JP2021123905A - Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member - Google Patents

Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member Download PDF

Info

Publication number
JP2021123905A
JP2021123905A JP2020016564A JP2020016564A JP2021123905A JP 2021123905 A JP2021123905 A JP 2021123905A JP 2020016564 A JP2020016564 A JP 2020016564A JP 2020016564 A JP2020016564 A JP 2020016564A JP 2021123905 A JP2021123905 A JP 2021123905A
Authority
JP
Japan
Prior art keywords
sfrc
strength
stress
reinforced concrete
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020016564A
Other languages
Japanese (ja)
Inventor
清臣 金本
Kiyoomi Kanemoto
清臣 金本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2020016564A priority Critical patent/JP2021123905A/en
Publication of JP2021123905A publication Critical patent/JP2021123905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide an evaluation method of ultimate flexure yield strength of a steel fiber reinforced concrete member.SOLUTION: An evaluation method of ultimate flexure yield strength of a steel fiber reinforced concrete (SFRC) member in a construction method constructing a structure using the SFRC member is characterized in that measurement of the ultimate flexure yield strength of the SFRC member is calculated with a following stress block factor formula in accordance with compression strength of concrete used in the SFRC by using stress blocks in which SFRC stress is evenly distributed on a compression side and by adding cleavage strength of SFRC stress assuming it is evenly distributed on a tension side.SELECTED DRAWING: Figure 1

Description

本発明は、鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法に関する。 The present invention relates to a method for evaluating the ultimate bending strength of a reinforced concrete member mixed with steel fibers.

コンクリートの引張強度は、一般的に圧縮強度の1/10程度である。鉄筋コンクリート部材は、圧縮応力が作用した場合にはコンクリートが応力を受け、引張応力が作用した場合には鉄筋が応力を受けるものとして設計されている。すなわち、現行の鉄筋コンクリート部材の設計においては、引張強度が無視されている。コンクリートに引張強度を期待するため、コンクリートに繊維を混入することが研究されている(例えば、特許文献1参照)。 The tensile strength of concrete is generally about 1/10 of the compressive strength. Reinforced concrete members are designed so that when compressive stress is applied, the concrete is stressed, and when tensile stress is applied, the reinforcing bar is stressed. That is, in the current design of reinforced concrete members, tensile strength is ignored. In order to expect tensile strength from concrete, it has been studied to mix fibers into concrete (see, for example, Patent Document 1).

特開2003−306366号公報Japanese Unexamined Patent Publication No. 2003-306366

近年、コンクリートに混入する繊維を鋼繊維とした鋼繊維補強コンクリート(以下、SFRCともいう)が研究されている。SFRCを用いると、部材の地震力に対する靱性能が向上すると共に、ひび割れの発生が抑止され、鉄筋の外側を覆うかぶりコンクリートの剥落等の損傷が抑制されることが期待されている。鉄筋コンクリート部材の設計においては、部材が一方向の繰り返し載荷を受ける場合において、部材の終局曲げ耐力を評価するためにストレスブロックモデルが用いられる。しかしながら、SFRC部材について、ストレスブロックモデルを用いた評価方法はまだ提案されていなかった。 In recent years, steel fiber reinforced concrete (hereinafter, also referred to as SFRC) in which fibers mixed in concrete are used as steel fibers has been studied. It is expected that the use of SFRC improves the toughness performance of the member against seismic force, suppresses the occurrence of cracks, and suppresses damage such as peeling of the cover concrete covering the outside of the reinforcing bar. In the design of a reinforced concrete member, a stress block model is used to evaluate the ultimate bending strength of the member when the member is repeatedly loaded in one direction. However, an evaluation method using a stress block model for SFRC members has not yet been proposed.

本発明は、SFRC部材の終局曲げ耐力の評価方法を提供することを目的とする。 An object of the present invention is to provide a method for evaluating the ultimate bending proof stress of an SFRC member.

上記の目的を達するために、本発明は、鋼繊維が混入された鉄筋コンクリート部材(SFRC部材)を用いて構造物を築造する工法において、鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法あって、前記SFRC部材の終局曲げ耐力は、圧縮側においてSFRCの応力が一様に分布するストレスブロックを用いると共に、引張側においてSFRCの割裂強度が一様に分布するものとするとしてこれを加算し、前記ストレスブロックは、前記SFRCに使用されるSFRCの圧縮強度に応じて以下のストレスブロック係数の式(1)又は(2)を用いて算出することを特徴とする、鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法である。
式(1):σ≦27.5N/mmの場合
β=0.85−0.51(σ−27.5)/70
式(2):σ>27.5N/mmの場合
β=0.65
但し、
σ:SFRCの圧縮強度
In order to achieve the above object, the present invention is a method for evaluating the ultimate bending strength of a reinforced concrete member mixed with steel fibers in a construction method for constructing a structure using a reinforced concrete member (SFRC member) mixed with steel fibers. Therefore, for the ultimate bending strength of the SFRC member, a stress block in which the SFRC stress is uniformly distributed on the compression side is used, and this is added assuming that the SFRC split strength is uniformly distributed on the tension side. However, the stress block is mixed with steel fibers, which is characterized by being calculated using the following formula (1) or (2) of the stress block coefficient according to the compressive strength of the SFRC used for the SFRC. This is a method for evaluating the ultimate bending strength of reinforced concrete members.
Equation (1): In the case of σ B ≤27.5 N / mm 2 , β 1 = 0.85-0.51 (σ B -27.5) / 70
Equation (2): In the case of σ B > 27.5 N / mm 2 , β 1 = 0.65
However,
σ B : Compressive strength of SFRC

本発明によれば、SFRC部材の終局曲げ耐力は圧縮側には矩形分布のSFRCのストレスブロックを用い、引張側にはSFRCの引張強度が一様に分布するものとして算出できる。 According to the present invention, the ultimate bending strength of the SFRC member can be calculated assuming that the SFRC stress block having a rectangular distribution is used on the compression side and the tensile strength of the SFRC is uniformly distributed on the tension side.

また、本発明は、引張側の前記SFRC部材に一様に分布する応力は、前記SFRC部材のSFRC割裂強度の25%である、ように構成されていてもよい。 Further, the present invention may be configured such that the stress uniformly distributed in the SFRC member on the tension side is 25% of the SFRC split strength of the SFRC member.

本発明によれば、試験体の引張側にSFRCの割裂強度の25%が一様に分布しているものとして、SFRC部材の設計に適用できる。 According to the present invention, 25% of the split strength of SFRC is uniformly distributed on the tensile side of the test piece, and it can be applied to the design of SFRC members.

本発明によれば、SFRC部材の終局曲げ耐力を評価することができる。 According to the present invention, the ultimate bending strength of the SFRC member can be evaluated.

本発明の実施形態に係るせん断試験装置の構成を示す図である。It is a figure which shows the structure of the shear test apparatus which concerns on embodiment of this invention. 試験体を評価するためのストレスブロックモデルを示す図である。It is a figure which shows the stress block model for evaluating a test piece. 試験体の最大耐力実験値と各耐力計算値との比較結果を示す図である。It is a figure which shows the comparison result between the maximum proof stress experimental value of a test piece, and each proof stress calculated value. 試験体の骨格曲線と復元力特性とを示す図である。It is a figure which shows the skeleton curve and the restoring force characteristic of a test body. 試験体の骨格曲線と復元力特性とを示す図である。It is a figure which shows the skeleton curve and the restoring force characteristic of a test body.

以下、図面を参照しつつ、本発明に係るSFRC部材の終局曲げ耐力の評価方法において行われる各工程の実施形態について説明する。本提案に係るコンクリート評価方法は、SFRC部材の終局曲げ耐力を評価する方法である。 Hereinafter, embodiments of each step performed in the method for evaluating the ultimate bending proof stress of the SFRC member according to the present invention will be described with reference to the drawings. The concrete evaluation method according to the present proposal is a method for evaluating the ultimate bending strength of SFRC members.

図1に示されるように、実験的に鉄筋コンクリートの試験体(部材)に変形を与えると、例えば、引張側のかぶりコンクリートのかぶり部にてひび割れや剥落が生じる。上述したように一般的な鉄筋コンクリートにおいては、コンクリートの引張強度は、圧縮強度に比して1/10程度であるからである。コンクリートにひび割れやかぶりコンクリートが剥離すると、靱性能が低下し、ひび割れ部分から部材内部に水分等が侵入して鉄筋が腐食し、部材の耐久性が低下する虞がある。 As shown in FIG. 1, when the test body (member) of the reinforced concrete is experimentally deformed, for example, cracks and peeling occur at the cover portion of the cover concrete on the tension side. This is because, as described above, in general reinforced concrete, the tensile strength of concrete is about 1/10 of the compressive strength. If the concrete is cracked or the covered concrete is peeled off, the toughness performance is deteriorated, moisture or the like invades the inside of the member from the cracked portion, and the reinforcing bar is corroded, which may reduce the durability of the member.

コンクリートの引張強度を増加させるために、コンクリートに数ミリから数センチ程度の長さの鋼繊維を混入すると、コンクリートに引張力が発生した際に、コンクリート中に分散した鋼繊維がコンクリートのひび割れの発生を抑止し、かぶりコンクリートの剥落を抑制できる。 When steel fibers with a length of several millimeters to several centimeters are mixed into concrete in order to increase the tensile strength of concrete, when tensile force is generated in concrete, the steel fibers dispersed in the concrete crack the concrete. It is possible to suppress the occurrence and prevent the cover concrete from peeling off.

SFRC試験体は、構造性能を確認するための実験用の部材で、例えば、、超高層RC造建物の短スパン架構に用いられる扁平梁に適用されることを想定して形成されている。 The SFRC test piece is an experimental member for confirming structural performance, and is formed on the assumption that it is applied to a flat beam used for a short span frame of a super high-rise RC building, for example.

試験体名は、コンクリート圧縮強度(Fc36、Fc60)、鋼繊維の体積混入率(Vf=0.0vоl.%、0.5vоl.%、1.0vоl.%)、計画時の破壊形式(曲げ降伏先行型、せん断破壊型)を組み合わせて、「コンクリートの圧縮強度」の種別を表す記号「N:Fc36の場合、H:Fc60の場合」+「計画時の破壊形式」を表す記号「F:曲げ降伏先行型の場合、S:せん断破壊型の場合」+「鋼繊維の体積混入率」を表す記号「00:Vf=0.0vоl.%の場合、05:Vf=0.5vоl.%の場合、10:Vf=1.0vоl.%の場合」で表すこととする。これを用いて、試験体名としては、例えば、NF00、NF05、NF10等と表記する。 The test specimen names are concrete compressive strength (Fc36, Fc60), volume mixing ratio of steel fibers (Vf = 0.0vоl.%, 0.5vоl.%, 1.0vоl.%), Failure type at the time of planning (bending yield). By combining the leading type and shear fracture type), the symbol "N: Fc36, H: Fc60" + "Fracture type at the time of planning" is represented by the symbol "F: bending". In the case of yield-preceding type, S: in the case of shear fracture type "+ in the case of the symbol" 00: Vf = 0.0vоl.%, 05: Vf = 0.5vоl.% 10: In the case of Vf = 1.0 vоl.% ”. Using this, the test body name is described as, for example, NF00, NF05, NF10, or the like.

図2及び図3に示されるように、試験体Cは、例えば、鉄筋コンクリートであり、矩形断面の棒状に形成される。試験体Cは、断面の幅(b)、断面の高さ=梁全せい(D)、長さ(L)の寸法に形成されている。試験体Cの内部には、鉄筋Vが所定の位置に配筋されている。梁有効せいとは、断面方向から見て圧縮縁から引張側の鉄筋Vの重心位置までの距離である。鉄筋Vの表層からコンクリート断面の最外縁下側までのコンクリートは、かぶり部分である。 As shown in FIGS. 2 and 3, the test body C is, for example, reinforced concrete and is formed in the shape of a rod having a rectangular cross section. The test body C is formed to have the dimensions of the width (b) of the cross section, the height of the cross section = the entire beam (D), and the length (L). Reinforcing bars V are arranged at predetermined positions inside the test body C. The effective beam is the distance from the compression edge to the position of the center of gravity of the reinforcing bar V on the tension side when viewed from the cross-sectional direction. The concrete from the surface layer of the reinforcing bar V to the lower side of the outermost edge of the concrete cross section is a cover portion.

試験体Cは、曲げせん断加力装置Eにセットされる。曲げせん断加力装置Eにより、試験体Cの試験区間に曲げせん断力が生じるように荷重が加えられる。曲げせん断加力装置Eは、例えば、試験体Cに逆対称曲げ加力を与えることができる装置である。 The test body C is set in the bending shear force device E. The bending shear force E applies a load so that a bending shear force is generated in the test section of the test piece C. The bending shear force applying device E is, for example, a device capable of applying an inversely symmetrical bending force to the test piece C.

曲げせん断加力装置Eにおいて試験体Cは、正加力時には下部2点の支持点T1,T2、負加力時には下部2点の支持点T1′、T2′を介して支持される。試験体Cは、正加力時には2点の所定の位置+P,+{b/(2a+b)}P、負加力時には上部2点の所定の位置に−P,−{b/(2a+b)}Pの荷重が加えられる。 In the bending shear force device E, the test body C is supported via the support points T1 and T2 at the lower two points when the positive force is applied, and through the support points T1'and T2'at the lower two points when the negative force is applied. The test body C has two predetermined positions + P, + {b / (2a + b)} P at the time of positive load, and -P,-{b / (2a + b)} at the upper two points at the time of negative load. A load of P is applied.

試験体Cは、曲げせん断加力装置Eにより正加力時には+P,+{b/(2a+b)}Pが、負加力時には−P,−{b/(2a+b)}Pが上方向から加えられ試験区間に曲げせん断力が生じる。試験体Cに取り付けられている変位計に基づいて試験体Cに生じる鉛直変形が計測される。鉛直変形の計測結果に基づいて、試験体Cに生じる部材角が算出される。 In the test body C, + P, + {b / (2a + b)} P is added from above when a positive force is applied, and -P,-{b / (2a + b)} P is added from above when a negative force is applied by the bending shear force device E. A bending shear force is generated in the test section. The vertical deformation that occurs in the test piece C is measured based on the displacement meter attached to the test piece C. The member angle generated in the test piece C is calculated based on the measurement result of the vertical deformation.

図4に示されるように、試験体Cに荷重を加えた実験結果に基づいて、試験体Cに生じる梁せん断力(Q)と部材角(R=δ/L)との関係が得られる。ここで、δは、荷重により試験体Cに生じる鉛直方向の変位である。expbmaxは、最大耐力実験値である。 As shown in FIG. 4, the relationship between the beam shear force (Q b ) generated in the test body C and the member angle (R = δ V / L) is obtained based on the experimental result in which the test body C is loaded. Be done. Here, δ V is a vertical displacement caused in the test piece C due to the load. exp Q bmax is the maximum proof stress experimental value.

cal<M>は、終局曲げ耐力計算値である。SFRC試験体の終局曲げ耐力計算値は、図2(a)に示すACI規準のコンクリートのストレスブロックモデルに基づいて算定した。ACI規準のコンクリートのストレスブロックモデルは、非特許文献1「American Concrete Institute: Building Code Requirements for Structural Concrete (ACI318-14) and Commentary, 2014」に記載されている。圧縮力を受ける側のコンクリートの応力分布は、一般にパラボラ型分布となるが、ACI規準のコンクリートのストレスブロックモデルでは、矩形分布(一様な分布)に置き換えられている。 cal Q b < Mu > is a calculated value of ultimate bending strength. The calculated ultimate bending strength of the SFRC test piece was calculated based on the ACI standard concrete stress block model shown in FIG. 2 (a). The ACI standard concrete stress block model is described in Non-Patent Document 1 "American Concrete Institute: Building Code Requirements for Structural Concrete (ACI318-14) and Commentary, 2014". The stress distribution of concrete on the side receiving compressive force is generally a parabolic type distribution, but it is replaced with a rectangular distribution (uniform distribution) in the stress block model of concrete based on the ACI standard.

SFRC試験体の曲げ耐力計算値は、ストレスブロックモデルに基づいて算出される(図2参照)。このストレスブロックモデルは、非特許文献2「永井 覚,閑田徹志,高稻宜和,丸田 誠:高靭性繊維補強セメント複合材料を用いた梁部材の曲げせん断性状 その2 実験結果の考察,日本建築学会大会学術講演梗概集(関東),構造IV,pp.313−314,2001年9月」に記載されている。図2において、X:中立軸の位置、C:SFRCの圧縮合力、C:鉄筋の圧縮合力、β:ストレスブロック係数、T:鉄筋の引張合力、T:SFRCの引張合力、σ:SFRCの圧縮強度、σ:SFRCの割裂強度、である。 The calculated bending strength of the SFRC test piece is calculated based on the stress block model (see FIG. 2). This stress block model is based on Non-Patent Document 2 “Satoru Nagai, Tetsushi Kabata, Yoshikazu Takahashi, Makoto Maruta: Bending and Shear Properties of Beam Members Using High Tough Fiber Reinforced Cement Composite Material Part 2 Consideration of Experimental Results, Japan Architectural Institute of Japan Conference Academic Lecture Abstracts (Kanto), Structure IV, pp. 313-314, September 2001 ”. In FIG. 2, X n : the position of the neutral axis, C c : the compressive strength of the SFRC, C s : the compressive strength of the reinforcing bar, β 1 : the stress block coefficient, T s : the tensile strength of the reinforcing bar, T c : the tensile strength of the SFRC. , Σ B : compressive strength of SFRC, σ t : split strength of SFRC.

圧縮力を受ける側のコンクリートの応力分布は、一般にパラボラ型分布となるが、計算を簡便にするために、パラボラ型分布と等価な矩形(ストレスブロック)を考える。通常用いられるストレスブロックモデルによると、コンクリートの圧縮力C′は、以下の式C′=0.85f′×0.8X×bに基づいて計算される。0.8は、ストレスブロック係数である。但し、‘σは、コンクリートの圧縮強度である。 The stress distribution of concrete on the side receiving compressive force is generally a parabolic type distribution, but in order to simplify the calculation, a rectangle (stress block) equivalent to the parabolic type distribution is considered. According to the commonly used stress block model, the compressive force C ′ of concrete is calculated based on the following formula C ′ = 0.85 f c ′ × 0.8 X n × b. 0.8 is the stress block coefficient. However,'σ B is the compressive strength of concrete.

本実施形態のSFRCのストレスブロックの計算においては、ストレスブロック係数:βはコンクリートの圧縮強度に応じて設定される。ストレスブロック係数は、σ≦27.5N/mmの場合β=0.85−0.51(σ−27.5)/70である。σ>27.5N/mmの場合β=0.65である。但し、σは、SFRCの圧縮強度である。 In the calculation of the stress block of SFRC of the present embodiment, the stress block coefficient: β 1 is set according to the compressive strength of concrete. The stress block coefficient is β 1 = 0.85-0.51 (σ B -27.5) / 70 when σ B ≤ 27.5 N / mm 2. When σ B > 27.5 N / mm 2 , β 1 = 0.65. However, σ B is the compressive strength of SFRC.

この計算において、SFRCの引張側の強度が追加される(図2(b)参照)。SFRC部材の引張側には、鉄筋の引張強度:Tに加えてSFRCの割裂強度の25%が一様に分布するものと考える。 In this calculation, the strength on the tensile side of the SFRC is added (see FIG. 2B). It is considered that 25% of the split strength of SFRC is uniformly distributed on the tensile side of the SFRC member in addition to the tensile strength of the reinforcing bar: T s.

図4に戻り、cal<V>は、非特許文献3「(一社)日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説,1999年」に示されている耐力式に準拠して算定した終局せん断耐力計算値である。cal<Vbu>は、非特許文献3に示されている耐力式に準拠して算定した付着割裂耐力計算値である。耐力計算値は、いずれも梁せん断力に換算して示されている。 Returning to Fig. 4, cal Q b <V u > is the yield strength shown in Non-Patent Document 3 “Architectural Institute of Japan: Guarantee-type Seismic Design Guideline for Reinforced Concrete Buildings, Explanation, 1999”. This is the calculated ultimate shear strength calculated according to the formula. cal Q b <V bu > is an adhesion splitting proof stress calculated value calculated based on the proof stress formula shown in Non-Patent Document 3. The calculated proof stress values are all shown in terms of beam shear force.

各試験体Cは、鋼繊維量が多いほど最大耐力が上昇する傾向が得られた。最大耐力の上昇率は、NF、HFシリーズの試験体CよりもNS、HSシリーズの試験体Cの方が大きい傾向が得られた。 The maximum proof stress of each test piece C tended to increase as the amount of steel fibers increased. The rate of increase in maximum proof stress tended to be larger in the NS and HS series test specimens C than in the NF and HF series test specimens C.

次に、複数の種類により形成された試験体Cの最大耐力実験値と耐力計算値との比較を行う。曲げ降伏先行型のNF,HFシリーズの試験体Cのうち,SFRCで形成されたNF05,NF10,HF05,HF10の試験体Cの終局曲げ耐力を以下の各工程に基づいて評価する。 Next, the maximum proof stress experimental value and the proof stress calculated value of the test body C formed by a plurality of types are compared. Among the bending yield leading type NF and HF series test bodies C, the ultimate bending strength of the test bodies C of NF05, NF10, HF05 and HF10 formed by SFRC is evaluated based on the following steps.

SFRC試験体Cに変形を与える。試験体に生じる変形を計測する。実験から得られた復元力特性に基づいて、試験体Cの最大耐力実験値を確認する。圧縮側においてSFRCの応力が一様に分布するストレスブロック用いると共に、引張側においてSFRCの割裂強度の25%が一様に分布するものとしてこれを加算するとことにより、RC試験体と同等の余裕度で評価することができる。 Deformation is given to the SFRC test piece C. Measure the deformation that occurs on the test piece. Based on the restoring force characteristics obtained from the experiment, the maximum proof stress experimental value of the test piece C is confirmed. By using a stress block in which the stress of SFRC is uniformly distributed on the compression side and adding this assuming that 25% of the split strength of SFRC is uniformly distributed on the tension side, a margin equivalent to that of the RC specimen is obtained. Can be evaluated at.

上述したようにコンクリートの評価方法によれば、SFRC試験体Cの終局曲げ耐力は、圧縮力を受ける側のSFRCはACI規準のコンクリートのストレスブロックを、引張力を受ける側のSFRCにSFRCの割裂強度の25%が引張側の断面内に一様に分布するものとするとRC試験体と同等の余裕度で評価することができる。本評価方法によれば、建物の部材の最大耐力を評価することができる。 As described above, according to the concrete evaluation method, the ultimate bending strength of the SFRC test piece C is that the SFRC on the side receiving the compressive force splits the stress block of the concrete according to the ACI standard, and the SFRC splits the SFRC into the SFRC on the side receiving the tensile force. Assuming that 25% of the strength is uniformly distributed in the cross section on the tension side, it can be evaluated with a margin equivalent to that of the RC test piece. According to this evaluation method, the maximum yield strength of building members can be evaluated.

以上、本発明の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、コンクリート評価方法は、鋼繊維コンクリートだけでなく他の繊維が混入された繊維コンクリートに適用してもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned one embodiment, and can be appropriately modified without departing from the spirit of the present invention. For example, the concrete evaluation method may be applied not only to steel fiber reinforced concrete but also to fiber reinforced concrete mixed with other fibers.

C 試験体
E 曲げせん断加力装置
T1、T2、T1′、T2′ 支持点
V 鉄筋
W 骨格曲線
X 履歴ループ
C Specimen E Bending Shear Forcer T1, T2, T1', T2' Support Point V Reinforcing Bar W Skeleton Curve X History Loop

Claims (2)

鋼繊維が混入された鉄筋コンクリート部材(SFRC部材)を用いて構造物を築造する工法において、鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法あって、
前記SFRC部材の終局曲げ耐力は、圧縮側においてSFRCの応力が一様に分布するストレスブロックを用いると共に、引張側においてSFRCの割裂強度が一様に分布するものとするとしてこれを加算し、
前記ストレスブロックは、前記SFRCに使用されるSFRCの圧縮強度に応じて以下のストレスブロック係数の式(1)又は(2)を用いて算出することを特徴とする、
鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法。
式(1):σ≦27.5N/mmの場合
β=0.85−0.51(σ−27.5)/70
式(2):σ>27.5N/mmの場合
β=0.65
但し、
σ:SFRCの圧縮強度
In the construction method of constructing a structure using a reinforced concrete member (SFRC member) mixed with steel fibers, there is a method of evaluating the ultimate bending strength of the reinforced concrete member mixed with steel fibers.
For the ultimate bending strength of the SFRC member, a stress block in which the SFRC stress is uniformly distributed on the compression side is used, and this is added assuming that the SFRC split strength is uniformly distributed on the tension side.
The stress block is calculated by using the following formula (1) or (2) of the stress block coefficient according to the compressive strength of the SFRC used for the SFRC.
A method for evaluating the ultimate bending strength of a reinforced concrete member mixed with steel fibers.
Equation (1): In the case of σ B ≤27.5 N / mm 2 , β 1 = 0.85-0.51 (σ B -27.5) / 70
Equation (2): In the case of σ B > 27.5 N / mm 2 , β 1 = 0.65
However,
σ B : Compressive strength of SFRC
引張側の前記SFRC部材に一様に分布する応力は、前記SFRC部材のSFRC割裂強度の25%である、
請求項1に記載の鋼繊維が混入された鉄筋コンクリート部材の終局曲げ耐力の評価方法。
The stress uniformly distributed in the SFRC member on the tension side is 25% of the SFRC split strength of the SFRC member.
The method for evaluating the ultimate bending proof stress of a reinforced concrete member mixed with steel fibers according to claim 1.
JP2020016564A 2020-02-03 2020-02-03 Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member Pending JP2021123905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020016564A JP2021123905A (en) 2020-02-03 2020-02-03 Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020016564A JP2021123905A (en) 2020-02-03 2020-02-03 Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member

Publications (1)

Publication Number Publication Date
JP2021123905A true JP2021123905A (en) 2021-08-30

Family

ID=77458412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016564A Pending JP2021123905A (en) 2020-02-03 2020-02-03 Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member

Country Status (1)

Country Link
JP (1) JP2021123905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114169060A (en) * 2021-12-15 2022-03-11 大连理工大学 Performance analysis method for damaged reinforced concrete section
CN115266308A (en) * 2022-08-09 2022-11-01 武汉理工大学 Method for determining anchoring length of steel bar in CRC (Cyclic redundancy check)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150329424A1 (en) * 2012-12-18 2015-11-19 Luke Pinkerton Micro-rebar concrete reinforcement system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150329424A1 (en) * 2012-12-18 2015-11-19 Luke Pinkerton Micro-rebar concrete reinforcement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余 国雄, 阿部 浩幸, 武知 勉, 二羽淳一郎: "鋼繊維補強コンクリート部材の曲げ終局耐力の評価に関する研究", プレストレストコンクリート技術協会 第14回シンポジウム論文集, JPN6023045034, November 2005 (2005-11-01), JP, pages 181 - 186, ISSN: 0005190277 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114169060A (en) * 2021-12-15 2022-03-11 大连理工大学 Performance analysis method for damaged reinforced concrete section
CN115266308A (en) * 2022-08-09 2022-11-01 武汉理工大学 Method for determining anchoring length of steel bar in CRC (Cyclic redundancy check)

Similar Documents

Publication Publication Date Title
US20210334431A1 (en) Method for predicting prestress loss after concrete cracking along strand
Al-Obaidi et al. Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking
Zhang et al. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion
Choi et al. Experimental and analytical investigations on debonding of hybrid FRPs for flexural strengthening of RC beams
Jung et al. Flexural Behavior of Concrete Beam Strengthened by Near‐Surface Mounted CFRP Reinforcement Using Equivalent Section Model
Kadhim et al. Nonlinear finite element modelling and parametric analysis of shear strengthening RC T-beams with NSM CFRP technique
Valiente et al. Premature failure of prestressed steel bars
JP2021123905A (en) Evaluation method of ultimate flexure yield strength of steel fiber reinforced concrete member
Su et al. Fatigue life prediction for prestressed concrete beams under corrosion deterioration process
Chen et al. Monotonic and fatigue behavior of steel-concrete composite beams subjected to corrosion
Ghasemi et al. Flexural strengthening of continuous unbonded post-tensioned concrete beams with end-anchored CFRP laminates
Hu et al. Impact of corrosion on cyclic behaviors of ultra-high-strength reinforcing bars
Wang et al. Self-stressed steel fiber reinforced concrete as negative moment connection for strengthening of multi-span simply-supported girder bridges
Mirza et al. Finite element model for the long-term behaviour of composite steel-concrete push tests
Allawi et al. Experimental behavior of laced reinforced concrete one way slab under static load
Oukaili et al. Serviceability and ductility of partially prestressed concrete beams under limited cycles of repeated loading
JP2021124325A (en) Method for evaluating skeleton curve of reinforced concrete member with steel fibers mixed therein
CN113053472A (en) PVA fiber cement-based composite material laminated plate and curvature ductility calculation method
Rosenboom et al. Analytical modeling of flexural debonding in CFRP strengthened reinforced or prestressed concrete beams
Zamblauskaite et al. Deformational analysis of prestressed high‐strength concrete members using flexural constitutive model
Fasl et al. Ductility Behavior of Corroded Bars in Concrete Slabs.
Frolov et al. Reinforced concrete beams strength under power and environmental influences
Islam Effects of NSM CFRP bars in shear strengthening of concrete members
Fageer et al. Modeling Short-Term Deflection of Reinforced Concrete Slabs using the Layered Approach
Ismael et al. Shear Strengthening of Reinforced Concrete Beams Using CFRP Strips

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312