JP2021124201A - Joint element, connection structure with joint element, manufacturing method for joint element, and corresponding connection method - Google Patents

Joint element, connection structure with joint element, manufacturing method for joint element, and corresponding connection method Download PDF

Info

Publication number
JP2021124201A
JP2021124201A JP2021011089A JP2021011089A JP2021124201A JP 2021124201 A JP2021124201 A JP 2021124201A JP 2021011089 A JP2021011089 A JP 2021011089A JP 2021011089 A JP2021011089 A JP 2021011089A JP 2021124201 A JP2021124201 A JP 2021124201A
Authority
JP
Japan
Prior art keywords
joining element
shaft
component
mpa
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021011089A
Other languages
Japanese (ja)
Other versions
JP7348921B2 (en
Inventor
ユンクレヴィーツ ダニエル
Junklewitz Daniel
ユンクレヴィーツ ダニエル
ヘンケ デニス
henke Dennis
ヘンケ デニス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boellhoff Verbindungstechnik GmbH
Original Assignee
Boellhoff Verbindungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boellhoff Verbindungstechnik GmbH filed Critical Boellhoff Verbindungstechnik GmbH
Publication of JP2021124201A publication Critical patent/JP2021124201A/en
Application granted granted Critical
Publication of JP7348921B2 publication Critical patent/JP7348921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/06Solid rivets made in one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/06Surface treatment of parts furnished with screw-thread, e.g. for preventing seizure or fretting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/08Hollow rivets; Multi-part rivets
    • F16B19/086Self-piercing rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/44Making machine elements bolts, studs, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/08Surface hardening with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/08Hollow rivets; Multi-part rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/14Bolts or the like for shooting into concrete constructions, metal walls or the like by means of detonation-operated nailing tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/04Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B2019/045Coated rivets

Abstract

To pierce and connect high-strength steel components so that debris does not separate.SOLUTION: The present invention relates to a joint element for manufacturing a connection part between at least two components, and comprises a head part at a first axial end part, an end part of a second axial end part opposite to the first axial end part, and a shaft arranged between the end part and the head part, and the shaft defines a longitudinal axis of the joint element between the axial first end part and the axial second end part. The present invention comprises at least an edge layer in which the shaft and end parts of the joint element are hardened, and thus, the materials of the shaft and the end parts have lower hardness inside adjacent to the edge layer, compared to the surface of the edge layer.SELECTED DRAWING: Figure 4

Description

本発明は、少なくとも2つの構成要素間の接続するための接合要素、少なくとも第1および第2の構成要素を備え接合要素によって接続される接続構造、接合要素の製造方法、ならびに接合要素によって少なくとも第1の構成要素を第2の構成要素に接続するための方法に関する。 The present invention relates to a joining element for connecting between at least two components, a connecting structure comprising at least the first and second components and connected by the joining element, a method of manufacturing the joining element, and at least the first by the joining element. The present invention relates to a method for connecting one component to a second component.

2つの構成要素間の接続を確立するための接合要素は通常、頭部、シャフト、並びに端部を含む。接合要素の具体的な構造は所望の分野に依るものであり、その結果、接合要素は従来技術において、複数の異なる設計で知られている。 Joining elements for establishing a connection between two components typically include a head, a shaft, and an end. The specific structure of the joining element depends on the desired field, and as a result, the joining element is known in the prior art in a number of different designs.

例えば、DE 10 2010 025 359 A1には、少なくとも1つの非プレパンチ部品に、本質的に無回転の軸方向の打ち込みを行うための接合要素としての釘が、記載される。接合要素としての釘は、釘ヘッド、釘シャフト、および釘先端を含み、釘シャフトはいくつかの部分に表面プロファイリング(a surface profiling)を含む。当該部分の表面プロファイリングは、その半径方向の深さに応じて、釘シャフトよりも低い硬度を有する。 For example, DE 10 2010 025 359 A1 describes at least one non-pre-punched part with a nail as a joining element for axially driving essentially non-rotating. The nail as a joining element includes a nail head, a nail shaft, and a nail tip, which in some parts include a surface profiling. The surface profiling of the portion has a lower hardness than the nail shaft, depending on its radial depth.

少なくとも2つの構成要素を接続するためのさらなる接続要素として、セッティングボルトがDE 10 2014 019 322 A1に開示されている。この接続要素は、性質が異なる尖った部分およびシャフト部分とを備え、接続要素は一体物に形成される。例えば、尖った部分は軸部よりも高い強度を有する。 Setting bolts are disclosed in DE 10 2014 019 322 A1 as additional connecting elements for connecting at least two components. The connecting element comprises a pointed portion and a shaft portion having different properties, and the connecting element is formed as an integral body. For example, the pointed portion has higher strength than the shaft portion.

DE 103 28 197 B3はボルト又は釘といった締結要素に関する。締結要素はシャフトを備え、シャフトの一端には先端部が配置され、他端には頭部が配置される。締結要素は、比較的硬い炭素含有鋼のコアゾーンと、それよりも少ない硬さを有する低炭素鋼のフェライトエッジゾーンとを含む。シャフトと先端部の間に遷移ゾーンが配置され、フェライトエッジゾーンの厚さはシャフトから先端部に向かって徐々にゼロに近い値まで減少する。 DE 103 28 197 B3 relates to fastening elements such as bolts or nails. The fastening element includes a shaft, the tip of which is arranged at one end of the shaft and the head of which is arranged at the other end. The fastening element includes a core zone of relatively hard carbon-containing steel and a ferrite edge zone of low carbon steel having a lower hardness. A transition zone is arranged between the shaft and the tip, and the thickness of the ferrite edge zone gradually decreases from the shaft to the tip to a value close to zero.

さらなる締結要素がDE 10 2007 000 485 B3に記載されている。締結要素は、比較的硬い炭素含有鋼の内側コアゾーンと、コアゾーンよりも低炭素の第1のオーステナイト鋼の、第1の合金化金属で合金化された、外側エッジゾーンとを備える。コアゾーンと周辺ゾーンとの間には第2の低炭素鋼の少なくとも1つの第1の中間ゾーンが配置され、これはコアゾーンの鋼よりも低い硬度を備える。 Additional fastening elements are described in DE 10 2007 000 485 B3. The fastening element comprises an inner core zone of a relatively hard carbon-containing steel and an outer edge zone alloyed with a first alloyed metal of a first austenitic steel having a lower carbon than the core zone. Between the core zone and the peripheral zone, at least one first intermediate zone of the second low carbon steel is arranged, which has a lower hardness than the steel of the core zone.

最後に、US 2003/014260 A1も締結要素を開示している。この締結要素は、後に続く第2のシャフト部分と比較してより大きな硬度を有する第1の先端部ベアリングシャフト部分を含む。 Finally, US 2003/014260 A1 also discloses fastening elements. This fastening element includes a first tip bearing shaft portion that has greater hardness compared to the subsequent second shaft portion.

独国特許出願公開第10 2010 025 359号明細書German Patent Application Publication No. 10 2010 025 359 独国特許出願公開第10 2014 019 322号明細書German Patent Application Publication No. 10 2014 019 322 独国特許発明第103 28 197号明細書German Patented Invention No. 103 28 197 独国特許発明第10 2007 000 485号明細書German Patented Invention No. 10 2007 000 485 米国特許出願公開第2003/014260号明細書U.S. Patent Application Publication No. 2003/014260

公知の接合要素により、最大600〜800MPaの引張強さを有する材料で作られた構成要素は、高速でボルトをセットする範囲内で、現在、確実に接合されることができる。この強度クラスから出発して、破片の分離および/または接合要素の破損が生じる。従って、公知の接合要素は、接合部分が予め打ち抜かれていない高強度又は超高強度鋼の構成要素に並進的に(translatorily)セットされるときに破損し、接合要素の先端は構成要素を完全に貫通すべきである。 With known joining elements, components made of materials with tensile strengths of up to 600-800 MPa can now be reliably joined within the range of high speed bolt setting. Starting from this strength class, debris separation and / or joint element breakage occurs. Thus, known joint elements are damaged when the joint is translatorily set to a component of high-strength or ultra-high-strength steel that has not been pre-punched, and the tip of the joint completes the component. Should penetrate.

したがって本発明の課題は、800MPaを超える範囲の引張強度を有する高強度鋼または超高強度鋼からなる構成要素の片面接合を、接合要素の破損およびスラグの分離なしに、1ステッププロセスで実現することができる接合要素を提供することである。さらに本発明の課題は、対応する接続構造、接合要素の製造方法、および2つの構成要素を接続する方法を提供することである。 Therefore, the subject of the present invention is to realize single-sided joining of components made of high-strength steel or ultra-high-strength steel having a tensile strength in the range of more than 800 MPa in a one-step process without damage to the joining elements and separation of slag. It is to provide a joining element that can. Further, an object of the present invention is to provide a corresponding connection structure, a method for manufacturing a joining element, and a method for connecting two components.

上記課題は独立請求項1に記載の接合要素と、独立請求項6に記載の接続構造と、独立請求項8に記載の接合要素の製造方法と、独立請求項13に記載の少なくとも第1の構成要素を第2の構成要素に接続する方法とによって解決される。有利な実施形態およびさらなる展開は以下の説明、図面、ならびに添付の特許請求の範囲から生じる。 The above-mentioned problems are the joining element according to the independent claim 1, the connection structure according to the independent claim 6, the method for manufacturing the joining element according to the independent claim 8, and at least the first item according to the independent claim 13. It is solved by a method of connecting a component to a second component. Advantageous embodiments and further developments arise from the following description, drawings, and appended claims.

本発明の接合要素は、少なくとも2つの構成要素間の接続を実現するため、軸方向第1端部の頭部と、軸方向第1端部とは反対の軸方向第2端部に設けられる端部と、前記端部と前記頭部との間に配置されるシャフトとを備え、前記シャフトは前記軸方向第1端部と前記軸方向第2端部との間に接合要素の長手方向軸線を規定し、少なくとも前記接合要素の前記シャフトおよび前記端部が硬化したエッジ層を含み、その結果、前記シャフトおよび前記端部の材料はエッジ層に隣接する内部において、前記エッジ層の表面に比べて低い硬度を有する。 The joining element of the present invention is provided at the head of the first axial end and the second axial end opposite to the first axial end in order to realize a connection between at least two components. A shaft is provided between an end portion and the end portion and the head portion, and the shaft is provided in the longitudinal direction of a joining element between the axial first end portion and the axial second end portion. An axis is defined and at least the shaft and the end of the joining element include a hardened edge layer, so that the material of the shaft and the end is on the surface of the edge layer in the interior adjacent to the edge layer. Has a lower hardness than that.

このように、本発明の接合要素は公知の頭部、シャフト、および端部を備える。好ましくは特に端部およびシャフトが一体に形成される。接合要素は全体として、すなわち、頭部、シャフト、および端部が、1つの部品で形成されることが特に好ましい。同様に、接合要素は好ましくはただ1つの材料から構成される。これは特にシャフト及び端部に当てはまる。 As such, the joining elements of the present invention include known heads, shafts, and ends. Preferably, in particular, the end and the shaft are integrally formed. It is particularly preferred that the joining element be formed as a whole, i.e., the head, shaft, and ends in one component. Similarly, the joining element is preferably composed of only one material. This is especially true for shafts and ends.

頭部と端部との間のシャフトの延長部はまた、通常の方法で、軸方向第1端部と軸方向第2端部との間の接合要素の長手方向軸線を規定し、これはその位置および進路により長手方向中心軸線とも呼ばれる。好ましくは、シャフトはシリンダ形状に形成される。 The extension of the shaft between the head and the end also defines the longitudinal axis of the joining element between the first axial end and the second axial end in the usual way. It is also called the central axis in the longitudinal direction depending on its position and course. Preferably, the shaft is formed in a cylinder shape.

さらに、本発明の接合要素は硬化したエッジ層を含む。この硬化エッジ層の利点を、接合要素としてのセッティングボルトに基づいて以下に述べる。この点において、接合要素は好ましくは以下のセッティングボルト、半中空自己穿孔リベット、中実自己穿孔リベット、ブラインドリベットおよびねじを含む群から選択される。 In addition, the bonding elements of the present invention include a hardened edge layer. The advantages of this hardened edge layer are described below based on the setting bolt as the joining element. In this regard, the joining element is preferably selected from the group including the following setting bolts, semi-hollow self-perforated rivets, solid self-perforated rivets, blind rivets and screws.

接合要素が通常の方法、例えば冷間成形によって、製造された後、少なくともシャフトおよび端部、好ましくは例えばセッティングボルトなどの接合要素全体、のエッジ層が、さらなる処理ステップで硬化される。接合要素の原材料または材料に応じて、最大1,200 HV 10の高いエッジ硬さを達成でき、同時に「柔らかく延性のある」内部を備えることができる。したがって、接合要素の例示になるセッティングボルトに関しては特に、シャフトは内部で変化しない。この文脈では1,200 HV 10の硬度が、10キロポンドの試験力または加えられた力で1,200ビッカース硬度(HV)であることを表す。 After the joining element is manufactured by conventional methods, such as cold forming, the edge layer of at least the shaft and ends, preferably the entire joining element, such as a setting bolt, is cured in a further processing step. Depending on the raw material or material of the joining element, high edge hardness of up to 1,200 HV 10 can be achieved, while at the same time providing a "soft and ductile" interior. Therefore, the shaft does not change internally, especially with respect to the setting bolts that illustrate the joining elements. In this context, a hardness of 1,200 HV 10 represents a Vickers hardness (HV) of 1,200 Vickers hardness (HV) with 10 kilopounds of test force or applied force.

これらのエッジ層硬化接合要素の利点は、接合要素、すなわち、例えばセッティングボルトが、高強度または超高強度鋼からなる構成要素にセットされることである。したがって、本発明の接合要素は、破片を分離することなく、かつ端部を変形させることなく、800MPaを超える、好ましくは1,200MPaを超える、特に好ましくは2,000MPaまで、または少なくとも1,500MPaまでの引張強度を有する鋼でできた構成要素内に配置可能である。 The advantage of these edge layer hardened joint elements is that the joint element, eg, setting bolts, is set on a component made of high-strength or ultra-high-strength steel. Therefore, the bonding elements of the present invention exceed 800 MPa, preferably more than 1,200 MPa, particularly preferably up to 2,000 MPa, or at least 1,500 MPa, without separating debris and without deforming the ends. It can be placed in a component made of steel with a tensile strength of up to.

プロセスウィンドウ(process window)が拡張されたことに加えて、ノッチ棒衝撃出力および延性も増加する。これは硬化されたエッジ層と対比して、接合要素の内部が柔らかいことに因るものである。ノッチ棒衝撃出力またはノッチ棒衝撃強度(The notched bar impact work or notched bar impact strength)は、接合要素の急激なおよび/または動的な応力に対する尺度である。この応力は、接合プロセスの間だけでなく、もし接合要素が荷重を受ける少なくとも2つの構成要素を一緒に保持しなければならない場合には、後の接続構造においても生じる。したがって例えば、接続部への不都合な影響なしに、接続部のさらなるプロセス中の大きな温度差、または接続構造にかかる機械的負荷が接合要素によって許容されるので、この増加したノッチ棒衝撃出力またはノッチ棒衝撃強度は、接合要素によって行われる接続において有利な効果を有する。 In addition to the expanded process window, the notch bar impact output and ductility are also increased. This is due to the softness of the interior of the joining element as opposed to the hardened edge layer. The notched bar impact work or notched bar impact strength is a measure of the sudden and / or dynamic stress of the joining element. This stress occurs not only during the joining process, but also in later connecting structures if the joining elements must hold at least two components under load together. Thus, for example, this increased notch rod impact output or notch allows for large temperature differences during further processes of the connection, or mechanical loads on the connection structure, without any adverse effects on the connection. The bar impact strength has an advantageous effect on the connections made by the joining elements.

接合要素の有利な実施形態では、少なくともシャフトおよび端部の材料が焼き入れ、焼き戻される。このようにしてエッジ層の硬さは、エッジ層を作成するために使用される手順に応じて、非焼入れおよび非焼戻し材料よりもさらに増加可能である。焼入れ焼戻しとは、焼入れとその後の焼戻しからなる、鋼などの金属の複合熱処理をいう。したがって、焼入れおよび焼戻しの前提条件は使用される鋼の硬化性能、すなわち、ある条件下で安定したマルテンサイトまたはベイナイト組織を形成する能力である。硬化自体についてはまず鋼材をオーステナイト化温度以上に速やかに加熱する必要がある。その後、鋼は急冷される、すなわち、加熱された材料は急冷剤、好ましくは水、油(ポリマー浴)または空気を使用することによって急速に冷却される。最後に、焼戻または青焼鈍プロセス(blue-annealing process)が行われ、これは特に応力を低減するために、鋼がその特性に影響を及ぼすように特別に加熱される熱処理である。 In an advantageous embodiment of the joining element, at least the shaft and end materials are hardened and hardened. In this way the hardness of the edge layer can be further increased over non-quenched and non-tempered materials, depending on the procedure used to create the edge layer. Quenching Tempering refers to a combined heat treatment of a metal such as steel, which consists of quenching and subsequent tempering. Therefore, a prerequisite for quenching and tempering is the hardening performance of the steel used, i.e. the ability to form a stable martensite or bainite structure under certain conditions. For hardening itself, it is first necessary to heat the steel material quickly above the austenitizing temperature. The steel is then quenched, i.e. the heated material is rapidly cooled by using a quenching agent, preferably water, oil (polymer bath) or air. Finally, a tempering or blue-annealing process is performed, which is a heat treatment in which the steel is specially heated to affect its properties, especially to reduce stress.

さらに、エッジ層の硬化は好ましくは窒化、高周波による硬化、炎による硬化、レーザ光による硬化、電子ビームによる硬化または浸炭によって達成される。ここで窒化は、ガス窒化が特に好ましい。特に窒化は、硬化される接合要素がバルク材料として処理されることを可能にし、これは有利な処理時間に加えて、経済的な処理方法ももたらす。 Further, curing of the edge layer is preferably achieved by nitriding, curing by high frequency, curing by flame, curing by laser light, curing by electron beam or carburizing. Here, as the nitriding, gas nitriding is particularly preferable. Nitriding in particular allows the bonded element to be cured to be treated as a bulk material, which provides an economical treatment method in addition to advantageous treatment times.

接合要素の他の好ましい実施形態として、少なくともシャフトおよび接合要素の端部、好ましくは接合要素全体が、シャフトおよび端部の材料よりも硬度が高い材料のコーティングを含む。接合要素の材料を使用する代わりに、硬化されたエッジ層を生成するために、ここでは別個のコーティングが使用される。結果として生じる技術的効果は好ましくは既に上述の技術的効果に対応する。 Another preferred embodiment of the joining element comprises coating at least the shaft and the ends of the joining element, preferably the entire joining element, with a material that is harder than the material of the shaft and the ends. Instead of using the material of the joining element, a separate coating is used here to produce a hardened edge layer. The resulting technical effect preferably already corresponds to the technical effect described above.

本発明による接続構造は、少なくとも第1の構成要素と第2の構成要素とを備え、これらの構成要素は本発明による接合要素によって接続される。したがって、結果として得られる利点および技術的効果に関して、不必要な繰り返しを避けるために、本発明の接合要素に関する上述の記載を参照されたい。 The connection structure according to the present invention includes at least a first component and a second component, and these components are connected by the joining element according to the present invention. Therefore, with respect to the resulting benefits and technical benefits, refer to the above description of the joining elements of the present invention to avoid unnecessary repetition.

接続構造の好ましい実施形態では、第1の構成要素が頭部に隣接して配置され、第2の構成要素は接合要素の端部に隣接して配置され、第2の構成要素は少なくとも800MPaの引張強度、特に800MPaと2,000MPaとの間の引張強度、または少なくとも800MPaと1,500MPaとの間の引張強度を有する鋼、特に熱間成形鋼から構成される。外側の硬いエッジ部分と、それより軟らかいコアとを有するという本発明の接合要素の特定の設計は、少なくとも800MPaの引張強度を有する鋼で作られた第2の構成要素から破片が分離されないことを確実にするためである。このようにして、不利な騒音発生も回避される。 In a preferred embodiment of the connection structure, the first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the second component is at least 800 MPa. It is composed of steels having tensile strengths, particularly between 800 MPa and 2,000 MPa, or at least 800 MPa and 1,500 MPa, especially hot-formed steels. The particular design of the joining element of the present invention, which has an outer hard edge portion and a softer core, ensures that debris is not separated from a second component made of steel with a tensile strength of at least 800 MPa. This is to ensure. In this way, unfavorable noise generation is also avoided.

本発明による接合要素の製造方法は、以下のステップを含み、特に冷間成形または旋削によって、軸方向第1端部に設けられる頭部と、軸方向第1端部とは反対側の軸方向第2端部に設けられる端部と、端部と頭部との間に配置されて、軸方向第1端部と軸方向第2端部との間に接合要素の長手方向軸線を規定するシャフトとを有する接合要素を提供するステップと、シャフトおよび端部が硬化エッジ層を備えるように、接合要素の少なくともシャフトおよび端部を硬化させ、それによって、シャフトおよび端部の材料は表面と比較して、半径方向に隣接する内部でより低い硬度を有するステップと、を備える。上述した本発明の接合要素は、本発明の製造方法に従って製造される。したがって、利点および結果として得られる技術的効果に関しては繰り返しを避けるために、上述の記載を参照されたい。 The method for manufacturing a joining element according to the present invention includes the following steps, in particular, a head provided at the first axial end portion by cold forming or turning and an axial direction opposite to the first axial end portion. It is arranged between the end provided at the second end and the end and the head, and defines the longitudinal axis of the joining element between the first axial end and the second axial end. At least the shaft and end of the joint element is cured so that the shaft and end have a hardened edge layer with the step of providing the joint element with the shaft, whereby the material of the shaft and end is compared to the surface. The step comprises a step having a lower hardness inside which is adjacent in the radial direction. The joining element of the present invention described above is manufactured according to the manufacturing method of the present invention. Therefore, refer to the above description to avoid repetition with respect to the benefits and the resulting technical benefits.

製造方法の好ましい実施形態は、接合要素が硬化されるステップの前に、接合要素の少なくともシャフトおよび端部に焼入れ焼戻しを施すステップを含む。この手順の利点は、特に窒化などの方法を使用した場合、後のエッジ層の硬さが、非焼入れおよび非焼戻し材料の接合要素と比較してさらに増加できることである。 A preferred embodiment of the manufacturing method comprises quenching and tempering at least the shaft and ends of the joining element prior to the step of curing the joining element. The advantage of this procedure is that the hardness of the subsequent edge layer can be further increased compared to the bonding elements of non-quenched and non-tempered materials, especially when using methods such as nitriding.

また好ましい製造方法は、窒化、高周波による硬化、火炎による硬化、レーザ光による硬化、電子ビームによる硬化、又は浸炭、又は接合要素の少なくともシャフト及び端部にコーティングを施すことによって硬化させるステップを含む。それぞれの方法の利点については上述の記載を参照されたい。 Preferred manufacturing methods also include nitriding, curing by high frequency, curing by flame, curing by laser light, curing by electron beam, or carburizing, or curing by coating at least the shaft and ends of the bonding element. See above for the advantages of each method.

接合要素のための有利な材料は、冷間成形可能な鋼を含む。このようにして、例えばセッティングボルトが、冷間成形による接合要素としてコスト効率よく製造することができる。 Advantageous materials for joining elements include cold formable steel. In this way, for example, setting bolts can be cost-effectively manufactured as cold-formed joint elements.

接合要素によって少なくとも第1の構成要素を第2の構成要素に接続する本発明の接続方法は、第1および第2の構成要素が上下に配置されるステップと、第1および第2の構成要素が上下に配置される前記配置に接合要素をセットするステップを含み、接合要素の前記セットは本質的に無回転で行われることが好ましい。本質的に無回転のセッティングは接合要素の単なる並進セッティング(exclusively translational setting)として説明可能である。このセッティングは、接合部分が予め打ち抜かれておらず、互いに接続されるべき構成要素において実行される。セッティングプロセスの終わりに、使用される接合要素に応じて、接合要素の端部は好ましくは両方の構成要素を貫通するが、少なくとも頭部に面する構成要素を貫通する。結果として得られる利点に関しては繰り返しを避けるために、本発明の接合要素に関する上述の記載を参照されたい。 The connection method of the present invention in which at least the first component is connected to the second component by a joining element includes a step in which the first and second components are arranged one above the other and the first and second components. It is preferred that the setting of the joining elements is performed essentially non-rotating, comprising the step of setting the joining elements in the arrangement in which the members are arranged one above the other. An essentially non-rotating setting can be described as an exclusively translational setting for the joining elements. This setting is performed on components where the joints are not pre-punched and should be connected to each other. At the end of the setting process, depending on the joining element used, the ends of the joining element preferably penetrate both components, but at least the components facing the head. For the resulting benefits, refer to the above description of the joining elements of the invention to avoid repetition.

好ましくは、第1の構成要素が頭部に隣接して配置され、第2の構成要素が接合要素の端部に隣接して配置され、第2の構成要素は少なくとも800MPaの引張強度、特に800MPa〜2,000MPaの引張強度、または少なくとも800MPa〜1,500MPaの引張強度を有する鋼、特に熱間成形鋼から構成される。冒頭で説明したように、このような構成要素の場合、接合要素の端部が塑性変形する危険性がある。この危険性は硬化したエッジ層のために最小限に抑えられるか、好ましくは排除される。 Preferably, the first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the second component has a tensile strength of at least 800 MPa, particularly 800 MPa. It is composed of steel having a tensile strength of about 2,000 MPa or at least 800 MPa to 1,500 MPa, particularly hot-formed steel. As explained at the beginning, in the case of such a component, there is a risk of plastic deformation at the end of the joining element. This risk is minimized or preferably eliminated due to the hardened edge layer.

本方法の好ましい実施形態では第1の構成要素が頭部に隣接して配置され、第2の構成要素が接合要素の端部に隣接して配置され、第2の構成要素の貫通は打ち抜き破片の分離なしに行われる。本発明の接合要素における外側の硬いエッジ部分と、それより軟らかいコア材料という特別な設定は、少なくとも800MPaの引張強さを有する鋼製の第2の構成要素から破片が分離されないことを可能にすることである。このようにして、不利な騒音発生も回避される。 In a preferred embodiment of the method, the first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the penetration of the second component is punched debris. Is done without separation. The special setting of the outer hard edge portion of the joining element of the present invention and the softer core material allows debris not to be separated from the second component made of steel having a tensile strength of at least 800 MPa. That is. In this way, unfavorable noise generation is also avoided.

接合要素の断面図である。It is sectional drawing of the joining element. 高強度又は超高強度鋼からなる構成要素にセットされた接合要素の斜視図である。It is a perspective view of the joining element set in the component made of high-strength or ultra-high-strength steel. 高強度又は超高強度鋼からなる構成要素にセットされた接合要素の斜視図である。It is a perspective view of the joining element set in the component made of high-strength or ultra-high-strength steel. 本発明の一実施形態に係る接合要素を高強度又は超高強度鋼からなる部品にセットした斜視図である。It is a perspective view which set the joining element which concerns on one Embodiment of this invention on a part made of high-strength or ultra-high-strength steel. 本発明の一実施形態に係る接合要素の端部を表す顕微鏡写真または顕微鏡断面図である。FIG. 5 is a photomicrograph or a cross-sectional view of a microscope showing an end portion of a joining element according to an embodiment of the present invention. 前記硬化エッジ部を説明するためのグラフ図である。It is a graph for demonstrating the hardened edge part. 硬さおよびノッチ棒衝撃出力のグラフ図である。It is a graph of hardness and notch bar impact output. 本発明の接合要素の製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the joining element of this invention. 接合要素で2つの構成要素を接続する本発明の方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the method of this invention which connects two components by a joining element.

図1を参照して、接合要素1がセッティングボルトの形で示されている。形状の詳細に関してはDE 10 2006 002 238 A1が参照され、その内容はこの点に関して参照事項として組み込まれる。 With reference to FIG. 1, the joining element 1 is shown in the form of a setting bolt. See DE 10 2006 002 238 A1 for details of the shape, the contents of which are incorporated as references in this regard.

接合要素1としてのセッティングボルトの代わりに、半中空自己穿孔リベット、中実自己穿孔リベット、ブラインドリベット、ねじ等も接合要素として使用することができ、以下の説明がこれらの接合要素に応じて適用される。形状の詳細に関しては半中空自己穿孔リベットについてはDE 10 2012 102 860 A1、DE 10 2015 118 888 A1およびDE 10 2019 102 383 A1を、中実自己穿孔リベットについてはDE 10 2018 128 455およびDE 10 2019 102 380を、ブラインドリベットについてはDE 20 2005 005 536 U1およびEP 1 710 454 A1を参照されたい。 Semi-hollow self-perforated rivets, solid self-perforated rivets, blind rivets, screws, etc. can also be used as the joint elements instead of the setting bolts as the joint element 1, and the following description applies depending on these joint elements. Will be done. For shape details, DE 10 2012 102 860 A1, DE 10 2015 118 888 A1 and DE 10 2019 102 383 A1 for semi-hollow self-perforated rivets, DE 10 2018 128 455 and DE 10 2019 for solid self-perforated rivets. See 102 380 and DE 20 2005 005 536 U1 and EP 1 710 454 A1 for blind rivets.

再び図1を参照して、接合要素1は公知の方法で、軸方向第1端部の頭部10、軸方向第2端部の本実施形態では先端部の端部20、ならびに間に配置されたシャフト30を備える。シャフト30は第1の軸方向端部と第2の軸方向端部との間に接合要素1の長手方向軸線Lを画定し、これはその位置のために、長手方向中心軸線と呼ぶこともできる。 With reference to FIG. 1 again, the joining element 1 is arranged in a known manner with the head 10 at the first axial end, the end 20 at the tip in the present embodiment at the second axial end, and between. The shaft 30 is provided. The shaft 30 defines the longitudinal axis L of the joining element 1 between the first axial end and the second axial end, which is also referred to as the longitudinal central axis because of its position. can.

接合要素1の頭部10は平坦な上側12と、シリンダ形状の円周面と、平坦な下側面14とを備える。平坦な下側14は、頭部側構成要素のビード状又はバルジ状の材料の蓄積を受け入れるため、シャフト30に隣接する環状溝16を有し、これは接合要素1を少なくとも2つの構成要素にセットする場合に特に有利である。 The head portion 10 of the joining element 1 includes a flat upper side 12, a cylinder-shaped circumferential surface, and a flat lower side surface 14. The flat underside 14 has an annular groove 16 adjacent to the shaft 30 to accommodate the accumulation of beaded or bulge-like material of the head side components, which makes the joint element 1 into at least two components. It is especially advantageous when setting.

環状溝16はシャフト30に隣接する丸みを帯びた円周面を備え、一方で丸みの接線方向に滑らかにシャフト30に遷移し、他方で円錐面に遷移する。このようにして、特に頭部に面する構成要素の材料が接合方向に対して上昇する場合には、当該材料を環状溝16内に収容することができる。 The annular groove 16 has a rounded circumferential surface adjacent to the shaft 30, one of which smoothly transitions to the shaft 30 in the tangential direction of the roundness and the other of which transitions to a conical surface. In this way, especially when the material of the component facing the head rises with respect to the joining direction, the material can be accommodated in the annular groove 16.

シャフト30はシリンダ形状に形成され、好ましくは、少なくとも一部において、頭部から離れて面する構成要素Aの材料を受け入れるための表面プロファイリング32を有する。このようにして、接合要素1は少なくとも1つの構成要素に特に確実に固定される。 The shaft 30 is formed in a cylinder shape and preferably has, at least in part, a surface profiling 32 for receiving the material of component A facing away from the head. In this way, the joining element 1 is particularly reliably fixed to at least one component.

端部20、本実施形態では先端、はシャフト30に直接隣接する。 The end 20, the tip in this embodiment, is directly adjacent to the shaft 30.

次に、高強度鋼又は超高強度鋼で作成された構成要素にセットされた接合要素の斜視図を示す図2を参照して、公知の接合要素の欠点を説明する。使用される接合要素は、450 HV 10の硬度、すなわち、10キロポンドの試験力または印加力で450のビッカース硬度(HV)を含む。高強度鋼または超高強度鋼で作成される構成要素の高い引張強さのために、公知の接合要素の使用は接合要素の端部22の塑性変形をもたらす。さらに、破片40が構成要素から分離される。しかしながら、これはたとえ片側からしか構成要素へアクセスできない場合であっても、騒音の改善にとって不利である。したがって、全体として、このようにして行われた接続は許容できないものとして分類される。 Next, the drawbacks of known joint elements will be described with reference to FIG. 2, which shows a perspective view of the joint element set in the component made of high-strength steel or ultra-high-strength steel. The joining element used comprises a hardness of 450 HV 10, i.e. 450 Vickers hardness (HV) with a test force or applied force of 10 kiloponds. Due to the high tensile strength of components made of high-strength steel or ultra-high-strength steel, the use of known joining elements results in plastic deformation of the end 22 of the joining element. In addition, the debris 40 is separated from the components. However, this is disadvantageous for improving noise, even if the components can only be accessed from one side. Therefore, as a whole, connections made in this way are classified as unacceptable.

図3は高強度鋼または超高強度鋼で作成された構成要素にセットされた別の接合要素の斜視図を示す。ここで使用される接合要素は、600 HV 10の硬度を有する硬度クラス8を備える。接合要素の硬さの増加は脆性の増加のみならず、端部の変形の減少をもたらす。図3から分かるように、破片は透孔に残る。この場合、特に動的荷重によって破片の緩みが引き起こされる可能性がある。これは次に、特に自動車車体の製造に関しては陰極浸漬被覆層の破損を引き起こすので、接合素子でさらに構成要素を加工した際にこの部分の防食性がなくなる。したがって、この接続は、さらなる処理ステップまたは後工程の処理ステップに適してなく、不利である。 FIG. 3 shows a perspective view of another joining element set in a component made of high-strength steel or ultra-high-strength steel. The joining element used here comprises a hardness class 8 having a hardness of 600 HV 10. Increasing the hardness of the joining element not only increases brittleness, but also reduces deformation of the edges. As can be seen from FIG. 3, the debris remains in the through hole. In this case, especially dynamic loads can cause loosening of debris. This in turn causes damage to the cathode immersion coating layer, especially in the manufacture of automobile bodies, so that the corrosion protection of this portion is lost when the component is further processed by the bonding element. Therefore, this connection is unsuitable and disadvantageous for further processing steps or post-process processing steps.

さて、図4を参照すると、本発明の実施形態に係る接合要素を高強度鋼または超高強度鋼で作成される構成要素にセットした斜視図が示されている。従って、少なくとも接合素子のシャフト及び端部は接合素子全体として好ましくは硬化エッジ部24を備える。硬化エッジ部24の使用により、接合要素に使用される材料にもよるが、最大1,200 HV 10の硬度を達成可能になる。 By the way, referring to FIG. 4, a perspective view in which the joining element according to the embodiment of the present invention is set in a component made of high-strength steel or ultra-high-strength steel is shown. Therefore, at least the shaft and the end portion of the joining element preferably include the cured edge portion 24 as the whole joining element. The use of the cured edge portion 24 makes it possible to achieve a hardness of up to 1,200 HV 10, depending on the material used for the joining element.

図5は材料の変更を示すために、接合要素の端部20の顕微鏡写真または顕微鏡断面図を示す。エッジ部24の硬化は窒化、特にガス窒化によって達成された。窒化とは別に、提供される接合要素をバルク材料としてさらに処理する方法が好ましく、すなわち、接合要素の個々の処理が必要とされない方法が好ましい。 FIG. 5 shows a micrograph or microscopic cross section of the end 20 of the joining element to show the material change. Curing of the edge portion 24 was achieved by nitriding, especially gas nitriding. Apart from nitriding, a method of further treating the provided joining element as a bulk material is preferred, i.e. a method which does not require individual treatment of the joining element is preferred.

図6に関連して図5から分かるように、硬化エッジ部24は約1.2mmの深さまで接合要素の内部に及ぶ。2つの接合要素材料34Cr4および42CrMo4について、硬度曲線または進行を図6に示す。窒化により、これらの材料で900 HV 0.3に達するまで硬化し、かかる硬度はコアに向かって直線的に減少する。窒化深さ、すなわち硬化エッジ層24の深さは、窒化時間によって確実に調整される。 As can be seen from FIG. 5 in relation to FIG. 6, the cured edge portion 24 extends to the interior of the joining element to a depth of about 1.2 mm. The hardness curves or progressions of the two bonding element materials 34Cr4 and 42CrMo4 are shown in FIG. Nitriding cures these materials to 900 HV 0.3, with such hardness decreasing linearly towards the core. The nitriding depth, that is, the depth of the cured edge layer 24 is surely adjusted by the nitriding time.

エッジ層が硬化された接合要素を用いることにより、引張強さ1,200MPaの鋼材から破片が剥離せず、端部の変形もなく接合可能である。加えて、例えば、2,000MPaまでの引張強さ、例えば1,500MPaを有する熱間成形鋼のような鋼を約1.2mmの厚さで接合することができる。 By using a joining element with a hardened edge layer, debris does not peel off from a steel material having a tensile strength of 1,200 MPa, and joining is possible without deformation of the end portion. In addition, steels such as hot-formed steels having a tensile strength of up to 2,000 MPa, for example 1,500 MPa, can be joined to a thickness of about 1.2 mm.

接合要素を設定するときにプロセスウィンドウ(process window)が拡張されたことに加えて、ノッチ棒衝撃出力が増大し、したがって延性が増大する。ノッチ棒衝撃出力またはノッチ棒衝撃強度(The notched bar impact work or notched bar impact strength)は接合要素の急激なおよび/または動的な応力に対する尺度である。この応力は、接合プロセスの間だけでなく、その後の接続構造において接合要素が構成要素の荷重下で少なくとも2つの構成要素を一緒に保持する場合にも生じる。この増加したノッチ棒衝撃出力またはノッチ棒衝撃強度は、接合要素1内部のコア26に起因し、これは硬化エッジ部24と比較して軟らかい。例えば、材料をC67から34Cr4に変更し、窒化プロセスを使用することにより、異なる材料を考慮して、図7に示すように、ノッチ棒衝撃出力を10倍に増加させることができる。 In addition to the expansion of the process window when setting the joining elements, the notch bar impact output is increased, thus increasing ductility. The notched bar impact work or notched bar impact strength is a measure of the sudden and / or dynamic stress of the joining element. This stress occurs not only during the joining process, but also when the joining elements hold at least two components together under the load of the components in the subsequent connection structure. This increased notch bar impact output or notch bar impact strength is due to the core 26 inside the joint element 1, which is softer than the hardened edge portion 24. For example, by changing the material from C67 to 34Cr4 and using a nitriding process, the notch rod impact output can be increased 10-fold, as shown in FIG. 7, taking into account different materials.

この属性の利点の1つは後の接続構造に影響を与える。硬質エッジ部と比較的軟質のコアとの組み合わせは、硬化されたエッジ部にもかかわらず、後続の処理ステップにおいて接合要素が確実に固定されることをもたらす。これは例えば、接合要素によって接合された2つの構成要素の後の人為的な時間経過に当てはまる。 One of the advantages of this attribute affects the later connection structure. The combination of a hard edge and a relatively soft core results in a secure fixation of the joining element in subsequent processing steps, despite the hardened edge. This applies, for example, to the artificial passage of time after the two components joined by the joining element.

接合要素が使用される接続構造は例えば、頭部に面する第1の構成要素と、頭部から離れる第2の構成要素とから構成される。構成要素は本発明の接合要素の実施形態によって接続される。ここで、接合要素の端部は両方の構成要素を貫通することができる。あるいは接合要素の端部が頭部とは反対を向いている構成要素内に配置される。同様に、接合要素は構成要素のうちの1つにのみセットされ、その後、第2の構成要素に溶接されることが可能である。 The connection structure in which the joining element is used is composed of, for example, a first component facing the head and a second component away from the head. The components are connected by embodiments of the joining elements of the present invention. Here, the ends of the joining elements can penetrate both components. Alternatively, the ends of the joining elements are placed within the component facing away from the head. Similarly, the joining element can be set to only one of the components and then welded to the second component.

好ましくは構成要素の1つ、特に頭部から離れている構成要素Bは、少なくとも800MPaの引張強さを有する鋼で構成される。これにより、頭部から離れている構成要素B、または下部構成要素Bは、高強度または超高強度鋼で製造される。接合要素の特定の設計のために、接合要素の破壊および端部20の塑性変形のリスクは、上述したように、構成要素Bを貫通するときと同様に構成要素B内に接合要素をセットするときに低減されるか、又は好ましくは排除される。さらに、接合要素は、少なくとも800MPaの引張強度を有する鋼から作られた第2の構成要素から破片が分離または切断されることを防止する。 Preferably one of the components, especially the component B away from the head, is made of steel having a tensile strength of at least 800 MPa. As a result, the component B away from the head, or the lower component B, is made of high-strength or ultra-high-strength steel. Due to the particular design of the joint element, the risk of fracture of the joint element and plastic deformation of the end 20 sets the joint element within component B as it would when penetrating component B, as described above. Sometimes it is reduced or preferably eliminated. In addition, the joining element prevents debris from being separated or cut from a second component made of steel having a tensile strength of at least 800 MPa.

図8は、接合要素の製造方法の一実施形態のフローチャートを示す。接合要素は、少なくともシャフト及び端部の冷間成形が可能な鋼で構成されることが好ましい。さらに、結合要素は有利には以下のセッティングボルト、半中空自己穿孔リベット、中実自己穿孔リベット、ブラインドリベット、ねじ等の群から選択される。 FIG. 8 shows a flowchart of an embodiment of a method for manufacturing a joining element. The joining element is preferably composed of at least a steel capable of cold forming the shaft and ends. Further, the coupling element is advantageously selected from the following groups of setting bolts, semi-hollow self-perforated rivets, solid self-perforated rivets, blind rivets, screws and the like.

製造過程において、第1のステップAで、特に冷間成形又は旋削によって、軸方向第1端部に頭部を有し、軸方向第1端部とは反対側の軸方向第2端部に端部を有し、並びに端部と頭部との間に配置されたシャフトを有する接合要素が作成され、該接合要素を作成するステップにおいて、前記シャフトは軸方向第1端部と軸方向第2端部との間に接合要素の長手方向軸線線を規定する。 In the manufacturing process, in the first step A, especially by cold forming or turning, the head is at the first axial end and at the second axial end opposite to the first axial end. A joint element having an end and having a shaft disposed between the end and the head is created, and in the step of creating the joint element, the shaft has an axial first end and an axial first. The longitudinal axis of the joining element is defined between the two ends.

任意のステップCにおいて、少なくとも接合素子のシャフトおよび端部、好ましくは接合素子全体の焼入れ及び焼戻しが行われる。焼入れ及び焼戻しの詳細については上述の記載を参照されたい。 In any step C, at least the shaft and ends of the junction element, preferably the entire junction element, are quenched and tempered. For details of quenching and tempering, refer to the above description.

最終ステップBでは接合要素の少なくともシャフト及び端部、好ましくは接合要素全体の硬化が行われ、それによって、シャフト及び端部に硬化エッジ層が設けられ、シャフト及び端部の材料は表面と比較して半径方向に隣接する内部で低い硬度を有する。硬化ステップは、窒化、高周波による硬化、炎による硬化、レーザ光による硬化、電子ビームによる硬化あるいは浸炭のいずれかを含むか(ステップD1)、又は硬化ステップは少なくとも接合要素のシャフト及び端部にコーティングを施すことを含む(ステップD2)このようにして、上述した本発明の接合要素は、一実施形態として製造される。 In the final step B, at least the shaft and end of the joint element, preferably the entire joint element, is cured, thereby providing a hardened edge layer on the shaft and end, and the material of the shaft and end is compared to the surface. Has low hardness inside adjacent to the radial direction. The curing step includes either nitriding, curing by high frequency, curing by flame, curing by laser light, curing by electron beam or carburizing (step D1), or the curing step coats at least the shaft and end of the joining element. (Step D2) In this way, the joining element of the present invention described above is manufactured as an embodiment.

最後に図9に、一実施形態の接合要素によって、第1の構成要素Aを第2の構成要素Bに接続する方法の一実施形態のフローチャートを示す。第1のステップIでは、第1の構成要素Aと第2の構成要素Bとを上下に配置することが行われる。次の第2のステップIIでは、上下に配置された第1及び第2の構成要素の配置に対して、接合要素のセッティングが行われ、接合要素のセッティングは本質的に無回転である。本質的に無回転なセッティングとは、接合要素の単なる並進セッティングとしても説明され得る。 Finally, FIG. 9 shows a flowchart of an embodiment of a method of connecting the first component A to the second component B by the joining element of the embodiment. In the first step I, the first component A and the second component B are arranged one above the other. In the next second step II, the joining elements are set with respect to the arrangement of the first and second components arranged one above the other, and the setting of the joining elements is essentially non-rotating. An essentially non-rotating setting can also be described as a mere translational setting of the joining elements.

第1の構成要素が頭部に隣接して配置され、第2の構成要素はセッティング中の接合要素の先端に隣接して配置され、両構成要素の接続部分は既に記載されるように予め打ち抜かれていない。第2の構成要素は特に、少なくとも800MPaの引張強さを有する鋼で構成される。第2の構成要素Bの貫通は破片の分離なしに行われる。本発明の接合要素の特有の設計により、引張強さが少なくとも800MPaの鋼で作られた第2の構成要素から破片が分離されないことが可能になる。 The first component is placed adjacent to the head, the second component is placed adjacent to the tip of the joining element being set, and the connection between the two components is pre-strike as previously described. Not pulled out. The second component is particularly composed of steel having a tensile strength of at least 800 MPa. Penetration of the second component B is done without debris separation. The unique design of the joining elements of the present invention makes it possible that debris is not separated from the second component made of steel with a tensile strength of at least 800 MPa.

1 接合要素
10 頭部
12 上側
14 下面
16 環状溝
20 端部
22 塑性変形端部
24 硬化エッジ層
26 コア
30 シャフト
32 表面プロファイリング
40 破片
A 構成要素
L 長手方向軸線。
1 Joining element
10 head
12 upper side
14 Bottom surface
16 annular groove
20 ends
22 Plastic deformation end
24 Hardened edge layer
26 cores
30 shaft
32 Surface profiling
40 Fragment A Component L Longitudinal axis.

Claims (15)

軸方向第1端部における頭部と、
軸方向第1端部とは反対の軸方向第2端部における端部と、
前記端部と前記頭部との間に配置され、前記軸方向第1端部と前記軸方向第2端部との間で接合要素の長手方向軸線を規定するシャフトとを備え、少なくとも2つの構成要素間の接続部を製造するための前記接合要素において、
前記接合要素のうち少なくとも前記シャフトおよび前記端部は硬化エッジ層を含み、前記シャフトおよび前記端部の材料は、前記エッジ層の表面と比較して、前記エッジ層に隣接する内部が低い硬度を有することを特徴とする、接合要素。
The head at the first end in the axial direction and
The end at the second end in the axial direction opposite to the first end in the axial direction,
A shaft disposed between the end and the head and defining a longitudinal axis of the joining element between the axial first end and the axial second end, at least two. In the joint element for manufacturing the connection between the components,
Of the joining elements, at least the shaft and the end portion include a hardened edge layer, and the material of the shaft and the end portion has a low hardness inside adjacent to the edge layer as compared with the surface of the edge layer. A joining element, characterized by having.
少なくとも前記シャフトおよび前記端部の前記材料は、焼入れおよび焼戻される、請求項1に記載の接合要素。 The joining element of claim 1, wherein at least the shaft and the material at the end are quenched and tempered. セッティングボルト、半中空自己穿孔リベット、中実自己穿孔リベット、ブラインドリベットおよびねじからなる群から選択される、請求項1または2に記載の接合要素。 The joining element of claim 1 or 2, selected from the group consisting of setting bolts, semi-hollow self-perforated rivets, solid self-perforated rivets, blind rivets and screws. 前記エッジ層の硬化は、窒化、高周波による硬化、火炎による硬化、レーザ光による硬化、電子ビームによる硬化又は浸炭によって達成される、請求項1〜3のいずれかに記載の接合要素。 The bonding element according to any one of claims 1 to 3, wherein the edge layer is cured by nitriding, curing by high frequency, curing by flame, curing by laser light, curing by electron beam, or carburizing. 前記接合要素の少なくとも前記シャフトおよび前記端部は、前記シャフトおよび前記端部の前記材料よりも硬度が大きい材料のコーティングを含む、請求項1〜3のいずれかに記載の接合要素。 The joining element according to any one of claims 1 to 3, wherein at least the shaft and the end of the joining element include a coating of a material having a hardness higher than that of the material of the shaft and the end. 請求項1〜5のいずれかに記載の接合要素によって接続される少なくとも第1の構成要素および第2の構成要素を備える、接続構造。 A connection structure comprising at least a first component and a second component connected by the joining element according to any one of claims 1-5. 前記第1の構成要素が前記頭部に隣接して配置され、前記第2の構成要素が前記接合要素の前記端部に隣接して配置され、前記第2の構成要素は鋼、特に熱間成形鋼から構成され、少なくとも800MPaの引張強度、特に800MPa〜2,000MPaの引張強度、または少なくとも800MPa〜1,500MPaの引張強度を有する、請求項6に記載の接続構造。 The first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the second component is steel, especially hot. The connection structure according to claim 6, which is composed of molded steel and has a tensile strength of at least 800 MPa, particularly a tensile strength of 800 MPa to 2,000 MPa, or a tensile strength of at least 800 MPa to 1,500 MPa. 請求項1〜5のいずれかに記載の接合要素の製造方法であって、
特に冷間成形又は旋削によって、軸方向第1端部に頭部、軸方向第1端部とは反対の軸方向第2端部の端部、並びに前記端部と前記頭部との間に配置されたシャフトを有し、前記頭部は、前記軸方向第1端部と前記軸方向第2端部との間に前記接合要素の長手方向軸線を規定する、前記接合要素を供給するaステップと、
前記シャフトおよび前記端部が硬化エッジ層を含むよう前記接合要素の少なくとも前記シャフトおよび前記端部を硬化させ、それによって前記シャフトおよび前記端部の材料は、表面と比較して、半径方向に隣接する内部で低い硬度を有するbステップを含む、接合要素の製造方法。
The method for manufacturing a joining element according to any one of claims 1 to 5.
In particular, by cold forming or turning, the head is located at the first axial end, the end of the second axial end opposite to the first axial end, and between the end and the head. The head has an arranged shaft and supplies the joining element, which defines a longitudinal axis of the joining element between the axial first end and the axial second end a. Steps and
At least the shaft and the end of the joining element are hardened so that the shaft and the end include a hardened edge layer, whereby the material of the shaft and the end is radially adjacent relative to the surface. A method of manufacturing a joining element, comprising a b-step having a low hardness inside.
前記接合要素を硬化させる前記bステップの前に、
前記接合要素の少なくとも前記シャフトおよび前記端部を焼入れ焼戻しするcステップをさらに含む、請求項8に記載の製造方法:
Before the b step of curing the joining element,
The manufacturing method according to claim 8, further comprising a c-step of quenching and tempering at least the shaft and the end of the joining element:
前記bステップは、
窒化、高周波による硬化、火炎による硬化、レーザ光による硬化、電子ビームによる硬化又は浸炭、を含み、あるいは、
少なくとも前記接合要素の前記シャフトと前記端部に被覆を施す、請求項8または9に記載の製造方法。
The b step is
Includes or includes nitriding, high frequency curing, flame curing, laser beam curing, electron beam curing or carburizing.
The manufacturing method according to claim 8 or 9, wherein at least the shaft and the end portion of the joining element are coated.
前記接合要素が、セッティングボルト、半中空自己穿孔リベット、中実自己穿孔リベット、ブラインドリベットおよびねじから成る群から選択される、請求項8〜10のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 10, wherein the joining element is selected from the group consisting of setting bolts, semi-hollow self-perforated rivets, solid self-perforated rivets, blind rivets and screws. 前記接合要素の材料は、冷間成形可能な鋼を含む、請求項8〜11のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 11, wherein the material of the joining element includes cold-formable steel. 請求項1〜5のいずれかに記載の接合要素によって、少なくとも第1の構成要素を第2の構成要素に接続する方法であって、
前記第1および第2の構成要素を上下に配置するステップと、
上下に配置された前記第1および第2の構成要素の前記配置に、前記接合要素をセッティングし、前記接合要素のセッティングは、本質的に無回転で行われることを特徴とする、接続方法。
A method of connecting at least the first component to the second component by the joining element according to any one of claims 1 to 5.
The step of arranging the first and second components one above the other,
A connection method characterized in that the joining element is set in the arrangement of the first and second components arranged one above the other, and the setting of the joining element is performed essentially without rotation.
前記第1の構成要素が前記頭部に隣接して配置され、前記第2の構成要素が前記接合要素の前記端部に隣接して配置され、前記第2の構成要素は、少なくとも800MPaの引張強度、特に800MPa〜2,000MPaの引張強度、または少なくとも800MPa〜1,500MPaの引張強度を有する鋼、特に熱間成形鋼から構成される、請求項13に記載の方法。 The first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the second component has a tension of at least 800 MPa. 13. The method of claim 13, comprising steel having a strength, particularly a tensile strength of 800 MPa to 2,000 MPa, or a tensile strength of at least 800 MPa to 1,500 MPa, particularly hot-formed steel. 前記第1の構成要素が前記頭部に隣接して配置され、前記第2の構成要素が前記接合要素の前記端部に隣接して配置され、前記第2の構成要素の貫通がパンチによる破片の分離なしに行われる、請求項13または14に記載の方法。
The first component is placed adjacent to the head, the second component is placed adjacent to the end of the joining element, and the penetration of the second component is a punched debris. 13. The method of claim 13 or 14, which is carried out without separation.
JP2021011089A 2020-02-05 2021-01-27 Connection element, connection structure with connection element, manufacturing method of connection element, and corresponding connection method Active JP7348921B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020102982.9A DE102020102982A1 (en) 2020-02-05 2020-02-05 Joining element, connection structure with the joining element, manufacturing method of the joining element and corresponding connection method
DE102020102982.9 2020-02-05

Publications (2)

Publication Number Publication Date
JP2021124201A true JP2021124201A (en) 2021-08-30
JP7348921B2 JP7348921B2 (en) 2023-09-21

Family

ID=74215728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011089A Active JP7348921B2 (en) 2020-02-05 2021-01-27 Connection element, connection structure with connection element, manufacturing method of connection element, and corresponding connection method

Country Status (6)

Country Link
US (1) US20210239146A1 (en)
EP (1) EP3862583A1 (en)
JP (1) JP7348921B2 (en)
KR (1) KR102635375B1 (en)
CN (1) CN112833076A (en)
DE (1) DE102020102982A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253771A1 (en) 2022-03-30 2023-10-04 Newfrey LLC Fastening element and method for joining at least two components without a pre-formed hole

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533805A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Very hard and corrosion resistant drilling tapping screw
JP2001247937A (en) * 1999-05-21 2001-09-14 Koji Onoe High strength screw and steel for high strength screw
JP2003028128A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Splice plate for friction-gripping high-strength bolt
JP2004137560A (en) * 2002-10-17 2004-05-13 National Institute For Materials Science Screw or tapping screw
JP2004308011A (en) * 2003-04-08 2004-11-04 Ejob Gmbh & Co Kg Screw having partially hardened functional tip part, and method for manufacturing the same
JP2009537757A (en) * 2006-05-13 2009-10-29 ヘンロッブ・リミテッド Self-inserting rivet
DE102010025359A1 (en) * 2010-06-28 2011-12-29 Audi Ag Nail for essentially turn-free axial driving into multiple non-prepunched components, has nail shaft comprising surface area profile, where hardness of region of surface area profile is lower than radial depth of nail shaft
JP2013040635A (en) * 2011-08-11 2013-02-28 Nitto Seiko Co Ltd Tapping screw made of high hardness stainless steel and method for manufacturing the same
JP3195017U (en) * 2014-09-26 2014-12-25 日本ファスナー工業株式会社 nut
CN209800486U (en) * 2019-03-21 2019-12-17 辽宁忠旺集团有限公司 Self-piercing riveting bolt with self-locking function

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301120A (en) * 1964-11-27 1967-01-31 Caterpillar Tractor Co Tempered threaded members and method of making
US3848389A (en) * 1969-12-29 1974-11-19 Textron Inc Bimetal rivets
JPS5246336A (en) * 1975-10-12 1977-04-13 Takeshi Akaike Production method of drift nail for structural iron sheet
US4692080A (en) * 1985-12-13 1987-09-08 Whyco Chromium Company, Inc. Self drilling fasteners and process for making the same
DE3623148C2 (en) 1986-07-10 1995-12-07 Mueller & Borggraefe Kg Chain connector for underground operations
US5460875A (en) * 1990-10-04 1995-10-24 Daidousanso Co., Ltd. Hard austenitic stainless steel screw and a method for manufacturing the same
JPH0533804A (en) * 1991-07-26 1993-02-09 Yasutsugu Uejima Manufacturing method for drilling screw made of austenitic stainless steel
US5445683A (en) * 1992-05-13 1995-08-29 Daidousanso Co., Ltd. Nickel alloy products with their surfaces nitrided and hardened
EP0606885A1 (en) * 1993-01-12 1994-07-20 Nippon Steel Corporation High strength martensitic steel having superior rusting resistance
US6109851A (en) * 1999-01-13 2000-08-29 Illinois Tool Works Inc. Screws having selected heat treatment and hardening
US6086305A (en) * 1999-01-13 2000-07-11 Illinois Tool Works Inc. Nails having selected heat treatment and hardening
US6386810B1 (en) * 1999-05-21 2002-05-14 Hiroshi Onoe High strength screw
US7069220B2 (en) 1999-08-13 2006-06-27 International Business Machines Corporation Method for determining and maintaining dialog focus in a conversational speech system
JP2001099113A (en) * 1999-09-27 2001-04-10 Nippon Steel Corp Mechanical connection method for plated steel plate and painted steel plate and connecting material
US6213884B1 (en) * 1999-10-20 2001-04-10 Daimlerchrysler Corporation Case hardened self-drilling, self-tapping, self-piercing fasteners and process for making the same
US6338600B2 (en) * 1999-11-15 2002-01-15 Ejot Verbindungstechnik Gmbh & Co. Kg Self-tapping, corrosion-resistant screw with hardened tip
JP3543267B2 (en) 2000-05-31 2004-07-14 福井鋲螺株式会社 Aluminum driven rivets
US6805525B2 (en) * 2000-12-12 2004-10-19 Hkn Associates, Llc Drive pin for fastening to a sheet-metal framing member
DE10119799A1 (en) * 2001-04-23 2002-10-24 Hilti Ag Nail-like fixing element comprises a shaft having a second section that is shorter than a first section with a point
DE10119800A1 (en) * 2001-04-23 2002-10-24 Hilti Ag Nail-like fixing element comprises a first section provided with a surface profile and a second section joined to the end of the first section facing away from the tip
DE10205031B4 (en) 2002-02-07 2004-01-08 Hilti Ag Method for producing a fastening element which can be driven in by means of a setting device, as well as a setting device therefor and a fastening element
JP4188010B2 (en) * 2002-07-04 2008-11-26 有限会社新城製作所 Heat resistant drill screw
EP1534448A1 (en) * 2002-09-04 2005-06-01 Newfrey LLC Fastening element, particularly for blind rivets
DE10328197B3 (en) * 2003-06-24 2004-04-08 Hilti Ag Nail or screw has a core made from hard, carbon-containing steel and ferritic outer layer of softer steel whose thickness reduces from end of shaft to tip, where it is zero
DE102004003909B4 (en) 2004-01-27 2010-09-09 GM Global Technology Operations, Inc., Detroit Press welding process for joining two or more sheets or profile parts, in particular a body segment, its use and body segment
JP2006029534A (en) * 2004-07-21 2006-02-02 Topura Co Ltd Bolt and its manufacturing method
DE202005005536U1 (en) 2005-04-07 2005-06-09 Böllhoff Verbindungstechnik GmbH Rivet
DE102006002238C5 (en) * 2006-01-17 2019-02-28 Böllhoff Verbindungstechnik GmbH Process for making a nail bond and nail therefor
US20070243043A1 (en) * 2006-04-17 2007-10-18 Acument Intellectual Properties, Llc High performance thread forming screw
US20080038083A1 (en) * 2006-07-17 2008-02-14 General Electric Company Fasteners Coated with Boron Nitride and Means for Securing Fasteners
DE102007033126B4 (en) * 2007-07-16 2011-06-09 Böllhoff Verbindungstechnik GmbH Process for making a nail bond and nail therefor
DE102007000485B3 (en) 2007-09-05 2008-10-16 Hilti Aktiengesellschaft Fastening part e.g. bolt, for fastening e.g. rock, has intermediate zone formed of ferritic steel arranged between core and edge zones, where hardness of intermediate zone is smaller than carbon-containing steel of core zone
KR20100003523U (en) * 2008-09-24 2010-04-01 펭 이 스틸 코., 엘티디 Titanium alloy fastener
US8449237B2 (en) * 2010-01-29 2013-05-28 Black & Decker Inc. Knurled pin fastener and method of forming a knurled pin fastener
GB201019021D0 (en) * 2010-11-11 2010-12-22 Henrob Ltd A rivet
DE102012102860A1 (en) 2012-04-02 2013-10-10 Böllhoff Verbindungstechnik GmbH Punch rivet with a pre-punched flat element, manufacturing method and joining method therefor
DE102012216117A1 (en) * 2012-09-12 2014-03-13 Hilti Aktiengesellschaft Method for producing a self-tapping screw
DE102013213503A1 (en) * 2013-07-10 2014-08-07 Carl Zeiss Smt Gmbh Screw connector for e.g. projection exposure system used in microlithography application, has insert that is arranged between screw and component to form pair of screw contact surfaces by modification of hardness of component surface
CN103398067B (en) * 2013-07-17 2015-08-05 春雨(东莞)五金制品有限公司 A kind of screw bolt manufacture process
EP2835542A1 (en) * 2013-08-07 2015-02-11 HILTI Aktiengesellschaft Self-tapping screw
KR101516357B1 (en) * 2013-11-14 2015-05-04 충북대학교 산학협력단 Self piercing rivet
EP3155272B1 (en) * 2014-06-10 2021-12-15 Sr Systems, LLC Enlarged head fastener device
JP3195433U (en) * 2014-10-20 2015-01-22 日本ファスナー工業株式会社 Hexagon socket head cap screw
DE102014019322A1 (en) 2014-12-20 2015-06-18 Daimler Ag Connecting element and method for producing a connecting element
DE102015118888A1 (en) 2015-11-04 2017-05-04 Böllhoff Verbindungstechnik GmbH Semi-hollow punching rivet for thin sheet metal compounds, process for its preparation and process for producing a compound
DE102018128455A1 (en) 2018-11-13 2020-05-14 Böllhoff Verbindungstechnik GmbH Full punch rivet
DE102019102383A1 (en) 2019-01-30 2020-07-30 Böllhoff Verbindungstechnik GmbH Semi-hollow punch rivet, a punch rivet connection from at least two components using the semi-hollow punch rivet and a method for connecting the components with the semi-hollow punch rivet
DE102019102380A1 (en) 2019-01-30 2020-07-30 Böllhoff Verbindungstechnik GmbH Full punch rivet, a punch rivet connection from at least two components using the full punch rivet and a method for connecting the components to the full punch rivet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533805A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Very hard and corrosion resistant drilling tapping screw
JP2001247937A (en) * 1999-05-21 2001-09-14 Koji Onoe High strength screw and steel for high strength screw
JP2003028128A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Splice plate for friction-gripping high-strength bolt
JP2004137560A (en) * 2002-10-17 2004-05-13 National Institute For Materials Science Screw or tapping screw
JP2004308011A (en) * 2003-04-08 2004-11-04 Ejob Gmbh & Co Kg Screw having partially hardened functional tip part, and method for manufacturing the same
JP2009537757A (en) * 2006-05-13 2009-10-29 ヘンロッブ・リミテッド Self-inserting rivet
DE102010025359A1 (en) * 2010-06-28 2011-12-29 Audi Ag Nail for essentially turn-free axial driving into multiple non-prepunched components, has nail shaft comprising surface area profile, where hardness of region of surface area profile is lower than radial depth of nail shaft
JP2013040635A (en) * 2011-08-11 2013-02-28 Nitto Seiko Co Ltd Tapping screw made of high hardness stainless steel and method for manufacturing the same
JP3195017U (en) * 2014-09-26 2014-12-25 日本ファスナー工業株式会社 nut
CN209800486U (en) * 2019-03-21 2019-12-17 辽宁忠旺集团有限公司 Self-piercing riveting bolt with self-locking function

Also Published As

Publication number Publication date
CN112833076A (en) 2021-05-25
EP3862583A1 (en) 2021-08-11
KR102635375B1 (en) 2024-02-07
US20210239146A1 (en) 2021-08-05
KR20210100016A (en) 2021-08-13
JP7348921B2 (en) 2023-09-21
DE102020102982A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR101930094B1 (en) Piston for an internal combustion engine and method for producing same
US6452139B1 (en) Method of joining metal components
US7249638B2 (en) Impact wrench anvil and method of forming an impact wrench anvil
KR101263539B1 (en) High performance thread forming screw
US6961997B2 (en) Fracture split method for connecting rod
KR960015247B1 (en) Hollow shaft with driving elements affixed by means of expansion and with axially differing material properties
CA1294798C (en) Assembled cam shaft and method of manufacturing same
US20110252857A1 (en) Method for making an anchor bolt sleeve
US6260401B1 (en) Method of molding high expansion pipe and the high expansion pipe
JP2021124201A (en) Joint element, connection structure with joint element, manufacturing method for joint element, and corresponding connection method
US4967617A (en) Composite shaft with integral drive elements
US20190388952A1 (en) Method for producing a vehicle wheel consisting of sheet metal
JP2005503528A (en) Member formed from steel and method for heat treating member formed from steel
JP2844540B2 (en) Pretreatment of assembled camshaft parts
DE112004001207B4 (en) Method for producing a joint with heavy-duty inner part
US20150010376A1 (en) Bolt-like fastening element, in particular drilling screw, and connection established thereby
US7322330B2 (en) Method for linking element to hollow shafts, preferably for producing camshafts, and resulting camshaft
JP2020020402A (en) Fastening member
US8677620B2 (en) Method for linking elements to hollow shafts, preferably for producing camshafts, and resulting camshaft
JP2005226623A (en) Fuel pressure accumulating vessel having branch connector
JP2002011542A (en) Component having spline hole, and manufacturing method thereof
US10669599B2 (en) Decarburized self-piercing rivet
JP2006029534A (en) Bolt and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R150 Certificate of patent or registration of utility model

Ref document number: 7348921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150