JP2021123560A - Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action - Google Patents

Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action Download PDF

Info

Publication number
JP2021123560A
JP2021123560A JP2020018075A JP2020018075A JP2021123560A JP 2021123560 A JP2021123560 A JP 2021123560A JP 2020018075 A JP2020018075 A JP 2020018075A JP 2020018075 A JP2020018075 A JP 2020018075A JP 2021123560 A JP2021123560 A JP 2021123560A
Authority
JP
Japan
Prior art keywords
cancer
cldn2
cells
compound
claudin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020018075A
Other languages
Japanese (ja)
Inventor
彰 五十里
Akira Isori
彰 五十里
俊之 松永
Toshiyuki Matsunaga
俊之 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu City
Original Assignee
Gifu City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu City filed Critical Gifu City
Priority to JP2020018075A priority Critical patent/JP2021123560A/en
Publication of JP2021123560A publication Critical patent/JP2021123560A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To create a cancer adjuvant therapy useful for cancer treatment and improve the outcomes of cancer treatment.SOLUTION: There is provided an agent that contains ledipasvir or a pharmaceutically acceptable salt thereof as an active ingredient and is useful for improving a hypoxic state of a cancer cell or enhancing the anticancer agent sensitivity of a cancer cell.SELECTED DRAWING: None

Description

本発明はクローディン−2(以下、「CLDN2」と略称することがある)結合性低分子化合物に関する。詳しくはCLDN2に結合し、がんの治療等に有用な低分子化合物及びその用途(治療薬等)に関する。 The present invention relates to a claudin-2 (hereinafter sometimes abbreviated as "CLDN2") binding small molecule compound. More specifically, the present invention relates to a small molecule compound that binds to CLDN2 and is useful for the treatment of cancer and its use (therapeutic agent, etc.).

がん薬物療法において、治療抵抗性の獲得が大きな問題になっている。その原因として、薬物排出ポンプの誘導、代謝酵素の誘導、標的分子の構造変化などが報告されているが、未だ不明な点が多く、臨床利用が可能な治療抵抗性克服薬は未開発である。最近、がん細胞凝集塊が治療抵抗性に関与することが明らかになってきた。生体内でがん細胞は凝集塊を形成しており、多くの抗がん剤は凝集塊の深部に作用することが困難である。また、凝集塊深部は常に低酸素・低栄養のストレス状態であり、これらが治療抵抗性の獲得、悪性化、再発の一因になっている。そのため、がん原遺伝子に作用する抗がん剤の開発だけでなく、凝集塊の抗がん剤透過性とストレス状態を改善する新しいタイプの薬剤の開発が期待される。凝集塊深部への抗がん剤透過性を亢進させる補助療法薬の開発により、既存の抗がん剤のみならず、今後開発される抗がん剤についても治療効果の向上が期待できる。 Acquisition of treatment resistance has become a major problem in cancer drug therapy. The causes have been reported to be the induction of drug excretion pumps, the induction of metabolic enzymes, the structural changes of target molecules, etc., but there are still many unclear points, and clinically usable therapeutic resistance overcoming drugs have not been developed. .. Recently, it has become clear that cancer cell aggregates are involved in treatment resistance. Cancer cells form aggregates in the living body, and it is difficult for many anticancer agents to act on the deep part of the aggregates. In addition, the deep part of the agglutinin is always in a stress state of hypoxia and malnutrition, which contributes to the acquisition of treatment resistance, malignant transformation, and recurrence. Therefore, it is expected that not only the development of anticancer agents that act on the protooncogene but also the development of new types of agents that improve the permeability of aggregates to anticancer agents and the stress state. By developing an adjunct therapeutic drug that enhances the permeability of anticancer drugs to the deep part of the agglutinin, it is expected that the therapeutic effect will be improved not only for existing anticancer drugs but also for anticancer drugs to be developed in the future.

多くの固形がん組織で、クローディン(CLDN)サブタイプの異常発現が報告されている。CLDNは上皮細胞や内皮細胞の密着結合部位に存在する細胞膜タンパク質である。これまでに、本発明者らの研究グループはヒト正常肺細胞に未発現のCLDN2が腺がん細胞に高発現することを報告した(非特許文献1)。また、CLDN2の第2細胞外ループの一部と同じ構造のペプチドDFYSP(配列番号6)が腺がん細胞に発現するCLDN2に作用し、細胞に障害を与えることを報告した(非特許文献2)。一方、凝集塊の形成や抗がん剤感受性に対するCLDN2の効果は国内外で未報告であったが、本発明者らの研究グループは、CLDN2発現のノックダウンによって凝集塊の低酸素度が低下し、抗がん剤感受性が亢進することを発見した(非特許文献3)。 Abnormal expression of the claudin (CLDN) subtype has been reported in many solid tumor tissues. CLDN is a cell membrane protein present at tight junctions of epithelial cells and endothelial cells. So far, our research group has reported that CLDN2, which is not expressed in normal human lung cells, is highly expressed in adenocarcinoma cells (Non-Patent Document 1). We also reported that the peptide DFYSP (SEQ ID NO: 6), which has the same structure as a part of the second extracellular loop of CLDN2, acts on CLDN2 expressed in adenocarcinoma cells and damages the cells (Non-Patent Document 2). ). On the other hand, the effect of CLDN2 on the formation of agglomerates and the sensitivity to anticancer drugs has not been reported in Japan and overseas, but the research group of the present inventors reduced the hypoxicity of agglomerates by knocking down CLDN2 expression. However, it was discovered that the sensitivity to anticancer drugs is enhanced (Non-Patent Document 3).

Ikari, A., Sato, T., Watanabe, R., Yamazaki, Y., and Sugatani, J. (2012) Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1823, 1110-1118Ikari, A., Sato, T., Watanabe, R., Yamazaki, Y., and Sugatani, J. (2012) Increase in claudin-2 expression by an EGFR / MEK / ERK / c-Fos pathway in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1823, 1110-1118 Ikari, A., Taga, S., Watanabe, R., Sato, T., Shimobaba, S., Sonoki, H., Endo, S., Matsunaga, T., Sakai, H., Yamaguchi, M., Yamazaki, Y., and Sugatani, J. (2015) Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1848, 2326-2336Ikari, A., Taga, S., Watanabe, R., Sato, T., Shimobaba, S., Sonoki, H., Endo, S., Matsunaga, T., Sakai, H., Yamaguchi, M., Yamazaki, Y., and Sugatani, J. (2015) Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1848, 2326-2336 Maruhashi R, Akizuki R, Sato T, Matsunaga T, Endo S, Yamaguchi M, Yamazaki Y, Sakai H, Ikari A. (2018) Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochim. Biophys. Acta 1865(3), 470-479Maruhashi R, Akizuki R, Sato T, Matsunaga T, Endo S, Yamaguchi M, Yamazaki Y, Sakai H, Ikari A. (2018) Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochim. Biophys. Acta 1865 (3), 470-479 Kinugasa, T., Huo, Q., Higashi, D., Shibaguchi, H., Kuroki, M., Tanaka, T., Futami, K., Yamashita, Y., Hachimine, K., Maekawa, S., Nabeshima, K., and Iwasaki, H. (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 27, 3729-3734Kinugasa, T., Huo, Q., Higashi, D., Shibaguchi, H., Kuroki, M., Tanaka, T., Futami, K., Yamashita, Y., Hachimine, K., Maekawa, S., Nabeshima, K., and Iwasaki, H. (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 27, 3729-3734 Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T., and Turner, J. R. (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88, 1110-1120Weber, CR, Nalle, SC, Tretiakova, M., Rubin, DT, and Turner, JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88, 1110-1120 Halasz, J., Holczbauer, A., Paska, C., Kovacs, M., Benyo, G., Verebely, T., Schaff, Z., and Kiss, A. (2006) Claudin-1 and claudin-2 differentiate fetal and embryonal components in human hepatoblastoma. Hum. Pathol. 37, 555-561Halasz, J., Holczbauer, A., Paska, C., Kovacs, M., Benyo, G., Verebely, T., Schaff, Z., and Kiss, A. (2006) Claudin-1 and claudin-2 differentiated fetal and embryonal components in human hepatoblastoma. Hum. Pathol. 37, 555-561 Luettig, J., Rosenthal, R., Barmeyer, C., and Schulzke, J. D. (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue barriers 3, e977176Luettig, J., Rosenthal, R., Barmeyer, C., and Schulzke, J. D. (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue barriers 3, e977176

以上のように、CLDN2は凝集塊を形成するがん細胞の抗がん剤抵抗性に寄与することが明らかになった。がん組織で高発現するCLDN2の発現を低下させる薬剤は、抗がん剤の感受性を亢進させるだけでなく、がん細胞の悪性化を抑制し、根絶を可能とする新しいタイプの補助療法薬になることが期待できる。本発明の主たる課題は、このような補助療法薬を創出し、がんの治療成績向上に資することにある。 As described above, it was clarified that CLDN2 contributes to the resistance of cancer cells forming aggregates to anticancer drugs. Drugs that reduce the expression of CLDN2, which is highly expressed in cancer tissues, not only increase the sensitivity of anticancer drugs, but also suppress the malignant transformation of cancer cells and enable eradication of new types of adjuvant therapies. Can be expected to become. A main object of the present invention is to create such an adjuvant therapeutic agent and contribute to improving the treatment results of cancer.

上記課題に鑑み研究を進める中、本発明者らはCLDN2の構造に注目した。そして、CLDN2同士の結合阻害を目的として、ドッキングシミュレーションによりCLDN2の第2細胞外ループへの結合が予測される化合物を探索した。スクリーニングによって選択された化合物についてCLDN2タンパク質の発現低下作用や特異性等を検討した結果、極めて有効な化合物「レジパスビル」を同定することに成功した。また、その作用機序に関して有益な知見が得られ、レジパスビルが、がん細胞の低酸素状態(ストレス状態)を改善し、抗がん剤感受性を亢進することが判明した。換言すれば、がん治療の補助療法薬の有効成分として有用な「がん細胞の低酸素状態を改善し、抗がん剤感受性を亢進させる物質」を見出すことに成功した。 While proceeding with the research in view of the above problems, the present inventors focused on the structure of CLDN2. Then, for the purpose of inhibiting the binding between CLDN2, we searched for compounds that are predicted to bind CLDN2 to the second extracellular loop by docking simulation. As a result of examining the expression-reducing effect and specificity of CLDN2 protein on the compounds selected by screening, we succeeded in identifying the extremely effective compound "ledipasvir". In addition, useful findings were obtained regarding its mechanism of action, and it was found that ledipasvir improves the hypoxic state (stress state) of cancer cells and enhances anticancer drug sensitivity. In other words, we have succeeded in finding a "substance that improves the hypoxic state of cancer cells and enhances the sensitivity to anticancer drugs" that is useful as an active ingredient of an adjunct therapeutic drug for cancer treatment.

ところで、CLDN2は肺腺がんや大腸がん、肝臓がん等で高発現が認められるが(非特許文献1、非特許文献4〜6)、クローン病、潰瘍性大腸炎、セリアック病、HIV感染においても、腸管のCLDN2発現量が増加し、下痢などの症状を引き起こす(非特許文献7)。即ち、CLDN2の高発現は、各種疾患の原因(基盤)や病態の形成に重要であり、治療標的となる。このことから、同定に成功した化合物であるレジパスビルには、CLDN2の高発現が関与する各種疾患の治療への利用・適用も大いに期待できる。 By the way, CLDN2 is highly expressed in lung adenocarcinoma, colon cancer, liver cancer, etc. (Non-Patent Document 1, Non-Patent Documents 4 to 6), but Crohn's disease, ulcerative colitis, celiac disease, and HIV. Even in infection, the expression level of CLDN2 in the intestinal tract increases, causing symptoms such as diarrhea (Non-Patent Document 7). That is, high expression of CLDN2 is important for the cause (base) of various diseases and the formation of pathological conditions, and is a therapeutic target. From this, it is highly expected that ledipasvir, which is a compound that has been successfully identified, can be used and applied to the treatment of various diseases associated with high expression of CLDN2.

以上の成果及び考察に基づき、以下の発明が提供される。
[1]レジパスビル又はその薬学的に許容可能な塩を有効成分として含有し、がん細胞の低酸素状態の改善、及び/又はがん細胞の抗がん剤感受性の亢進に有効な薬剤。
[2][1]に記載の薬剤を含有し、抗がん剤と併用される、がん補助療法薬。
[3]クローディン−2の高発現を認めるがんの治療に使用される、[2]に記載のがん補助療法薬。
[4]前記がんが、肺腺がん、大腸がん、肝臓がん又は食道がんである、[3]に記載のがん補助療法薬。
[5]抗がん剤による治療を受けるがん患者に対して、[2]〜[4]のいずれか一項に記載のがん補助療法薬を治療上有効量投与するステップを含む、がんの治療法。
[6]レジパスビル又はその薬学的に許容可能な塩を有効成分として含有する、クローディン−2の高発現がその原因となる又はその病態を形成する疾患に対する治療薬。
Based on the above results and considerations, the following inventions are provided.
[1] A drug containing ledipasvir or a pharmaceutically acceptable salt thereof as an active ingredient and effective for improving the hypoxic state of cancer cells and / or enhancing the sensitivity of cancer cells to anticancer drugs.
[2] A cancer adjuvant therapy drug containing the drug according to [1] and used in combination with an anticancer drug.
[3] The cancer adjuvant therapeutic agent according to [2], which is used for the treatment of cancer in which high expression of claudin-2 is observed.
[4] The cancer adjuvant therapy agent according to [3], wherein the cancer is lung adenocarcinoma, colon cancer, liver cancer or esophageal cancer.
[5] A step of administering a therapeutically effective amount of the cancer adjuvant therapeutic agent according to any one of [2] to [4] to a cancer patient treated with an anticancer drug is included. How to treat cancer.
[6] A therapeutic agent for a disease caused by or forming a pathological condition of claudin-2, which contains ledipasvir or a pharmaceutically acceptable salt thereof as an active ingredient.

CLDN2の構造。A:CLDN2の二次元構造を模式的に示す。アミノ末端(1番目)とカルボキシ末端(230番目)は細胞内に存在する。本研究で化合物の結合部位として想定した細胞外第2ループ(145番目から159番目)を太線で示す。B:CLDN2のアミノ酸配列(配列番号5)。第2細胞外ループのアミノ酸を枠で囲んで示す。The structure of CLDN2. A: The two-dimensional structure of CLDN2 is schematically shown. The amino terminus (1st) and carboxy terminus (230th) are intracellular. The extracellular second loop (145th to 159th) assumed as the binding site of the compound in this study is shown by a thick line. B: Amino acid sequence of CLDN2 (SEQ ID NO: 5). The amino acids in the second extracellular loop are shown in a frame. CLDN2のタンパク質発現に対する各化合物の効果。A549細胞を溶媒、1または10μMの化合物で24時間処理後、細胞を回収した。ウエスタンブロット法でCLDN2、β-アクチンタンパク質の発現量を調べた。バンド強度を数値化し、vehicleに対する割合で示した。Effect of each compound on protein expression of CLDN2. A549 cells were treated with solvent, 1 or 10 μM compound for 24 hours and then the cells were harvested. The expression levels of CLDN2 and β-actin proteins were examined by Western blotting. The band strength was quantified and shown as a ratio to the vehicle. CLDN2のタンパク質発現に対する化合物3(#3:レジパスビル)の効果。A:A549細胞を各濃度の化合物3で24時間処理後、細胞を回収した。ウエスタンブロット法でCLDN2、β-アクチンタンパク質の発現量を調べた。バンド強度を数値化し、0μMに対する相対値で示した。B:A549細胞を10μMの化合物3で指定時間処理後、細胞を回収した。ウエスタンブロット法でCLDN2、β-アクチンタンパク質の発現量を調べた。バンド強度を数値化し、0時間に対する相対値で示した。0μMまたは0時間に対して5%未満で有意差がある場合は*、1%未満で有意差がある場合は**、有意差がない場合はNSで示す。Effect of Compound 3 (# 3: Ledipasvir) on protein expression of CLDN2. A: A549 cells were treated with each concentration of Compound 3 for 24 hours, and the cells were collected. The expression levels of CLDN2 and β-actin proteins were examined by Western blotting. The band intensity was quantified and shown as a relative value to 0 μM. B: A549 cells were treated with 10 μM compound 3 for a specified time, and the cells were collected. The expression levels of CLDN2 and β-actin proteins were examined by Western blotting. The band intensity was quantified and shown as a relative value with respect to 0 hours. If there is a significant difference of less than 5% with respect to 0 μM or 0 hours, it is indicated by *, if it is less than 1%, it is indicated by **, and if there is no significant difference, it is indicated by NS. CLDN2のmRNA発現と転写活性に対する化合物3(#3:レジパスビル)の効果。A:A549細胞を各濃度の化合物3で6時間処理後、RNAを抽出した。逆転写反応後、リアルタイムPCR法でCLDN2、β-アクチン mRNAの発現量を調べた。mRNA発現量を0μMに対する相対値で示す。0μMに対して有意差がない場合はNSで示す。B:549細胞にCLDN2のプロモーターを組み込んだpGL4ルシフェラーゼベクターと、pRL-TKベクターをトランスフェクション下。各濃度の化合物3で6時間処理後、転写活性を測定した。転写活性を0μMに対する相対値で示す。0μMに対して有意差がない場合はNSで示す。Effect of Compound 3 (# 3: Ledipasvir) on the mRNA expression and transcriptional activity of CLDN2. A: A549 cells were treated with compound 3 at each concentration for 6 hours, and RNA was extracted. After the reverse transcription reaction, the expression levels of CLDN2 and β-actin mRNA were examined by real-time PCR. The mRNA expression level is shown as a relative value to 0 μM. If there is no significant difference with respect to 0 μM, it is indicated by NS. B: Under transfection with the pGL4 luciferase vector in which the CLDN2 promoter was incorporated into 549 cells and the pRL-TK vector. After treatment with compound 3 at each concentration for 6 hours, transcriptional activity was measured. Transcription activity is shown as a relative value to 0 μM. If there is no significant difference with respect to 0 μM, it is indicated by NS. CLDN2のタンパク質発現に対する阻害剤の効果。A:A549細胞を10 μMの化合物3(#3:レジパスビル)、100μM クロロキン(CQ)で24時間処理後、細胞を回収した。ウエスタンブロット法でCLDN2、β-アクチンタンパク質の発現量を調べた。バンド強度を数値化し、0μMに対する相対値で示した。B:A549細胞を10 μMの化合物3、10μMラクタシスチン(LC)で24時間処理後、細胞を回収した。ウエスタンブロット法でCLDN2、β-アクチンタンパク質の発現量を調べた。バンド強度を数値化し、0μMに対する相対値で示した。溶媒(vehicle)に対して1%未満で有意差がある場合は**、化合物3処理に対して1%未満で有意差がある場合は##で示す。Effect of inhibitors on protein expression of CLDN2. A: A549 cells were treated with 10 μM compound 3 (# 3: ledipasvir) and 100 μM chloroquine (CQ) for 24 hours, and then the cells were recovered. The expression levels of CLDN2 and β-actin proteins were examined by Western blot method. The band intensity was quantified and shown as a relative value to 0 μM. B: A549 cells were treated with 10 μM compound 3, 10 μM lactacystin (LC) for 24 hours, and the cells were recovered. The expression levels of CLDN2 and β-actin proteins were examined by Western blot method. The band intensity was quantified and shown as a relative value to 0 μM. If it is less than 1% and there is a significant difference with respect to the solvent (vehicle), it is indicated by **, and if it is less than 1% and there is a significant difference with respect to the compound 3 treatment, it is indicated by ##. CLDN2の細胞局在に対する化合物3(#3:レジパスビル)の効果。A549細胞を溶媒(コントロール)、10μMの化合物3、100μM クロロキン(CQ)、10μMラクタシスチン(LC)、5μM モノダンシルカダベリン(MDC)で24時間処理後、蛍光免疫染色を行った。CLDN2、ZO-1、核(DAPI)の細胞局在を示す。Effect of Compound 3 (# 3: Ledipasvir) on cell localization of CLDN2. A549 cells were treated with solvent (control), 10 μM compound 3, 100 μM chloroquin (CQ), 10 μM lactacystin (LC), and 5 μM monodansyl cadaverine (MDC) for 24 hours, and then fluorescent immunostaining was performed. It shows the cell localization of CLDN2, ZO-1, and nucleus (DAPI). 化合物3(#3:レジパスビル)による細胞間透過性の変化。A:トランスウェルに培養したA549細胞を0、1、5、10μMの化合物3で24時間処理後、Volt ohmmeterを用いて、上皮膜間電気抵抗値を測定した。B:上皮膜間電気抵抗値の測定後、トランスウェルの上層にドキソルビシンを添加し、30分後に下層の溶液を回収して、ドキソルビシンの蛍光強度を測定した。0μMに対して1%未満で有意差がある場合は**で示す。Changes in intercellular permeability due to compound 3 (# 3: Ledipasvir). A: A549 cells cultured in transwells were treated with 0, 1, 5, and 10 μM compound 3 for 24 hours, and then the electrical resistance between top coats was measured using a Volt ohmmeter. B: After measuring the electrical resistance between the upper coatings, doxorubicin was added to the upper layer of the transwell, and after 30 minutes, the solution in the lower layer was recovered and the fluorescence intensity of doxorubicin was measured. If there is a significant difference of less than 1% with respect to 0 μM, it is indicated by **. スフェロイドサイズと細胞生存率に対する短鎖ペプチドの効果。A549細胞を丸底プレートで72時間培養後に溶媒、10μMの化合物3(#3:レジパスビル)を添加し、さらに24時間培養した。スフェロイドの円周を基にサイズを算出し、溶媒に対する相対値で示した。A549細胞を丸底プレートで72時間培養後に10μMの化合物3とLOX-1を添加し、さらに24時間培養した。蛍光顕微鏡でLOX-1の蛍光強度を測定した。A549細胞を丸底プレートで72時間培養後に10μMの化合物3を添加し、さらに24時間培養した。細胞内のATP濃度を基に細胞生存率を算出し、溶媒に対する相対値で示した。溶媒に対して1%未満で有意差がある場合は**、有意差がない場合はNSで示す。Effect of short-chain peptides on spheroid size and cell viability. After culturing A549 cells on a round bottom plate for 72 hours, a solvent, 10 μM compound 3 (# 3: Ledipasvir) was added, and the cells were further cultured for 24 hours. The size was calculated based on the circumference of the spheroid and shown as a relative value to the solvent. After culturing A549 cells on a round bottom plate for 72 hours, 10 μM compound 3 and LOX-1 were added, and the cells were further cultured for 24 hours. The fluorescence intensity of LOX-1 was measured with a fluorescence microscope. After culturing A549 cells on a round bottom plate for 72 hours, 10 μM compound 3 was added, and the cells were further cultured for 24 hours. The cell viability was calculated based on the intracellular ATP concentration and shown as a relative value to the solvent. If there is a significant difference of less than 1% with respect to the solvent, it is indicated by **, and if there is no significant difference, it is indicated by NS. スフェロイド細胞に対するドキソルビシンと化合物3(#3:レジパスビル)の効果。A:A549細胞を丸底プレートで72時間培養後に溶媒、10μMの化合物3を添加し、さらに24時間培養した。各濃度のドキソルビシンを添加してから1時間後に蛍光画像を撮影し、ドキソルビシンの蛍光強度を算出した。ドキソルビシンの蓄積量を0μMに対する相対値で示した。B:A549細胞を丸底プレートで72時間培養後に溶媒、10μMの化合物3と各濃度のドキソルビシンを添加し、さらに24時間培養した。スフェロイドの円周を基にサイズを算出し、溶媒に対する相対値で示した。C:A549細胞を丸底プレートで72時間培養後に10μMの化合物3と各濃度のドキソルビシンを添加し、さらに24時間培養した。細胞内のATP濃度を基に細胞生存率を算出し、溶媒に対する相対値で示した。溶媒に対して5%未満で有意差がある場合は*、1%未満で有意差がある場合は**で示す。Effect of doxorubicin and compound 3 (# 3: ledipasvir) on spheroid cells. A: A549 cells were cultured on a round bottom plate for 72 hours, then a solvent, 10 μM compound 3 was added, and the cells were further cultured for 24 hours. Fluorescence images were taken 1 hour after the addition of each concentration of doxorubicin, and the fluorescence intensity of doxorubicin was calculated. The amount of doxorubicin accumulated is shown as a relative value to 0 μM. B: A549 cells were cultured on a round bottom plate for 72 hours, then a solvent, 10 μM compound 3 and each concentration of doxorubicin were added, and the cells were further cultured for 24 hours. The size was calculated based on the circumference of the spheroid and shown as a relative value to the solvent. C: A549 cells were cultured on a round bottom plate for 72 hours, 10 μM compound 3 and each concentration of doxorubicin were added, and the cells were further cultured for 24 hours. The cell viability was calculated based on the intracellular ATP concentration and shown as a relative value to the solvent. If it is less than 5% and there is a significant difference with respect to the solvent, it is indicated by *, and if it is less than 1%, it is indicated by **. スフェロイドの細胞生存率に対するシスプラチンとSN-38の効果。A:A549細胞を丸底プレートで72時間培養後に溶媒、10μMの化合物3(#3:レジパスビル)、各濃度のシスプラチンまたはSN-38(イリノテカンの活性代謝物)を添加し、さらに24時間培養した。スフェロイドの円周を基にサイズを算出し、0μMに対する相対値で示した。B:A549細胞を丸底プレートで72時間培養後に溶媒、10μMの化合物3、各濃度のシスプラチンまたはSN-38を添加し、さらに24時間培養した。スフェロイドのATP濃度を基に生存率を算出し、0μMに対する相対値で示した。Vehicleに対して5%未満で有意差がある場合は*、1%未満で有意差がある場合は**で示す。Effect of cisplatin and SN-38 on cell viability of spheroids. A: A549 cells were cultured on a round bottom plate for 72 hours, then added with a solvent, 10 μM compound 3 (# 3: regipasvir), each concentration of cisplatin or SN-38 (active metabolite of irinotecan), and further cultured for 24 hours. .. The size was calculated based on the circumference of the spheroid and shown as a relative value to 0 μM. B: A549 cells were cultured on a round bottom plate for 72 hours, then the solvent, 10 μM compound 3, cisplatin or SN-38 at each concentration were added, and the cells were further cultured for 24 hours. The survival rate was calculated based on the ATP concentration of spheroids and shown as a relative value to 0 μM. If it is less than 5% and there is a significant difference with respect to Vehicle, it is indicated by *, and if it is less than 1% and there is a significant difference, it is indicated by **.

<がん細胞を標的とした薬剤及びがん補助療法薬>
本発明は、CLDN2に結合してその発現(存在量)を低下させる作用を認めた化合物「レジパスビル」の用途に関する。理論に拘泥するわけではないが、がん細胞(典型的には細胞凝集塊を構成しているがん細胞)にレジパスビル(Ledipasvir; Methyl{(1S)-1-[(1R,3S,4S)-3-(5-{9,9-difluoro-7-[2-((6S)-5-{(2S)-2-[(methoxycarbonyl)amino]-3-methylbutanoyl}-5-azaspiro[2.4]hept-6-yl)-1H-imidazol-4-yl]-9H-fluoren-2-yl}-1H-benzimidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carbonyl]-2-methylpropyl}carbamate)を作用させると、細胞間タイトジャンクションでのCLDN2の発現が低下し、がん細胞の低酸素状態が改善することでがん細胞の悪性化が抑制され、且つがん細胞の抗がん剤感受性が亢進する。この特有の作用効果を利用した用途として、レジパスビル又はその薬学的に許容可能な塩を含有し(即ち、有効成分とした)、がん細胞の低酸素状態の改善、及び/又はがん細胞の抗がん剤感受性の亢進に有効な薬剤が提供される。当該薬剤を抗がん剤と併用すれば、抗がん剤の薬効が高められ、治療効果ないし治療成績の向上を望める。即ち、本発明の薬剤はがん補助療法薬として有用であり、抗がん剤とともにがん治療に適用される。がん治療において抗がん剤と併用される(即ち、抗がん剤の投与に際し、補助的に用いられる)という、典型的な使用態様を表すために、本発明の医薬を「がん補助療法薬」と呼称するが、本発明の医薬は、がん細胞の低酸素状態を改善することにより、がん細胞の悪性化を抑制し得るものであり、この点においてそれ自体、がん細胞に対する薬効を発揮するといえる。尚、レジパスビルの構造を以下に示す。

Figure 2021123560
<Drugs targeting cancer cells and cancer adjuvant therapies>
The present invention relates to the use of the compound "ledipasvir" which has been found to bind to CLDN2 and reduce its expression (abundance). Although not bound by theory, cancer cells (typically cancer cells that make up cell aggregates) are treated with Regipasvir (Ledipasvir; Methyl {(1S) -1-[(1R, 3S, 4S)). -3- (5- {9,9-difluoro-7- [2-((6S) -5-{(2S) -2-[(methoxycarbonyl) amino] -3-methylbutanoyl} -5-azaspiro [2.4] hept-6-yl) -1H-imidazol-4-yl] -9H-fluoren-2-yl} -1H-benzimidazol-2-yl) -2-azabicyclo [2.2.1] heptane-2-carbonyl] -2 -Methylpropyl} carbamate) reduces the expression of CLDN2 at tight junctions between cells, improves the hypoxic state of cancer cells, suppresses malignant transformation of cancer cells, and suppresses the malignant transformation of cancer cells. Increased anticancer drug sensitivity. Applications that take advantage of this unique effect include ledipasvir or a pharmaceutically acceptable salt thereof (ie, as an active ingredient), improving the hypoxic state of cancer cells, and / or of cancer cells. Drugs that are effective in increasing anticancer drug sensitivity are provided. If the drug is used in combination with an anticancer drug, the efficacy of the anticancer drug can be enhanced, and the therapeutic effect or the therapeutic result can be expected to be improved. That is, the drug of the present invention is useful as a cancer adjuvant therapy drug, and is applied to cancer treatment together with an anticancer drug. In order to express a typical usage mode in which it is used in combination with an anticancer drug in cancer treatment (that is, it is used as a supplement in the administration of an anticancer drug), the medicament of the present invention is referred to as "cancer support". Although referred to as a "therapeutic agent", the medicament of the present invention can suppress the malignant transformation of cancer cells by improving the hypoxic state of the cancer cells, and in this respect, the cancer cells themselves. It can be said that it exerts a medicinal effect on. The structure of the Ledipasvir is shown below.
Figure 2021123560

CLDN2は、細胞間のタイトジャンクション(細胞間密着結合)の形成に関わるクローディンファミリータンパク質の一つであり、腎臓の近位尿細管、胆嚢、小腸に高発現し、ナトリウムイオンの輸送に関与する重要な分子である。CLDNにはいくつかのサブタイプ(CLDN1、CLDN2、CLDN3、CLDN4等)が存在するが、本発明の医薬の有効成分(レジパスビル又はその薬学的に許容可能な塩)はCLDN2に対して高い選択性/特異性を示す。 CLDN2 is one of the claudin family proteins involved in the formation of tight junctions between cells, is highly expressed in the proximal tubule, bile sac, and small intestine of the kidney, and is involved in the transport of sodium ions. It is an important molecule. Although there are several subtypes of CLDN (CLDN1, CLDN2, CLDN3, CLDN4, etc.), the active ingredient of the medicament of the present invention (ledipasvir or a pharmaceutically acceptable salt thereof) is highly selective for CLDN2. / Shows specificity.

本発明の医薬は様々な抗がん剤の薬効を高めることに利用できる点でその有用性は高い。その一方、本発明の医薬によれば、抗がん剤が効きにくい又は効かない、いわゆる治療抵抗性のがんに対する有望な治療戦略が提供されることは臨床上、極めて重要且つ有意義である。また、抗がん剤と本発明の補助療法薬の併用はがんの根絶をも可能にし得るものであり、その臨床上の価値及び意義は大きい。 The medicament of the present invention is highly useful in that it can be used to enhance the efficacy of various anticancer agents. On the other hand, according to the medicament of the present invention, it is clinically extremely important and meaningful to provide a promising therapeutic strategy for so-called treatment-resistant cancer in which an anticancer drug is difficult or ineffective. In addition, the combined use of the anticancer agent and the adjuvant therapeutic agent of the present invention can also enable the eradication of cancer, and its clinical value and significance are great.

本発明において用語「がん」は広義に解釈され、用語「悪性腫瘍」と互換的に使用される。また、病理学的に診断が確定される前の段階、すなわち腫瘍としての良性、悪性のどちらかが確定される前には、良性腫瘍、良性悪性境界病変、悪性腫瘍を総括的に含む場合もあり得る。一般に、がんはその発生の母体となった臓器の名、もしくは発生母組織の名で呼ばれ、主なものを列記すると、舌癌、歯肉癌、咽頭癌、上顎癌、喉頭癌、唾液腺癌、食道癌、胃癌、小腸癌、大腸癌、直腸癌、肝臓癌、胆道癌、胆嚢癌、膵臓癌、肺癌、乳癌、甲状腺癌、副腎癌、脳下垂体腫瘍、松果体腫瘍、子宮癌、卵巣癌、膣癌、膀胱癌、腎臓癌、前立腺癌、尿道癌、網膜芽細胞腫、結膜癌、神経芽腫、神経膠腫(グリオーマ)、神経膠芽腫(グリオブラストーマ)、皮膚癌、髄芽種、白血病、悪性リンパ腫、睾丸腫瘍、骨肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、脂肪肉腫、軟骨肉腫、ユーイング肉腫などである。そして、さらに発生臓器の部位の特徴によって、上・中・下咽頭癌、上部・中部・下部食道癌、胃噴門癌、胃幽門癌、子宮頚癌、子宮体癌などと細分類されているが、これらが限定的ではなく本発明の「がん」としての記載に含まれる。 In the present invention, the term "cancer" is broadly interpreted and used interchangeably with the term "malignant tumor". In addition, benign tumors, benign malignant borderline lesions, and malignant tumors may be comprehensively included before the pathological diagnosis is confirmed, that is, before either benign or malignant tumor is confirmed. could be. In general, cancer is called by the name of the organ that became the mother of its development or the name of the mother tissue that developed it. , Esophageal cancer, gastric cancer, small bowel cancer, colon cancer, rectal cancer, liver cancer, biliary tract cancer, bile sac cancer, pancreatic cancer, lung cancer, breast cancer, thyroid cancer, adrenal cancer, pituitary tumor, pineapple tumor, uterine cancer, Ovarian cancer, vaginal cancer, bladder cancer, kidney cancer, prostate cancer, urinary tract cancer, retinoblastoma, conjunctival cancer, neuroblastoma, glioma, glioblastoma, skin cancer, Myelopathy, leukemia, malignant lymphoma, testicular tumor, osteosarcoma, horizontal print myoma, smooth myoma, hemangiosarcoma, liposarcoma, chondrosarcoma, Ewing's sarcoma, etc. Further, depending on the characteristics of the site of the developing organ, it is subdivided into upper / middle / hypopharyngeal cancer, upper / middle / lower esophageal cancer, gastric jet cancer, gastric pyloric cancer, cervical cancer, endometrial cancer, etc. , These are not limited and are included in the description as "cancer" of the present invention.

本発明の医薬は、CLDN2の発現を認めるがんの治療に利用される。好ましくは、CLDN2の高発現を認めるがんが治療対象となる。該当するがんとして、肺腺がん、大腸がん、肝がん、食道がんを例示できる。これらのがんでは、CLDN2の高発現が確認されている(非特許文献1、4〜6を参照)。 The medicament of the present invention is used for the treatment of cancer in which expression of CLDN2 is observed. Preferably, cancers with high expression of CLDN2 are treated. Examples of applicable cancers include lung adenocarcinoma, colon cancer, liver cancer, and esophageal cancer. High expression of CLDN2 has been confirmed in these cancers (see Non-Patent Documents 1, 4 and 6).

本発明の医薬の有効成分として、レジパスビルの薬理学的に許容される塩を用いても良い。「薬理学的に許容される塩」は特に限定されるものではなく、様々な塩、例えば、酸付加塩、アミノ酸付加塩等の利用が想定される。酸付加塩の例としては塩酸塩、硫酸塩、硝酸塩、リン酸塩、臭化水素酸塩などの無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、ベンゼンスルホン酸塩、安息香酸塩、リンゴ酸塩、シュウ酸塩、メタンスルホン酸塩、酒石酸塩などの有機酸塩が挙げられる。アミノ酸付加塩の例としてはグリシン付加塩、フェニルアラニン付加塩、リジン付加塩、アスパラギン酸付加塩、グルタミン酸付加塩が挙げられる。尚、アセトン付加物(Ledipasvir Acetonate)は好ましい有効成分の一つである。 As the active ingredient of the medicament of the present invention, a pharmacologically acceptable salt of ledipasvir may be used. The "pharmacologically acceptable salt" is not particularly limited, and the use of various salts such as acid addition salts and amino acid addition salts is assumed. Examples of acid addition salts include hydrochlorides, sulfates, nitrates, phosphates, inorganic acid salts such as hydrobromide, acetates, maleates, fumarates, citrates, benzenesulfonates, Examples include organic acid salts such as benzoate, malate, oxalate, methanesulfonate, and tartrate. Examples of amino acid addition salts include glycine addition salt, phenylalanine addition salt, lysine addition salt, aspartic acid addition salt, and glutamic acid addition salt. Acetone adduct (Ledipasvir Acetonate) is one of the preferable active ingredients.

本発明の医薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、界面活性剤、滑沢剤、稀釈剤、被覆剤、糖衣剤、矯味矯臭剤、乳化・可溶化・分散剤、pH調製剤、等張剤、可溶化剤、香料、着色剤、溶解補助剤、生理食塩水など)を含有させることができる。製剤化する場合の剤形も特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、液剤、懸濁剤、乳剤、ゼリー剤、注射剤、外用剤、吸入剤、点鼻剤、点眼剤及び座剤である。本発明の医薬には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の医薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.01重量%〜約95重量%の範囲内で設定する。通常、本発明の医薬は単独の製剤として構成されるが、抗がん剤との合剤としてもよい。 The pharmaceutical product of the present invention can be formulated according to a conventional method. When formulated, other components (eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, surfactants) that are acceptable in the formulation Activator, lubricant, dilute agent, coating agent, sugar coating agent, flavoring agent, emulsifying / solubilizing agent, pH adjusting agent, isotonic agent, solubilizing agent, fragrance, coloring agent, solubilizing agent, physiology (Salt solution, etc.) can be contained. The dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, liquids, suspensions, emulsions, jellies, injections, topical agents, inhalants, nasal drops, eye drops and loci. It is an agent. The medicament of the present invention contains an amount (that is, a therapeutically effective amount) of an active ingredient necessary for obtaining the expected therapeutic effect (or preventive effect). The amount of the active ingredient in the medicament of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set in the range of, for example, about 0.01% by weight to about 95% by weight so that a desired dose can be achieved. Normally, the medicament of the present invention is composed as a single preparation, but it may be a combination drug with an anticancer drug.

本発明の医薬は抗がん剤と併用される。本発明の医薬を抗がん剤と併用すると治療成績の向上を望める。ここでの「治療成績の向上」には、(1)治療効果の増大、(2)奏功率ないし有効率の向上、(3)副作用の低減ないし回避が含まれる。抗がん剤は特に限定されない。抗がん剤の例を示すと、シスプラチン、ネダプラチン、オキサリプラチン、カルボプラチン等のプラチナ製剤、シクロホスファミド、イホスファミド、ニトロソウレア、ダカルバジン、テモゾロミド、ニムスチン、ブスルファン、メルファラン、チオテパ、プロカルバジン、ラニムスチン等のアルキル化剤、エノシタビン、カルモフール、カペシタビン、テガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ゲムシタビン、シタラビン、シタラビンオクホスファート、ネララビン、フルオロウラシル、フルダラビン、ペメトレキセド、ペントスタチン、メトトレキサート、クラドリビン、ドキシフルリジン、ヒドロキシカルバミド、メルカプトプリン等の代謝拮抗剤、マイトマイシンC、ドキソルビシン、エピルビシン、ダウノルビシン、ブレオマイシン、アクチノマイシンD、アクラルビシン、イダルビシン、ピラルビシン、ペプロマイシン、ミトキサントロン、アムルビシン、ジノスタチンスチマラマー等の抗腫瘍性抗生物質、ビンブラスチン、ビンクリスチン、ビンデシン等の微小管重合阻害剤、パクリタキセル、ドセタキセル等の微小管脱重合阻害剤、イリノテカン、ノギテカン、エトポシド、ソブゾキサン等のトポイソメラーゼ阻害剤、リツキシマブ(Rituxan(登録商標))、トラスツズマブ(Herceptin(登録商標))、アレムツズマブ(Campath(登録商標))、セツキシマブ(Erbitux(登録商標))、パニツムマブ(Vectibix(登録商標))、オファツムマブ(Arzerra(登録商標))、デノスマブ(Ranmark(登録商標))、イピリムマブ(Yervoy(登録商標))、モガムリズマブ(Poteligeo(登録商標))、ペルツズマブ(Perjeta(登録商標))、オビヌツズマブ(Gazyva(登録商標))、ラムシルマブ(Cyramza(登録商標))、ニボルマブ(Opdivo(登録商標))、ペムブロリズマブ(Keytruda(登録商標))、ブリナツモマブ(Blincyto(登録商標))、ジヌツキシマブ(Unituxin(登録商標))、ダラツムマブ(Darzalex(登録商標))、ネシツムマブ(Portrazza(登録商標))、エロツズマブ(Empliciti(登録商標))等の抗体医薬、ゲムツズマブ オゾガマイシン(Mylotarg(登録商標))、ブレンツキシマブ ベドチン(Adcetris(登録商標))、トラスツズマブ エムタンシン(Kadcyla(登録商標))、イノツズマブ オゾガマイシン(BESPONSA(登録商標)等の抗体薬物複合体(ADC)である。抗がん剤を2種以上併用することも可能である。抗がん剤の投与量は、それを単独で使用する場合の使用量(即ち、通常の使用量)に準ずる。但し、本発明の医薬との併用によって抗がん剤の薬効の増大が期待できることから、通常の投与量よりも低い投与量に設定してもよい。尚、当業者であれば患者の病状や年齢、性別、体重などを考慮して「通常の使用量」を設定することができる。 The medicament of the present invention is used in combination with an anticancer agent. When the drug of the present invention is used in combination with an anticancer drug, improvement in treatment results can be expected. Here, "improvement of treatment results" includes (1) increase of therapeutic effect, (2) improvement of response rate or efficacy rate, and (3) reduction or avoidance of side effects. The anticancer drug is not particularly limited. Examples of anticancer agents include platinum preparations such as cisplatin, nedaplatin, oxaliplatin, carboplatin, cyclophosphamide, iposphamide, nitrosourea, dacarbazine, temozolomid, nimustin, busulfan, melfaran, thiotepa, procarbazine, lanimustin, etc. Alkylating agents, enocitabine, carmofur, capecitabin, tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, gemcitabine, citarabin, citarabin ocphosphat, nerarabin, fluorouracil, fludarabin, pemetauximab , Hydroplasty antagonists such as hydroxycarbamide and mercaptopurine, antitumors such as mitomycin C, doxorubicin, epirubicin, daunorubicin, bleomycin, actinomycin D, acralubicin, idalubicin, pyrarubicin, pepromycin, mitoxantron, amurubicin, dinostatinstimalamar Cetuximab (registered trademark) , Trastuzumab (Herceptin®), Alemtuzumab (Campath®), Cetuximab (Erbitux®), Panitumumab (Vectibix®), Ofatumumab (Arzerra®), Denosumab (Ranmark) Ipilimumab (Yervoy®), Mogamurizumab (Poteligeo®), Pertuzumab (Perjeta®), Ofatumumab (Gazyva®), Ramsilumab (Cyramza®), Nivorumab (Opdivo®), Pembrolizumab (Keytruda®), Blincyto®, Unituxin®, Darzalex®, Portrazza® Antibody drugs such as (trademark)) and eroticuzumab (Empliciti (registered trademark)), gemtuzumab ofatumumab (Mylotarg (registered trader)) It is an antibody drug conjugate (ADC) such as brentuximab vedotin (Adcetris®), trastuzumab emtansine (Kadcyla®), and inotuzumab ozogamicin (BESPONSA®). It is also possible to use two or more anticancer agents in combination. The dose of the anticancer drug is the same as the amount used when it is used alone (that is, the usual amount). However, since it is expected that the efficacy of the anticancer drug will be increased by the combined use with the drug of the present invention, the dose may be set lower than the usual dose. A person skilled in the art can set the "normal usage amount" in consideration of the patient's medical condition, age, gender, body weight, and the like.

本発明の医薬の有効成分はCLDN2の発現低下を介してタイトジャンクションのバリア機能を低下させる。従って、本発明の医薬は、抗がん剤の細胞間透過性を亢進することを期待できるものであり、特定の抗がん剤の薬効増大にのみ有効な訳ではない。即ち、汎用性ないし一般性の高いものであり、様々な抗がん剤と併用され得る。従って、上で例示した既存の各種抗がん剤はもとより、開発中の抗がん剤や、今後開発される抗がん剤との併用も当然に想定される。 The active ingredient of the medicament of the present invention lowers the barrier function of tight junctions through the reduced expression of CLDN2. Therefore, the medicament of the present invention can be expected to enhance the intercellular permeability of an anticancer drug, and is not only effective for increasing the efficacy of a specific anticancer drug. That is, it is versatile or highly general, and can be used in combination with various anticancer agents. Therefore, in addition to the various existing anti-cancer agents exemplified above, it is naturally expected to be used in combination with an anti-cancer agent under development or an anti-cancer agent to be developed in the future.

本発明の医薬は抗がん剤と同時又は時間間隔をおいて対象(患者)に投与される。ここでの「同時」は厳密な同時性を要求するものではない。従って、本発明の医薬と抗がん剤を混合した後に対象へ投与する等、両者の投与が時間差のない条件下で実施される場合は勿論のこと、片方の投与後、速やかに他方を投与する等、両者の投与が実質的な時間差のない条件下で実施される場合もここでの「同時」の概念に含まれる。 The medicament of the present invention is administered to a subject (patient) at the same time as or at intervals of time with the anticancer drug. "Simultaneous" here does not require strict simultaneity. Therefore, it goes without saying that when the drug of the present invention and the anticancer drug are mixed and then administered to the subject, the administration of the two is carried out under conditions where there is no time lag, and of course, the other is immediately administered after the administration of one. The concept of "simultaneous" is also included in the case where both administrations are carried out under conditions where there is substantially no time difference.

本発明の医薬はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。全身投与によらず、局所投与することにしてもよい。ドラッグデリバリーシステム(DDS)を利用して標的組織特異的に有効成分が送達されるように投与してもよい。 The medicament of the present invention is targeted by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form. Applies. These administration routes are not exclusive to each other, and two or more arbitrarily selected administration routes can be used in combination (for example, intravenous injection or the like at the same time as oral administration or after a lapse of a predetermined time). Topical administration may be used instead of systemic administration. It may be administered so that the active ingredient is delivered specifically to the target tissue using a drug delivery system (DDS).

本発明の更なる局面は、本発明の医薬を使用した、がんに対する治療法(予防的処置も治療法の概念に含まれる)。本発明の治療法は、抗がん剤による治療を受けるがん患者に対して、本発明の医薬を投与するステップを含む。本発明の医薬の投与量は患者の症状、年齢、性別、及び体重などによって変動し得るが、当業者であれば適宜適当な投与量を設定することが可能である。投与スケジュールは抗がん剤の投与スケジュールに対応させればよい。 A further aspect of the present invention is a therapeutic method for cancer using the medicament of the present invention (preventive treatment is also included in the concept of therapeutic method). The treatment method of the present invention includes the step of administering the medicament of the present invention to a cancer patient who is treated with an anticancer agent. The dose of the medicament of the present invention may vary depending on the patient's symptoms, age, gender, body weight, etc., but those skilled in the art can appropriately set an appropriate dose. The administration schedule may correspond to the administration schedule of the anticancer drug.

<その他の疾患への適用>
上記の通り、本発明の医薬の有効成分は、CLDN2の第2細胞外ループに直接結合し、細胞間のタイトジャンクションに分布するCLDN2の発現(存在量)を低下させる、という特徴的な作用効果を示す。従って、CLDN2の高発現がその原因となる又はその病態を形成する疾患、例えば、クローン病、潰瘍性大腸炎、セリアック病、HIV感染に対してもその特有の作用効果を発揮し得る。そこで発明は、本発明の医薬の有効成分を含有する、CLDN2の高発現が関与する各種疾患に対する治療薬も提供する。
<Application to other diseases>
As described above, the active ingredient of the medicament of the present invention has a characteristic action effect of directly binding to the second extracellular loop of CLDN2 and reducing the expression (abundance) of CLDN2 distributed in tight junctions between cells. Is shown. Therefore, it can exert its peculiar action and effect on diseases caused by high expression of CLDN2 or forming the pathological condition thereof, such as Crohn's disease, ulcerative colitis, celiac disease, and HIV infection. Therefore, the present invention also provides a therapeutic agent for various diseases associated with high expression of CLDN2, which contains the active ingredient of the medicament of the present invention.

CLDN2は正常組織において腎臓の近位尿細管、胆嚢、小腸に高発現し、ナトリウムイオンの輸送に関与する分子であり、重要な生理機能を担う。また、上記の通り、各種がんはもとより、クローン病、潰瘍性大腸炎、セリアック病、HIV感染等の発症や進展等にも関与し、基礎研究や治療薬ないし治療法の開発の対象となる。本発明の医薬の有効成分は、このような研究・開発におけるツール(研究用試薬)としても有用である。 CLDN2 is a molecule that is highly expressed in the proximal tubule, bile sac, and small intestine of the kidney in normal tissues and is involved in the transport of sodium ions, and plays an important physiological function. In addition, as mentioned above, it is involved in the onset and progression of Crohn's disease, ulcerative colitis, celiac disease, HIV infection, etc., as well as various cancers, and is the target of basic research and development of therapeutic agents or treatment methods. .. The active ingredient of the medicament of the present invention is also useful as a tool (research reagent) in such research and development.

がん細胞の悪性化を抑制し、根絶を可能とする新しいタイプの補助療法薬の開発を目指し、以下の検討を行った。 The following studies were conducted with the aim of developing a new type of adjuvant therapy that suppresses the malignant transformation of cancer cells and enables eradication.

1.方法
(1)肺腺がん細胞の培養
ヒト肺腺癌由来のA549細胞を、37℃、5% CO2条件下の炭酸ガスインキュベーター内で培養した。増殖培地として5% 熱非働化牛胎児血清、100 U/ml penicillin-G potassium、100 μg/ml streptomycin sulfateを含むダルベッコ変法イーグル培地 (DMEM)を用いた。接着細胞の剥離には0.25% トリプシンおよび0.02% EDTAを含むリン酸緩衝化生理食塩水 (PBS, pH 7.4) を用いた。
1. 1. Method (1) Culturing of lung adenocarcinoma cells A549 cells derived from human lung adenocarcinoma were cultured in a carbon dioxide incubator under 37 ° C. and 5% CO 2 conditions. Dulbecco's modified Eagle's medium (DMEM) containing 5% heat-inactivated fetal bovine serum, 100 U / ml penicillin-G potassium, and 100 μg / ml streptomycin sulfate was used as the growth medium. Phosphate buffered saline (PBS, pH 7.4) containing 0.25% trypsin and 0.02% EDTA was used to detach the adherent cells.

(2)ウエスタンブロット
A549細胞を60 mm dishに2×105個ずつ播種し、72時間培養した。血清を除去した培地に各濃度の低分子化合物を添加し、さらに24時間培養した。細胞からタンパク質を抽出後、10または12.5%アクリルアミドゲルを用いたSDS-PAGEによりタンパク質を分離した。PVDF膜に転写後、CLDN2、β-アクチンに対する抗体を用いてタンパク質発現量を調べた。
(2) Western blot
A549 cells were seeded in 2 × 10 5 cells on a 60 mm dish and cultured for 72 hours. Small molecule compounds of each concentration were added to the serum-removed medium, and the cells were further cultured for 24 hours. After extracting the protein from the cells, the protein was separated by SDS-PAGE using 10 or 12.5% acrylamide gel. After transcription to the PVDF membrane, the protein expression level was examined using antibodies against CLDN2 and β-actin.

(3)リアルタイムPCR
A549細胞から全RNAをTRI reagent試薬を用いて抽出した。ReverTraAce(登録商標)を用いて、37℃、15分間インキュベートすることにより、一本鎖cDNAを調製した。調製したcDNAを鋳型とし、CLDN2のプライマー(sense: 5’-ATTGTGACAGCAGTTGGCTT-3’(配列番号1), antisense: 5’-CTATAGATGTCAC-ACTGGGTGATG-3’ (配列番号2))、β-アクチンのプライマー(sense: 5’-CCTGAGGCACTCTTCCAGCCTT-3’ (配列番号3), antisense: 5’-TGCGGATGTCCACGTCACACTTC-3’ (配列番号4))を用いてリアルタイムPCR反応を行った。反応条件は、初期変性:95℃で60秒、変性:95℃で15秒、アニーリング/伸長:60℃で60秒、40サイクルとした。
(3) Real-time PCR
Total RNA was extracted from A549 cells using the TRI reagent reagent. Single-stranded cDNA was prepared by incubating with ReverTraAce® at 37 ° C. for 15 minutes. Using the prepared cDNA as a template, CLDN2 primers (sense: 5'-ATTGTGACAGCAGTTGGCTT-3'(SEQ ID NO: 1), antisense: 5'-CTATAGATGTCAC-ACTGGGTGATG-3' (SEQ ID NO: 2)), β-actin primers ( Real-time PCR reaction was performed using sense: 5'-CCTGAGGCACTCTTCCAGCCTT-3'(SEQ ID NO: 3) and antisense: 5'-TGCGGATGTCCACGTCACACTTC-3' (SEQ ID NO: 4). The reaction conditions were initial denaturation: 95 ° C. for 60 seconds, denaturation: 95 ° C. for 15 seconds, annealing / elongation: 60 ° C. for 60 seconds, 40 cycles.

(4)蛍光免疫染色
A549細胞をカバーガラス入りの35 mm dishに5×104 cells/2 mLずつ播種し、72時間培養した。血清を除去した培地に100 μMの短鎖ペプチドと各種阻害剤を添加し、さらに24時間培養した。冷メタノールで固定後、0.2% Triton X-100を含むPBSで細胞膜を浸透化した。4% Block Aceでブロッキング後、CLDN2とZO-1抗体を4℃で一晩反応させた。Alexa 488マウス二次抗体、Alexa 548ウサギ二次抗体、DAPIを含むPBSで1時間インキュベート後、スライドガラスに固定した。LSM700共焦点レーザー顕微鏡(ツァイス社)を用いて、CLDN2とZO-1の細胞局在を観察した。
(4) Fluorescent immunostaining
A549 cells were seeded in 5 × 10 4 cells / 2 mL each on a 35 mm dish containing a cover glass and cultured for 72 hours. 100 μM short-chain peptide and various inhibitors were added to the serum-removed medium, and the cells were further cultured for 24 hours. After fixation with cold methanol, the cell membrane was permeated with PBS containing 0.2% Triton X-100. After blocking with 4% Block Ace, CLDN2 and ZO-1 antibody were reacted overnight at 4 ° C. After incubating for 1 hour with PBS containing Alexa 488 mouse secondary antibody, Alexa 548 rabbit secondary antibody, and DAPI, they were fixed on glass slides. Cell localization of CLDN2 and ZO-1 was observed using an LSM700 confocal laser scanning microscope (Zeiss).

(5)転写活性の評価
A549細胞を24ウェルプレートに5×104個ずつ播種し、24時間後にCLDN2のプロモーターを導入したpGL4ベクターとpRL-TKベクターをトランスフェクションした。48時間後に化合物3を6時間処理後、細胞を回収した。Dual-Glo Luciferase Assay キット(プロメガ社)を用いて、転写活性を測定した。
(5) Evaluation of transcriptional activity
A549 cells were seeded in 24-well plates in groups of 5 × 10 and 4 hours later, transfected with the pGL4 vector and the pRL-TK vector into which the CLDN2 promoter was introduced. After 48 hours, compound 3 was treated for 6 hours and cells were harvested. Transcriptional activity was measured using the Dual-Glo Luciferase Assay Kit (Promega).

(6)細胞間分子透過性の評価
A549細胞をトランスウェルに4×104 cells/100 μLずつ播種し、72時間培養した。血清を除去した培地に各濃度の化合物3を添加し、さらに24時間培養した。Volt ohmmeter(ミリポア社)を用いて、上皮膜間電気抵抗値を測定した。また、トランスウェルの上層に10 μM ドキソルビンを含むバッファーを添加し、30分後に下層のバッファーを採取して、ドキソルビシンの蛍光強度をInfinite F200 Pro(テカン社)で測定した。キャリブレーションカーブを作製し、ドキソルビシンの濃度を算出した。
(6) Evaluation of intercellular molecular permeability
A549 cells were seeded in transwells at a rate of 4 × 10 4 cells / 100 μL and cultured for 72 hours. Compound 3 at each concentration was added to the serum-removed medium, and the cells were further cultured for 24 hours. The electrical resistance between the top coats was measured using a Volt ohmmeter (Millipore). In addition, a buffer containing 10 μM doxorubicin was added to the upper layer of the transwell, and after 30 minutes, the buffer in the lower layer was collected, and the fluorescence intensity of doxorubicin was measured with Infinite F200 Pro (Tecan). A calibration curve was prepared and the concentration of doxorubicin was calculated.

(7)三次元培養と細胞生存率の測定
A549細胞を96-well 丸底プレート(住友ベークライト社)に1×105 cells/100 μLずつ播種し、72時間培養した。化合物3を24時間処理後、倒立顕微鏡下でスフェロイドの写真を撮影した。スフェロイドの円周を基にサイズを比較した。化合物3の存在下と非存在下で低酸素蛍光プローブのLOX-1(MBL社)を24時間処理後、スフェロイド内の低酸素度を評価した。CellTiter-Glo 3D Cell Viability Assay キット(プロメガ社)を用いて、ATP濃度を基に細胞生存率を算出した。
(7) Three-dimensional culture and measurement of cell viability
A549 cells were seeded on a 96-well round bottom plate (Sumitomo Bakelite) at a rate of 1 × 10 5 cells / 100 μL and cultured for 72 hours. After treating Compound 3 for 24 hours, spheroids were photographed under an inverted microscope. The sizes were compared based on the circumference of the spheroid. After treatment of the hypoxic fluorescent probe LOX-1 (MBL) in the presence and absence of Compound 3 for 24 hours, the degree of hypoxia in the spheroid was evaluated. The cell viability was calculated based on the ATP concentration using the CellTiter-Glo 3D Cell Viability Assay Kit (Promega).

(8)スフェロイドにおける抗がん剤の毒性評価
A549細胞を96-well 丸底プレートに1×105 cells/100 μLずつ播種し、72時間培養した。化合物3を24時間処理後、各濃度の抗がん剤を添加した。ドキソルビシンの場合、添加してから1時間後に蛍光顕微鏡下で蛍光画像を撮影し、スフェロイド内のドキソルビシンの蓄積率を算出した。また、24時間後にスフェロイドを回収し、CellTiter-Glo 3D Cell Viability Assay キットを用いて、ATP濃度を基に細胞生存率を算出した。
(8) Toxicity evaluation of anticancer drugs in spheroids
A549 cells were seeded on a 96-well round bottom plate at a rate of 1 × 10 5 cells / 100 μL and cultured for 72 hours. After treating Compound 3 for 24 hours, each concentration of anticancer agent was added. In the case of doxorubicin, a fluorescence image was taken under a fluorescence microscope 1 hour after the addition, and the accumulation rate of doxorubicin in the spheroid was calculated. In addition, spheroids were collected 24 hours later, and the cell viability was calculated based on the ATP concentration using the CellTiter-Glo 3D Cell Viability Assay kit.

2.結果
CLDN2は4回膜貫通型の構造をもち、カルボキシ末端とアミノ末端が細胞質に存在する(図1)。2つの細胞外ループのうち、カルボキシ側の第2ループ(145〜159番目のアミノ酸)がCLDN同士の結合に必要であることが報告されている。CLDN2同士の結合阻害を目的として、ドッキングシミュレーションによりCLDN2の第2細胞外ループへの結合が予測される化合物を探索した。米国食品医薬品局(FDA)のドラッグマスターファイルに登録された約1700個の化合物をスクリーニングし、結合エネルギーの低い化合物を11個選択した。ウエスタンブロット法でCLDN2タンパク質の発現低下作用を検討したところ、化合物3(商品名:ハーボニー、一般名:レジパスビル)の効果が最も強かった(図2)。化合物3は濃度依存的、時間依存的にCLDN2タンパク質の発現量を低下させた(図3)。一方、CLDN1の発現量は化合物3の処理によって変化しなかったため、CLDN2に選択的に作用することが示唆された。
2. result
CLDN2 has a 4-transmembrane structure with carboxy-terminus and amino-terminus present in the cytoplasm (Fig. 1). Of the two extracellular loops, it has been reported that the second loop on the carboxy side (amino acids 145 to 159) is required for binding between CLDNs. For the purpose of inhibiting the binding between CLDN2, we searched for compounds that are predicted to bind CLDN2 to the second extracellular loop by docking simulation. Approximately 1700 compounds registered in the US Food and Drug Administration (FDA) drug master file were screened and 11 compounds with low binding energies were selected. When the expression-lowering effect of CLDN2 protein was examined by Western blotting, the effect of Compound 3 (trade name: Harbony, generic name: Ledipasvir) was the strongest (Fig. 2). Compound 3 reduced the expression level of CLDN2 protein in a concentration-dependent and time-dependent manner (Fig. 3). On the other hand, the expression level of CLDN1 did not change with the treatment of compound 3, suggesting that it acts selectively on CLDN2.

化合物3が遺伝子発現に影響を及ぼす可能性を排除するため、CLDN2 mRNA量と転写活性を測定した。その結果、CLDN2 mRNA量と転写活性は、有意に低下しなかった(図4)。また、CLDN2 の発現はMEK/ERK経路とPI3K/Akt経路によって調節されるが、ERKとAktのリン酸化量は化合物3によって変化しなかった。以上の結果から、化合物3によるCLDN2タンパク質の発現低下に、転写段階での阻害は関与しないことが示唆された。 CLDN2 mRNA levels and transcriptional activity were measured to rule out the possibility of compound 3 affecting gene expression. As a result, the amount of CLDN2 mRNA and transcriptional activity did not decrease significantly (Fig. 4). The expression of CLDN2 was regulated by the MEK / ERK pathway and the PI3K / Akt pathway, but the phosphorylation amount of ERK and Akt was not changed by compound 3. These results suggest that inhibition at the transcriptional stage is not involved in the reduction of CLDN2 protein expression by Compound 3.

以前に本発明者らの研究グループは短鎖ペプチド処理によってエンドサイトーシスされたCLDN2がリソソームで分解されることを報告した(上掲の非特許文献2)。化合物3も同様の分解機構を誘導するか否かを解明するため、エンドサイトーシス阻害剤とリソソーム阻害剤の効果を検討した。化合物3によるCLDN2 タンパク質の発現低下は、リソソーム阻害剤のクロロキン(CQ)またはクラスリン依存性エンドサイトーシス阻害剤のモノダンシルカダベリン(MDC)の共処理によって阻害された(図5)。また、蛍光免疫染色法において、CLDN2の赤色蛍光がタイトジャンクションのアダプタータンパク質であるZO-1の緑色蛍光とともに細胞の隣接部位に確認された(図6)。化合物3によって、タイトジャンクションに分布するCLDN2の赤色蛍光が低下した。CQの共処理により、CLDN2は主に細胞内に蓄積した。また、MDCの共処理により、化合物3の存在下でもCLDN2はタイトジャンクションに分布した。以上の結果から、化合物3はクラスリン依存性経路を介してCLDN2のエンドサイトーシスを促進し、細胞内に取り込まれたCLDN2はリソソームで分解されることが示唆された。 Previously, our research group reported that endocytosed CLDN2 was degraded by lysosomes by short-chain peptide treatment (Non-Patent Document 2 above). In order to elucidate whether compound 3 also induces a similar degradation mechanism, the effects of endocytosis inhibitors and lysosomal inhibitors were investigated. The reduction in CLDN2 protein expression by Compound 3 was inhibited by co-treatment with the lysosomal inhibitor chloroquine (CQ) or the clathrin-dependent endocytosis inhibitor monodansyl cadaverine (MDC) (Fig. 5). In addition, in the fluorescent immunostaining method, the red fluorescence of CLDN2 was confirmed at the adjacent site of the cell together with the green fluorescence of ZO-1, which is an adapter protein of tight junction (Fig. 6). Compound 3 reduced the red fluorescence of CLDN2 distributed at tight junctions. By co-treatment with CQ, CLDN2 was mainly accumulated intracellularly. In addition, CLDN2 was distributed at tight junctions even in the presence of compound 3 by co-treatment with MDC. These results suggest that compound 3 promotes endocytosis of CLDN2 via the clathrin-dependent pathway, and that CLDN2 taken up into cells is degraded by lysosomes.

CLDN2はタイトジャンクションにカチオン透過性のポアを形成する一方で、低分子化合物に対するバリアを形成する。イオン透過性の指標となる上皮膜間電気抵抗値(TER)を測定したところ、化合物3によってTERが増加した(図7)。また、トランスウェルにおける上層から下層へのドキソルビシン(アントラサイクリン系抗がん剤)の移行量が、化合物3によって増加した。これらの結果から、化合物3はCLDN2発現の低下を介して、細胞間低分子透過性を亢進させることが示唆された。 CLDN2 forms a cation-permeable pore at tight junctions while forming a barrier to small molecule compounds. When the inter-coating electrical resistance value (TER), which is an index of ion permeability, was measured, TER was increased by compound 3 (Fig. 7). In addition, the amount of doxorubicin (anthracycline anticancer drug) transferred from the upper layer to the lower layer in the transwell was increased by Compound 3. These results suggest that Compound 3 enhances intercellular small molecule permeability through decreased CLDN2 expression.

生体内でがん細胞は血管から離れて微小環境を構築するため、抗がん剤の濃度が低下する。微小環境を模倣した試験を実施するため、三次元スフェロイド培養が汎用される。スフェロイド形成に対する化合物3の効果を検討したところ、スフェロイドの大きさと細胞生存率は有意に変化しなかったが、低酸素蛍光プローブの蛍光強度が低下した(図8)。そのため、化合物3はスフェロイド内部の低酸素ストレスを軽減する作用を有することが示唆された。次に、スフェロイドを形成したがん細胞にドキソルビシンを処理し、スフェロイド内のドキソルビシン蓄積量を評価した。0〜20μMのドキソルビシン処理により、スフェロイド内のドキソルビシン蓄積量が濃度依存的に増加した(図9)。さらに、化合物3によって、ドキソルビシン蓄積量が亢進した。また、ドキソルビシンの濃度に依存してスフェロイドの大きさと細胞生存率が低下し、これらの効果は化合物3によって増強された。同様に、シスプラチン(プラチナ系抗がん剤)やSN-38(トポイソメラーゼ阻害剤であるイリノテカンの活性代謝物)による細胞生存率の低下が、化合物3によって増強された(図10)。 In vivo, cancer cells move away from blood vessels to create a microenvironment, which reduces the concentration of anticancer drugs. Three-dimensional spheroid culture is widely used to perform tests that mimic the microenvironment. When the effect of Compound 3 on spheroid formation was examined, the size and cell viability of the spheroid did not change significantly, but the fluorescence intensity of the hypoxic fluorescent probe decreased (Fig. 8). Therefore, it was suggested that Compound 3 has an effect of reducing hypoxic stress inside the spheroid. Next, the cancer cells that formed spheroids were treated with doxorubicin, and the amount of doxorubicin accumulated in the spheroids was evaluated. Treatment with 0 to 20 μM doxorubicin increased the amount of doxorubicin accumulated in the spheroids in a concentration-dependent manner (Fig. 9). Furthermore, Compound 3 increased the amount of doxorubicin accumulated. In addition, the size of spheroids and cell viability decreased depending on the concentration of doxorubicin, and these effects were enhanced by Compound 3. Similarly, the reduction in cell viability due to cisplatin (a platinum-based anticancer drug) and SN-38 (an active metabolite of irinotecan, a topoisomerase inhibitor) was enhanced by Compound 3 (Fig. 10).

3.考察
ヒトにおいてCLDNには27種類のサブタイプが報告され、各サブタイプが組織特異的に発現している(引用論文1)。CLDN2は正常組織として、腎臓の近位尿細管、胆嚢、小腸に高発現し、ナトリウムイオンの輸送に関与すると報告されている(引用論文2、3)。正常肺組織にCLDN2は未発現であるが、肺腺がん組織に高発現する(引用論文4)ため、CLDN2は肺腺がんの新たな診断マーカーになる可能性がある。また、CLDN2はがん細胞の凝集塊(生体内の微小環境に相当する)で抗がん剤の感受性の低下させるため、CLDN2の発現量を低下させる薬剤は、新たながん補助薬になると考える。これまでにCLDN2に直接結合する化合物は報告されていない。CLDNは4回膜貫通型の構造を有し、第1ループがイオン選択性の規定(引用論文5)、第2ループがCLDN同士の結合(引用論文6)に必要であると報告されている。本研究では、ドッキングシミュレーションによりCLDN2の第2細胞外ループに結合し、CLDN2の発現量を低下させる化合物を探索し、化合物3(レジパスビル)を同定した。
3. 3. Discussion 27 subtypes of CLDN have been reported in humans, and each subtype is tissue-specifically expressed (Cited Paper 1). CLDN2 is highly expressed as normal tissue in the proximal tubule, gallbladder, and small intestine of the kidney, and has been reported to be involved in the transport of sodium ions (cited papers 2 and 3). Although CLDN2 is not expressed in normal lung tissue, it is highly expressed in lung adenocarcinoma tissue (cited paper 4), so CLDN2 may be a new diagnostic marker for lung adenocarcinoma. In addition, since CLDN2 reduces the sensitivity of anticancer drugs due to the agglutination of cancer cells (corresponding to the microenvironment in the body), drugs that reduce the expression level of CLDN2 will become new cancer adjuvants. think. So far, no compound that directly binds to CLDN2 has been reported. It has been reported that CLDN has a 4-transmembrane structure, the first loop is required for ion selectivity (cited paper 5), and the second loop is required for binding between CLDNs (cited paper 6). .. In this study, we searched for a compound that binds to the second extracellular loop of CLDN2 and reduces the expression level of CLDN2 by docking simulation, and identified compound 3 (ledipasvir).

化合物3の処理により、CLDN2 mRNA量と転写活性は変化しないが、タンパク質量が低下した(図3、4)。また、CLDN2タンパク質量の低下がクラスリン依存性エンドサイトーシス阻害剤であるモノダンシルカダベリン(MDC)やリソソーム阻害剤であるクロロキン(CQ)の共処理によって阻害された(図5)ことから、化合物3はタイトジャンクションに分布するCLDN2のエンドサイトーシスおよびリソソームにおける分解を促進させることが示唆された。最近我々は、CLDN2に結合する短鎖ペプチドが、CLDN2のエンドサイトーシスを介してその発現を低下させることを解明した(in press)。また、乳がん細胞に高発現するCLDN3とCLDN4への結合が予測される短鎖ペプチドは、CLDNのエンドサイトーシスを引き起こすことが報告されている(引用論文7)。CLDNはタイトジャンクションでホモまたはヘテロ様式で結合することによって安定に分布できるが、第2ループに別の短鎖ペプチドや化合物が結合すると不安定になり、エンドサイトーシスされやすくなると示唆される。 Treatment with compound 3 did not change the amount of CLDN2 mRNA and transcriptional activity, but decreased the amount of protein (Figs. 3 and 4). In addition, the decrease in CLDN2 protein level was inhibited by co-treatment with the clathrin-dependent endocytosis inhibitor monodansyl cadaberin (MDC) and the lysosomal inhibitor chloroquin (CQ) (Fig. 5). It was suggested that 3 promotes the degradation of CLDN2 distributed in tight junctions in endocytosis and lysosomes. We recently found that a short-chain peptide that binds to CLDN2 reduces its expression via endocytosis of CLDN2 (in press). In addition, it has been reported that short-chain peptides that are predicted to bind to CLDN3 and CLDN4, which are highly expressed in breast cancer cells, cause endocytosis of CLDN (Cited Paper 7). CLDN can be stably distributed by binding in a homo or hetero manner at tight junctions, but it is suggested that binding of another short-chain peptide or compound to the second loop makes it unstable and facilitates endocytosis.

三次元培養によるスフェロイドを用いた解析において、化合物3はドキソルビシン、シスプラチン、SN-38(イリノテカンの活性代謝物)による細胞生存率の低下を増強した(図9、10)。そのため、化合物3は抗がん剤抵抗性を示す肺腺がんの治療において、補助薬として有用であると考えられる。具体的な抗がん効果の増強メカニズムは不明であるが、化合物3がドキソルビシンの上皮膜間透過性およびスフェロイド内の蓄積量を増加させたことから、スフェロイド内部への抗がん剤透過性の亢進が関与すると示唆される。また、化合物3はスフェロイド内部の低酸素状態を軽減したため、ストレス状態からの解除によってがん細胞に対する抗がん剤感受性が亢進すると示唆される。スフェロイド内部の低酸素度の調節機構は不明なため、CLDN2の高発現による低酸素誘導機構は今後の検討課題である。 In analysis with spheroids in three-dimensional culture, Compound 3 enhanced the reduction in cell viability due to doxorubicin, cisplatin, and SN-38 (active metabolite of irinotecan) (FIGS. 9 and 10). Therefore, Compound 3 is considered to be useful as an adjunct in the treatment of lung adenocarcinoma showing resistance to anticancer drugs. Although the specific mechanism for enhancing the anticancer effect is unknown, since compound 3 increased the transmembrane permeability of doxorubicin and the amount accumulated in the spheroid, the anticancer drug permeability into the spheroid was increased. It is suggested that the enhancement is involved. In addition, since Compound 3 reduced the hypoxic state inside the spheroid, it is suggested that the release from the stress state enhances the sensitivity of the anticancer drug to cancer cells. Since the regulatory mechanism of hypoxia inside spheroids is unknown, the mechanism of hypoxia induction by high expression of CLDN2 is for further study.

化合物3の医療分野への波及効果として、次の3点が挙げられる。
(i) CLDN2の高発現は、肺腺がん(引用論文4)だけでなく、大腸がん、肝臓がん、食道がんで報告されている(引用論文8〜10)。そのため本研究で開発したCLDN2結合ペプチドは、肺腺がんだけでなく他臓器のがん治療にも有効であると考える。
(ii) クローン病、潰瘍性大腸炎、セリアック病、HIV感染において、腸管のCLDN2発現量が増加し、下痢などの症状を引き起こすことが報告されている(引用論文11)。そのため本研究で開発するCLDN2結合ペプチドは、がんだけでなくこれらの疾患の治療にも有効であると考える。
(iii) タイトジャンクションは薬物吸収のバリアになるため、CLDN2結合ペプチドは腸管からの薬物吸収率を向上させる効果があると考える。
The following three points can be mentioned as the spillover effect of Compound 3 in the medical field.
(i) High expression of CLDN2 has been reported not only in lung adenocarcinoma (cited paper 4) but also in colorectal cancer, liver cancer, and esophageal cancer (cited papers 8 to 10). Therefore, the CLDN2-binding peptide developed in this study is considered to be effective not only for lung adenocarcinoma but also for cancer treatment of other organs.
(ii) It has been reported that in Crohn's disease, ulcerative colitis, celiac disease, and HIV infection, the expression level of CLDN2 in the intestinal tract increases, causing symptoms such as diarrhea (cited paper 11). Therefore, the CLDN2-binding peptide developed in this study is considered to be effective not only for cancer but also for the treatment of these diseases.
(iii) Since tight junctions serve as a barrier to drug absorption, CLDN2-binding peptides are considered to have the effect of improving the rate of drug absorption from the intestinal tract.

CLDN4、6、18などが高発現するがん組織があるため、これらのCLDNに対する抗体医薬の開発が進められている。抗体医薬は特異性が高い、生体内安定性が高い、生産や製造法の共通性が高いといった利点があるが、次のような問題点、即ち、製造に時間と費用がかかること及び膜透過性が低いこと、が挙げられる。特に膜透過性の低さはがん治療において大きな問題になると考えられる。なぜなら、血管形成不全のためにがん細胞は正常細胞で見られない微小環境(低酸素、低栄養のストレス環境)を形成しており、微小環境深部へ抗体医薬を浸透させることが困難である。さらに上皮細胞がタイトジャンクションを形成した場合、約500 Da以下の分子のみが細胞間を通過でき、分子量が約150 kDaの抗体は通りにくい。本研究で同定した化合物3(レジパスビル)は、CLDN2の発現低下によってタイトジャンクションのバリア機能を低下させるため、抗体を含めた薬剤の細胞間透過性を亢進させることも期待できる。 Since there are cancer tissues in which CLDN4, 6, 18 and the like are highly expressed, antibody drugs against these CLDNs are being developed. Antibody drugs have the advantages of high specificity, high in vivo stability, and high commonality in production and manufacturing methods, but have the following problems: that is, manufacturing takes time and cost, and membrane permeation. The low sex is mentioned. In particular, low membrane permeability is considered to be a major problem in cancer treatment. This is because cancer cells form a microenvironment (hypoxic, malnourished stress environment) that is not found in normal cells due to angiogenesis deficiency, and it is difficult to penetrate the antibody drug into the deep microenvironment. .. Furthermore, when epithelial cells form tight junctions, only molecules of about 500 Da or less can pass between cells, and antibodies with a molecular weight of about 150 kDa are difficult to pass. Compound 3 (ledipasvir) identified in this study reduces the barrier function of tight junctions by reducing the expression of CLDN2, so it can be expected to enhance the intercellular permeability of drugs including antibodies.

<引用論文>
1. Turksen, K., and Troy, T. C. (2004) Barriers built on claudins. J. Cell Sci. 117, 2435-2447
2. Enck, A. H., Berger, U. V., and Yu, A. S. (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am. J. Physiol. Renal Physiol. 281, F966-974
3. Amasheh, S., Meiri, N., Gitter, A. H., Schoneberg, T., Mankertz, J., Schulzke, J. D., and Fromm, M. (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. 115, 4969-4976
4. Ikari, A., Sato, T., Watanabe, R., Yamazaki, Y., and Sugatani, J. (2012) Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1823, 1110-1118
5. Colegio, O. R., Van Itallie, C. M., McCrea, H. J., Rahner, C., and Anderson, J. M. (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. American Journal of Physiology. Cell Physiology 283, C142-C147
6. Krause, G., Winkler, L., Mueller, S. L., Haseloff, R. F., Piontek, J., and Blasig, I. E. (2008) Structure and function of claudins. Biochim. Biophys. Acta 1778, 631-645
7. Baumgartner, H. K., Beeman, N., Hodges, R. S., and Neville, M. C. (2011) A D-peptide analog of the second extracellular loop of claudin-3 and -4 leads to mislocalized claudin and cellular apoptosis in mammary epithelial cells. Chem. Biol. Drug Des. 77, 124-136
8. Kinugasa, T., Huo, Q., Higashi, D., Shibaguchi, H., Kuroki, M., Tanaka, T., Futami, K., Yamashita, Y., Hachimine, K., Maekawa, S., Nabeshima, K., and Iwasaki, H. (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 27, 3729-3734
9. Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T., and Turner, J. R. (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88, 1110-1120
10. Halasz, J., Holczbauer, A., Paska, C., Kovacs, M., Benyo, G., Verebely, T., Schaff, Z., and Kiss, A. (2006) Claudin-1 and claudin-2 differentiate fetal and embryonal components in human hepatoblastoma. Hum. Pathol. 37, 555-561
11. Luettig, J., Rosenthal, R., Barmeyer, C., and Schulzke, J. D. (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue barriers 3, e977176
<Cited paper>
1. Turksen, K., and Troy, TC (2004) Barriers built on claudins. J. Cell Sci. 117, 2435-2447
2. Enck, AH, Berger, UV, and Yu, AS (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am. J. Physiol. Renal Physiol. 281, F966-974
3. Amasheh, S., Meiri, N., Gitter, AH, Schoneberg, T., Mankertz, J., Schulzke, JD, and Fromm, M. (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. 115, 4969-4976
4. Ikari, A., Sato, T., Watanabe, R., Yamazaki, Y., and Sugatani, J. (2012) Increase in claudin-2 expression by an EGFR / MEK / ERK / c-Fos pathway in lung adenocarcinoma A549 cells. Biochim. Biophys. Acta 1823, 1110-1118
5. Colegio, OR, Van Itallie, CM, McCrea, HJ, Rahner, C., and Anderson, JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. American Journal of Physiology. Cell Physiology 283, C142-C147
6. Krause, G., Winkler, L., Mueller, SL, Haseloff, RF, Piontek, J., and Blasig, IE (2008) Structure and function of claudins. Biochim. Biophys. Acta 1778, 631-645
7. Baumgartner, HK, Beeman, N., Hodges, RS, and Neville, MC (2011) A D-peptide analog of the second extracellular loop of claudin-3 and -4 leads to mislocalized claudin and cellular apoptosis in mammary epithelial cells . Chem. Biol. Drug Des. 77, 124-136
8. Kinugasa, T., Huo, Q., Higashi, D., Shibaguchi, H., Kuroki, M., Tanaka, T., Futami, K., Yamashita, Y., Hachimine, K., Maekawa, S ., Nabeshima, K., and Iwasaki, H. (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 27, 3729-3734
9. Weber, CR, Nalle, SC, Tretiakova, M., Rubin, DT, and Turner, JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88, 1110-1120
10. Halasz, J., Holczbauer, A., Paska, C., Kovacs, M., Benyo, G., Verebely, T., Schaff, Z., and Kiss, A. (2006) Claudin-1 and claudin -2 differentiated fetal and embryonal components in human hepatoblastoma. Hum. Pathol. 37, 555-561
11. Luettig, J., Rosenthal, R., Barmeyer, C., and Schulzke, JD (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue barriers 3, e977176

CLDN2に結合してその発現を低下させるという、特徴的な生理機能を示す低分子化合物を含有する本発明の医薬は、がん細胞の低酸素状態の改善及びがん細胞の抗がん剤感受性の亢進に有効であり、がん治療における補助療法薬として有用である。本発明によれば、特に、抗がん剤に耐性/抵抗性を示す、治療困難な症例に対して有効な治療戦略が提供され得る。本発明は、抗がん剤の使用量や抗がん剤の種類(2種類以上の抗がん剤を併用する場合)の低減にも貢献し得る。一方、CLDN2はクローン病、潰瘍性大腸炎、セリアック病、HIV感染等にも高発現が認められており、これらの疾患の治療にも本発明の利用が期待される。 The medicament of the present invention containing a low molecular weight compound exhibiting a characteristic physiological function of binding to CLDN2 and reducing its expression can improve the hypoxic state of cancer cells and make cancer cells susceptible to anticancer drugs. It is effective in promoting cancer and is useful as an adjunct therapeutic agent in cancer treatment. INDUSTRIAL APPLICABILITY According to the present invention, an effective treatment strategy can be provided particularly for a difficult-to-treat case showing resistance / resistance to an anticancer drug. The present invention can also contribute to reducing the amount of anticancer drug used and the type of anticancer drug (when two or more kinds of anticancer drugs are used in combination). On the other hand, CLDN2 is highly expressed in Crohn's disease, ulcerative colitis, celiac disease, HIV infection, etc., and the present invention is expected to be used for the treatment of these diseases.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of the papers, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.

配列番号1、3:人工配列の説明:センスプライマー
配列番号2、4:人工配列の説明:アンチセンスプライマー
配列番号6:人工配列の説明:クローディン−2の第2細胞外ループを模倣したペプチド
SEQ ID NO: 1, 3: Artificial sequence description: Sense primer SEQ ID NO: 2, 4: Artificial sequence description: Antisense primer SEQ ID NO: 6: Artificial sequence description: Peptide that mimics the second extracellular loop of Claudin-2

Claims (6)

レジパスビル又はその薬学的に許容可能な塩を有効成分として含有し、がん細胞の低酸素状態の改善、及び/又はがん細胞の抗がん剤感受性の亢進に有効な薬剤。 A drug containing ledipasvir or a pharmaceutically acceptable salt thereof as an active ingredient and effective for improving the hypoxic state of cancer cells and / or enhancing the sensitivity of cancer cells to anticancer drugs. 請求項1に記載の薬剤を含有し、抗がん剤と併用される、がん補助療法薬。 An adjuvant cancer therapeutic agent containing the agent according to claim 1 and used in combination with an anticancer agent. クローディン−2の高発現を認めるがんの治療に使用される、請求項2に記載のがん補助療法薬。 The cancer adjuvant therapeutic agent according to claim 2, which is used for the treatment of cancer having a high expression of claudin-2. 前記がんが、肺腺がん、大腸がん、肝臓がん又は食道がんである、請求項3に記載のがん補助療法薬。 The cancer adjuvant therapy according to claim 3, wherein the cancer is lung adenocarcinoma, colon cancer, liver cancer or esophageal cancer. 抗がん剤による治療を受けるがん患者に対して、請求項2〜4のいずれか一項に記載のがん補助療法薬を治療上有効量投与するステップを含む、がんの治療法。 A method for treating cancer, which comprises a step of administering a therapeutically effective amount of the cancer adjuvant therapeutic agent according to any one of claims 2 to 4 to a cancer patient who is treated with an anticancer agent. レジパスビル又はその薬学的に許容可能な塩を有効成分として含有する、クローディン−2の高発現がその原因となる又はその病態を形成する疾患に対する治療薬。 A therapeutic agent for a disease caused by or forming a pathological condition of claudin-2, which contains ledipasvir or a pharmaceutically acceptable salt thereof as an active ingredient.
JP2020018075A 2020-02-05 2020-02-05 Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action Pending JP2021123560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018075A JP2021123560A (en) 2020-02-05 2020-02-05 Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018075A JP2021123560A (en) 2020-02-05 2020-02-05 Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action

Publications (1)

Publication Number Publication Date
JP2021123560A true JP2021123560A (en) 2021-08-30

Family

ID=77458148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018075A Pending JP2021123560A (en) 2020-02-05 2020-02-05 Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action

Country Status (1)

Country Link
JP (1) JP2021123560A (en)

Similar Documents

Publication Publication Date Title
WO2017174758A1 (en) Combination of an apelin antagonist and an angiogenesis inhibitor for the treatment of cancer
KR20110132446A (en) Kinase protein binding inhibitor
CN110538327B (en) Application of GPR31 inhibitor in preparation of medicines for treating abnormal fat metabolism and related diseases
Tseng et al. Inhibition of PAI-1 blocks PD-L1 endocytosis and improves the response of melanoma cells to immune checkpoint blockade
KR20170098957A (en) Cell permeable antibody
CN107362366B (en) Application of ALOX12 inhibitor in preparation of medicine for treating ischemia-reperfusion injury
Xue et al. SiRNA-mediated RRM2 gene silencing combined with cisplatin in the treatment of epithelial ovarian cancer in vivo: an experimental study of nude mice
KR102558988B1 (en) Pharmaceutical compositions and use thereof for relieving anticancer drug resistance and enhancing sensitivity of anticancer drug
AU2014233198B2 (en) Falz for use as a target for therapies to treat cancer
JP2021123560A (en) Claudin-2 binding low-molecular-weight compound having anticancer agent resistance improving action
JP7327855B2 (en) METHOD FOR SELECTING CANCER PATIENTS FOR EFFECTIVE RETINOID AND CANCER THERAPEUTIC COMBINATION THERAPY AND COMBINATION MEDICINE OF RETINOID AND CANCER THERAPEUTIC
Li et al. GSG2 promotes tumor growth through regulating cell proliferation in hepatocellular carcinoma
JP6114940B2 (en) Methods and compositions for enhancing uptake of therapeutic agents by target cells
US20230121867A1 (en) Compositions and methods for treating diseases and conditions by depletion of mitochondrial or genomic dna from circulation
KR101191958B1 (en) Pharmaceutical composition for preventing and treating synovial sarcoma comprising TLE1 inhibitor
EP3969027A1 (en) Polypeptides for treatment of cancer
Baczkowska et al. Calcineurin inhibitor sparing immunosuppressive regimens in kidney allograft recipients
JP2020147555A (en) Development of claudin-2 binding short-chain peptide having anticancer agent resistance improving action
CN109303783B (en) Application of autophagy inhibitor in preparation of medicine for enhancing anti-liver cancer activity of lycorine
US9969771B2 (en) Tetrapeptide having effect of inhibiting VEGF-induced angiogenesis and use thereof
KR102544135B1 (en) c-Kit targeting immunoconjugate
JP2022143194A (en) Anticancer drugs
JP6027137B2 (en) Pharmaceutical composition for the treatment of tumors expressing EGFR and ganglioside N-glycolyl GM3 (NEUGCGM3)
US11548939B2 (en) Therapeutic combinations using IGF1R pathway inhibitors, and methods to predict anti-IGF1R therapeutic efficacy
JP2023136704A (en) Preventive and/or therapeutic medicine of cancer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201118