221 and 321 for forming the first flow path, the recesses 222 and 222 for forming the second flow path) and the protrusions for forming each flow path in the heat exchanger 1 of the above embodiment. (Convex 231 and 331 for forming the first flow path, ridges 232 and 332 for forming the second flow path) are arranged from one end to the other end in the Y-axis direction of the divided regions D1 and D2, and each of them is arranged in the Z-axis direction. It extends straight to, but is not limited to this configuration. The recesses 221 and 222, 321 and 322 for forming the flow path and the protrusions 231, 232, 332, 332 and 332 for forming the flow path may be inclined with respect to the Z-axis direction, and may be inclined at one place or a plurality of places. It may be bent or curved. That is, the recesses 221, 222, 321 and 322 for forming each flow path and the ridges 231, 232, 332, 332 for forming each flow path may extend along the Z-axis direction. Further, the recesses 221, 222, 321 and 322 for forming each flow path and the ridges 231, 232, 332, 332 for forming each flow path are formed in the divided regions D1, D2 or the heat transfer portions 20 and 30 in the Z-axis direction. It may be arranged in a part of a range (area). Further, the recesses 221, 222, 321 and 322 for forming each flow path and the ridges 231, 232, 332, 332 for forming each flow path may be extended intermittently.

また、上記実施形態の熱交換器1では、X軸方向において、第一凸条231A、331Aの頂部の位置は、第二凸条231B、331Bの頂部の位置と第二流路形成用凹条222、322の底部の位置との中央位置であるが、この構成に限定されない。X軸方向において、第一凸条231A、331Aの頂部の位置は、第二凸条231B、331Bの頂部の位置より第二流路形成用凹条222、322の底部側の位置で、且つ、第二流路形成用凹条222、322の底部の位置より第二凸条231B、331Bの頂部側の位置であれば、いずれの位置でもよい。 Further, in the heat exchanger 1 of the above embodiment, the positions of the tops of the first ridges 231A and 331A are the positions of the tops of the second ridges 231B and 331B and the recesses for forming the second flow path in the X-axis direction. It is a central position with respect to the position of the bottom of 222, 222, but is not limited to this configuration. In the X-axis direction, the position of the top of the first ridges 231A and 331A is the position on the bottom side of the second flow path forming recesses 222 and 322 from the position of the top of the second ridges 231B and 331B. Any position may be used as long as it is located on the top side of the second ridges 231B and 331B from the position of the bottom of the second flow path forming recesses 222 and 322.

また、上記実施形態の熱交換器1では、Y軸方向に間隔をあけて並ぶ複数の第一流路形成用凸条231、331によって構成される凸条群において、第一凸条231A、331Aと第二凸条231B、331Bとが交互に配置されている、換言すると、第一凸条231A、331Aは、Y軸方向に隣り合う第二凸条231B、331Bの間に一つずつ配置されているが、この構成に限定されない。第一凸条231A、331Aは、Y軸方向に隣り合う第二凸条231B、331Bの間に複数配置されていてもよい。例えば、P≧0.9の場合、強度の観点から、Y軸方向に隣り合う第二凸条231B、331Bの間に配置される第一凸条231A、331Aの数は、二つ以下が好ましい。 Further, in the heat exchanger 1 of the above embodiment, in the ridge group composed of a plurality of ridges 231 and 331 for forming the first flow path arranged at intervals in the Y-axis direction, the first ridges 231A and 331A are used. The second ridges 231B and 331B are arranged alternately, in other words, the first ridges 231A and 331A are arranged one by one between the second ridges 231B and 331B adjacent to each other in the Y-axis direction. However, it is not limited to this configuration. A plurality of the first ridges 231A and 331A may be arranged between the second ridges 231B and 331B adjacent to each other in the Y-axis direction. For example, when P ≧ 0.9, the number of the first ridges 231A and 331A arranged between the second ridges 231B and 331B adjacent to each other in the Y-axis direction is preferably two or less from the viewpoint of strength. ..

また、伝熱部20、30の部位(領域)毎に、Y軸方向に隣り合う第二凸条231B、331Bの間に配置される第一凸条231A、331Aの数が異なっていてもよい。 Further, the number of the first ridges 231A and 331A arranged between the second ridges 231B and 331B adjacent to each other in the Y-axis direction may be different for each part (region) of the heat transfer portions 20 and 30. ..

また、第一凸条231A、331Aは、該第一凸条231A、331AをY軸方向の横断する溝部2310、3310をZ軸方向の途中位置に少なくとも一つ(図18及び図19に示す例では一つ)有していていもよい。 Further, the first ridges 231A and 331A have at least one groove portions 2310 and 3310 that cross the first ridges 231A and 331A in the Y-axis direction at an intermediate position in the Z-axis direction (examples shown in FIGS. 18 and 19). Then you may have one).

伝熱プレート対5における第一凸条対6Aを構成している部位では、対向している第一凸条231A、331A同士が当接していない(間隔をあけて対向している)ため、第一凸条231A、331A同士が接近する方向の力に対する強度が、第一凸条231A、331A同士が当接している構成に比べて低い。しかし、上記構成のように、第一凸条対6Aを構成する第一凸条231A、331Aにリブ状の部位(溝部2310、3310)を設けることで、該部位の強度を向上させることができる。 At the portion of the heat transfer plate pair 5 that constitutes the first ridge pair 6A, the first ridges 231A and 331A facing each other are not in contact with each other (they are facing each other at intervals). The strength against the force in the direction in which the one ridges 231A and 331A approach each other is lower than that in the configuration in which the first ridges 231A and 331A are in contact with each other. However, as in the above configuration, by providing rib-shaped portions (grooves 2310 and 3310) in the first ridges 231A and 331A constituting the first ridge pair 6A, the strength of the portion can be improved. ..

また、全ての第一凸条231A、331Aが溝部2310、3310を有していなくてもよい。例えば、主伝熱部25、35の周縁部や主伝熱部25、35における堰部26、36等の他の部位との境界部等の伝熱部20、30において強度が低くなりやすい部位の第一凸条231A、331Aのみが溝部2310、3310を有していてもよい。 Further, not all the first protrusions 231A and 331A need to have the grooves 2310 and 3310. For example, a portion where the strength tends to be low in the heat transfer portions 20 and 30 such as the peripheral portion of the main heat transfer portions 25 and 35 and the boundary portion with other portions such as the weir portions 26 and 36 in the main heat transfer portions 25 and 35. Only the first ridges 231A and 331A of the above may have grooves 2310 and 3310.

また、上記実施形態の熱交換器1において隣り合う伝熱プレート対5における対向する第二面Sa2、Sb2では、一方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれと、他方の第二面Sa2、Sb2の複数の第二流路形成用凸条232、332のそれぞれとは、互いに接触しないようにY軸方向に互いにずれた位置に配置されているが、この構成に限定されない。前記対向する第二面Sa2、Sb2の第二流路形成用凸条232、332同士が当接する構成であってもよい。 Further, in the heat exchanger 1 of the above embodiment, in the facing second surfaces Sa2 and Sb2 of the adjacent heat transfer plate pairs 5, a plurality of second flow path forming ridges 232 of one of the second surfaces Sa2 and Sb2, Each of the 332 and each of the plurality of second flow path forming protrusions 232 and 332 of the other second surfaces Sa2 and Sb2 are arranged at positions deviated from each other in the Y-axis direction so as not to come into contact with each other. However, it is not limited to this configuration. The ridges 232 and 332 for forming the second flow path of the opposite second surfaces Sa2 and Sb2 may be in contact with each other.

熱交換器1における具体的な流路構成は、限定されない。例えば、上記実施形態の熱交換器1では、各流路Ra、Rb、は、流入路Pa1、Pb1と流出路Pa2、Pb2との間において並列に接続されているが、熱交換器1の流通路(即ち、熱交換器1の内部に流入してから外部に流出するまでの流体A、Bの流路)において、直列に接続されている部位や並列に接続されている部位が設けられていてもよい。 The specific flow path configuration in the heat exchanger 1 is not limited. For example, in the heat exchanger 1 of the above embodiment, the flow paths Ra and Rb are connected in parallel between the inflow paths Pa1 and Pb1 and the outflow paths Pa2 and Pb2, but the flow of the heat exchanger 1 In the path (that is, the flow path of the fluids A and B from flowing into the heat exchanger 1 to flowing out to the outside), a portion connected in series or a portion connected in parallel is provided. You may.

上記実施形態の熱交換器1は、伝熱プレートとして第一伝熱プレート2と第二伝熱プレート3のみを備えているが、この構成に限定されない。熱交換器1において、第一伝熱プレート2と第二伝熱プレート3とが重ね合わされた伝熱プレート群のZ軸方向の一端及び他端の少なくとも一方の端に、上記実施の伝熱プレート2、3と異なる構成の伝熱プレートが重ね合わされた伝熱プレート群が重ね合わされていてもよい。 The heat exchanger 1 of the above embodiment includes only the first heat transfer plate 2 and the second heat transfer plate 3 as heat transfer plates, but is not limited to this configuration. In the heat exchanger 1, at least one end of the heat transfer plate group in which the first heat transfer plate 2 and the second heat transfer plate 3 are overlapped with each other in the Z-axis direction is the heat transfer plate of the above-described embodiment. A group of heat transfer plates on which heat transfer plates having different configurations from those of 2 and 3 are overlapped may be overlapped.

1…プレート式熱交換器、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、20、30…伝熱部、200、201、202、203、300、301、302、303…開口、200p、201p、202p、203p、300p、301p、302p、303p…開口周縁部、21、31…嵌合部、22、32…凹部、221、321…第一流路形成用凹条(第一面側凹条)、222、322…第二流路形成用凹条(第二面側凹条)、222A、322A…第一凹条(第二流路形成用凹条、第二面側凹条)、222B、322B…第二凹条(第二流路形成用凹条、第二面側凹条)、223、223A、323、323A…障壁裏側凹条、225、325…第一面側凹部、226、326…第二面側凹部、23、33…凸部、231、331…第一流路形成用凸条(第一面側凸条)、231A、331A…第一凸条(第一流路形成用凸条、第一面側凸条)、231B、331B…第二凸条(第一流路形成用凸条、第一面側凸条)、2310、3310…溝部、232、332…第二流路形成用凸条(第二面側凸条)、233、233A、333、333A…障壁用凸条、235、335…第一面側凸部、236、336…第二面側凸部、25、35…主伝熱部、26、36…堰部、4、4A、4B…フレームプレート、41A、41B…プレート本体、42A、42B…フレーム嵌合部、43…ノズル、5…伝熱プレート対、6…凸条対、6A…第一凸条対、6B…第二凸条対、500…プレート式熱交換器、501…伝熱プレート、A…第一流体(流体)、B…第二流体(流体)、CL…縦中心線、D1…第一面側分割領域、D2…第二面側分割領域、Pa1…第一流入路、Pa2…第一流出路、Pb1…第二流入路、Pb2…第二流出路、Ra…第一流路(流路)、Rb…第二流路(流路)、S1…柱状の空間、Sa1、Sb1…第一面、Sa2、Sb2…第二面 1 ... Plate type heat exchanger, 2 ... First heat transfer plate (heat transfer plate), 3 ... Second heat transfer plate (heat transfer plate), 20, 30 ... Heat transfer section, 200, 201, 202, 203, 300, 301, 302, 303 ... Opening, 200p, 201p, 202p, 203p, 300p, 301p, 302p, 303p ... Opening peripheral edge, 21, 31 ... Fitting, 22, 32 ... Recessed, 221, 321 ... First stream Road forming concave (first surface side concave) 222, 322 ... Second flow path forming concave (second surface side concave) 222A, 222A ... First concave (second flow path forming) Concave, second surface side concave) 222B, 322B ... Second concave (second flow path forming concave, second surface side concave), 223, 223A, 323, 323A ... Barrier back side concave, 225, 325 ... First surface side concave 226, 326 ... Second surface side concave, 23, 33 ... Convex part, 231, 331 ... First flow path forming convex (first surface side convex) 231A, 331A … First ridge (first flow path forming ridge, first surface side ridge) 231B, 331B… Second ridge (first flow path forming ridge, first surface side ridge) 2310, 3310 ... Grooves, 232, 332 ... Convex for forming the second flow path (convex on the second surface side), 233, 233A, 333, 333A ... Convex for barriers, 235, 335 ... Convex on the first surface side, 236, 336 ... Second surface side convex portion, 25, 35 ... Main heat transfer portion, 26, 36 ... Dam portion, 4, 4A, 4B ... Frame plate, 41A, 41B ... Plate body, 42A, 42B ... Frame fitting portion, 43 ... Nozzle, 5 ... Heat transfer plate pair, 6 ... Convex pair, 6A ... First convex strip pair, 6B ... Second convex strip pair, 500 ... Plate type heat exchanger, 501 ... Heat transfer plate, A ... No. One fluid (fluid), B ... second fluid (fluid), CL ... vertical center line, D1 ... first surface side division area, D2 ... second surface side division area, Pa1 ... first inflow path, Pa2 ... first flow Outgoing path, Pb1 ... Second inflow path, Pb2 ... Second outflow path, Ra ... First flow path (flow path), Rb ... Second flow path (flow path), S1 ... Columnar space, Sa1, Sb1 ... First surface , Sa2, Sb2 ... Second side

Claims (7)

第一面と該第一面に対して反対向きの第二面とをそれぞれ有し且つ前記第一面と直交する第一方向において前記第一面同士が対向するように重ね合わされる二つの伝熱プレートによって構成される伝熱プレート対を複数備え、
前記複数の伝熱プレート対が前記第一方向において前記第二面同士が対向するように重ね合わされた状態において、対向する第一面間のそれぞれに第一流体が前記第一方向と直交する第二方向に流通可能な第一流路が形成されると共に、対向する第二面間のそれぞれに第二流体が前記第二方向に流通可能な第二流路が形成され、
前記複数の伝熱プレート対に含まれる複数の伝熱プレートのそれぞれにおいて、
前記第一面は、前記第二方向に沿って延びる少なくとも一つの第一面側凸条及び前記第二方向に沿って延びる少なくとも一つの第一面側凹条を有し、
前記第二面は、前記第一面の前記第一面側凸条と表裏の関係にある少なくとも一つの第二面側凹条及び前記第一面の前記第一面側凹条と表裏の関係にある少なくとも一つの第二面側凸条を有し、
各伝熱プレート対では、前記対向する第一面のそれぞれにおいて前記第一面側凸条と前記第一面側凹条とが前記第一方向及び前記第二方向のそれぞれと直交する第三方向に交互に並ぶことで、対向する第一面側凸条によって構成される凸条対が前記第三方向に複数並び、
前記第三方向に並ぶ複数の凸条対のうちの少なくとも一つの凸条対である第一凸条対では、前記対向する第一面側凸条同士が前記第一方向に間隔をあけて対向し、前記複数の凸条対のうちの残りの凸条対である第二凸条対では、前記対向する第一面側凸条同士が互いに当接している、プレート式熱交換器。
Two transmissions that have a first surface and a second surface opposite to the first surface, and are superposed so that the first surfaces face each other in the first direction orthogonal to the first surface. Equipped with multiple heat transfer plate pairs composed of heat plates
In a state where the plurality of heat transfer plate pairs are superposed so that the second surfaces face each other in the first direction, the first fluid is orthogonal to the first direction between the first surfaces facing each other. A first flow path that can flow in two directions is formed, and a second flow path that allows the second fluid to flow in the second direction is formed between the two opposing surfaces.
In each of the plurality of heat transfer plates included in the plurality of heat transfer plate pairs,
The first surface has at least one first surface side ridge extending along the second direction and at least one first surface side recess extending along the second direction.
The second surface has at least one second surface side recess having a front and back relationship with the first surface side convex groove on the first surface, and a front and back relationship between the first surface side recess on the first surface. Has at least one second side ridge in
In each heat transfer plate pair, the third direction in which the first surface side convex and the first surface side concave are orthogonal to each of the first direction and the second direction on each of the facing first surfaces. By alternately arranging the ridges in the third direction, a plurality of ridge pairs composed of the ridges on the first surface side facing each other are lined up in the third direction.
In the first ridge pair, which is at least one of the plurality of ridge pairs arranged in the third direction, the facing first surface side ridges face each other with a gap in the first direction. However, in the second ridge pair, which is the remaining ridge pair among the plurality of ridge pairs, the plate type heat exchanger in which the facing first surface side ridges are in contact with each other.
前記第一凸条対を構成する前記第一面側凸条は、該第一面側凸条を前記第三方向に横断する溝部を前記第二方向の途中位置に少なくとも一つ有する、請求項1に記載のプレート式熱交換器。 The claim that the first surface side ridges constituting the first ridge pair have at least one groove portion that crosses the first surface side ridges in the third direction at an intermediate position in the second direction. The plate heat exchanger according to 1. 前記対向する第二面のうちの一方の第二面の複数の第二面側凸条のそれぞれと、前記対向する第二面のうちの他方の第二面の複数の第二面側凸条のそれぞれとは、互いに接触しないように前記第三方向にずれた位置に配置されている、請求項1又は2に記載のプレート式熱交換器。 Each of the plurality of second surface side ridges on one of the two opposing second surfaces and the plurality of second surface side ridges on the other second surface of the opposite second surfaces. The plate heat exchanger according to claim 1 or 2, wherein each of the above is arranged at a position deviated from each other in the third direction so as not to come into contact with each other. 前記一方の第二面の前記第二面側凸条が前記他方の第二面の前記第二面側凹条と対向すると共に前記一方の第二面の前記第二面側凹条が前記他方の第二面の前記第二面側凸条と対向する、請求項3に記載のプレート式熱交換器。 The second surface side convex of the one second surface faces the second surface side concave of the other second surface, and the second surface side concave of the one second surface faces the other. The plate heat exchanger according to claim 3, which faces the second surface side ridge on the second surface of the above. 前記対向する第二面のうちの少なくとも片方の第二面は、前記第二方向と交差する方向に延びる少なくとも一つの障壁用凸条を有し、
前記障壁用凸条は、相手側の第二面の前記複数の第二面側凸条と当接している、請求項1〜4のいずれか1項に記載のプレート式熱交換器。
At least one second surface of the opposing second surfaces has at least one barrier ridge extending in a direction intersecting the second direction.
The plate heat exchanger according to any one of claims 1 to 4, wherein the barrier ridge is in contact with the plurality of second side ridges on the other side.
前記少なくとも一つの障壁用凸条は、前記対向する第二面のそれぞれに配置され、
前記対向する第二面のうちの前記一方の第二面の前記少なくとも一つの障壁用凸条と、前記対向する第二面のうちの前記他方の第二面の前記少なくとも一つの障壁用凸条とは、前記第二方向において異なる位置に配置されている、請求項5に記載のプレート式熱交換器。
The at least one barrier ridge is arranged on each of the opposing second surfaces.
The at least one barrier ridge on the one second surface of the opposing second surface and the at least one barrier ridge on the other second surface of the facing second surface. Is the plate heat exchanger according to claim 5, which is arranged at different positions in the second direction.
前記対向する第二面のそれぞれにおいて、前記障壁用凸条の頂部と各第二面側凸条の頂部との前記第一方向の位置は、同じである、請求項5又は6に記載のプレート式熱交換器。 The plate according to claim 5 or 6, wherein in each of the facing second surfaces, the positions of the top of the barrier ridge and the top of each second side ridge are the same in the first direction. Type heat exchanger.
JP2020017866A 2020-02-05 2020-02-05 plate heat exchanger Active JP7181241B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020017866A JP7181241B2 (en) 2020-02-05 2020-02-05 plate heat exchanger
EP21751027.0A EP4098965A4 (en) 2020-02-05 2021-02-01 Plate heat exchanger
CN202180011114.4A CN115003979A (en) 2020-02-05 2021-02-01 Plate heat exchanger
PCT/JP2021/003494 WO2021157514A1 (en) 2020-02-05 2021-02-01 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020017866A JP7181241B2 (en) 2020-02-05 2020-02-05 plate heat exchanger

Publications (3)

Publication Number Publication Date
JP2021124242A true JP2021124242A (en) 2021-08-30
JP2021124242A5 JP2021124242A5 (en) 2022-01-11
JP7181241B2 JP7181241B2 (en) 2022-11-30

Family

ID=77200506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017866A Active JP7181241B2 (en) 2020-02-05 2020-02-05 plate heat exchanger

Country Status (4)

Country Link
EP (1) EP4098965A4 (en)
JP (1) JP7181241B2 (en)
CN (1) CN115003979A (en)
WO (1) WO2021157514A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014495A1 (en) * 2022-07-13 2024-01-18 ダイキン工業株式会社 Heat exchanger, refrigerant cycle device, and hot water supply apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059688A (en) * 1999-08-23 2001-03-06 Daikin Ind Ltd Plate type heat exchanger
JP2010085094A (en) * 2010-01-20 2010-04-15 Hisaka Works Ltd Plate type heat exchanger
JP2017015350A (en) * 2015-07-03 2017-01-19 株式会社日阪製作所 Plate type heat exchanger
WO2017122428A1 (en) * 2016-01-13 2017-07-20 株式会社日阪製作所 Plate heat exchanger
WO2018216165A1 (en) * 2017-05-25 2018-11-29 株式会社日阪製作所 Plate type heat exchanger
WO2019224767A1 (en) * 2018-05-24 2019-11-28 Ecosfera S.R.L. Thermal exchanging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630510B2 (en) * 2004-08-28 2014-03-05 SWEP International AB A plate heat exchanger
WO2007036963A1 (en) * 2005-09-30 2007-04-05 Gianni Candio Method for manufacturing a plate heat exchanger having plates connected through melted contact points and heat exchanger obtained using said method
JP3222546U (en) 2019-05-27 2019-08-08 大成工業株式会社 Plate heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059688A (en) * 1999-08-23 2001-03-06 Daikin Ind Ltd Plate type heat exchanger
JP2010085094A (en) * 2010-01-20 2010-04-15 Hisaka Works Ltd Plate type heat exchanger
JP2017015350A (en) * 2015-07-03 2017-01-19 株式会社日阪製作所 Plate type heat exchanger
WO2017122428A1 (en) * 2016-01-13 2017-07-20 株式会社日阪製作所 Plate heat exchanger
WO2018216165A1 (en) * 2017-05-25 2018-11-29 株式会社日阪製作所 Plate type heat exchanger
WO2019224767A1 (en) * 2018-05-24 2019-11-28 Ecosfera S.R.L. Thermal exchanging device

Also Published As

Publication number Publication date
WO2021157514A1 (en) 2021-08-12
JP7181241B2 (en) 2022-11-30
EP4098965A4 (en) 2023-07-19
EP4098965A1 (en) 2022-12-07
CN115003979A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US9400142B2 (en) Heat exchanger
JP6770200B2 (en) Heat exchanger and heat exchanger
KR102300848B1 (en) A plate heat exchanger comprising a heat transfer plate and a plurality of such heat transfer plates
US20130327513A1 (en) Heat exchanger plate, plate heat exchanger provided therewith and method for manufacturing a heat exchanger plate
KR102439518B1 (en) Heat exchanging plate and heat exchanger
EP2356392B1 (en) Heat exchanger plate and heat exchanger
US20060185835A1 (en) Heat exchange plate
WO2021157514A1 (en) Plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
JP6799680B2 (en) Plate heat exchanger
JP6799681B2 (en) Plate heat exchanger
EP4023997B1 (en) Heat exchange plate and heat exchanger containing same
JP2013130300A (en) Stacked heat exchanger
JP2001280887A (en) Plate type heat exchanger
JP6069425B2 (en) Plate heat exchanger
KR20200042473A (en) Heat exchanger plate and heat exchanger
JP3682324B2 (en) Plate heat exchanger
JP6857261B1 (en) Plate heat exchanger
JPH0518630Y2 (en)
JP3543993B2 (en) Plate heat exchanger
CN210400089U (en) Microchannel heat exchanger of reinforcing heat transfer in coordination
CN217504442U (en) Heat exchanger
JP7375492B2 (en) Heat exchanger
JPH0113267Y2 (en)
JP6235645B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7181241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150