JP2021123035A - Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof - Google Patents

Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof Download PDF

Info

Publication number
JP2021123035A
JP2021123035A JP2020018513A JP2020018513A JP2021123035A JP 2021123035 A JP2021123035 A JP 2021123035A JP 2020018513 A JP2020018513 A JP 2020018513A JP 2020018513 A JP2020018513 A JP 2020018513A JP 2021123035 A JP2021123035 A JP 2021123035A
Authority
JP
Japan
Prior art keywords
adhesive
integrated product
alloy
joint
product containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020018513A
Other languages
Japanese (ja)
Inventor
直樹 安藤
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2020018513A priority Critical patent/JP2021123035A/en
Publication of JP2021123035A publication Critical patent/JP2021123035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

To provide an adhesive construction body of high-strength construction materials that is resistant to a severe thousands-cycle test of temperature impacts.SOLUTION: An adhesive integrated body containing two heterogeneous materials such as an (A) material and a (B) material selected from FRP materials and a metal material group for construction, at both ends, in which a difference between linear expansion coefficients of the (A) material and the (B) material is 0.3×10-5K-1 or more. A (D) material which is a tabular body made of pure-aluminum-based aluminum alloy having a thickness of 1.5-5.0 mm or a construction material made of the pure-aluminum-based aluminum alloy is laminated between the (A) material and the (B) material, and bonded using an adhesive to obtain the adhesive integrated body.SELECTED DRAWING: Figure 4

Description

本発明は、各種金属材、FRP材、FRTP材等、高強度材料の異材同士を高強度に接合した、異種構造材を含む接合一体化物とその製造方法に関する。更に詳しくは、線膨張率の差が大きく異なった各種金属材、GFRP材、CFRTP材等の繊維強化プラスチックス等の各種の異材同士を高強度に接合し積層した、異種構造材を含む接合一体化物とその製造方法に関する。 The present invention relates to a bonded integrated product containing different structural materials in which different materials of high-strength materials such as various metal materials, FRP materials, and FRTP materials are bonded to each other with high strength, and a method for producing the same. More specifically, various different materials such as fiber reinforced plastics such as various metal materials, GFRP materials, and CFRTP materials, which have greatly different differences in linear expansion coefficient, are bonded and laminated with high strength, and the joints include dissimilar structural materials. Regarding the product and its manufacturing method.

本発明の発明者は、アルミニウム合金部材、マグネシウム合金部材、ステンレス鋼材、銅合金材、チタン合金材、鋼材、アルミ鍍金鋼板等の各種金属材と、各種FRP材を接着剤で接合する接着構造、接着方法等を提案した(特許文献1〜9)。また、これに使用する1液性エポキシ接着剤と接着方法も提案した(特許文献10、11)。これらの接着剤による接合技術は、基本的には各種金属材によって異なる化成処理をし、この化成処理された各種金属材と、FRP、FRTPとの接着剤による接合技術の集成物(積層体)である。 The inventor of the present invention has an adhesive structure for joining various metal materials such as aluminum alloy member, magnesium alloy member, stainless steel material, copper alloy material, titanium alloy material, steel material, and aluminum-plated steel plate with various FRP materials with an adhesive. A bonding method and the like have been proposed (Patent Documents 1 to 9). In addition, a one-component epoxy adhesive and an adhesive method used for this have also been proposed (Patent Documents 10 and 11). The bonding technology using these adhesives is basically a chemical conversion treatment that differs depending on the various metal materials, and is an assembly (laminate) of the bonding technology using the adhesive between the various metal materials that have undergone the chemical conversion treatment and FRP and FRTP. Is.

(高度接着技術:NAT)
本発明者等は、NAT(Nano adhesion technologyの略)と称する、接着力を高くするための高度接着技術を開発し提唱した。これは接着剤を高性能化するという技術ではなく、接着する金属片、即ち被着物である金属片の表面処理法に関係する技術である。即ち、NATは、全金属種が対象の接着剤による接合技術であり、NATはその成立の必要条件として、以下5点を規定した。このうち、使用する金属片に関しては、下記の3点((1)〜(3))が必要条件であり、この3点を満足するように化学処理する表面処理法を「NAT処理」と称した。
(Advanced adhesive technology: NAT)
The present inventors have developed and proposed an advanced adhesion technology called NAT (abbreviation of Nano adhesion technology) for increasing the adhesive strength. This is not a technique for improving the performance of an adhesive, but a technique related to a surface treatment method for a metal piece to be adhered, that is, a metal piece as an adherend. That is, NAT is a joining technique using an adhesive for all metal species, and NAT defines the following five points as prerequisites for its establishment. Of these, the following three points ((1) to (3)) are necessary conditions for the metal pieces to be used, and a surface treatment method that chemically treats the metal pieces so as to satisfy these three points is called "NAT treatment". bottom.

NATでの必要条件は、
(1)金属表面を0.8〜10μm周期の凹凸ある粗面にすること、
(2)その粗面上に5〜300nm周期の超微細凹凸があるようにすること、
(3)上記(1)及び(2)の2重凹凸面を成す表面は、金属酸化物、金属リン酸化物等の硬質なセラミック質の薄層で成っていること、
の3条件を満たすようにする処理法である。更に、NATで使用する接着剤種、及び、接着操作に関する次の2条件が必要である。
(4)接着剤として、1液性接着剤の使用を優先的に使用し、1液性接着剤が存在しない場合には、硬化剤として最も遅効性の物を選んで採用すること、
(5)接着操作において、「染み込まし処理」の工程を含むこと、
の2条件である。
The requirements for NAT are:
(1) Making the metal surface an uneven rough surface with a period of 0.8 to 10 μm,
(2) Make sure that the rough surface has ultrafine irregularities with a period of 5 to 300 nm.
(3) The surface forming the double uneven surface of (1) and (2) above is made of a thin layer of hard ceramic such as metal oxide and metal phosphor oxide.
It is a processing method that satisfies the above three conditions. Furthermore, the following two conditions regarding the type of adhesive used in NAT and the bonding operation are required.
(4) Priority should be given to the use of a one-component adhesive as the adhesive, and if the one-component adhesive does not exist, the slow-acting curing agent should be selected and adopted.
(5) Including the process of "soaking treatment" in the bonding operation,
There are two conditions.

上記の条件(4)は、接着剤が未硬化の低分子量分子のままで金属材表面に付着させることを求め、条件(5)は、その低分子量分子が条件(2)記載の超微細凹凸面上の超微細凹部の奥底まで侵入するように仕向けるための工程である。即ち、NATの目指すものを端的に言えば、被着材としての金属の表面形状として好ましいのは、5〜300nm周期の超微細凹凸面の存在であること、かつ、ミクロンオーダー周期の粗面を有することは、上記(2)の超微細凹凸面の存在密度が高いこと、及び、接着剤が低分子量状態のまま(粘度の低いまま)塗布され、かつ、前記超微細凹凸面の凹部底まで侵入し、その後に重合が促進され硬化させるのが、最も強い接着力を生むとの簡単な理由を整理したものである。 The above condition (4) requires that the adhesive adhere to the surface of the metal material as uncured low molecular weight molecules, and the condition (5) is that the low molecular weight molecules are the ultrafine irregularities described in the condition (2). This is a process for intruding into the deep bottom of the ultrafine recess on the surface. That is, to put it simply, what NAT aims at is that the surface shape of the metal as an adherend is preferably an ultrafine uneven surface with a period of 5 to 300 nm, and a rough surface with a molecular order period. What it has is that the presence density of the ultrafine concavo-convex surface is high, and that the adhesive is applied in a low molecular weight state (with low viscosity) and up to the bottom of the recess of the ultrafine concavo-convex surface. The simple reason why the strongest adhesive force is produced by invading and then promoting polymerization and hardening is summarized.

このNAT理論は、各種金属材で実証された(特許文献1〜7)。又、条件(4)に1液性接着剤が好ましいとしたが、接着強度の観点から、NATが最も有効な接着剤は、現在の技術水準ではエポキシ接着剤であると本発明者等は判断し、前記実証試験は殆どが1液性エポキシ接着剤によるものとなった。実際、NATが示した強力な接着力は、多くの当業者である技術者等に衝撃を与えた。実例から言えば、例えば、汎用の1液性エポキシ接着剤「EP106NL(セメダイン株式会社(本社:日本国東京都)製)」を使用して、ほぼ全金属種で、前述のNAT処理した同種金属片同士の接着対のせん断接着強さは、23℃下で約70MPaが得られ、従来の接着法の倍近いせん断接着強さを示したからである。 This NAT theory has been demonstrated in various metal materials (Patent Documents 1 to 7). Further, although one-component adhesive is preferable in the condition (4), the present inventors have determined that the most effective adhesive for NAT is an epoxy adhesive at the current technical level from the viewpoint of adhesive strength. However, most of the verification tests were based on a one-component epoxy adhesive. In fact, the strong adhesive force exhibited by NAT shocked many engineers and others skilled in the art. Speaking from an example, for example, using the general-purpose one-component epoxy adhesive "EP106NL (manufactured by Cemedine Co., Ltd. (Headquarters: Tokyo, Japan)", almost all metal species are the same kind of metal treated with NAT as described above. This is because the shear bonding strength of the bonding pair between the pieces was about 70 MPa at 23 ° C., which was almost double the shear bonding strength of the conventional bonding method.

(1液性エポキシ接着剤とその耐熱性)
特許文献1に記載した試験において、NAT処理した日本工業規格A7075アルミニウム合金(以下、「日本工業規格」の呼称のみで、また、「アルミニウム合金」を「Al」とも表記する。)片同士接合したものは、上記「EP106NL」使用の接着対(図1に示した試験片)を引張り破断して得られるせん断接着強さであり、その値が70MPaと高く安定していた。このことから、市場で広く市販されている1液性エポキシ接着剤を入手し、前述した同じA7075Al片の接着対で、せん断接着強さを測定することで、接着剤の接着力評価が可能と考えた。そこで、日本国内外で市販されている1液性エポキシ接着剤を十数種類購入して、それぞれせん断接着強さを測定した。更には、それら接着剤を使用したA7075Alの試験対で、150℃の環境下、そのせん断接着強さを測定し、各接着剤の耐熱性能を得た。その結果、現行の市販の1液性エポキシ接着剤の中では、「EW2040(3Mジャパン株式会社(本社:日本国東京都)製)」が、上記NATに最も適していると判断した。即ち、前記試験にて、せん断接着強さが23℃下で約60MPa、150℃下で30MPaを示したからである。但し、この後、本発明者は耐熱性ある1液性エポキシ接着剤の開発に努め、同じA7075Al使用の接着対(試験片)に関し、150℃下でのせん断接着強さが、35MPa以上になる1液性エポキシ接着剤を開発し提案した(特許文献9)。
(One-component epoxy adhesive and its heat resistance)
In the test described in Patent Document 1, NAT-treated Japanese Industrial Standards A7075 aluminum alloy (hereinafter, only referred to as "Japanese Industrial Standards" and "aluminum alloy" is also referred to as "Al") were joined to each other. The shear bond strength obtained by pulling and breaking the bond pair (test piece shown in FIG. 1) using the above "EP106NL" was as high as 70 MPa and stable. From this, it is possible to evaluate the adhesive strength of the adhesive by obtaining a one-component epoxy adhesive that is widely available on the market and measuring the shear adhesive strength with the same A7075Al piece adhesive pair described above. Thought. Therefore, more than a dozen types of one-component epoxy adhesives commercially available in Japan and overseas were purchased, and the shear adhesive strength was measured for each. Furthermore, the shear adhesive strength of the A7075Al test pair using these adhesives was measured in an environment of 150 ° C. to obtain the heat resistance performance of each adhesive. As a result, it was determined that "EW2040 (3M Japan Ltd. (Headquarters: Tokyo, Japan))" is the most suitable for the above NAT among the current commercially available one-component epoxy adhesives. That is, in the above test, the shear adhesion strength was about 60 MPa at 23 ° C. and 30 MPa at 150 ° C. However, after this, the present inventor made efforts to develop a heat-resistant one-component epoxy adhesive, and the shear adhesive strength at 150 ° C. of the adhesive pair (test piece) using the same A7075Al became 35 MPa or more. A one-component epoxy adhesive has been developed and proposed (Patent Document 9).

(接着力の測定方法)
特許文献1〜7には、各種金属材に対して、NAT処理とNAT操作をした1液性エポキシ接着剤のせん断接着強さ、及び、引張り接着強さが開示されている。しかし、本発明の実験等で使用した接着剤は、上記「EP106NL」から上記「EW2040」に換えた。その理由は、超軽量の高強度構造材として量産が始まっていたCFRP材についても、金属材との接着技術として完成させ、航空機、自動車等の移動機械の主要々素にするには、接着剤の耐熱性が欠かせないと判断したことによる。特許文献8では、耐熱性に優れた上記「EW2040」を前述したNATの標準使用接着剤とした後、このNAT処理法の改良結果を開示し、23℃下での各種金属材の接着対におけるせん断接着強さがより安定化し、引張り接着強さが高くなったことを開示した。
(Measuring method of adhesive strength)
Patent Documents 1 to 7 disclose the shear adhesive strength and the tensile adhesive strength of a one-component epoxy adhesive subjected to NAT treatment and NAT operation with respect to various metal materials. However, the adhesive used in the experiments and the like of the present invention was changed from the above "EP106NL" to the above "EW2040". The reason is that even CFRP materials, which had begun mass production as ultra-lightweight high-strength structural materials, can be completed as an adhesive technology with metal materials and used as the main element of mobile machines such as aircraft and automobiles. It is because it was judged that the heat resistance of was indispensable. In Patent Document 8, after the above-mentioned "EW2040" having excellent heat resistance is used as the above-mentioned standard adhesive for NAT, the improvement result of this NAT treatment method is disclosed, and in an adhesive pair of various metal materials at 23 ° C. It was disclosed that the shear adhesive strength became more stable and the tensile adhesive strength became higher.

なお、特許文献1〜9、及び、後述する本発明にて採用した接着力測定法は、一般的な接着力測定法とは異なる。即ち、これらの特許文献に記載されたせん断接着強さと、引張り接着強さは、JIS(日本工業規格)K6849、K6850等に規定された測定手法で測定したものではない。これらの規格化されている測定手法では、接着力が強く、正確なせん断接着強さ(tensile lap-shear strength)が測定出来できないと判断した。この引張り接着強さ(tensile strength)測定に関しては、規格化された手法で決められた形状の金属片の入手が困難であり、特に0.5〜3.0mm厚の板材として、市販されている多くの金属材にとっては、正確な値が測定出来る形になっていない故である。即ち、本発明者等が開示したNATに関係する各特許及び本発明では、後述した図1に示した試験片を使用してせん断接着強さを測定した。又、引張り接着強さを測定する接着対の形状は、特許文献1に記載の発明を発明した時点では、18mm×4mm×3mm厚の金属片2個の4mm×3mm端面同士を接着した形の接着対で測定した。その後、変遷があって、本発明に至っては、後述する45mm×18mm×1.5mm厚の金属片2個の18mm×1.5mm厚端面同士を接着した形、即ち、本発明の図2に示した形状となっている。 The adhesive strength measuring methods adopted in Patent Documents 1 to 9 and the present invention described later are different from general adhesive strength measuring methods. That is, the shear adhesive strength and the tensile adhesive strength described in these patent documents are not measured by the measuring method specified in JIS (Japanese Industrial Standards) K6849, K6850 and the like. It was judged that these standardized measurement methods have strong adhesive strength and cannot measure accurate shear lap-shear strength. Regarding this tensile strength measurement, it is difficult to obtain a metal piece having a shape determined by a standardized method, and it is particularly commercially available as a plate material having a thickness of 0.5 to 3.0 mm. This is because for many metal materials, accurate values cannot be measured. That is, in each of the patents related to NAT disclosed by the present inventors and the present invention, the shear adhesion strength was measured using the test piece shown in FIG. 1 described later. Further, the shape of the adhesive pair for measuring the tensile adhesive strength is such that the 4 mm × 3 mm end faces of two metal pieces having a thickness of 18 mm × 4 mm × 3 mm are bonded to each other at the time of inventing the invention described in Patent Document 1. Measured with an adhesive pair. After that, there was a transition, and the present invention was described in a form in which two 18 mm × 1.5 mm thick end faces of two metal pieces having a thickness of 45 mm × 18 mm × 1.5 mm, which will be described later, were bonded to each other, that is, FIG. 2 of the present invention. It has the shape shown.

(CFRP片のせん断接着強さ)
本発明者の接着技術に関する最終目標は、CFRP材とA7075Alとを完全接着して、究極の軽量化が要求される航空機等の基本構造の製作に役立てることであった。一方、本発明の発明者等が提唱したNMT(Nano molding technologyの略)は、金属材と高結晶性熱可塑性樹脂を射出成形により、金属と樹脂を高強度に接合一体化する接合技術である。本発明の発明者は、このNMTで用いた金属表面処理技術を転用すれば、接着剤による異材質の接着においても、金属材同士の高強度接着技術に繋がると判断し、前述したNATを完成させた。そして、このNATを一部利用して、CFRP材同士、CFRP材とA7075Alの高度接着が成功すれば、前記目標がかなり近くなると考えた。但し、CFRP片同士の上記「EW2040」による図1に示した形状の試験片である接着対の示したせん断接着強さは、意外な数値となった。
(Shear adhesion strength of CFRP pieces)
The ultimate goal of the present inventor regarding the bonding technique was to completely bond the CFRP material and A7075Al to be useful for manufacturing the basic structure of an aircraft or the like, which requires the ultimate weight reduction. On the other hand, NMT (abbreviation of Nano molding technology) proposed by the inventors of the present invention is a joining technology for joining and integrating a metal material and a highly crystalline thermoplastic resin with high strength by injection molding. .. The inventor of the present invention has determined that if the metal surface treatment technology used in this NMT is diverted, it will lead to a high-strength bonding technology between metal materials even when bonding different materials with an adhesive, and completes the above-mentioned NAT. I let you. Then, it was thought that if the CFRP material and the CFRP material and A7075Al were successfully adhered to each other by partially utilizing this NAT, the target would be considerably close. However, the shear bond strength of the bond pair, which is a test piece having the shape shown in FIG. 1 according to the above "EW2040" between CFRP pieces, was an unexpected value.

炭素繊維(以下、「CF」という。)メーカーとの共同研究の結果であるが、航空機用CFRP材に使用されている、最新型のCFは引張り強さ6GPa程度を有する高強度繊維である。その電顕写真は、断面がほぼ真円形であり側面は縦筋はなく、かつ滑らかである。このCFを使用したプリプレグを積層して得たCFRP厚板からCFRP片を切り出し、その表面端部を粗面化する等の表面加工をした上で、上記「EW2040」を使用して、図1に示す形状の接着対とし、そのせん断接着強さを測定すると約40MPaとなる。一方で、CFメーカー各社がこの最新型のCFの工業化の以前から製造しているCF、これを旧型CFとすると、これは引張り強度が約3GPa程度の高強度繊維であり、その電顕写真は断面形状が楕円形、瓢箪型等を成している物など種々である。このCFの側面には、縦筋が常に1〜2本あり、かつ、所々に小さな凸部や凹部が見られる。このCFを使用したCFRP厚板から同様に、上記「EW2040」を使用して、図1に示す形状の接着対とし、せん断接着強さを測定すると約60MPaになる。要するに、CFRP片同士の1液性エポキシ接着剤による接着対を強引にせん断破断した場合、その破断開始箇所は、接着剤とCFが接着されている表面層部ではなく、これと離れたマトリックス樹脂層であった。 As a result of joint research with a carbon fiber (hereinafter referred to as "CF") manufacturer, the latest CF used in CFRP materials for aircraft is a high-strength fiber having a tensile strength of about 6 GPa. The electron micrograph has a nearly perfect circular cross section, no vertical streaks on the sides, and is smooth. A CFRP piece is cut out from a CFRP thick plate obtained by laminating prepregs using this CF, surface processing such as roughening the surface end portion thereof is performed, and then using the above "EW2040", FIG. 1 When the adhesive pair has the shape shown in (1) and its shear adhesive strength is measured, it is about 40 MPa. On the other hand, if CF manufacturers have manufactured CF before the industrialization of this latest CF, and if this is an old CF, this is a high-strength fiber with a tensile strength of about 3 GPa, and its electron micrograph is There are various types such as those having an oval cross-sectional shape and a gourd-shaped cross section. On the side surface of this CF, there are always one or two vertical stripes, and small protrusions and recesses can be seen in some places. Similarly, from the CFRP thick plate using this CF, the above-mentioned "EW2040" is used to form an adhesive pair having the shape shown in FIG. 1, and the shear adhesive strength is measured to be about 60 MPa. In short, when the adhesive pair of CFRP pieces with a one-component epoxy adhesive is forcibly shear-broken, the fracture start point is not the surface layer part where the adhesive and CF are adhered, but the matrix resin separated from this. It was a layer.

CFとマトリックス樹脂硬化物間の真の接着力は約40MPaと推定され、新型CFを使用したCFRP片では、その数値がせん断接着強さとなるが、旧型CF使用のCFRP片では、その表面積が大きいことを示している。即ち、新型CFは、真円の断面近い繊維であるが、旧型CFは真円でないために、呼称されている見かけの表面積より実際の表面積が大きくなり、約60MPaのせん断接着強さとなったものである(特許文献9)。要するに、本発明者の目指したCFRP材とA7075Alとの強い接着構造を、素材の持つ極限強度まで近づけるには、どうするかである。本発明では、航空機用の高強度CFRP材等の使用が前提になるから、耐熱性ある1液性エポキシ接着剤で高強度の上記「EW2040」使用の場合でも、接着剤とCFRP材間の最高の接着力として、接着剤の強度以下の約40MPaというやや予期したよりも低い接着力が前提になるという意味である。 The true adhesive force between the CF and the cured matrix resin is estimated to be about 40 MPa, and the value is the shear adhesive strength in the CFRP piece using the new CF, but the surface area is large in the CFRP piece using the old CF. It is shown that. That is, the new CF is a fiber with a cross section close to a perfect circle, but the old CF is not a perfect circle, so the actual surface area is larger than the nominal surface area, and the shear adhesion strength is about 60 MPa. (Patent Document 9). In short, how can the strong adhesive structure between the CFRP material and A7075Al, which the present inventor aimed at, be brought close to the maximum strength of the material? Since the present invention presupposes the use of a high-strength CFRP material for aircraft, the highest strength between the adhesive and the CFRP material is achieved even when the above-mentioned "EW2040", which is a heat-resistant one-component epoxy adhesive and has high strength, is used. It means that the adhesive strength of the above is assumed to be about 40 MPa, which is less than the strength of the adhesive, which is slightly lower than expected.

WO2008/114669WO2008 / 114669 WO2008/133096WO2008 / 133096 WO2008/133296WO2008 / 133296 WO2008/126812WO2008 / 126812 WO2008/133030WO2008 / 133030 WO2008/146833WO2008 / 146833 WO2009/084648WO2009 / 084648 特開2016−210942JP 2016-210942 特開2011−073191Japanese Patent Application Laid-Open No. 2011-073191 特開2011−006544JP 2011-006544 特開2011−026457JP 2011-206457 特開2016−60051JP 2016-60051

CFRP材が超軽量高強度材として、旅客機の主構造材に本格使用されるようになって既に10年以上経過している。複数のCFRP部材同士の組立構造(固着構造)の構築、CFRP部材と超々ジュラルミン(日本工業規格のA7075Al)の組立構造(連結構造)を構築するとき、航空機製造企業が苦心した経過はよく知られている。CFRPの剛性は、高強度金属以上の機械的強度を備えているが実質はプラスチックであり、これを構造物として締結構造にするとき種々の問題が発生する。例えば、CFRP材に貫通孔を開けて、この貫通孔に挿入するボルトと他構造材とを締結するとき、ナットを締め込み過ぎるとCFRP材は破壊される。 It has been more than 10 years since CFRP material has been used in earnest as a main structural material for passenger aircraft as an ultra-lightweight and high-strength material. It is well known that aircraft manufacturers struggled when constructing an assembly structure (fixed structure) between multiple CFRP members and an assembly structure (connecting structure) between CFRP members and extra super duralumin (A7075Al of Japanese Industrial Standards). ing. The rigidity of CFRP is higher than that of high-strength metal, but it is actually plastic, and various problems occur when it is used as a structure to form a fastening structure. For example, when a through hole is made in a CFRP material and a bolt to be inserted into the through hole is fastened to another structural material, if the nut is tightened too much, the CFRP material is destroyed.

仮に、CFRP材とA7075Al材等の金属材とが強力に接着が出来たとしても、自動車や航空機等の移動機械としてその接着構造物を採用するには、使用環境から受ける温度変化、移動時や停止時に受けるエンジンの熱による温度衝撃サイクルによる影響がある。更に、季節や気候による温度変化もあり、かつ、航空機であれば、成層圏の−50〜−60℃という極低温と熱帯地帯の砂漠の空港での例えば、+50℃という高温、そして機体表面では+80℃以上にもなる高温環境との間を往復する温度変化に耐えねばならない。又、アラスカやシベリア等の極寒で使用される自動車は、現行の試験方法である−50℃/+80℃の温度衝撃3千サイクル試験に対応する必要があるし、エンジンルーム内、発光器等の近傍では−50℃/+150℃の温度衝撃3千サイクル試験に耐えねばならない。 Even if the CFRP material and the metal material such as A7075Al material can be strongly adhered, in order to adopt the adhesive structure as a moving machine such as an automobile or an aircraft, the temperature changes received from the usage environment, when moving, or There is an effect of the temperature shock cycle due to the heat of the engine received when stopped. Furthermore, there are temperature changes due to seasons and climate, and in the case of aircraft, the cryogenic temperature of -50 to -60 ° C in the stratosphere, the high temperature of + 50 ° C in tropical desert airports, and +80 on the surface of the aircraft. It must withstand temperature changes that reciprocate to and from high temperature environments above ° C. In addition, automobiles used in extremely cold weather such as Alaska and Siberia need to support the current test method of 3,000 ° C temperature shock 3,000 cycle test, and in the engine room, light emitter, etc. In the vicinity, it must withstand a temperature impact of 3,000 cycles of -50 ° C / + 150 ° C.

前述した接着技術における化成処理を開発した当初において、本発明者等は、そのような温度変化に対しても接着力を著しく向上させることにより、容易に解決できるだろうと考えていた。しかしながら、その後の実用のための耐久試験を始めると必ずしも解決できるものではなかった。CFRP材は、その線膨張率が(0.1〜0.2)×10−5−1とされ、超々ジュラルミンと呼称されるA7075Alは2.3×10−5−1であるから、両者間の線膨張率差は2.2×10−5−1もある。もし−50℃/+150℃の温度衝撃3千サイクル試験の中で温度が200℃も下がったら(又は上がったら)、その積の4.4×10−3、即ち0.44%だけ両材間の長さが変化する。 At the beginning of the development of the chemical conversion treatment in the above-mentioned adhesive technology, the present inventors thought that such a temperature change could be easily solved by significantly improving the adhesive force. However, it was not always possible to solve the problem when the durability test for practical use was started. Since the linear expansion coefficient of CFRP material is ( 0.1 to 0.2) × 10 -5 K -1, and A7075Al called extra super duralumin is 2.3 × 10 -5 K -1 . The difference in linear expansion coefficient between the two is as large as 2.2 × 10-5 K -1 . If the temperature drops (or rises) by 200 ° C in a temperature impact of -50 ° C / + 150 ° C in a 3000 cycle test, the product is 4.4 × 10 -3 , or 0.44% between the two materials. The length of is changed.

要するに、接着力が弱ければこのような温度衝撃による変形に耐えられず直ちに破断するし、接着力が高いと温度変化によっても破断せずに2材の形状が小さく変形し、温度変化によるその変形サイクルを繰り返すことになる。その温度変化サイクルが数千回も繰り返されていると、推定であるが低温時に突然に「ピシッ」等の破断音を立て破断することになる。そして、仮に接着力が非常に高く、かつ、その接着剤硬化物には耐湿熱性がある等の耐久性があり、しかも金属材が錆び難い種類である場合であっても、温度変化による変形は半永久に続く。但し、両材の厚さが、例えば10mm以上ある剛性のある物同士の接合物であれば、双方共に剛性が大きく曲がり変形し難いから、この場合は、素材の内部に大きな内部応力が発生し、接着力が強い場合でも、大きな温度変化があれば接着部は破断する。 In short, if the adhesive strength is weak, it cannot withstand such deformation due to temperature impact and breaks immediately, and if the adhesive strength is high, the shape of the two materials is deformed small without breaking due to temperature changes, and the deformation due to temperature changes. The cycle will be repeated. If the temperature change cycle is repeated thousands of times, it is estimated that the temperature suddenly breaks at a low temperature with a breaking noise such as "snap". Even if the adhesive strength is very high, the cured adhesive has durability such as moisture and heat resistance, and the metal material is a type that does not easily rust, the deformation due to temperature change will occur. It lasts semi-permanently. However, if the thickness of both materials is, for example, 10 mm or more, if the joints are made of rigid materials, both materials have high rigidity and are difficult to bend and deform. In this case, a large internal stress is generated inside the material. Even if the adhesive strength is strong, the adhesive portion will break if there is a large temperature change.

本発明者等は、各種金属とCFRP材との接着の強度を上げる提案をした。しかしながら、これらの提案した最大の接着力持つ試験片を厳しい温度衝撃数千サイクル試験をすれば、接着面積を広げた大きな試験片ほど、むしろ破壊されることを確認した。即ち、線膨張率の差を押し込め通すための接着手法の改良の開発は、使用環境によっては限界がある。取り分け、線膨張率差が大きい各種金属とCFRP材等の非金属材との接着には限界がある。 The present inventors have proposed to increase the adhesive strength between various metals and CFRP materials. However, it was confirmed that when these proposed test pieces with the maximum adhesive strength were subjected to a severe temperature impact thousands of cycles, the larger the test pieces with the wider adhesive area, the more they were destroyed. That is, there is a limit to the development of an improvement in the adhesive method for pushing through the difference in the coefficient of linear expansion depending on the usage environment. In particular, there is a limit to the adhesion between various metals having a large difference in linear expansion coefficient and non-metal materials such as CFRP materials.

本発明は上記の課題を解決するものであり、以下の目的を達成するものである。
本発明の目的は、各種の構造用金属材、CFRP材、及びCFRTP材から選択される線膨張率差が大きい2種の高強度材を、接着剤による接合により接合積層した、異種構造材を含む接合一体化物とその製造方法を提供するにある。
本発明の他の目的は、各種の構造用金属材、CFRP材、及びCFRTP材から選択される線膨張率の差の大きい2種以上の高強度構造材を接着剤による接合法により接合積層したものであり、温度変化に強い、異種構造材を含む接合一体化物とその製造方法を提供するにある。
本発明の更に他の目的は、各種の構造用金属材、FRP材、及びFRTP材から選択される線膨張率の差の大きい2種以上の高強度構造材を、接着剤による接合、クラッド接合等を含む、異種構造材を含む接合一体化物とその製造方法において、市販の1液性エポキシ接着剤、及び、2液性エポキシ接着剤を使用して接合積層加工ができる、異種構造材を含む接合一体化物とその製造方法を提供することにある。
The present invention solves the above problems and achieves the following objects.
An object of the present invention is to obtain a dissimilar structural material in which two types of high-strength materials having a large difference in linear expansion coefficient selected from various structural metal materials, CFRP materials, and CFRTP materials are joined and laminated by joining with an adhesive. It is to provide a joint integral body including and a method for manufacturing the same.
Another object of the present invention is to join and laminate two or more kinds of high-strength structural materials having a large difference in linear expansion coefficient selected from various structural metal materials, CFRP materials, and CFRTP materials by a joining method using an adhesive. It is an object of the present invention to provide a bonded integrated product containing dissimilar structural materials and a method for producing the same, which is resistant to temperature changes.
Still another object of the present invention is to join two or more kinds of high-strength structural materials having a large difference in linear expansion ratio selected from various structural metal materials, FRP materials, and FRTP materials with an adhesive or clad joint. Including a heterogeneous structural material including a heterogeneous structural material including, etc., which can be bonded and laminated using a commercially available one-component epoxy adhesive and a two-component epoxy adhesive in the manufacturing method thereof. It is an object of the present invention to provide a bonded integrated product and a method for producing the same.

本発明は、上記目的を達成するために、以下の手段を採る。
本発明1の異種構造材を含む接合一体化物(例えば、図4の3層、3材)は、
FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は前記純アルミニウム系アルミニウム合金の構造物が積層されたものであり、
前記「A」材、前記「D」材、及び「B」材の順に接合面が固着積層された3材からなることを特徴とする。
The present invention adopts the following means in order to achieve the above object.
The joint integrated product (for example, 3 layers and 3 materials in FIG. 4) containing different structural materials of the present invention 1 is
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a plate-like product of a pure aluminum-based aluminum alloy having a thickness of 1.5 to 5.0 mm, which is a "D" material, or a structure of the pure aluminum-based aluminum alloy. It is a stack of things,
It is characterized in that it is composed of three materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "D" material, and the "B" material.

本発明2の異種構造材を含む接合一体化物(例えば、図6の4層、4材)は、
FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び「B」材の順に接合面が固着積層された4材からなることを特徴とする。
The joint integrated product (for example, 4 layers and 4 materials in FIG. 6) containing different structural materials of the present invention 2 is
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is characterized in that it is composed of four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material.

本発明3の異種構造材を含む接合一体化物(例えば、図5の5層、5材)は、
FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物であり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなることを特徴とする。
The joint integrated product (for example, 5 layers and 5 materials in FIG. 5) containing different structural materials of the present invention 3 is
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to It is a plate-like product of 5.0 mm pure aluminum-based aluminum alloy.
It is characterized in that it is composed of five materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material.

本発明4の異種構造材を含む接合一体化物(例えば、図6、4層、4材の変形)は、
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び前記「B」材の順に接合面が固着積層された4材からなり、
前記FRTP材と前記「C」材の接合法は、前記「C」材に射出接合法により、前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合した後、前記FRTP材と前記樹脂を熱融着により接合されたものであり、
前記熱融着以外の他の接合の前記接合面は、接着剤による接合されたものであることを特徴とする。
The joint integrated product containing the dissimilar structural materials of the present invention 4 (for example, the deformation of the four layers and four materials in FIGS. 6 and 4) is
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is composed of four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material.
The method of joining the FRTP material and the "C" material is to join the "C" material with a resin of the same type as the matrix resin of the FRTP material by an injection joining method, and then join the FRTP material. The resin is joined by heat fusion, and is
The joint surface of the joint other than the heat fusion is characterized in that it is joined by an adhesive.

本発明5の異種構造材を含む接合一体化物は、
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材、前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなり、
前記FRTP材と前記「C」材の接合法は、前記「C」材に、前記FRTP材のマトリックス樹脂と同種の樹脂をインサート成形で接合した後、前記FRTP材と前記樹脂を熱融着により接合されたものであり、
前記熱融着以外の他の接合の前記接合面は、接着剤による接合されたものであることを特徴とする。
The joint integrated product containing the dissimilar structural material of the present invention 5 is
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is composed of 5 materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material.
In the method of joining the FRTP material and the "C" material, a resin of the same type as the matrix resin of the FRTP material is joined to the "C" material by insert molding, and then the FRTP material and the resin are heat-sealed. It is joined and
The joint surface of the joint other than the heat fusion is characterized in that it is joined by an adhesive.

本発明6の異種構造材を含む接合一体化物は、本発明1〜5の異種構造材含む接合一体化物において、前記「D」材は、純アルミニウム系アルミニウム合金であり、日本工業規格A1080、A1085、及びA1050から選択される1種であることを特徴とする。 The joint integrated product containing different structural materials of the present invention 6 is a joint integrated product containing different structural materials of the present inventions 1 to 5, and the "D" material is a pure aluminum-based aluminum alloy, and Japanese Industrial Standards A1080 and A1085. , And one selected from A1050.

本発明7の異種構造材を含む接合一体化物は、本発明2〜5の異種構造材含む接合一体化物において、前記「C」材は、日本工業規格のA5052アルミニウム合金、A5083アルミニウム合金、A6061アルミニウム合金、及びSUS304ステンレス鋼から選択される1種であることを特徴とする。 The joint integrated product containing different structural materials of the present invention 7 is a joint integrated product containing different structural materials of the present inventions 2 to 5, and the "C" material is a Japanese industrial standard A5052 aluminum alloy, A5083 aluminum alloy, A6061 aluminum. It is characterized in that it is one selected from an alloy and SUS304 stainless steel.

本発明8の異種構造材を含む接合一体化物は、本発明1〜5の異種構造材含む接合一体化物において、前記接合面は、平面、曲面、及び円筒面から選択される1以上の面を含むものであることを特徴とする。 The joint integrated product containing different structural materials of the present invention 8 is the joint integrated product containing different structural materials of the present inventions 1 to 5, and the joint surface is one or more surfaces selected from a flat surface, a curved surface, and a cylindrical surface. It is characterized by including.

本発明9の異種構造材を含む接合一体化物は、本発明1〜8の異種構造材含む接合一体化物において、前記「D」材は、下面は平面又は曲面であり、上面には断面積0.05〜0.25cmの円形又は角状の柱状物が並列して多数林立している板状体であることを特徴とする。 The joint integrated product containing the dissimilar structural materials of the present invention 9 is the joint integrated product containing the dissimilar structural materials of the present inventions 1 to 8, and the lower surface of the "D" material is a flat surface or a curved surface, and the cross-sectional area is 0 on the upper surface. It is characterized in that it is a plate-like body in which a large number of circular or square columnar objects of .05 to 0.25 cm 2 stand side by side.

本発明10の異種構造材を含む接合一体化物は、本発明1〜8の異種構造材含む接合一体化物において、前記「D」材は、下面は平面又は曲面であり、上面には厚さ3〜5mmの壁が幅2〜3mmの間隔あけて多数林立している壁状突起、又は、厚さ3〜5mmの壁が幅2〜3mmの間隔あけて同心円状の壁状突起を有する板状体であることを特徴とする。 The joint integrated product containing the different structural materials of the present invention 10 is the joint integrated product containing the different structural materials of the present inventions 1 to 8, and the lower surface of the "D" material is a flat surface or a curved surface, and the upper surface has a thickness of 3. A large number of wall-shaped protrusions with a width of 2 to 3 mm and a large number of forests with a width of 2 to 3 mm, or a plate-like wall with a thickness of 3 to 5 mm having concentric wall-like protrusions with a width of 2 to 3 mm. It is characterized by being a body.

本発明11の異種構造材を含む接合一体化物は、本発明10の異種構造材含む接合一体化物において、前記同心円状の前記壁状突起の中心は、1〜5cmの部分は厚さ1〜5mmの円形の厚板状であることを特徴とする。 Integrally bonded containing a heterologous structural material of the present invention 11 is the integrally bonded containing heterologous material of the present invention 10, the center of the concentric of the wall-like projection, the portion of 1 to 5 cm 2 the thickness 1 It is characterized by having a circular thick plate shape of 5 mm.

本発明12の異種構造材を含む接合一体化物は、本発明2〜5の異種構造材含む接合一体化物において、前記「A」材、前記「B」材、前記「C」材、及び前記「D」材の5材間の接合において、接着剤で接合された接合部に存在する接着剤硬化層は、全て1液性エポキシ接着剤の硬化層、又は、2液性エポキシ接着剤の硬化層が含まれたものであることを特徴とする。 The joint integrated product containing the different structural materials of the present invention 12 is the joint integrated product containing the different structural materials of the present inventions 2 to 5, the "A" material, the "B" material, the "C" material, and the "C" material. In the bonding between the five materials of the "D" material, the adhesive curing layers existing at the joints joined by the adhesive are all the cured layer of the one-component epoxy adhesive or the cured layer of the two-component epoxy adhesive. It is characterized in that it contains.

本発明13の異種構造材を含む接合一体化物は、本発明2〜5の異種構造材含む接合一体化物において、前記「A」材、前記「B」材、前記「C」材、及び前記「D」材の4材以上が接合されたものにおいて、接着剤で接合された接合部に換えて一部がクラッド結合部であることを特徴とする。 The joint integrated product containing the different structural materials of the present invention 13 is the joint integrated product containing the different structural materials of the present inventions 2 to 5, the "A" material, the "B" material, the "C" material, and the "C" material. It is characterized in that four or more lumbers of the "D" material are joined, and a part of the joint is a clad joint instead of the joint joined by an adhesive.

本発明14の異種構造材を含む接合一体化物は、本発明12又は13の異種構造材を含む接合一体化物において、前記1液性エポキシ接着剤は、引張り破断試験において、せん断接着強さが23℃下で50MPa以上を示し、かつ、150℃下で25MPa以上を示す耐熱型1液性エポキシ接着剤であることを特徴とする。 The bonded integrated product containing the dissimilar structural material of the present invention 14 is the bonded integrated product containing the dissimilar structural material of the present invention 12 or 13, and the one-component epoxy adhesive has a shear adhesive strength of 23 in the tensile break test. It is a heat-resistant one-component epoxy adhesive that exhibits 50 MPa or more at ° C. and 25 MPa or more at 150 ° C.

本発明15の異種構造材を含む接合一体化物は、本発明1〜14の異種構造材を含む接合一体化物であって、
前記「A」材、及び前記「B]材は、CFRP材とチタン合金材、CFRP材と一般鋼材、CFRP材とステンレス鋼材、CFRP材と高強度アルミニウム合金材、GFRP材と高強度アルミニウム合金材、CFRTP材とチタン合金材、CFRTP材と一般鋼材、CFRTP材とステンレス鋼材、CFRTP材と高強度アルミニウム合金材、チタン材と一般鋼材、チタン材とステンレス鋼材、チタン材と高強度アルミニウム合金材、一般鋼材とステンレス鋼材、一般鋼材と高強度アルミニウム合金材、フェライト系ステンレス鋼材とオーステナイト系ステンレス鋼材、及び、ステンレス鋼材と高強度アルミニウム合金材から選択される1種であることを特徴とする。
The bonded integrated product containing the dissimilar structural materials of the present invention 15 is a bonded integrated product containing the dissimilar structural materials of the present inventions 1 to 14.
The "A" material and the "B" material are CFRP material and titanium alloy material, CFRP material and general steel material, CFRP material and stainless steel material, CFRP material and high-strength aluminum alloy material, GFRP material and high-strength aluminum alloy material. , CFRTP material and titanium alloy material, CFRTP material and general steel material, CFRTP material and stainless steel material, CFRTP material and high-strength aluminum alloy material, titanium material and general steel material, titanium material and stainless steel material, titanium material and high-strength aluminum alloy material, It is characterized in that it is one selected from general steel material and stainless steel material, general steel material and high-strength aluminum alloy material, ferrite-based stainless steel material and austenite-based stainless steel material, and stainless steel material and high-strength aluminum alloy material.

本発明16の異種構造材を含む接合一体化物は、本発明4〜13に記載の異種構造材含む接合一体化物において、
前記「A」材のFRTPがCFRTPであり、
前記樹脂は、0.5mm厚以上の高結晶性熱可塑性合成樹脂組成物であり、前記「C」材と前記樹脂の厚みの合計は、厚さ2mm以下の複合板であり、
前記「A」材と前記「C」材の接合は、前記CFRTPのマトリックス樹脂と高結晶性熱可塑性合成樹脂組成物を熱融着により固着したものであり、
前記「B」材は、チタン合金材、一般鋼材、ステンレス鋼材、及び、高強度アルミニウム合金材から選択される1種であることを特徴とする。
The joint integrated product containing the dissimilar structural materials of the present invention 16 is the joint integrated product containing the dissimilar structural materials according to the present inventions 4 to 13.
The FRTP of the "A" material is CFRTP, and
The resin is a highly crystalline thermoplastic synthetic resin composition having a thickness of 0.5 mm or more, and the total thickness of the "C" material and the resin is a composite plate having a thickness of 2 mm or less.
The bonding between the "A" material and the "C" material is obtained by fixing the CFRTP matrix resin and the highly crystalline thermoplastic synthetic resin composition by heat fusion.
The "B" material is one selected from a titanium alloy material, a general steel material, a stainless steel material, and a high-strength aluminum alloy material.

本発明17の異種構造材を含む接合一体化物は、本発明1〜16に記載の異種構造材含む接合一体化物において、
前記高強度アルミニウム合金材は、日本工業規格のA2014、A2017、A2024、及びA7075から選択されるジュラルミン類、又は、日本工業規格のA5052、A5083、A6061、及びA6063から選択される1種のアルミニウム合金であることを特徴とする。
The joint integrated product containing the dissimilar structural materials of the present invention 17 is the joint integrated product containing the dissimilar structural materials according to the present inventions 1 to 16.
The high-strength aluminum alloy material is duralumin selected from Japanese Industrial Standards A2014, A2017, A2024, and A7075, or one type of aluminum alloy selected from Japanese Industrial Standards A5052, A5083, A6061, and A6063. It is characterized by being.

本発明1の異種構造材を含む接合一体化物の製造方法は、
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び前記「B」材の順に接合面が固着積層された4材からなる異種構造材を含む接合一体化物の製造方法であって、
前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合するために、前記「C」材を金型にインサートした後、前記樹脂を射出してFRTP材と前記「C」材を接合する射出接合工程と、
前記射出接合後、前記FRTP材と前記樹脂を熱融着により接合する熱融着工程と、
他の接合部は、接着剤による接合工程法とからなることを特徴とする。
The method for producing a bonded integrated product containing different structural materials of the present invention 1 is
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is a method for manufacturing a joint integrated product containing dissimilar structural materials consisting of four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material. hand,
In order to bond a resin of the same type as the matrix resin of the FRTP material to the "C" material, the "C" material is inserted into a mold, and then the resin is injected to bond the FRTP material and the "C" material. Injection joining process to join and
After the injection joining, a heat fusion step of joining the FRTP material and the resin by heat fusion,
The other joint is characterized in that it comprises a joining process method using an adhesive.

本発明2の異種構造材を含む接合一体化物の製造方法は、
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材、前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなる異種構造材を含む接合一体化物の製造方法であって、
前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合するために、前記「C」材を金型にインサートした後、前記樹脂を射出してFRTP材と前記「C」材を接合する射出接合工程と、
前記射出接合後、前記FRTP材と前記樹脂を熱融着により接合する熱融着工程と、
他の接合部は、接着剤による接合工程法と
からなることを特徴とする。
The method for producing a bonded integrated product containing different structural materials of the present invention 2 is
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
A joint integrated product containing five different structural materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material. It is a manufacturing method of
In order to bond a resin of the same type as the matrix resin of the FRTP material to the "C" material, the "C" material is inserted into a mold, and then the resin is injected to bond the FRTP material and the "C" material. Injection joining process to join and
After the injection joining, a heat fusion step of joining the FRTP material and the resin by heat fusion,
The other joints are characterized by consisting of an adhesive joining process.

以下、上記本発明を構成する各要素について説明する。
[本発明の「A」材、「B」材、「C」材、及び「D」材の概要]
本発明でいう「A」材、「B」材とは、積層体である本発明の異種構造材を含む接合一体化物の両端部の部材を意味する。「C」材、「D」材は、「A」材と「B」材の間に固着されて積層された部材を意味する。本発明の「A」材、「B」材、及び「C」材は、下記の「(1)FRP材、FRTP材」、及び「(2)構造用金属材」から選択される1種を指す。本発明の「D」材]とは後述する「(3)「D」材」を意味する。
Hereinafter, each element constituting the present invention will be described.
[Overview of "A" material, "B" material, "C" material, and "D" material of the present invention]
The "A" material and the "B" material in the present invention mean the members at both ends of the bonded integrated product containing the different structural materials of the present invention, which are laminated bodies. The "C" material and the "D" material mean members that are fixed and laminated between the "A" material and the "B" material. The "A" material, "B" material, and "C" material of the present invention are selected from the following "(1) FRP material, FRTP material", and "(2) Structural metal material". Point to. The "D" material of the present invention] means "(3)" D "material" described later.

(1)FRP材、FRTP材
本発明でいうFRP材は、一般的な繊維強化プラスチック(Fiber Reinforced Plastics)であり、マトリックス樹脂である熱硬化性樹脂であるエポキシ樹脂等にガラス繊維、炭素繊維等の繊維を複合して強度を向上させた成形材料、又は成形品のことである。炭素繊維を用いたFRPはCFRPであり、ガラス繊維を用いたFRPはGFRPである。一方、FRTP材(Fiber Reinforced Thermo-plastics)は、結晶性等を有する熱可塑性樹脂であるポリアミド樹脂、ポリフェニレンサルファイド樹脂(以下、PPSという。)、ポリエーテルエーテルケトン樹脂(以下、PEEK)等をマトリックス樹脂とし、ガラス繊維、炭素繊維等の繊維を入れて強化改良した成形材料、又は成形品若しくは管材、板材等の汎用材のことである。炭素繊維を用いたFRTPはCFRTPと称されており、ガラス繊維を用いたFRTPはGFRTPと称されている。これらのFRP材、FRTP材の成形品は、板材、管材、棒材、シート等の規格化された汎用材、個々に設計された成形品を含むものである。
(1) FRP material, FRTP material The FRP material referred to in the present invention is general fiber reinforced plastic (Fiber Reinforced Plastics), and is a matrix resin, a thermosetting resin, an epoxy resin, etc., and glass fibers, carbon fibers, etc. It is a molding material or a molded product in which the fibers of the above are composited to improve the strength. The FRP using carbon fiber is CFRP, and the FRP using glass fiber is GFRP. On the other hand, the FRTP material (Fiber Reinforced Thermo-plastics) is a matrix of polyamide resin, polyphenylene sulfide resin (hereinafter referred to as PPS), polyetheretherketone resin (hereinafter referred to as PEEK), etc., which are thermoplastic resins having crystallinity and the like. It is a molding material that is made of resin and reinforced and improved by adding fibers such as glass fiber and carbon fiber, or a general-purpose material such as a molded product, a pipe material, and a plate material. FRTP using carbon fiber is called CFRTP, and FRTP using glass fiber is called GFRTP. The molded products of these FRP materials and FRTP materials include standardized general-purpose materials such as plate materials, pipe materials, bar materials, and sheets, and individually designed molded products.

(2)構造用金属材
本発明でいう構造用金属材とは、日本工業規格等で規格化された、又は、特殊なTi合金材、各種の構造用鋼材、各種ステンレス鋼、各種アルミニウム合金等の構造用金属材を意味する。アルミニウム合金には、Al-Cu系(日本工業規格の2000系)、Al-Mn系(日本工業規格の3000系)、Al-Si系(日本工業規格の4000系)、Al-Mg系(日本工業規格の5000系)、Al-Mg-Si系(日本工業規格の6000系)、Al-Zn-Mg系(日本工業規格の7000系)、及び、純アルミ系(日本工業規格の1000系)等がある。また、本発明で使用されるアルミニウム合金は、日本工業規格で規定する1000〜8000系の伸展用アルミニウム合金、更にはADC12等の鋳造用アルミニウム合金が含まれる。従って、本発明の構造用アルミニウム合金材は、伸展用アルミニウム合金、鋳造用アルミニウム合金の両方が含まれる。
(2) Structural metal materials The structural metal materials referred to in the present invention are standardized by Japanese Industrial Standards, etc., or special Ti alloy materials, various structural steel materials, various stainless steels, various aluminum alloys, etc. Means the structural metal material of. Aluminum alloys include Al-Cu series (Japanese Industrial Standard 2000 series), Al-Mn series (Japanese Industrial Standard 3000 series), Al-Si series (Japanese Industrial Standard 4000 series), and Al-Mg series (Japan). Industrial Standard 5000 series), Al-Mg-Si series (Japanese Industrial Standard 6000 series), Al-Zn-Mg series (Japanese Industrial Standard 7000 series), and Pure Aluminum (Japanese Industrial Standard 1000 series) And so on. Further, the aluminum alloy used in the present invention includes 1000 to 8000 series aluminum alloys for extension defined by Japanese Industrial Standards, and aluminum alloys for casting such as ADC12. Therefore, the structural aluminum alloy material of the present invention includes both an aluminum alloy for extension and an aluminum alloy for casting.

(3)本発明の「D」材
本発明でいう「D」材は、本発明を構成する構成要素の中で重要な機能、作用を受け持っている。即ち、本発明の「D」材は、機械的性質としては展伸性を有する軟質金属であり、かつ、接合性の高いもの、例えば、前述した1液性エポキシ接着剤「EW2040」に対して、十分強い接着力(せん断接着強さ)を有している部材である。これに加えて、基本的な特性としては、前述した「A」材と「B」材の間に挟まれて、十分に高い接着力で接着されて、「A」材、「D」材、「B」材、及び「C」材の3材、又は4材で接合一体化物となるものである。その一体化物は−50℃/+150℃の温度衝撃3千サイクル試験にかけられても破壊されない特性が要求される。本発明では、「A」材、「B」材間の線膨張率に大きな差異がある。このために、激しい温度変化で、「A」材、「B」材の長さは変化する。この結果、3層3材の場合、その上下面で「A」材、「B」材と強く接着されている「D」材の両面で、長さの伸び、又は縮みが異なるので、「D」材には変形への応力が発生する。しかし、「D」材は、展性があり軟性がある部材であるので自ら変形し、その熱収縮による応力を吸収して抑制され、温度衝撃数千サイクル試験に投入されても接着状態を保つことができる。この「D」材として、金属材で最も適しているのは、純アルミ系アルミニウム合金であり、好ましくは日本工業規格でいうA1085、A1080、A1050等の純アルミ系アルミニウム合金が好ましく使用できる。
(3) "D" material of the present invention The "D" material referred to in the present invention is responsible for important functions and actions among the constituent elements constituting the present invention. That is, the "D" material of the present invention is a soft metal having extensible property as a mechanical property and has high bondability, for example, with respect to the above-mentioned one-component epoxy adhesive "EW2040". , A member having a sufficiently strong adhesive force (shear adhesive strength). In addition to this, as a basic characteristic, it is sandwiched between the above-mentioned "A" material and "B" material and adhered with a sufficiently high adhesive force, and the "A" material, "D" material, Three or four materials, "B" material and "C" material, form a bonded integrated product. The integrated product is required to have the property of not being destroyed even when subjected to a temperature shock of 3,000 cycle test at -50 ° C / + 150 ° C. In the present invention, there is a large difference in the coefficient of linear expansion between the "A" material and the "B" material. Therefore, the lengths of the "A" material and the "B" material change due to a drastic temperature change. As a result, in the case of three layers and three materials, the length elongation or contraction is different on both the upper and lower surfaces of the "A" material and the "D" material that is strongly adhered to the "B" material. The material is stressed by deformation. However, since the "D" material is a malleable and flexible member, it deforms by itself, absorbs and suppresses the stress due to its thermal shrinkage, and maintains an adhesive state even when it is subjected to a temperature impact of several thousand cycle tests. be able to. As the "D" material, the most suitable metal material is a pure aluminum-based aluminum alloy, and preferably pure aluminum-based aluminum alloys such as A1085, A1080, and A1050 as defined in Japanese Industrial Standards can be used.

(4)本発明の「C」材
本発明でいう「C」材は、「D」材とは異なる特殊な役目を受け持っている。即ち、本発明の異種高強度構造材を含む接合一体化物は、高強度で、かつ軽量なものが求められており、それを実現するのに最適なものはCFRP材、CFRTP材等である。しかしながら、CFRP片同士を、例えば、上記1液性エポキシ接着剤「EW2040」で接着して、図1に示した試験片の接着対で試験した場合、そのせん断接着強さは約40MPaになる。その理由は前述した通りであるが、それ故に、例えば「A」材にCFRP片を使用した場合には、上述した通りその展伸性を利用した上記「D」材を使用すると良い。その「D」材に接着に最適な表面の化成処理がなされていると、金属材である「D」材と接着剤硬化物間の接着力は約60MPaになる。しかし、「A」材にCFRP片を使用した場合、「A」材と「D」材間の直接接着物では、最強度の接着力が得られたとしても、前述した理由でCFとマトリックス樹脂硬化物間の真の接着力は約40MPaとみられので、低い方の接着力に引きずられ、接合一体化物である積層体のせん断接着強さである接着力は、約40MPa以下になる。
(4) "C" material of the present invention The "C" material referred to in the present invention has a special role different from that of the "D" material. That is, the joint integrated product containing the different types of high-strength structural materials of the present invention is required to have high strength and light weight, and the most suitable ones for realizing this are CFRP materials, CFRTP materials and the like. However, when CFRP pieces are bonded to each other with, for example, the above-mentioned one-component epoxy adhesive "EW2040" and tested with the bonding pair of the test pieces shown in FIG. 1, the shear bonding strength is about 40 MPa. The reason is as described above, but therefore, for example, when a CFRP piece is used for the "A" material, it is preferable to use the above-mentioned "D" material utilizing its malleability as described above. When the "D" material is subjected to a surface chemical conversion treatment that is optimal for adhesion, the adhesive force between the metal "D" material and the cured adhesive is about 60 MPa. However, when a CFRP piece is used for the "A" material, even if the strongest adhesive force is obtained with the direct adhesive between the "A" material and the "D" material, the CF and the matrix resin are used for the reasons described above. Since the true adhesive force between the cured products is considered to be about 40 MPa, it is dragged by the lower adhesive force, and the adhesive force which is the shear adhesive strength of the laminated body which is a bonded integrated product becomes about 40 MPa or less.

又、「A」材にCFRTP材が使用された場合、CFRTPと「D」材間の接合に接着法は使用できない。その理由は、CFRTP材の表面はそのマトリックス樹脂である熱可塑性樹脂であり、熱可塑性樹脂と金属材を直接的に強く接合する一般的な技術はないからである。それ故、本発明の発明者が提案した接合方法では、CFRTP材に使用されているマトリックス樹脂、例えば、PEEK(ポリエーテルエーテルケトン)樹脂の場合に以下の工程で接合させる。即ち、金属薄板材に、射出接合用の表面処理(前述したNMT処理、新NMT処理等)を加えた後に、これを射出成形金型にインサートし、射出接合用に調整したPEEK系樹脂を射出接合させ、インサートした金属薄板に、PEEK系樹脂の薄板状物が面接合した複合板状物を一旦作成する。そして、この複合板とPEEK樹脂製のCFRTP厚板を、熱プレス融着させて金属薄板付きのCFRTP厚板を作成する(特許文献12参照)。 Further, when the CFRTP material is used for the "A" material, the bonding method cannot be used for joining the CFRTP and the "D" material. The reason is that the surface of the CFRTP material is a thermoplastic resin which is the matrix resin thereof, and there is no general technique for directly and strongly bonding the thermoplastic resin and the metal material. Therefore, in the bonding method proposed by the inventor of the present invention, the matrix resin used in the CFRTP material, for example, PEEK (polyetheretherketone) resin, is bonded in the following steps. That is, after applying surface treatment for injection bonding (NMT treatment, new NMT treatment, etc. described above) to the thin metal plate material, this is inserted into an injection molding die, and PEEK resin prepared for injection bonding is injected. A composite plate-like material in which a thin plate-like material of PEEK-based resin is surface-bonded to the metal thin plate that has been joined and inserted is temporarily prepared. Then, the composite plate and the CFRTP thick plate made of PEEK resin are heat-press fused to prepare a CFRTP thick plate with a metal thin plate (see Patent Document 12).

要するに、CFRTP材と金属材の接合一体化物を作成する方法として、例えば、この特許文献12で提案した接合方法がある。この接合方法の場合、CFRTP材を用いた場合、本発明の接合一体化物のCFRTP材と金属薄板材間の接合力(せん断接合強度)は、表面処理した金属材と射出接合用に使用したPEEK系樹脂間の射出接合力と同値になる。現在の処、金属材に軟質材の「D」材、例えばA1050Alを使用した場合、射出接合用PEEK系樹脂との射出接合されたもののせん断破断強さは、約45MPa付近である。この45MPaの数値は、「A」材に金属材を使った接合一体化物において、「A」材と「D」材と直接的に接着剤で接着した場合の予想値の60MPaより低い。更に言えば、CFRTP材のマトリックス樹脂がPPS系樹脂の場合には、上記の数値が約40MPaになり、CFRTP材のマトリックス樹脂が半芳香族型ポリアミド樹脂の場合には上記の数値が45〜50MPaになり、やはり60MPaより低い。 In short, as a method for producing a bonded integrated product of a CFRTP material and a metal material, for example, there is a bonding method proposed in Patent Document 12. In the case of this joining method, when the CFRTP material is used, the bonding force (shear bonding strength) between the CFRTP material and the metal thin plate material of the joint integrated product of the present invention is PEEK used for injection bonding with the surface-treated metal material. It becomes the same value as the injection bonding force between the based resins. At present, when a soft "D" material, for example, A1050Al, is used as the metal material, the shear breaking strength of the injection-bonded PEEK-based resin for injection bonding is about 45 MPa. This value of 45 MPa is lower than the expected value of 60 MPa when the "A" material and the "D" material are directly bonded with an adhesive in a bonded integrated product using a metal material for the "A" material. Furthermore, when the matrix resin of the CFRTP material is a PPS-based resin, the above value is about 40 MPa, and when the matrix resin of the CFRTP material is a semi-aromatic polyamide resin, the above value is 45 to 50 MPa. It is also lower than 60 MPa.

要するに、「A」材、「B」材として、CFRP材、CFRTP材等を使用した場合、接着力が約40〜50MPaに留まる。また、新たな合金が出現したとき、その表面の化成処理が最適でないと、その金属材との接着力が約40〜50MPaに留まる可能性もある。それ故に、「A」材、「B」材の接合面の基本的な接着力は、約40MPaやそれより低くなった場合、この接合部分が弱いことから、この接合一体化物は機械的な強度が弱いものとなる。このために、この接合一体化物の「A」材と「D」材間、「B」材と「D」材間等の接着力が、他の接合部分と同一レベルになるように、結果的に60MPa付近の強度に至るように、全接着構造を構築する必要がある。このために「A」材と「D」材間、「B」材と「D」材間に、金属薄板材の「C」材を更に挟み込む理由である。 In short, when a CFRP material, a CFRTP material, or the like is used as the "A" material and the "B" material, the adhesive strength remains at about 40 to 50 MPa. Further, when a new alloy appears, if the chemical conversion treatment on the surface thereof is not optimal, the adhesive force with the metal material may remain at about 40 to 50 MPa. Therefore, when the basic adhesive force of the joint surface of the "A" material and the "B" material is about 40 MPa or less, the joint portion is weak, so that the joint integrated product has mechanical strength. Becomes weak. Therefore, as a result, the adhesive strength between the "A" material and the "D" material, the adhesive force between the "B" material and the "D" material, etc. of this joint integrated product is at the same level as the other joint portions. It is necessary to construct a fully bonded structure so as to reach a strength of around 60 MPa. This is the reason why the "C" material, which is a thin metal plate material, is further sandwiched between the "A" material and the "D" material, and between the "B" material and the "D" material.

(「C」材の役割、機能)
以上の説明から理解されるように、結論として、本発明の「C」材は「D」と異なる特性の展性のある薄板金属であることが好ましい。線膨張率が大きく異なる構造材同士であっても、双方材のエポキシ接着剤に対する接着力が十分に高い場合には、一方が薄板材であれば、他方に追従してそのまま強く接着し、厳しい環境温度変化にも耐え得る。要するに「A」材と「D」材の間に、「D」材より剛性のある薄板の「C」材を挟んで接着剤接合すれば、この3者が一体化した一体化物に、大きな温度変化や温度衝撃があっても、薄板で「D」材より剛性を有する「C」材は、先ずこれより剛性のある「A」材の伸縮に追従し、「A」材の伸縮に追従して「C」材の伸縮は、そのまま軟質材の「D」材に伝わる。
(Role and function of "C" material)
As can be understood from the above description, in conclusion, the "C" material of the present invention is preferably a malleable thin metal having properties different from those of "D". Even if the structural materials have significantly different linear expansion rates, if the adhesive strength of both materials to the epoxy adhesive is sufficiently high, if one is a thin plate material, it will follow the other and adhere strongly as it is, and it will be severe. Can withstand changes in environmental temperature. In short, if a thin "C" material, which is more rigid than the "D" material, is sandwiched between the "A" material and the "D" material and bonded with an adhesive, a large temperature can be obtained in the integrated product in which these three materials are integrated. Even if there is a change or temperature impact, the "C" material, which is a thin plate and has more rigidity than the "D" material, first follows the expansion and contraction of the "A" material, which is more rigid than this, and then follows the expansion and contraction of the "A" material. The expansion and contraction of the "C" material is directly transmitted to the soft material "D" material.

同様に、「B」材と「D」材の間に、上記とは別の薄板「C」材を挟んで接着剤で接合すれば、この3者が一体化した接着物に温度変化や温度衝撃があっても、この「C」材は先ず「B」材の伸び縮みに追従し、「B」材の伸び縮みに追従したこの「C」材の伸び縮みは、そのまま「D」材に伝わる。この思考パターンで、「A」材、「C」材、「D」材、「C」材、及び「B」材からなる5層の積層構造を接着一体化(例えば、図5の積層体)した全接着構造を想定すれば、「A」材の伸縮と「B」材の伸縮が共に中央部の「D」材の上下面に伝わる。このとき、「D」材は純アルミニウム系アルミニウム合金である軟質金属が故に、全ての力は接着面に破断を引き込むことなく変形を吸収する。言い換えれば、「C」材は、「A」材と「D」材の間、「B」材と「D」材の間の変形の緩衝機能がある。但し、「C」材は、「A」材の伸縮と「B」材の伸縮を吸収する緩衝機能のみではない。 Similarly, if a thin plate "C" material different from the above is sandwiched between the "B" material and the "D" material and joined with an adhesive, the temperature change and temperature of the adhesive in which these three are integrated can be obtained. Even if there is an impact, this "C" material first follows the expansion and contraction of the "B" material, and the expansion and contraction of this "C" material that follows the expansion and contraction of the "B" material becomes the "D" material as it is. It is transmitted. With this thinking pattern, a five-layer laminated structure consisting of "A" material, "C" material, "D" material, "C" material, and "B" material is bonded and integrated (for example, the laminated body of FIG. 5). Assuming the fully bonded structure, both the expansion and contraction of the "A" material and the expansion and contraction of the "B" material are transmitted to the upper and lower surfaces of the "D" material in the central portion. At this time, since the "D" material is a soft metal which is a pure aluminum-based aluminum alloy, all the forces absorb the deformation without drawing a break into the adhesive surface. In other words, the "C" material has a cushioning function for deformation between the "A" material and the "D" material, and between the "B" material and the "D" material. However, the "C" material does not have only a buffer function that absorbs the expansion and contraction of the "A" material and the expansion and contraction of the "B" material.

より具体的に説明すれば、本発明の接合一体化物において、CFRP材、CFRTP材等の「A」材と、接着剤硬化物との接着力が、例えば約30MPaしかなく、その他の「B」材、「C」材、「D」材等と接着剤硬化物との接着力が、せん断破断強度が全て例えば約60MPaである場合、「A」材と「C」材間の接着面積は、同じせん断破断強度を保つためには、構造設計上「C」材と「D」材の接着面積に対して2倍にする必要がある。要するに、実際の接着力は、せん断接着強さと接着面積の積であるから、このようにして接着力を増幅する処置を行えることから、「C」材を用いた理由である。そして、この増幅作用が実際に生じるようにするには、「C」材にも高い耐力(又は設計上の許容応力)が必要であり、しかも、薄板であってもその弾性変形の範囲の中で、「A」材や「B」材の伸び縮みに追従させる必要である。しかも、これは接合強度を大きくする増幅の役目を果たすために、引き千切れ現象(破断破壊)を起こさぬ条件が耐力の大きさに関係する。本発明で「C」材を用いるのは、4材で4層以上で、かつ強度が要求される場合である。展性のある軟質金属からなる「D」材は、機械的な強度が弱く、「A」材、又は「B」材と直接的に接着しても接着強度が所望の大きさに達しない。 More specifically, in the bonded integrated product of the present invention, the adhesive strength between the "A" material such as CFRP material and CFRTP material and the cured adhesive is only about 30 MPa, and the other "B" When the adhesive strength between the material, "C" material, "D" material, etc. and the cured adhesive has a shear breaking strength of, for example, about 60 MPa, the adhesive area between the "A" material and the "C" material is In order to maintain the same shear breaking strength, it is necessary to double the bonding area of the "C" material and the "D" material in terms of structural design. In short, since the actual adhesive force is the product of the shear adhesive strength and the adhesive area, the treatment for amplifying the adhesive force can be performed in this way, which is the reason for using the "C" material. In order for this amplification action to actually occur, the "C" material also needs to have a high yield strength (or allowable stress in design), and even if it is a thin plate, it is within the range of its elastic deformation. Therefore, it is necessary to follow the expansion and contraction of the "A" material and the "B" material. Moreover, in order to fulfill the role of amplification that increases the bonding strength, the condition that does not cause the tearing phenomenon (fracture fracture) is related to the magnitude of the yield strength. In the present invention, the "C" material is used when four materials have four or more layers and strength is required. The "D" material made of malleable soft metal has a weak mechanical strength, and even if it is directly adhered to the "A" material or the "B" material, the adhesive strength does not reach the desired size.

そこで、上記したように、「C」材に接着力の増幅材としての役目を与えるには、薄板となっても自身が引き千切れ現象を起こしてはならず、一般的な接着強度程度に耐える耐力(許容応力)がある素材でなければならぬことと同時に、引張り強さが必要である。この点は、後述する実験例(図1に示した試験片)に記載した試験実験の結果(表6参照)からであるが、耐力は約150MPa以上であることが望ましく(「C」材は、後述する実験では、実用的にはA5052Al合金より、高耐力の金属材が望ましく)、SUS304では0.28mm厚の薄板が使用できたので、縦弾性係数≒190GPa、厚さ0.28mmの積の53GPa・mmを一応の標準にすることが出来る。要するに、「縦弾性係数×厚さ=53GPa・mm」を「C」材の上限基準と置いた。 Therefore, as described above, in order to give the "C" material a role as an adhesive strength amplifying material, even if it becomes a thin plate, it must not cause a tearing phenomenon by itself, and it should be about the general adhesive strength. The material must have a proof stress (allowable stress) to withstand, and at the same time, tensile strength is required. This point is based on the results of the test experiment (see Table 6) described in the experimental example (test piece shown in FIG. 1) described later, but it is desirable that the proof stress is about 150 MPa or more (for the “C” material). In the experiments described later, a metal material with a higher yield strength is practically preferable to the A5052Al alloy), and since a thin plate with a thickness of 0.28 mm could be used with SUS304, the product of Young's modulus ≈190 GPa and thickness of 0.28 mm. 53 GPa · mm can be used as a standard. In short, "Young's modulus x thickness = 53 GPa · mm" was set as the upper limit standard for the "C" material.

上式から言えば、アルミニウム合金の全ては、その縦弾性係数が70GPa付近であるから、好ましい「C」材の厚さは0.75mm以下となる(後述する表6参照)。NAT処理法の開発がよく進んでいて高接着力を示し、かつ、実用性があり錆難いのはアルミニウム合金、ステンレス鋼であり、この式から見て「C」材厚さでは1mm厚以下の薄板となる。後述する実施例に実証できた「C」材の例があるが、実証書した例では、A5052、A6061アルミニウム合金、そしてSUS304ステンレス鋼、等である。それ故に、好ましく使用できる金属類として、A5052、A5083、A6061のアルミニウム合金類、そしてSUS304、SUS316のオーステナイト系ステンレス鋼がある。 According to the above equation, all of the aluminum alloys have a Young's modulus of about 70 GPa, so that the preferable thickness of the “C” material is 0.75 mm or less (see Table 6 described later). The development of NAT treatment method is well advanced, and it is aluminum alloy and stainless steel that show high adhesive strength, are practical and resistant to rust. From this formula, the thickness of "C" material is 1 mm or less. It becomes a thin plate. There is an example of the "C" material that can be demonstrated in the examples described later, but in the example that has been verified, A5052, A6061 aluminum alloy, SUS304 stainless steel, and the like. Therefore, preferably usable metals include aluminum alloys of A5052, A5083 and A6061, and austenitic stainless steels of SUS304 and SUS316.

[本発明の接合面を固着積層する手段、部材]
本発明の接合面を固着積層する方法は、接着剤、及びクラッド接合である。
(1)接着剤
本発明の接合面を固着積層する接着剤は、本発明で使用する各種FRP材、及びFRTP材と本発明で使用する各種構造用金属材を、要求される環境下において、設計値の強度で接合できるものであればいかなる種類でも良い。ただし、本発明で重要な高強度構造材の一つはCFRP材であり、このCFRP材のマトリックス樹脂は、一般的にはエポキシ系樹脂であるので、接着剤としてはエポキシ接着剤が好ましい。しかもエポキシ接着剤は、各種金属材の接着用としても最適であるのでこの点でも好ましい。このエポキシ接着剤は、1液性、又は2液性エポキシ接着剤のどちらにも使用できる。2液性エポキシ接着剤は、主剤となる液状のエポキシ樹脂と、ポリアミン類と呼ばれる硬化剤の2液を常温で化学反応させることで共重合硬化する接着剤である。1液性エポキシ接着剤は、硬化剤を含んだもので、加熱により反応させて重合するものであり、耐熱性、強度に優れたものがあるので、耐熱性が要求される接合一体化物に用いる。
[Means and Members for Fixing and Laminating Joint Surfaces of the Present Invention]
The method of fixing and laminating the joint surfaces of the present invention is an adhesive and a clad joint.
(1) Adhesive The adhesive that fixes and laminates the joint surfaces of the present invention is an adhesive that uses various FRP materials and FRTP materials used in the present invention and various structural metal materials used in the present invention under the required environment. Any type may be used as long as it can be bonded with the strength of the design value. However, one of the high-strength structural materials important in the present invention is a CFRP material, and since the matrix resin of this CFRP material is generally an epoxy resin, an epoxy adhesive is preferable as the adhesive. Moreover, the epoxy adhesive is also preferable for adhering various metal materials, and is also preferable in this respect. This epoxy adhesive can be used as either a one-component or two-component epoxy adhesive. The two-component epoxy adhesive is an adhesive that copolymerizes and cures by chemically reacting a liquid epoxy resin as a main component and a curing agent called polyamines at room temperature. The one-component epoxy adhesive contains a curing agent and is polymerized by reacting by heating. Since some of them have excellent heat resistance and strength, they are used for bonded integrated products that require heat resistance. ..

(2)クラッド接合
本発明でいうクラッド接合とは、各種の異種合金同士を重ね合わせて火薬の爆発力に依る方法(爆着)、熱間圧延、昇温圧延等により接合することをいう。クラッド接合に使う部材は、前述したような昇温加圧処理法であり、この処理法は溶接したが如く強接合し、一般的には接着剤による接合より接合力は高い。但し、前もって何らかの表面処理を行うことが多く、特に昇温圧延等アルミニウム合金を使用する場合には必要である。要するに、2種材をクラッド接合したい場合には、その手法にどの手法を選ぶべきか、最も簡易な昇温圧延法を選択するのであれば、接合が確実に成功するように、その各2材に対する最適な表面処理法を先ず開発する必要がある。
(2) Clad joining The clad joining referred to in the present invention means that various dissimilar alloys are superposed and joined by a method (explosion welding) based on the explosive force of explosives, hot rolling, temperature heating rolling, or the like. The member used for clad bonding is a temperature rise and pressure treatment method as described above, and this treatment method strongly joins as if welded, and generally has a higher bonding force than bonding with an adhesive. However, some surface treatment is often performed in advance, which is necessary especially when an aluminum alloy such as temperature-temperature rolling is used. In short, if you want to clad two kinds of materials, which method should be selected for that method, and if you select the simplest temperature-heating rolling method, each two materials to ensure successful joining. It is necessary to first develop the optimum surface treatment method for.

[本発明の線膨張率の差(0.3×10−5−1以上)]
本発明の「異種構造材を含む接合一体化物」に用いる「A」材と「B」材の線膨張率の差は、最大で0.3×10−5−1以上あるものをいう。その理由は、以下の通りである。本発明を構成するFRP材、例えば、CFRP材の線膨張率は(0.1〜0.2)×10−5−1とされる。一方、本発明を構成する各種の構造用金属材の線膨張率は、超々ジュラルミンと呼称されるA7075アルミニウム合金は、約2.3×10−5−1である。汎用されている各種構造用金属材の中で、最も線膨張率が低いのはTi合金材であり、約0.8×10−5−1である。一般鋼材及びフェライト系ステンレス鋼は約1.1×10−5−1、オーステナイト系ステンレス鋼は約1.7×10−5−1、ジュラルミンやアルミニウム合金は約2.3×10−5−1である。更に構造材とは言い難いが、その他の金属材では、銅材が約1.8×10−5−1、銀材は約1.9×10−5−1、錫材は約2.3×10−5−1、マグネシウム材は約2.5×10−5−1、鉛材は約2.9×10−5−1とされる(なお、これら数値は、文献により0.1×10−5−1程度異なる)。
[Difference in linear expansion coefficient of the present invention (0.3 × 10-5 K -1 or more)]
The difference in linear expansion coefficient between the "A" material and the "B" material used in the "joint integrated product containing dissimilar structural materials" of the present invention means that the maximum difference is 0.3 × 10 -5 K -1 or more. The reason is as follows. The linear expansion coefficient of the FRP material constituting the present invention, for example, the CFRP material is (0.1 to 0.2) × 10-5 K -1 . On the other hand, the coefficient of linear expansion of various structural metal materials constituting the present invention is about 2.3 × 10-5 K- 1 for the A7075 aluminum alloy called extra super duralumin. Among various structural metal materials that are widely used, the one having the lowest coefficient of linear expansion is Ti alloy material, which is about 0.8 × 10-5 K- 1 . Generally steel and ferritic stainless steel of about 1.1 × 10 -5 K -1, austenitic stainless steel of about 1.7 × 10 -5 K -1, duralumin, aluminum alloy of about 2.3 × 10 -5 It is K- 1. Furthermore, although it is hard to say that it is a structural material , among other metal materials, copper material is about 1.8 × 10-5 K -1 , silver material is about 1.9 × 10-5 K -1 , and tin material is about 2. .3 × 10 -5 K -1 , magnesium material is about 2.5 × 10 -5 K -1 , and lead material is about 2.9 × 10 -5 K -1 . It differs by about 0.1 × 10 -5 K -1).

この各種構造用金属材の中で、線膨張率は、Ti合金材と一般鋼材及びフェライト系ステンレス鋼の間が最も近く、しかもこれらの金属部材は、本発明の接合一体化物である積層体として、併用して使用されることもある。この各種構造用金属材での線膨張率差は、約0.3×10−5−1であり、これ以下の線膨張率差の場合は接着面への負荷は実質的小さいので考慮する必要はない。従って、本発明の異種構造材を含む接合一体化物は、最も近い異種構造材の組み合わせた場合の線膨張率は、約0.3×10−5−1以上とした。また、本発明における実験による温度衝撃試験(3千サイクル)では、低温室−50℃、高温室150℃で試験を行った。即ち、自動車部品等に要求される環境温度である約200℃の温度変化(−50℃から150℃)において、最も線膨張率差が大きいCFRP材とA2017アルミニウム合金(ジュラルミン)を「A」材、「B」材とし、本発明の「A」材、「C」材、「D」材、及び「B」材の4層型の接着一体化物での温度衝撃3千サイクル試験を行った。この結果、最も接着構造が破壊される可能性があった「C」材と「D」材間のせん断接着強度に関し、全く問題なく許容値以内に収まった。因みに、温度衝撃サイクル試験は約200℃の温度変化(−50℃から150℃)を繰り返し前記「A」材と「B」材間に与えたわけだが、「A」材と「B」材間には2.1×10−5−1の線熱膨率差があり、この200℃の温度変化で0.42%の長さ差が生じたから、「A」「B」材がもし直接接着されていたならば、これは確実に破断していたものだった。 Among these various structural metal materials, the coefficient of linear expansion is closest between the Ti alloy material, the general steel material, and the ferritic stainless steel, and these metal members are the laminated body which is the joint integrated product of the present invention. , May be used in combination. The difference in coefficient of linear expansion between these various structural metal materials is about 0.3 × 10-5 K -1 , and if the difference in coefficient of linear expansion is less than this, the load on the adhesive surface is substantially small, so consider it. There is no need. Therefore, in the bonded integrated product containing the dissimilar structural materials of the present invention, the linear expansion coefficient when the closest dissimilar structural materials are combined is set to about 0.3 × 10-5 K -1 or more. Further, in the temperature impact test (3,000 cycles) by the experiment in the present invention, the test was carried out in a low temperature chamber of −50 ° C. and a high temperature chamber of 150 ° C. That is, the CFRP material and the A2017 aluminum alloy (duralumin), which have the largest difference in linear expansion coefficient, are used as the "A" material in a temperature change (-50 ° C to 150 ° C) of about 200 ° C, which is the environmental temperature required for automobile parts and the like. , "B" material, and the temperature impact 3,000 cycle test was carried out with the four-layer type adhesive integral body of "A" material, "C" material, "D" material, and "B" material of the present invention. As a result, the shear adhesive strength between the "C" material and the "D" material, which had the most possibility of breaking the adhesive structure, was within the permissible value without any problem. By the way, in the temperature shock cycle test, the temperature change of about 200 ° C. (-50 ° C to 150 ° C) was repeated and applied between the "A" material and the "B" material, but between the "A" material and the "B" material. Has a linear thermal expansion rate difference of 2.1 × 10-5 K- 1 , and this temperature change of 200 ° C. caused a length difference of 0.42%, so the “A” and “B” materials were directly bonded. If so, this would definitely have been broken.

以上詳記したように、本発明の異種構造材を含む接合一体化物その製造方法は、線膨張率差が大きい2種以上の高強度材を直接的にではなく、間接的に接着することにより大きな温度衝撃があっても、その接着積層構造を保ち得る効果がある。それ故に、基本的に環境温度が激しく変化する場所、又、環境温度が激しく変化するだけでなくその温度変化が繰り返し数千回もなされる場所に設置してもその基本構造に変化はない。それ故に、屋外設置用の機械や設備、そして自動車、航空機、その他の移動機械用の部品部材として非常に好ましく使用できる。特に、CFRP材とジュラルミン材を「A」材と「B」材とする本発明品は超軽量であり、移動機械用部品部材として最高に好ましい。 As described in detail above, the method for producing a bonded integrated product containing dissimilar structural materials of the present invention is to indirectly bond two or more types of high-strength materials having a large difference in linear expansion coefficient, rather than directly. Even if there is a large temperature impact, there is an effect that the adhesive laminated structure can be maintained. Therefore, basically, the basic structure does not change even if it is installed in a place where the environmental temperature changes drastically, or in a place where not only the environmental temperature changes drastically but also the temperature change is repeated thousands of times. Therefore, it can be very preferably used as a component for outdoor installation machines and equipment, and for automobiles, aircraft, and other mobile machines. In particular, the product of the present invention in which the CFRP material and the duralumin material are the "A" material and the "B" material is ultra-lightweight and is most preferable as a component member for mobile machinery.

図1は、金属片同士の試験片であり、金属間のせん断接着強さを測定するための試験片を示す斜視図であり、図1(a)は単体での試験片、図1(b)は薄い試験片の場合の積層した試験片による試験片である。FIG. 1 is a test piece between metal pieces, and is a perspective view showing a test piece for measuring the shear adhesion strength between metals. FIG. 1 (a) is a single test piece, and FIG. 1 (b) is a single test piece. ) Is a test piece made of laminated test pieces in the case of a thin test piece. 図2は、金属片同士の試験片であり、金属端面間の引張り接着強さを測定するための試験片を示す斜視図である。FIG. 2 is a test piece of metal pieces, and is a perspective view showing a test piece for measuring the tensile adhesive strength between metal end faces. 図3は、0.3mm厚のA5052アルミニウム合金薄板5枚と0.3mm厚のCFRPプリプレグを、耐熱性に優れる1液性エポキシ接着剤で接着積層したものであり、9層に積層した接合一体化物の端部写真である。FIG. 3 shows five 0.3 mm-thick A5052 aluminum alloy thin plates and a 0.3 mm-thick CFRP prepreg bonded and laminated with a one-component epoxy adhesive having excellent heat resistance. It is an end photograph of a compound. 図4は、線膨張率に差異ある高強度構造材「A」材、「B」材を両端とし、「D」材である純アルミニウム系のA1050アルミニウム合金板を挟み込んだ、3材、3層型の接着構造の積層体の例である。FIG. 4 shows three materials and three layers in which high-strength structural materials "A" and "B", which have different linear expansion rates, are used at both ends, and a pure aluminum-based A1050 aluminum alloy plate, which is a "D" material, is sandwiched between them. This is an example of a laminated body having an adhesive structure of a mold. 図5は、線膨張率に差異ある高強度構造材「A」材、「B」材を両端とし、「C」材であるA5052Al合金薄板、「D」材である純アルミニウム系のA1050アルミニウム合金板を挟み込んだ、「A」材、「C」材、「D」材、「C」材、及び「B」材の、5材、5層型の接着構造の積層体の例である。In FIG. 5, high-strength structural materials "A" and "B", which have different linear expansion rates, are used at both ends, and A5052Al alloy thin plate, which is "C", and pure aluminum-based A1050 aluminum alloy, which is "D". This is an example of a laminated body having a five-layer, five-layer adhesive structure of "A" material, "C" material, "D" material, "C" material, and "B" material sandwiching a plate. 図6は、線膨張率に差異ある高強度構造材「A」材、「B」材を両端とし、「C」材であるA5052アルミニウム合金の薄板、「D」材である純アルミニウム系のA1050アルミニウム合金板を挟み込んだ、「A」材、「C」材、「D」材、及び「B」材の4材、4層型の接着構造の積層体の例である。FIG. 6 shows a thin plate of A5052 aluminum alloy, which is a “C” material, and a pure aluminum-based A1050, which is a “D” material, with high-strength structural materials “A” and “B” having different linear expansion rates at both ends. This is an example of a laminated body having a four-layer, four-layer adhesive structure of four materials, "A" material, "C" material, "D" material, and "B" material, sandwiching an aluminum alloy plate. 図7は、図5に示したものと同様の5層型の積層例であり、応力集中する箇所(せん断面)でのせん断接着強さを測定するための積層例である。FIG. 7 is a five-layer type stacking example similar to that shown in FIG. 5, and is a stacking example for measuring the shear adhesion strength at a stress-concentrated portion (shear surface). 図8は、図6に示したものと同じ4層型の積層例であり、強く応力集中する箇所(せん断面)でのせん断接着強さを測定するための積層例である。FIG. 8 is a four-layer type lamination example similar to that shown in FIG. 6, and is an example of lamination for measuring the shear adhesion strength at a place (shear surface) where stress is strongly concentrated.

図9は、図5に示したものと同様の5層型の積層例であり、実用品に近い形で積層接着した物であり、温度衝撃数千サイクル試験に投入するために作成した物である。FIG. 9 is a five-layer type lamination example similar to that shown in FIG. 5, which is laminated and adhered in a form close to a practical product, and is prepared for being put into a temperature impact several thousand cycle test. be. 図10は、図6に示したものと同じ4層型の積層例であるが、「A」材にCFRP厚板を使用し、「B」材にジュラルミン材を使用した例であり、厳しい温度衝撃数千サイクル試験に投入するために作成した物である。FIG. 10 is an example of the same 4-layer type lamination as that shown in FIG. 6, but is an example in which a CFRP thick plate is used for the “A” material and a duralumin material is used for the “B” material, and the temperature is severe. It was created to be put into a shock thousands cycle test. 図11は、「A」材にCFRTP材使った複合材である場合の製作工程を示すものである。FIG. 11 shows a manufacturing process in the case of a composite material using CFRTP material for the “A” material. 図12は、「A」材にCFRTP材使った複合材である場合の製作工程を示すものである。FIG. 12 shows a manufacturing process in the case of a composite material using CFRTP material for the “A” material. 図13は、「D」材である純アルミニウム合金が一平面の板材形状でなく、表面に多数の細い柱を有した板材の例を示すものである。FIG. 13 shows an example of a plate material in which the pure aluminum alloy as the “D” material does not have a flat plate material shape but has a large number of thin columns on the surface. 図14は、「D」材である純アルミニウム合金が板材形状でなく、同心円状の壁を有した板材の例である。FIG. 14 is an example of a plate material in which the pure aluminum alloy which is the “D” material does not have a plate material shape but has concentric walls. 図15は、高強度構造材として64Ti合金の厚板を用い、この厚板にアルミニウム合金やSUS304ステンレス鋼の薄板を、1液性エポキシ接着剤で接着したときの、せん断強度の測定方法を示す工程図である。FIG. 15 shows a method for measuring shear strength when a thick plate of 64Ti alloy is used as a high-strength structural material and a thin plate of aluminum alloy or SUS304 stainless steel is bonded to the thick plate with a one-component epoxy adhesive. It is a process diagram. 図16は、金属片における板面の「引張り接着強さ」を測定するための作業の手順を示した工程図である。FIG. 16 is a process chart showing a work procedure for measuring the “tensile adhesive strength” of the plate surface of the metal piece. 図17は、図16に続く工程であり、金属片における板面の「引張り接着強さ」を測定するための作業の手順を示した工程図である。FIG. 17 is a process diagram following FIG. 16 and showing a procedure of work for measuring the “tensile adhesive strength” of the plate surface of the metal piece.

図18は、図17に続く工程であり、金属片における板面の「引張り接着強さ」を測定するための作業の手順を示した工程図である。FIG. 18 is a process diagram following FIG. 17, showing a procedure of work for measuring the “tensile adhesive strength” of the plate surface of the metal piece. 図19は、CFRP材の端部にA7075アルミニウム合金厚板を接着した4層型の構造例であり、CFRP材がA7075アルミニウム合金厚板を介して、他材とボルト・ナット締結が出来る構造例を示したものである。FIG. 19 shows an example of a four-layer structure in which an A7075 aluminum alloy thick plate is bonded to the end of the CFRP material, and a structural example in which the CFRP material can be bolted / nut-fastened to another material via the A7075 aluminum alloy thick plate. Is shown. 図20は、CFRP材の端部にA7075アルミニウム合金厚板を接着した4層型の構造例であり、CFRP材がA7075アルミニウム合金厚板を介して、他材とボルト・ナット締結が出来る構造例を示したものである。FIG. 20 shows an example of a four-layer structure in which an A7075 aluminum alloy thick plate is bonded to the end of the CFRP material, and a structural example in which the CFRP material can be bolted / nut-fastened to another material via the A7075 aluminum alloy thick plate. Is shown. 図21は、CFRP材の端部にA7075アルミニウム合金厚板を接着した4層型の構造例であり、CFRP材がA7075アルミニウム合金厚板を介して、他材とボルト・ナット締結が出来る構造例を示したものである。FIG. 21 shows an example of a four-layer structure in which an A7075 aluminum alloy thick plate is bonded to the end of the CFRP material, and a structural example in which the CFRP material can be bolted / nut-fastened to another material via the A7075 aluminum alloy thick plate. Is shown. 図22は、CFRP材の端部にアルミニウム合金機械加工物を接着した3層型の構造例であり、CFRP材がA7075アルミニウム合金厚板を介して、他材とボルト・ナット締結が出来る構造例を示したものである。FIG. 22 shows an example of a three-layer type structure in which an aluminum alloy machined product is bonded to the end of the CFRP material, and the CFRP material can be bolted / nut-fastened to another material via an A7075 aluminum alloy thick plate. Is shown. 図23は、管材のCFRP材の端部にボルト締結孔を備えたアルミニウム合金厚板を接着した3層型の構造例であり、CFRP管材がA7075アルミニウム合金加工物を介して、他材とボルト・ナット締結が出来ることを示したものである。FIG. 23 shows an example of a three-layer structure in which an aluminum alloy thick plate having a bolt fastening hole is bonded to the end of the CFRP material of the pipe material, and the CFRP pipe material is bolted to another material via an A7075 aluminum alloy work piece.・ It shows that nuts can be fastened.

本発明による各種素材の表面処理法、その処理後の接着方法、その接着物の物性測定法、及び、本発明の異種構造材を含む接合一体物のせん断接着強さ、せん断接着粘り性等につき、以下の説明と実施例で具体的に説明する。 Regarding the surface treatment method of various materials according to the present invention, the bonding method after the treatment, the method for measuring the physical properties of the adhesive, and the shear adhesion strength, shear adhesion stickiness, etc. of the bonded integral including the dissimilar structural materials of the present invention. , The following description and examples will be specifically described.

以下、本発明の実施例に換えて実験例で詳記する。
(a)電子顕微鏡観察
本実施例として用いた基材表面の観察のために電子顕微鏡を用いた。この電子顕微鏡は、走査型(SEM)の電子顕微鏡「SSM−7000F(製品名)」(日本電子株式会社(本社:日本国東京都)製)を使用し、1〜2kVにて観察した。
Hereinafter, the description will be described in detail with experimental examples instead of the examples of the present invention.
(A) Observation with an electron microscope An electron microscope was used for observing the surface of the base material used in this example. This electron microscope was observed at 1 to 2 kV using a scanning (SEM) electron microscope "SSM-7000F (product name)" (manufactured by JEOL Ltd. (Headquarters: Tokyo, Japan)).

(b)接着強度の測定
引張り試験機「AG−500N/1kN」(株式会社 島津製作所(本社:日本国東京都))を使用し、接着剤接合物(例えば、図1の試験片)を引張り破断するときの破断力を「せん断接着強さ」(x−y平面)とした。又、端面で接着された試験片(図2参照)を引張り試験機で引っ張り、この引っ張りで破断するときの破断力を「引張り接着強さ」(y−z平面)とした。使用した引張り試験機は、引張り速度10mm/分で測定した。
(B) Measurement of Adhesive Strength Using a tensile tester "AG-500N / 1kN" (Shimadzu Seisakusho Co., Ltd. (Headquarters: Tokyo, Japan)), the adhesive joint (for example, the test piece shown in FIG. 1) is pulled. The breaking force at the time of breaking was defined as "shear adhesive strength" (x-y plane). Further, the test piece (see FIG. 2) bonded at the end face was pulled by a tensile tester, and the breaking force at the time of breaking by this pull was defined as "tensile adhesive strength" (yz plane). The tensile tester used was measured at a tensile speed of 10 mm / min.

(c)せん断接着ねばり性の測定
本実験例でいう「せん断接着ねばり性」とは、以下の実験方法で得た結果をいう。せん断接着ねばり性の測定を行うときは、引張り試験機で試験片(図1)により、「せん断接着強さ」を前もって測定しておく。そして、この試験片に、この「せん断接着強さ」の約75%程度の引張り力を、300回だけ連続的に繰り返し与える試験を始める。この試験方法による引張り試験機による荷重方法は、その試験機の制御装置の運転ソフトで設定して行う。この運転ソフトは、最大引張り力を上記約75%、最小引張り力を前記最大引張り力の約2/3とし、かつ、引張り速度を±10mm/分を1サイクルとする。この繰り返し荷重で、せん断破断しなければ、約2MPaだけ最大引張り荷重を大きくし、かつ最小引張り力を修正して、同じ300回の繰り返し負荷を加える試験をする。それでも破断しない場合は、更に、約2MPa程を加えて同操作を繰り返し、この繰り返しを図1に示した試験片が破断するまで続ける。破断したら、破断前の最大引張り力をもって、その力量をMPa表示し、本実験ではこれを「せん断接着ねばり性」値とした。
(C) Measurement of Shear Adhesive Stickiness "Shear Adhesive Stickiness" in this experimental example means the result obtained by the following experimental method. When measuring the shear adhesion stickiness, the "shear adhesion strength" is measured in advance with a test piece (Fig. 1) using a tensile tester. Then, a test is started in which a tensile force of about 75% of this "shear adhesive strength" is continuously and repeatedly applied to this test piece only 300 times. The load method by the tensile tester according to this test method is set by the operation software of the control device of the tester. In this operation software, the maximum tensile force is about 75%, the minimum tensile force is about 2/3 of the maximum tensile force, and the tensile speed is ± 10 mm / min for one cycle. If shear failure does not occur with this repeated load, the maximum tensile load is increased by about 2 MPa, the minimum tensile force is corrected, and the same 300 times repeated load is applied. If it still does not break, the same operation is repeated by further adding about 2 MPa, and this repetition is continued until the test piece shown in FIG. 1 breaks. After fracture, the maximum tensile force before fracture was displayed in MPa, and this was used as the "shear adhesion stickiness" value in this experiment.

(d)接着面の非破壊検査
接着面に剥離が発生しているか否かの判定、観察は、以下の方法で行った。簡易的には、着色した水性浸透液を接着層の外観部に塗布して拭き取り、この着色部が拭き取れるか否かで検査する試験法で確認できる。接着面積のどの範囲まで剥離が拡がっているか否かを詳しく確認したい場合には、接着面に超音波を照射して観察ができる非破壊検査機「MSライン(日立パワーソリューションズ式会社(本社:日本国茨城県))」を使用した。
(D) Non-destructive inspection of the adhesive surface Judgment and observation of whether or not peeling occurred on the adhesive surface were performed by the following methods. Simply, it can be confirmed by a test method in which a colored aqueous penetrant is applied to the appearance portion of the adhesive layer and wiped off, and whether or not the colored portion can be wiped off is inspected. If you want to check in detail to what extent the peeling has spread to the adhesive area, you can observe the adhesive surface by irradiating ultrasonic waves with the non-destructive inspection machine "MS Line (Hitachi Power Solutions Company (Headquarters: Japan)). Country Ibaraki Prefecture)) ”was used.

(e)温度衝撃サイクル試験
温度衝撃サイクル試験は、温度衝撃サイクル試験機「小型冷熱衝撃装置TSE-12-A」(エスペック株式会社(本社:日本国大阪府))を使用した。標準的に行った温度衝撃サイクル試験の条件は、低温室温度−50℃、高温室温度+150℃とし、各室の滞在時間25分、移動時間約5分とした。この試験機を設置した室温は、27℃に常時温調されている室内であり、かつ、定期的に冷室温度を室温にまで昇温させて、上記試験機の氷結部を自然溶解させる自動運転に設定した。
(E) Temperature shock cycle test For the temperature shock cycle test, a temperature shock cycle tester "Small cold shock shock device TSE-12-A" (Espec Co., Ltd. (Headquarters: Osaka, Japan)) was used. The conditions of the standard temperature shock cycle test were a low temperature chamber temperature of −50 ° C. and a high temperature chamber temperature of + 150 ° C., and the staying time of each chamber was 25 minutes and the traveling time was about 5 minutes. The room temperature in which this testing machine is installed is a room where the temperature is constantly controlled to 27 ° C., and the cold room temperature is periodically raised to room temperature to automatically melt the frozen part of the testing machine. Set to drive.

[実験例A]各素材の表面処理
以下、本発明を構成する構造用金属材の表面を処理する化成処理の実験例を説明する。即ち、下記に説明する実験による化成処理は、各種構造用金属材毎の最適な化成処理方法を探索するものである。
[Experimental Example A] Surface Treatment of Each Material An experimental example of chemical conversion treatment for treating the surface of a structural metal material constituting the present invention will be described below. That is, the experimental chemical conversion treatment described below is for searching for the optimum chemical conversion treatment method for each of various structural metal materials.

[実験例A1−1]A1050アルミニウム合金(以下、「A1050Al合金」という。)の表面処理(NAT処理)
厚さ0.5〜3.0mmの純アルミニウム系のA1050Al合金の板材を入手し、これを長方形片に機械加工し、この端部に孔を開けて試験片である合金片とした。この合金片の孔に、園芸用の塩ビカバー付き針金を通して、これを吊り下げて、各液処理に浸漬が出来るようにした。超音波発振端付き水槽に、アルミ用脱脂剤「NA−6」(メルテックス株式会社(本社:日本国東京都))10%含む水溶液60℃のものを満たし、前記合金片を5分浸漬した後、これを水洗した。次に別の槽に、40℃で1%濃度の塩酸水溶液を用意し、1分浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、この水酸化ナトリウム水溶液に合金片を4分間浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、この硝酸水溶液に、前記Al合金片を3分間浸漬した後、これを水洗した。
[Experimental Example A1-1] Surface treatment (NAT treatment) of A1050 aluminum alloy (hereinafter referred to as "A1050Al alloy")
A plate material of pure aluminum-based A1050Al alloy having a thickness of 0.5 to 3.0 mm was obtained, and this was machined into a rectangular piece, and a hole was formed at this end to obtain an alloy piece as a test piece. A wire with a horticultural PVC cover was passed through the hole of this alloy piece and hung so that it could be immersed in each liquid treatment. A water tank with an ultrasonic oscillation end was filled with an aqueous solution containing 10% of a degreasing agent for aluminum "NA-6" (Meltex Inc. (Headquarters: Tokyo, Japan)) at 60 ° C., and the alloy piece was immersed for 5 minutes. After that, it was washed with water. Next, a 1% aqueous hydrochloric acid solution at 40 ° C. was prepared in another tank, immersed for 1 minute, and then washed with water. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another tank, and the alloy piece was immersed in this sodium hydroxide aqueous solution for 4 minutes and then washed with water. Next, a nitric acid aqueous solution having a concentration of 3% at 40 ° C. was prepared in another tank, and the Al alloy piece was immersed in the nitric acid aqueous solution for 3 minutes and then washed with water.

次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意し、前記A1050Al合金片を2分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、水洗した。そして別の槽に、5%濃度の過酸化水素水を用意し、前記A1050Al合金片を5分間浸漬した後、これをよく水洗した。これらの処理後、67℃に設定した温風乾燥機に15分間入れて乾燥させた。 Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank, the A1050Al alloy piece was immersed for 2 minutes, and then in another tank, 0.5% at 33 ° C. After immersing in a concentrated aqueous hydrazine solution for 0.5 minutes, the mixture was washed with water. Then, a 5% concentration hydrogen peroxide solution was prepared in another tank, and the A1050Al alloy piece was immersed for 5 minutes and then washed thoroughly with water. After these treatments, they were placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A1−2]A1050Al合金の表面処理(NAT7処理:参考例)
実験例A1−1と同様に、浸漬処理が出来るようにしたA1050Al合金片を用意した。超音波発振端付き水槽に、アルミ用脱脂剤「NA−6」10%含む水溶液で60℃のものを満たし、前記A1050Al合金片を5分浸漬した後、これを水洗した。次に別の槽に、40℃で10%濃度の苛性ソーダ水溶液を用意し、1分浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の塩化アルミニウム水和物と、5%濃度の塩酸含む水溶液を用意し、これに前記Al合金片を10分間浸漬した後、これを水洗した。次に別の槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これにA1050Al合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A1050Al合金片を2分間浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A1050Al合金片を2分間浸漬した後、これを水洗した。
[Experimental Example A1-2] Surface treatment of A1050Al alloy (NAT7 treatment: Reference example)
Similar to Experimental Example A1-1, an A1050Al alloy piece capable of being immersed was prepared. A water tank with an ultrasonic oscillation end was filled with an aqueous solution containing 10% of a degreasing agent for aluminum "NA-6" at 60 ° C., and the A1050Al alloy piece was immersed for 5 minutes and then washed with water. Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another tank, immersed for 1 minute, and then washed with water. Next, in another tank, an aqueous solution containing 1% aluminum chloride hydrate at 40 ° C. and 5% hydrochloric acid was prepared, and the Al alloy piece was immersed in the aqueous solution for 10 minutes and then washed with water. .. Next, an aqueous solution containing 2% deuterium difluorinated ammon at 40 ° C. and 10% sulfuric acid was prepared in another tank, and an A1050Al alloy piece was immersed in the aqueous solution for 1 minute and then washed with water. Next, a 1.5% caustic soda aqueous solution at 40 ° C. was prepared in another tank, and the A1050Al alloy piece was immersed in the caustic soda aqueous solution for 2 minutes and then washed with water. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the A1050Al alloy piece was immersed in the aqueous solution for 2 minutes and then washed with water.

次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意し、前記A1050合金片を2分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そして別の槽に、5%濃度の過酸化水素水を用意し、前記A1050Al合金片を5分間浸漬した後、これをよく水洗した。これを67℃に設定した温風乾燥機に15分間入れて乾燥させた。 Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank, the A1050 alloy piece was immersed for 2 minutes, and then in another tank, 0.5% at 33 ° C. After immersing in a concentrated aqueous hydrazine solution for 0.5 minutes, this was washed with water. Then, a 5% concentration hydrogen peroxide solution was prepared in another tank, and the A1050Al alloy piece was immersed for 5 minutes and then washed thoroughly with water. This was placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A1−3]A1050Al合金の表面処理(NAT5処理)
実験例A1−1と同様に、浸漬処理が出来るようにしたA1050Al合金片を用意した。超音波発振端付き水槽に、アルミ用脱脂剤「NA−6」10%含む水溶液を60℃のものを満たし、前記A1050Al合金片を5分浸漬した後、これを水洗した。次に別の槽に、40℃で10%濃度の苛性ソーダ水溶液を用意した後、これを1分浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の水和塩化アルミと5%濃度の塩酸含む水溶液を用意し、これに前記A1050合金片を3分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A1050合金片を4分浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A1050Al合金片を1.5分間浸漬した後、これを水洗した。
[Experimental Example A1-3] Surface treatment of A1050Al alloy (NAT5 treatment)
Similar to Experimental Example A1-1, an A1050Al alloy piece capable of being immersed was prepared. A water tank with an ultrasonic oscillation end was filled with an aqueous solution containing 10% of a degreasing agent for aluminum "NA-6" at 60 ° C., and the A1050Al alloy piece was immersed for 5 minutes and then washed with water. Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another tank, immersed in this solution for 1 minute, and then washed with water. Next, an aqueous solution containing 1% hydrated aluminum chloride at 40 ° C. and 5% hydrochloric acid was prepared in another tank, and the A1050 alloy piece was immersed in the aqueous solution for 3 minutes and then washed with water. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another tank, and the A1050 alloy piece was immersed in the aqueous solution for 4 minutes and then washed with water. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the A1050Al alloy piece was immersed in the aqueous solution for 1.5 minutes and then washed with water.

次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意し、前記A1050合金片を2分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そして別の槽に、5%濃度の過酸化水素水を用意し、前記A1050合金片を5分間浸漬した後、これをよく水洗した。これを67℃に設定した温風乾燥機に15分間入れて乾燥させた。 Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank, the A1050 alloy piece was immersed for 2 minutes, and then in another tank, 0.5% at 33 ° C. After immersing in a concentrated aqueous hydrazine solution for 0.5 minutes, this was washed with water. Then, a 5% concentration hydrogen peroxide solution was prepared in another tank, the A1050 alloy piece was immersed for 5 minutes, and then washed thoroughly with water. This was placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A1−4]A1050Al合金の表面処理(NAT(20分)処理)
上記実験例A1−1と同様の処理を全処理工程で進め、最後の反応工程、即ち、5%濃度の過酸化水素水を用意して、A1050Al合金片を過酸化水素水への5分間浸漬する部分だけを変更して、20分に延長するだけが異なる。
[Experimental Example A1-4] Surface treatment of A1050Al alloy (NAT (20 minutes) treatment)
The same treatment as in Experimental Example A1-1 was carried out in all the treatment steps, and the final reaction step, that is, a hydrogen peroxide solution having a concentration of 5% was prepared, and the A1050Al alloy piece was immersed in the hydrogen peroxide solution for 5 minutes. The only difference is that you change only the part you want to do and extend it to 20 minutes.

[実験例A1−5]A1050Al合金の表面処理(NAT5(20分))
上記実験例A1−3と同様の処理を全工程で進め、最後の反応工程、即ち、5%濃度の過酸化水素水を用意して、A1050Al合金片を5分間浸漬する部分だけを変更して20分に時間変更だけ異なるものにした。
[Experimental Example A1-5] Surface treatment of A1050Al alloy (NAT5 (20 minutes))
The same treatment as in Experimental Example A1-3 was carried out in all steps, and the final reaction step, that is, a hydrogen peroxide solution having a concentration of 5% was prepared, and only the portion where the A1050Al alloy piece was immersed for 5 minutes was changed. Only the time change was changed to 20 minutes.

[実験例A1−6]A1050Al合金の表面処理(NAT−Ano(陽極酸化)処理)
[実験例A1−1]と同様の処理工程を進めて、40℃とした3%濃度の硝酸水溶液を用意して、これに前記Al合金片を3分間浸漬した後、これを水洗する。次に別の槽に、25℃とした10%濃度のリン酸水溶液を用意し、前記Al合金片をTi製の陽極に繋ぎ、炭素棒製の陰極を浸漬槽の端部に挿入し、直流20Vをかけて15分間、陽極酸化した。この陽極酸化した前記Al合金片を30分間水洗した後、67℃に設定した温風乾燥機に15分間入れて乾燥させ、更に100℃に設定した温風乾燥機に30分間入れて乾燥させた。
[Experimental Example A1-6] Surface treatment of A1050Al alloy (NAT-Ano (anodizing) treatment)
The same treatment step as in [Experimental Example A1-1] is carried out, a 3% aqueous nitric acid solution at 40 ° C. is prepared, the Al alloy piece is immersed therein for 3 minutes, and then washed with water. Next, in another tank, a 10% concentration phosphoric acid aqueous solution at 25 ° C. was prepared, the Al alloy piece was connected to the Ti anode, the carbon rod cathode was inserted into the end of the immersion tank, and DC was applied. It was anodized at 20 V for 15 minutes. The anodized aluminum alloy piece was washed with water for 30 minutes, then placed in a warm air dryer set at 67 ° C. for 15 minutes to dry, and further placed in a warm air dryer set at 100 ° C. for 30 minutes to dry. ..

[実験例A1−7]A1050Al合金の表面処理(NAT5−Ano(陽極酸化)処理)
[実験例A1−3]と同様に工程を進めて、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A1050Al合金片を1.5分間浸漬した後、これを水洗したところまでは同一の処理を行った。この処理後に、NAT5の処理法を変更し、次に別の槽に、25℃とした10%濃度のリン酸水溶液を用意し、前記A1050Al合金片をTi製の陽極に繋ぎ、炭素棒製の陰極を浸漬槽の端部に挿入し、直流20Vをかけて15分間、陽極酸化した。この陽極酸化された前記A1050Al合金片を30分間水洗した後、67℃に設定した温風乾燥機に15分間入れて乾燥させ、更に100℃に設定した温風乾燥機に30分間入れて乾燥させた。
[Experimental Example A1-7] Surface treatment of A1050Al alloy (NAT5-Ano (anodizing) treatment)
The process was carried out in the same manner as in [Experimental Example A1-3], a 3% aqueous nitric acid solution at 40 ° C. was prepared, the A1050Al alloy piece was immersed in the aqueous solution for 1.5 minutes, and then washed with water. Performed the same process. After this treatment, the treatment method of NAT5 was changed, then a 10% concentration phosphoric acid aqueous solution at 25 ° C. was prepared in another tank, and the A1050Al alloy piece was connected to a Ti anode to make a carbon rod. The cathode was inserted into the end of the immersion tank and anodized for 15 minutes by applying 20 V DC. The anodized A1050Al alloy piece is washed with water for 30 minutes, then placed in a warm air dryer set at 67 ° C. for 15 minutes to dry, and further placed in a warm air dryer set at 100 ° C. for 30 minutes to dry. rice field.

[実験例A2−1]A5052Al合金の表面処理(NAT7処理法)
厚さ0.5〜3.0mmのA5052Al合金板材を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記A5052Al合金片の孔に園芸用の塩ビカバー付き針金を通して吊り下げ、各液で浸漬処理が出来るようにした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記A5052Al合金片を5分間浸漬した後、これを水洗した。次に別の槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これに前記A5052Al合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の塩化アルミニウム水和物と5%濃度の塩酸を含む水溶液を用意し、これに前記A5052Al合金片を6分間浸漬した後、これを水洗した。次に別の槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これに前記A5052Al合金片を4分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A5052Al合金片を1分間浸漬した後、水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A5052Al合金片を1.5分間浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意してこれに2分間浸漬した後、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そしてこれを5%濃度の過酸化水素水に5分間浸漬した後、これをよく水洗した後、67℃に設定した温風乾燥機に15分間入れて乾燥させた。
[Experimental Example A2-1] Surface treatment of A5052Al alloy (NAT7 treatment method)
An A5052Al alloy plate with a thickness of 0.5 to 3.0 mm was obtained, machined into rectangular pieces of various sizes, and perforated at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the A5052Al alloy piece and hung so that it could be immersed in each liquid. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the immersion tank, and the A5052Al alloy piece was immersed for 5 minutes and then washed with water. Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the caustic soda aqueous solution for 1 minute and then washed with water. Next, an aqueous solution containing 1% aluminum chloride hydrate at 40 ° C. and 5% hydrochloric acid was prepared in another tank, and the A5052Al alloy piece was immersed in the aqueous solution for 6 minutes and then washed with water. .. Next, in another tank, an aqueous solution containing 2% concentration of 1 hydrogen difluorinated ammon at 40 ° C. and 10% concentration of sulfuric acid was prepared, and the A5052Al alloy piece was immersed in the aqueous solution for 4 minutes and then washed with water. .. Next, a 1.5% caustic soda aqueous solution at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the caustic soda aqueous solution for 1 minute and then washed with water. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the aqueous solution for 1.5 minutes and then washed with water. Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank and immersed in it for 2 minutes, and then in another tank at a concentration of 0.5% at 33 ° C. After immersing in a hydrated hydrazine aqueous solution for 0.5 minutes, this was washed with water. Then, this was immersed in a hydrogen peroxide solution having a concentration of 5% for 5 minutes, washed well with water, and then placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A2−2]A5052Al合金の表面処理(NAT処理:参考例)
実験例A2−1と同様に、浸漬処理が出来るようにしたA5052Al合金片を用意した。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記A5052Al合金片を5分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の塩酸水溶液を用意し、これに前記A5052Al合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A5052Al合金片を4分間浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A5052Al合金片を3分間浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意してこれに2分間浸漬した後、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そして5%濃度の過酸化水素水に5分間浸漬した後、これをよく水洗した後、これを67℃に設定した温風乾燥機に15分間入れて、前記処理を終えた前記A5052Al合金片を乾燥し、清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A2-2] Surface treatment of A5052Al alloy (NAT treatment: Reference example)
Similar to Experimental Example A2-1, an A5052Al alloy piece capable of being immersed was prepared. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the immersion tank, and the A5052Al alloy piece was immersed for 5 minutes and then washed with water. Next, a 1% aqueous hydrochloric acid solution at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the aqueous solution for 1 minute and then washed with water. Next, a 1.5% caustic soda aqueous solution at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the caustic soda aqueous solution for 4 minutes and then washed with water. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the A5052Al alloy piece was immersed in the aqueous nitric acid solution for 3 minutes and then washed with water. Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank and immersed in it for 2 minutes, and then in another tank at a concentration of 0.5% at 33 ° C. After immersing in a hydrated hydrazine aqueous solution for 0.5 minutes, this was washed with water. Then, after immersing it in a 5% concentration hydrogen peroxide solution for 5 minutes, washing it thoroughly with water, and then putting it in a warm air dryer set at 67 ° C. for 15 minutes, the A5052Al alloy piece after the treatment was completed. It was dried, wrapped in clean aluminum foil and stored.

[実験例A3]A6061Al合金の表面処理(NAT処理)
厚さ0.5〜3.0mmのA6061Al合金板材を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記A6061Al合金片の孔に園芸用の塩ビカバー付き針金を通してぶら下げ、各液で浸漬処理が出来るようにした。その後の表面処理法は、実験例A1−1に示されたNAT処理法と全く同じである。
[Experimental Example A3] Surface treatment of A6061Al alloy (NAT treatment)
An A6061 Al alloy plate having a thickness of 0.5 to 3.0 mm was obtained, machined into rectangular pieces of various sizes, and holes were drilled at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the A6061 Al alloy piece and hung so that each liquid could be immersed. The subsequent surface treatment method is exactly the same as the NAT treatment method shown in Experimental Example A1-1.

[実験例A4−1]A2017Al合金の表面処理(NAT7処理法)
厚さ0.5〜3.0mmのA2017Al合金板材を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記A2017Al合金片の孔に園芸用の塩ビカバー付き針金を通してぶら下げ、各液で浸漬処理が出来るようにした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記A2017Al合金片を5分間浸漬して水洗した。次に別の槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これに前記A2017Al合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の塩化アルミニウム水和物と、5%濃度の塩酸を含む水溶液を用意し、これに前記A2017合金片を1分間浸漬し、水洗した。次に別の槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これに前記A2017Al合金片を3分間浸漬した後、これを水洗した。
[Experimental Example A4-1] Surface treatment of A2017Al alloy (NAT7 treatment method)
A2017Al alloy plates with a thickness of 0.5 to 3.0 mm were obtained, machined into rectangular pieces of various sizes, and holes were drilled at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the A2017Al alloy piece and hung so that it could be immersed in each liquid. The aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C., and the A2017Al alloy piece was immersed for 5 minutes and washed with water. Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another tank, and the A2017Al alloy piece was immersed in the caustic soda aqueous solution for 1 minute and then washed with water. Next, an aqueous solution containing 1% aluminum chloride hydrate at 40 ° C. and 5% hydrochloric acid was prepared in another tank, and the A2017 alloy piece was immersed therein for 1 minute and washed with water. Next, in another tank, an aqueous solution containing 2% concentration of 1 hydrogen difluorinated ammon at 40 ° C. and 10% concentration of sulfuric acid was prepared, and the A2017Al alloy piece was immersed in the aqueous solution for 3 minutes and then washed with water. ..

次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A2017合金片を2分間浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記A2017Al合金片を2.5分間浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに前記A2017Al合金片を2分間浸漬した後、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そして5%濃度の過酸化水素水に5分間浸漬し水洗した後、これを67℃に設定した温風乾燥機に15分入れ乾燥させた。 Next, a 1.5% caustic soda aqueous solution at 40 ° C. was prepared in another tank, and the A2017 alloy piece was immersed in the caustic soda aqueous solution for 2 minutes and then washed with water. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the A2017Al alloy piece was immersed in the aqueous solution for 2.5 minutes and then washed with water. Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank, the A2017Al alloy piece was immersed in the aqueous solution for 2 minutes, and then the temperature was 33 ° C. in another tank. After immersing in a 0.5% hydrated hydrazine aqueous solution for 0.5 minutes, this was washed with water. Then, it was immersed in a 5% concentration hydrogen peroxide solution for 5 minutes, washed with water, and then placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A4−2]A2017Al合金の表面処理(NAT処理:参考例)
厚さ0.5〜3.0mmのA2017Al合金板材を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記A2017Al金属片の穴に園芸用の塩ビカバー付き針金を通してぶら下げ、各液で浸漬処理が出来るようにした。その後の表面処理法は、実験例A1−1に示されたNAT処理法と全く同じである。
[Experimental Example A4-2] Surface treatment of A2017Al alloy (NAT treatment: Reference example)
A2017Al alloy plates with a thickness of 0.5 to 3.0 mm were obtained, machined into rectangular pieces of various sizes, and holes were drilled at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the A2017Al metal piece and hung so that it could be immersed in each liquid. The subsequent surface treatment method is exactly the same as the NAT treatment method shown in Experimental Example A1-1.

[実験例A5]A7075Al合金の表面処理(NAT処理)
厚さ1.5〜3.0mmのA7075Al合金板材を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記A7075Al合金片の孔に園芸用の塩ビカバー付き針金を通して吊り下げ、各液での浸漬処理が出来るようにした。その後の表面処理法は、実験例A1に示されたNAT処理法と全く同じである。
[Experimental Example A5] Surface treatment of A7075Al alloy (NAT treatment)
A7075 Al alloy plates with a thickness of 1.5-3.0 mm were obtained, machined into rectangular pieces of various sizes, and perforated at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the A7075Al alloy piece and hung so that it could be immersed in each liquid. The subsequent surface treatment method is exactly the same as the NAT treatment method shown in Experimental Example A1.

[実験例A6]ADC12Al合金の表面処理(NAT7処理)
アルミダイカスト素材である日本工業規格のADC12Al合金を使用して鋳造した、45mm×18mm×厚さ1.5mmの小片形状で端部に孔が開いている前記ADC12Al合金小片を入手し、以下の各液処理を行った。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記ADC12Al合金片を5分間浸漬した後、これを水洗した。次に別の槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これに前記ADC12Al合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1%濃度の塩化アルミニウム水和物と5%濃度の塩酸を含む水溶液を用意し、これに前記ADC12Al合金片を4分間浸漬した後、これを水洗した。次に別の槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これに前記ADC12Al合金片を1分浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記ADC12Al合金片を4分間浸漬した後、これを水洗した。次に別の槽に、40℃とした3%濃度の硝酸水溶液を用意し、これに前記ADC12Al合金片を2分間浸漬した後、超音波発信端付きの水槽に5分浸漬した。次に、先ほどの40℃とした3%濃度の硝酸水溶液が入った浸漬槽に戻し、前記ADC12Al合金片を0.5分間浸漬した後、これを水洗した。
[Experimental Example A6] Surface treatment of ADC12Al alloy (NAT7 treatment)
Obtained the above-mentioned ADC12Al alloy piece, which was cast using Japanese Industrial Standards ADC12Al alloy, which is an aluminum die-cast material, and has a small piece shape of 45 mm × 18 mm × thickness 1.5 mm and a hole at the end. Liquid treatment was performed. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the immersion tank, and the ADC12Al alloy piece was immersed for 5 minutes and then washed with water. Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another tank, and the ADC12Al alloy piece was immersed in the aqueous solution of caustic soda at 40 ° C. for 1 minute, and then washed with water. Next, an aqueous solution containing 1% aluminum chloride hydrate at 40 ° C. and 5% hydrochloric acid was prepared in another tank, and the ADC12Al alloy piece was immersed in the aqueous solution for 4 minutes and then washed with water. .. Next, in another tank, an aqueous solution containing 2% concentration of 1 hydrogen difluorinated ammon at 40 ° C. and 10% concentration of sulfuric acid was prepared, and the ADC12Al alloy piece was immersed in the aqueous solution for 1 minute and then washed with water. .. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another tank, and the ADC12Al alloy piece was immersed in the aqueous solution of caustic soda at 40 ° C. for 4 minutes, and then washed with water. Next, an aqueous nitric acid solution having a concentration of 3% at 40 ° C. was prepared in another tank, and the ADC12Al alloy piece was immersed in the aqueous solution for 2 minutes and then immersed in a water tank with an ultrasonic transmitting end for 5 minutes. Next, the mixture was returned to the immersion tank containing the 3% aqueous nitric acid solution at 40 ° C., the ADC12Al alloy piece was immersed for 0.5 minutes, and then washed with water.

次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに前記ADC12Al合金片を2分間浸漬した後、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に0.5分浸漬した後、これを水洗した。そして5%濃度の過酸化水素水に5分間浸漬した後、これを水洗した。これを67℃に設定した温風乾燥機に15分入れ、更に100℃に設定した温風乾燥機に15分入れて乾燥した後、再び、超音波発信端付きの水槽に5分浸漬した後、これを67℃に設定した温風乾燥機に15分入れて乾燥した。 Next, a 3.5% hydrated hydrazine aqueous solution at 60 ° C. was prepared in another tank, and the ADC12Al alloy piece was immersed therein for 2 minutes, and then the temperature was adjusted to 33 ° C. in another tank. After immersing in a 0.5% hydrated hydrazine aqueous solution for 0.5 minutes, this was washed with water. Then, after immersing it in a 5% concentration hydrogen peroxide solution for 5 minutes, it was washed with water. This was placed in a warm air dryer set at 67 ° C for 15 minutes, further placed in a warm air dryer set at 100 ° C for 15 minutes to dry, and then immersed again in a water tank with an ultrasonic transmitting end for 5 minutes. , This was placed in a warm air dryer set at 67 ° C. for 15 minutes to dry.

[実験例A7]SUS304ステンレス鋼の表面処理(最新NAT処理)
厚さ0.3〜3.0mmのSUS304−2B鋼板を入手し、多種の大きさの長方形片に機械加工し、端部に孔を開けた。前記金属片の孔に園芸用の塩ビカバー付き針金を通して吊り下げ、各液で浸漬処理が出来るようにした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、これに鋼片を5分間浸漬した後、これを水洗した。次に別の槽に、65℃とした10%濃度の硫酸と1%濃度の1水素2弗化アンモンを含む水溶液を用意し、これに前記SUS304ステンレス鋼片を10分間浸漬した後、これを水洗した。次に超音波発振端付き水槽に、5分浸漬し、前記SUS304ステンレス鋼片に付着しているスマットを分離した。次に別の浸漬槽に、60℃とした5%濃度の硫酸と0.5%濃度の1水素2弗化アンモンを含む水溶液を用意し、これに前記SUS304ステンレス鋼片を20分間浸漬した後、これを水洗した。次に超音波発振端付き水槽に5分浸漬して、前記SUS304ステンレス鋼片に付着したスマットを分離した。次いで40℃とした3%濃度の硝酸水溶液を用意し、これに前記SUS304ステンレス鋼片を3分間浸漬して水洗した。次に別の浸漬槽で、55℃とした10%濃度の苛性ソーダと5%濃度の亜塩素酸ソーダを含む水溶液に6分間浸漬した後、これを水洗した。そして、80℃に設定した温風乾燥機に15分間入れて乾燥させた。
[Experimental Example A7] Surface treatment of SUS304 stainless steel (latest NAT treatment)
SUS304-2B steel sheets with a thickness of 0.3 to 3.0 mm were obtained, machined into rectangular pieces of various sizes, and holes were drilled at the ends. A wire with a vinyl chloride cover for horticulture was passed through the hole of the metal piece and hung so that it could be immersed in each liquid. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in a dipping tank, and a steel piece was immersed in the aqueous solution for 5 minutes and then washed with water. Next, in another tank, an aqueous solution containing 10% sulfuric acid at 65 ° C. and 1 hydrogen difluorinated ammon at 1% concentration was prepared, and the SUS304 stainless steel piece was immersed in the aqueous solution for 10 minutes, and then this was added. Washed with water. Next, it was immersed in a water tank with an ultrasonic oscillation end for 5 minutes to separate the smut adhering to the SUS304 stainless steel piece. Next, in another immersion tank, an aqueous solution containing 5% sulfuric acid at 60 ° C. and 0.5% concentration of 1 hydrogen difluorinated ammon was prepared, and the SUS304 stainless steel piece was immersed in the aqueous solution for 20 minutes. , This was washed with water. Next, the smut adhering to the SUS304 stainless steel piece was separated by immersing it in a water tank with an ultrasonic oscillation end for 5 minutes. Next, a 3% aqueous nitric acid solution at 40 ° C. was prepared, and the SUS304 stainless steel piece was immersed therein for 3 minutes and washed with water. Next, in another immersion tank, the mixture was immersed in an aqueous solution containing 10% caustic soda at 55 ° C. and 5% sodium chlorate for 6 minutes, and then washed with water. Then, it was put in a warm air dryer set at 80 ° C. for 15 minutes to dry.

[実験例A8−1]SPCCの表面処理(新NAT処理:参考例)
市販の厚さ1.6mm及び3.2mmのSPCC(冷間圧延鋼板)を購入し、所望の種々の形状に切断したこの鋼片を試験片とした。このSPCC試験片にショットブラスト機を使用して、白色アルミナ紛(WAF100)によりブラスト処理をして、接着面となるべき部分を粗面化した。この試験片を超音波発信端付きの浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃として用意し、前記SPCC試験片を5分浸漬した後、これを水洗した。次に別の浸漬槽に、65℃とした1%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これに前記SPCC試験片を1分浸漬した後、これを水洗した。次に別の浸漬槽に、1%濃度のアンモニア水を用意し、これに前記SPCC試験片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、45℃とした2%濃度の過マンガン酸カリと1%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記SPCC試験片を5分間浸漬した後、これを水洗した。そして超音波発振端付きの水槽に、7分間浸漬してスマットを除き水洗した。水洗したSPCC試験片を、80℃に設定した温風乾燥機に15分入れて乾燥させた。
[Experimental Example A8-1] SPCC surface treatment (new NAT treatment: reference example)
Commercially available SPCCs (cold-rolled steel sheets) having a thickness of 1.6 mm and 3.2 mm were purchased, and the steel pieces cut into various desired shapes were used as test pieces. This SPCC test piece was blasted with white alumina powder (WAF100) using a shot blasting machine to roughen the portion to be the adhesive surface. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was prepared at 60 ° C. in a dipping tank with an ultrasonic transmitting end, and the SPCC test piece was immersed for 5 minutes and then washed with water. .. Next, in another immersion tank, an aqueous solution containing 1% hydrogen difluorinated ammon at 65 ° C. and 10% sulfuric acid was prepared, and the SPCC test piece was immersed in the aqueous solution for 1 minute and then washed with water. bottom. Next, 1% concentration of ammonia water was prepared in another immersion tank, and the SPCC test piece was immersed in this for 1 minute and then washed with water. Next, in another immersion tank, an aqueous solution containing 2% potassium permanganate at 45 ° C., 1% acetic acid and 0.5% sodium hydrated sodium acetate was prepared, and the SPCC test piece was prepared. Was soaked for 5 minutes and then washed with water. Then, it was immersed in a water tank with an ultrasonic oscillation end for 7 minutes to remove the smut and washed with water. The SPCC test piece washed with water was placed in a warm air dryer set at 80 ° C. for 15 minutes to dry.

[実験例A8−2]SPCCの表面処理(最新NAT処理)
市販の厚さ1.6mm及び3.2mmのSPCCを購入し、所望の種々の形状に機械加工により切断してSPCC鋼片を試験片とした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記SPCC試験片を5分浸漬した後、これを水洗した。次に別の槽に、65℃とした5%濃度の1水素2弗化アンモン水溶液を用意し、これに前記SPCC試験片を25分浸漬した後、これを水洗した。次に別の槽に、1%濃度のアンモニア水を用意し、これに前記試験片を1分間浸漬した後、これを水洗した。次に別の槽に、45℃とした2%濃度の過マンガン酸カリと、1%濃度の酢酸と、0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記SPCC試験片を5分間浸漬した後、これを水洗した。そして超音波発振端付きの水槽に、7分間浸漬してスマットを除き水洗した。次に別の槽に、40℃とした0.2%濃度のトリエタノールアミン含む水溶液を用意し、これに前記SPCC試験片を30分間浸漬した後、これを水洗した。そして、これを80℃に設定した温風乾燥機に15分入れて乾燥させた。
[Experimental Example A8-2] SPCC surface treatment (latest NAT treatment)
Commercially available SPCCs with a thickness of 1.6 mm and 3.2 mm were purchased and cut into various desired shapes by machining to obtain SPCC steel pieces as test pieces. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the immersion tank, the SPCC test piece was immersed for 5 minutes, and then washed with water. Next, an aqueous solution of 1 hydrogen difluorinated Ammon having a concentration of 5% at 65 ° C. was prepared in another tank, and the SPCC test piece was immersed in the aqueous solution for 25 minutes and then washed with water. Next, 1% concentration of ammonia water was prepared in another tank, the test piece was immersed in the aqueous solution for 1 minute, and then washed with water. Next, in another tank, an aqueous solution containing 2% potassium permanganate at 45 ° C., 1% acetic acid, and 0.5% sodium hydrated sodium acetate was prepared, and the SPCC test was performed on the aqueous solution. The pieces were soaked for 5 minutes and then washed with water. Then, it was immersed in a water tank with an ultrasonic oscillation end for 7 minutes to remove the smut and washed with water. Next, an aqueous solution containing 0.2% concentration triethanolamine at 40 ° C. was prepared in another tank, and the SPCC test piece was immersed in the aqueous solution for 30 minutes and then washed with water. Then, this was put in a warm air dryer set at 80 ° C. for 15 minutes to dry.

[実験例A9−1]64Ti合金の表面処理(新NAT処理)
金属加工メーカーに依頼して作成した150mm×50×3mm、及び、45mm×18mm×3mm、45mm×18mm×1.5mm、等の64Ti合金片[元材は「KS6−4」(株式会社神戸製鋼所(本社:日本国兵庫県)製)]を用意した。その表面処理方法は、特許文献8等に記載の新NATと称する処理方法、表面性状をそのまま適用したものであり、公知技術であるので処理方法は省略する。この表面処理後は、清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A9-1] Surface treatment of 64Ti alloy (new NAT treatment)
64Ti alloy pieces such as 150 mm x 50 x 3 mm, 45 mm x 18 mm x 3 mm, 45 mm x 18 mm x 1.5 mm, etc. created by requesting a metal processing manufacturer [Original material is "KS6-4" (Kobe Steel Co., Ltd.) (Headquarters: Made in Hyogo, Japan)] was prepared. The surface treatment method is a treatment method called new NAT described in Patent Document 8 and the like, and the surface texture is applied as it is, and since it is a known technique, the treatment method is omitted. After this surface treatment, it was wrapped in clean aluminum foil and stored.

[実験例A9−2]64Ti合金の表面処理(最新NAT処理)
前記の実験例と同様に、64Ti合金片を入手しこれを試験片とした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記64Ti合金片を5分浸漬した後、これを水洗した。次に別の槽に、65℃とした5%濃度の1水素2弗化アンモン水溶液を用意し、これに前記64Ti合金片を5分浸漬した後、これを水洗した。次に別の槽に、3%濃度の硝酸水溶液を用意し、これに前記64Ti合金片である試験片を3分間浸漬した後、これを水洗した。次に別の槽に、70℃とした2%濃度の過マンガン酸カリと3%濃度の苛性カリを含む水溶液を用意し、これに前記64Ti合金片を30分間浸漬した後、これを水洗した。そして、更に新開発した調整薬を15%含む55℃とした水溶液に20分浸漬した後、これを水洗した。そして、80℃に設定した温風乾燥機に15分入れて乾燥させた。
[Experimental Example A9-2] Surface treatment of 64Ti alloy (latest NAT treatment)
Similar to the above experimental example, a 64Ti alloy piece was obtained and used as a test piece. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the immersion tank, and the 64Ti alloy piece was immersed for 5 minutes and then washed with water. Next, an aqueous solution of 1 hydrogen difluorinated Ammon having a concentration of 5% at 65 ° C. was prepared in another tank, and the 64Ti alloy piece was immersed in the aqueous solution for 5 minutes and then washed with water. Next, a 3% aqueous nitric acid solution was prepared in another tank, and the test piece, which was the 64Ti alloy piece, was immersed in the test piece for 3 minutes and then washed with water. Next, an aqueous solution containing 2% potassium permanganate and 3% potassium caustic at 70 ° C. was prepared in another tank, and the 64Ti alloy piece was immersed in the aqueous solution for 30 minutes and then washed with water. Then, it was immersed in an aqueous solution containing 15% of the newly developed adjusting agent at 55 ° C. for 20 minutes, and then washed with water. Then, it was put in a warm air dryer set at 80 ° C. for 15 minutes to dry.

[実験例A10]Ti合金「KSTi−9」の表面処理(新NAT処理)
耐熱チタン合金である1mm厚の「KSTi−9」(株式会社神戸製鋼所(本社:日本国兵庫県)製)板材を入手し、必要な大きさに裁断して用意した。その表面処理は、前述した実験例A9と全く同一である。以上が本実験例で使用した各種金属片の表面処理方法である。次に、これらの金属片と接着するときのCFRP材の表面処理方法について説明する。
[Experimental Example A10] Surface treatment of Ti alloy "KSTi-9" (new NAT treatment)
A 1 mm thick "KSTi-9" (manufactured by Kobe Steel, Ltd. (Headquarters: Hyogo Prefecture, Japan)) plate, which is a heat-resistant titanium alloy, was obtained and cut to the required size. The surface treatment is exactly the same as that of Experimental Example A9 described above. The above is the surface treatment method for various metal pieces used in this experimental example. Next, a method of surface treatment of the CFRP material when adhering to these metal pieces will be described.

[実験例A11]CFRP材の表面処理
本実験で使用したCFRP材は2種あり、一つはCFとして、引張り強度が約3GPaのCF(市販品)を使用した物であり、単方向型のプリプレグを、方向を揃えて重ねて硬化した45mm×15mm×3mm厚との物である。
[Experimental Example A11] Surface treatment of CFRP material There are two types of CFRP material used in this experiment. One is a CF (commercially available product) with a tensile strength of about 3 GPa, which is a unidirectional type. It is a product having a thickness of 45 mm × 15 mm × 3 mm, which is obtained by stacking and curing prepregs in the same direction.

もう一種類は、0.2mm厚のCFRP単方向プリプレグ「P225S−25」(東レ株式会社(本社:日本国東京都)製)を入手し、専門の加工企業に委託して、CF方向を揃えて厚さ3mmの500mm×500mmのCFRP厚板材の作成を依頼し、厚板を作成した。この厚板の一部を45mm×15mmの長辺にCFが平行となるCFRP片に切断した。使用したCFは、「T800SC」(東レ株式会社(本社:日本国東京都)製)であり、CF糸の引張り強度は約6GPaである。何れも耐熱仕様のマトリックス樹脂が使用されている。 The other type is a 0.2 mm thick CFRP unidirectional prepreg "P225S-25" (manufactured by Toray Industries, Inc. (Headquarters: Tokyo, Japan)), which is outsourced to a specialized processing company to align the CF directions. We requested the production of a CFRP thick plate material with a thickness of 3 mm and a thickness of 500 mm × 500 mm, and produced a thick plate. A part of this plank was cut into CFRP pieces having CF parallel to the long side of 45 mm × 15 mm. The CF used was "T800SC" (manufactured by Toray Industries, Inc. (Headquarters: Tokyo, Japan)), and the tensile strength of the CF yarn was about 6 GPa. In both cases, heat-resistant matrix resin is used.

接着剤接合のためのCFRP材の表面の前処理は、#600のサンドペーパーで強く研磨して、一部のCFが剥き出しになる程度に研磨する。研磨後のCFRP片は、超音波付きの脱脂槽(60℃としたアルミ材用の脱脂材入り水槽)に浸漬してその付着汚れを分離した後、これをよく水洗した。この後、これを100℃とした熱風乾燥機で15分程度入れて乾燥した後、これを清浄なアルミ箔でまとめて包み保管した。 The surface pretreatment of the CFRP material for adhesive bonding is strongly polished with # 600 sandpaper to the extent that some CF is exposed. The polished CFRP piece was immersed in a degreasing tank with ultrasonic waves (a water tank containing a degreasing material for aluminum materials at 60 ° C.) to separate the adhering stains, and then washed thoroughly with water. After that, it was put in a hot air dryer at 100 ° C. for about 15 minutes to dry, and then wrapped in clean aluminum foil and stored.

[実験例A12]CFRP材とAl合金薄板の接着一体化物の作成
CFRP片とAl合金薄板の接着一体化物を、CFRPプリプレグから一挙に作成する方法も実施した。即ち、予め0.75mm厚のA5052Al合金薄板を98mm×98mmに切断し、実験例A3と全く同じ処理をした。その片面に1液性エポキシ接着剤「EW2040(スリーエム ジャパン株式会社(本社:日本国東京都)製)」を薄く塗り、その上にテフロンシートを押し付けて接着準備物とし保管した。この接着準備物とCFRPプリプレグ「P225S−25」(東レ株式会社(本社:日本国東京都)製)の双方を使って100mm×100mmA5052Al合金薄板付きの厚さ3.5mmのCFRP厚板形状物を作成した。この作成は減圧したオートクレーブ内で加熱して接着する方法であり、最高加熱条件として150℃×40分とした。得られたA5052Al合金薄板付きのCFRP厚板は、45mm×15mmの長辺にCFが平行となる様にして切断した。
[Experimental Example A12] Preparation of Adhesive Integration of CFRP Material and Al Alloy Thin Plate A method of preparing an adhesive integration of CFRP piece and Al alloy thin plate from CFRP prepreg at once was also carried out. That is, a 0.75 mm thick A5052Al alloy thin plate was cut into 98 mm × 98 mm in advance, and the same treatment as in Experimental Example A3 was performed. A one-component epoxy adhesive "EW2040 (manufactured by 3M Japan Ltd. (Headquarters: Tokyo, Japan)" was thinly applied to one side of the adhesive, and a Teflon sheet was pressed onto it for storage as an adhesive preparation. Using both this adhesive preparation and CFRP prepreg "P225S-25" (manufactured by Toray Industries, Inc. (Headquarters: Tokyo, Japan)), a CFRP thick plate shape with a thickness of 3.5 mm with a 100 mm x 100 mm A5052Al alloy thin plate is made. Created. This preparation is a method of heating and adhering in an autoclave under reduced pressure, and the maximum heating condition is 150 ° C. × 40 minutes. The obtained CFRP thick plate with an A5052Al alloy thin plate was cut so that the CF was parallel to the long side of 45 mm × 15 mm.

[実験例B]接着力の確認試験
[実験例B1]接着力(せん断接着強さ、引張り接着強さ)の測定
前記した[実験例A1〜A12]群の物と同処理を行った45mm×18mm×(3〜6)mm厚の各種試験片を使用し、図1、図2形状の接着対とした。更に詳細言えば、図1(a)に示した試験片の形状では、これは引張り荷重をかけるために、試験片の形状が45mm×18mm×(4.5〜6.0)mm厚となっている。しかし、Al合金材が柔らかいとき、特に、薄い純アルミニウム系Al合金使用時は、6.0mm厚、その他は4.5mm厚で使用するようにした。このために1.5mm厚品を3枚重ねか4枚重ねに接着して、4.5mm厚か6.0mm厚にした物も多用したが、これを図1(b)に示した形状物として示している。又、実験例A11以降に記載あるCFRP片に関しては、CFRP片形状を45mm×15mm×3mm厚とした。これらはそのまま図1(a)に示す積層構造とした。
[Experimental Example B] Adhesive strength confirmation test [Experimental Example B1] Measurement of adhesive strength (shear adhesive strength, tensile adhesive strength) 45 mm × which was the same treatment as that of the above-mentioned [Experimental Examples A1 to A12] group Various test pieces having a thickness of 18 mm × (3 to 6) mm were used to prepare an adhesive pair having the shapes shown in FIGS. 1 and 2. More specifically, in the shape of the test piece shown in FIG. 1A, the shape of the test piece is 45 mm × 18 mm × (4.5 to 6.0) mm thick in order to apply a tensile load. ing. However, when the Al alloy material is soft, especially when a thin pure aluminum-based Al alloy is used, the thickness is 6.0 mm, and the thickness of the others is 4.5 mm. For this reason, we often used products with a thickness of 4.5 mm or 6.0 mm by adhering 1.5 mm thick products in 3 or 4 layers, but this is the shape shown in FIG. 1 (b). It is shown as. Regarding the CFRP pieces described in Experimental Example A11 and later, the CFRP piece shape was 45 mm × 15 mm × 3 mm thick. These were directly used as the laminated structure shown in FIG. 1 (a).

[試験片の作成手順]
以下、図1、図2に示した試験片の作成に関する具体的な接着法を説明する。本発明者が用いた多種の金属片の基本形状は、45mm×18mm×1.5mm厚が多く、CFRP片やCFRTP片は45mm×15mm×3mm厚とした。また、金属片で元材が圧延板の場合は、圧延方向を長方形の長辺の45mmの方向とし、その直角方向が18mmの幅方向となり、厚さは元材の圧延板の厚さ方向とした。それ故に、SPCC片だけが厚さ1.6mmや3.2mm等と1.6mmの整数倍厚さとなっている。これはこの厚さ品しか生産されていないからである。厚板や塊で元材が供給されるA6063アルミニウム合金や64チタン合金では、そのような決め事はできず、金属加工の加工精度による。又、CFRP材は、束型CF入りのプリプレグ使用品で、かつCF束の並び方向が皆揃っているCFRPについては、束並び方向線が45mm長さの線とした。図1(b)に示した形状の場合、多くの金属片の枚数を積層することになるので、前述した個々の全ての金属片を、所定の処理方法で表面処理した後に接着する。
[Procedure for making test pieces]
Hereinafter, a specific bonding method for producing the test pieces shown in FIGS. 1 and 2 will be described. The basic shapes of various metal pieces used by the present inventor are often 45 mm × 18 mm × 1.5 mm thick, and CFRP pieces and CFRTP pieces are 45 mm × 15 mm × 3 mm thick. When the base material is a rolled plate with a metal piece, the rolling direction is 45 mm on the long side of the rectangle, the perpendicular direction is the width direction of 18 mm, and the thickness is the thickness direction of the rolled plate of the base material. bottom. Therefore, only the SPCC piece has a thickness of 1.6 mm, 3.2 mm, or the like, which is an integral multiple of 1.6 mm. This is because only products of this thickness are produced. With A6063 aluminum alloys and 64 titanium alloys, the base material of which is supplied as a plank or ingot, such a decision cannot be made, and it depends on the processing accuracy of metal processing. Further, the CFRP material is a product using a prepreg containing bundled CF, and for CFRP in which all the CF bundles are arranged in the same direction, the bundle arrangement direction line is 45 mm long. In the case of the shape shown in FIG. 1 (b), since a large number of metal pieces are laminated, all the individual metal pieces described above are surface-treated by a predetermined treatment method and then bonded.

接着の前に下処理として、接着剤容器に、1液性エポキシ接着剤「EW2040」をごく少量とり、これに溶剤であるMIBK(メチルイソブチルケトン)を加えて、ごく薄い溶液としておき、木製棒材の先端に容器からの接着剤を付着させて、これを化成処理された試験片である前記金属片の接着すべき個所に塗り付ける。そして、その試験片を50℃セットの温風乾燥機内に20分おいて溶剤を揮発させる。そしてその下塗り部に上記接着剤「EW2040」を塗り付ける。せん断破壊試験に関係しない積層された接着面は、このようなプライマー塗り操作は不要であって、試験片に直接に接着剤を全面に塗り、そして図1(b)に示すように積層して、これを治具(文具用クリップ)で加圧固定して積層体とする。 As a pretreatment before bonding, take a very small amount of one-component epoxy adhesive "EW2040" in an adhesive container, add MIBK (methylisobutylketone), which is a solvent, to make a very thin solution, and leave it as a wooden stick. An adhesive from a container is attached to the tip of the material, and this is applied to a portion of the metal piece, which is a chemical-treated test piece, to be adhered. Then, the test piece is placed in a hot air dryer set at 50 ° C. for 20 minutes to volatilize the solvent. Then, the above-mentioned adhesive "EW2040" is applied to the undercoat portion. The laminated adhesive surface, which is not related to the shear failure test, does not require such a primer coating operation, and the adhesive is directly applied to the entire surface of the test piece, and the laminated adhesive surface is laminated as shown in FIG. 1 (b). , This is pressure-fixed with a jig (stationery clip) to form a laminated body.

前記接着操作をしている間に、大型デシケータを50℃セットの温風乾燥機内に置いて予熱しておく。このデシケータを取り出し、前記操作で作成した治具固定の積層体をそのままデシケータに入れる。そして、真空ポンプでデシケータ内の空気を抜き、5分ほど経ったら空気を入れるという減圧/加圧操作を2回以上繰り返してデシケータから出し、次は熱風乾燥機に入れて170℃×20分間加熱し、硬化処理を済ませた後に固定治具を外す。硬化処理終えた試験片には、接着剤が接着面から溢れて硬化した部分が多々あり、これらをルータで削り取る操作をする。この機械加工は、機械加工の影響を少なくするために硬化処理した翌日に行い、そして引張試験機による「せん断接着強さ」、「せん断接着粘り性」の夫々の数値を測定した。「引っ張り強度」を測定する図2に示した試験片の作成方法は、上記の方法と同一である。 During the bonding operation, a large desiccator is placed in a hot air dryer set at 50 ° C. to preheat it. This desiccator is taken out, and the jig-fixed laminate created in the above operation is put into the desiccator as it is. Then, the air inside the desiccator is evacuated with a vacuum pump, and after about 5 minutes, air is added. The depressurization / pressurization operation is repeated two or more times to remove the air from the desiccator, and then put it in a hot air dryer and heat it at 170 ° C for 20 minutes. Then, after the curing process is completed, remove the fixing jig. The hardened test piece has many hardened parts where the adhesive overflows from the adhesive surface, and these are scraped off with a router. This machining was performed the day after the curing treatment to reduce the influence of machining, and the respective values of "shear bond strength" and "shear bond stickiness" were measured by a tensile tester. The method of preparing the test piece shown in FIG. 2 for measuring the "tensile strength" is the same as the above method.

以上の化成処理、接着方法により接着した同種の試験片を接着したものについて、測定したせん断接着強さの結果のデータの要部を表1に示す。表1で理解されるように、同種の金属片同士でのせん断接着強さは、概ね約60MPaであり、数値が低いものは軟質金属である純アルミニウム合金であるA1050Al合金の約54MPaのみだった。一方、実験例A11で作成したCFRP片同士の試験片では、CFとして引張り強度3GPa付近の物を使用して作成したCFRP片同士の試験片では、約60MPaが得られた。しかし、同じCFRP片同士の試験片でも、CFとして引張り強度6GPa付近の物を使用して作成した、CFRP片同士の試験片では約40MPaとなった。表1のデータは、接着面の処理は研磨等の機械的な表面処理ではなく、本発明者等が提唱する各種化成処理による接着法が接着強度には有効であることを示している。また、せん断接着強さよりも引張り接着強さ(後述する図2の試験片)強いことが判明した。この理由は、金属の圧延方向、即ち、後述する金属繊維の方向が接着強さに影響していることが理解される。

Figure 2021123035
Table 1 shows the main parts of the data of the results of the measured shear bond strength of the same type of test pieces bonded by the above chemical conversion treatment and bonding method. As can be seen in Table 1, the shear bond strength between metal pieces of the same type was approximately 60 MPa, and the one with the lowest value was only about 54 MPa of the A1050Al alloy, which is a pure aluminum alloy that is a soft metal. .. On the other hand, in the test piece of CFRP pieces prepared in Experimental Example A11, about 60 MPa was obtained in the test piece of CFRP pieces prepared by using a material having a tensile strength of about 3 GPa as CF. However, even with the same test pieces of CFRP pieces, the pressure was about 40 MPa for the test pieces of CFRP pieces prepared by using a CF with a tensile strength of about 6 GPa. The data in Table 1 show that the treatment of the adhesive surface is not a mechanical surface treatment such as polishing, but the adhesive method by various chemical conversion treatments proposed by the present inventors is effective for the adhesive strength. Further, it was found that the tensile adhesive strength (test piece of FIG. 2 described later) was stronger than the shear adhesive strength. It is understood that the reason for this is that the rolling direction of the metal, that is, the direction of the metal fibers described later, affects the adhesive strength.
Figure 2021123035

[実験例B2]表面処理済み各種金属材の引張り接着強さの測定
前記した実験例A1〜A9と同処理を行った45mm×18mm×1.5mmの各種金属片を使用して、図2形状の試験片とした。即ち、図2に示した試験片の形状では、金属片の端部形状が18mm×1.5mmなので、ISO19095でのせん断接合強度測定用の各種金属片が試験片の作成企業で製造され、市販されている。それ故にそれをそのままその試験片を転用した。
[Experimental Example B2] Measurement of Tension Adhesive Strength of Various Surface-treated Metal Materials Using various metal pieces of 45 mm × 18 mm × 1.5 mm that have been subjected to the same treatment as Experimental Examples A1 to A9 described above, the shape shown in FIG. It was used as a test piece. That is, in the shape of the test piece shown in FIG. 2, since the end shape of the metal piece is 18 mm × 1.5 mm, various metal pieces for measuring the shear joint strength in ISO19095 are manufactured by a company that produces the test piece and are commercially available. Has been done. Therefore, the test piece was diverted as it was.

この図2に示した試験片を使用した引張り接着強さの測定結果も表1に示した。前述したように、供給金属板のy−z面を対象とする引張り接着強さが測定される。この引張り接着強さの実験結果によると、純アルミニウム系アルミニウム合金のA1050Al合金だけが突出しており、約95MPaを記録している。実際の測定では約100MPaを示した試験対もあり、約95MPaは数個の平均値であり、実験のバラツキによる異常値ではない。推測であるが、金属を成形加工するときの圧延ロール加工等の延伸加工により、形成されAl合金の金属結晶系形が関係している。晶系形が細長く繊維のようになることでx方向の引張強度が高く、これが引張り接着強さに関係していると考えられる。この推論の通りであれば、圧延加工品では、図2に示した試験片を使って引張り接着強さ値が高く出る処理法を開発しても、金属繊維の方向を考慮しない接着方法は、その処理品におけるせん断接着強さが大きくなるわけではない。逆に、鍛造加工により、一旦金属塊とした金属塊を機械加工して、板型小片にした物であれば、引張り接着強さ値と、せん断接着強さ値に比例関係らしきものがあると推定される。 Table 1 also shows the measurement results of the tensile adhesive strength using the test piece shown in FIG. As described above, the tensile adhesive strength for the yz plane of the supplied metal plate is measured. According to the experimental result of the tensile adhesive strength, only the A1050Al alloy, which is a pure aluminum-based aluminum alloy, protrudes and records about 95 MPa. In the actual measurement, some test pairs showed about 100 MPa, and about 95 MPa is an average value of several pieces, which is not an abnormal value due to the variation of the experiment. It is speculated that the metal crystal system shape of the Al alloy formed by stretching processing such as rolling roll processing when forming the metal is related. The crystal-based shape becomes elongated and fiber-like, so that the tensile strength in the x direction is high, which is considered to be related to the tensile adhesive strength. According to this inference, for rolled products, even if a treatment method that produces a high tensile adhesive strength value using the test piece shown in FIG. 2 is developed, the adhesive method that does not consider the direction of the metal fiber is The shear bond strength of the treated product does not increase. On the contrary, if the metal ingot that was once made into a metal ingot by forging is machined into a plate-shaped small piece, there seems to be a proportional relationship between the tensile adhesive strength value and the shear adhesive strength value. Presumed.

[実験例B3]金属板々面(x−y面)の「引張り接着強さ」の測定実験
表1示すように、例えば、実験例A1のy−z面の「引張り接着強さ」は、約95MPaと異常に高い。その理由は、上述したようにx−y面の接着面とは、金属繊維の方向が異なるためと推定される。表1に記録した純アルミニウム系アルミニウム合金であるA1050の数値を解析し、この板面(板面:x−y面)での「引張り接着強さ」は、図2に示した試験片で測定した板断面(y−z面)基準の「引張り接着強さ」とは異なると予測される。圧延方向である板断面(x−y面)基準の「引張り接着強さ」の測定方法は、規格化された試験方法がないので、以下に説明する方法で試験片を作成し測定した。
[Experimental Example B3] Measurement experiment of "tensile adhesive strength" of metal plate surfaces (xy surface) As shown in Table 1, for example, the "tensile adhesive strength" of the yz surface of Experimental Example A1 is It is abnormally high at about 95 MPa. It is presumed that the reason is that the direction of the metal fiber is different from that of the adhesive surface of the xy surface as described above. The numerical values of A1050, which is a pure aluminum-based aluminum alloy recorded in Table 1, were analyzed, and the "tensile adhesive strength" on the plate surface (plate surface: xy surface) was measured with the test piece shown in FIG. It is predicted that it is different from the "tensile adhesive strength" based on the plate cross section (yz plane). Since there is no standardized test method for measuring the "tensile adhesive strength" based on the plate cross section (xy plane) in the rolling direction, a test piece was prepared and measured by the method described below.

(1)板面(板面:x−y面)での「引張り接着強さ」の測定方法
図16〜図18は、板面(x−y面(図2))での「引張り接着強さ」の測定をするために、その試験片の作成手順の概要を示す略図である。最初に、45mm長さ×18mm幅×1.5mm厚のA5052Al合金である6枚の板材を、一液性エポキシ接着剤で接着し積層した。これを加熱硬化させた後、図16(下段)に示すように板厚方向に鋸刃で切断し、更にエンドミル加工で、18mm幅×9mm長さ×1.5mm厚に機械加工した。これを図17に示すように、この機械加工片と、肉厚と幅で同材である上記A5052Al合金の二つの板材(45mm長さ×18mm幅×1.5mm厚)の端面に、上記と同じ接着剤で接着し、硬化後に余分な部分は切削した(図17の下段)。
(1) Method for measuring "tensile adhesive strength" on the plate surface (plate surface: xy surface) FIGS. 16 to 18 show "tensile adhesive strength" on the plate surface (xy surface (FIG. 2)). It is a schematic diagram which shows the outline of the procedure for making the test piece in order to measure "sa". First, six plates of A5052Al alloy having a length of 45 mm, a width of 18 mm, and a thickness of 1.5 mm were bonded and laminated with a one-component epoxy adhesive. After heat-curing this, as shown in FIG. 16 (lower stage), it was cut with a saw blade in the plate thickness direction, and further machined to a thickness of 18 mm width × 9 mm length × 1.5 mm thickness by end milling. As shown in FIG. 17, on the end face of this machined piece and two plates (45 mm length × 18 mm width × 1.5 mm thickness) of the above A5052Al alloy which are the same material in wall thickness and width, the above It was bonded with the same adhesive, and the excess part was cut after curing (lower part of FIG. 17).

この接着した状態で、引張り負荷をかけてもどの接着面が破断するかは確定できないので、試験方法としては好ましくはない。そこで、図18の下段に示すように、中央部分をエンドミルで円孤状に切削加工により切除した。そして上記積層した試験片の中で、中央部の接着面から破断するようにこの接着面の幅方向を最も狭くした(9mm幅×1.5mm厚)。この接着面の破断したときの負荷を、x−y面の引張り接着強さとした。この結果、x−y面の引張り接着強さは、同一材質の純アルミニウム合金系のA1050Al合金で、同じ接着剤で同じ化成処理(NAT)品のとき46.0MPaであり、y−z面の95.0MPaより低い(表1参照)。同様に、A5052Al合金で、51.3MPaであり、y−z面の76.4MPaより低い、64Ti合金で47.0MPaであり、y−z面の75.2MPaより低い。 In this bonded state, it is not possible to determine which bonded surface will break even if a tensile load is applied, which is not preferable as a test method. Therefore, as shown in the lower part of FIG. 18, the central portion was excised by cutting in a circular shape with an end mill. Then, among the above-mentioned laminated test pieces, the width direction of the adhesive surface was made the narrowest (9 mm width × 1.5 mm thickness) so as to break from the adhesive surface at the center. The load when the adhesive surface was broken was defined as the tensile adhesive strength of the xy surface. As a result, the tensile adhesive strength of the xy plane is 46.0 MPa for the same pure aluminum alloy-based A1050Al alloy with the same adhesive and the same chemical conversion treatment (NAT) product, which is 46.0 MPa for the yz plane. It is lower than 95.0 MPa (see Table 1). Similarly, the A5052Al alloy is 51.3 MPa, which is lower than 76.4 MPa on the yz plane, and the 64Ti alloy is 47.0 MPa, which is lower than 75.2 MPa on the yz plane.

本発明において、圧延して製造された金属片の板面の物性が、接着操作には重要である。NAT処理において、図1に示した試験片の形状物を使用した、せん断接着強さをどうやって向上させるかが具体的なNAT処理法の改良研究になり、本発明も常温下60MPa、150℃下30MPaを示す強力な接着力の確保が基礎にあり、本発明の開発に成功した。しかしながら、各種金属合金の表面処理法の改良研究は、そのせん断接着強さが約60MPaに近づくと限界となり停滞する。これは間違いなく上限値に近づくからである。それ故に、この最高値に近づいた後に使用する明快な指標がない。理論的に言えば、せん断接着強さは、多くの金属片でその板面にて測定しているから、その板面における引張り接着強さが測定できれば、「その数値がより高い方がより良い接着面部の構造になっている」と言える。それ故、せん断接着強さが60MPaに達したなら、次は、この部分の引張り接着強さを測定しつつ表面処理法を試行錯誤すればよいと判断した。これが上記した「実験例B3」の実施理由である。しかしながら、余りにも試験方法が難しく実験ミスも出易いので、本発明において、表面処理を試行錯誤しつつ改良を進めるための改良度評価法としては不適と判断した。 In the present invention, the physical characteristics of the plate surface of the metal piece produced by rolling are important for the bonding operation. In the NAT treatment, how to improve the shear adhesion strength using the shape of the test piece shown in FIG. 1 has become a concrete improvement study of the NAT treatment method, and the present invention also has the present invention at 60 MPa and 150 ° C. at room temperature. The present invention has been successfully developed based on the securing of a strong adhesive force showing 30 MPa. However, research on improving surface treatment methods for various metal alloys reaches a limit and stagnates when the shear adhesive strength approaches about 60 MPa. This is because it definitely approaches the upper limit. Therefore, there is no clear indicator to use after approaching this high. Theoretically speaking, the shear adhesive strength is measured on the plate surface of many metal pieces, so if the tensile adhesive strength on the plate surface can be measured, "the higher the value, the better. It has the structure of the adhesive surface. " Therefore, when the shear adhesive strength reaches 60 MPa, it was decided that the surface treatment method should be tried and errored while measuring the tensile adhesive strength of this portion. This is the reason for implementing the above-mentioned "Experimental Example B3". However, since the test method is too difficult and experimental mistakes are likely to occur, it was determined that the test method is not suitable as an improvement degree evaluation method for advancing the improvement while performing trial and error in the surface treatment in the present invention.

[実験例B4]各種金属材の接着力(せん断接着粘り性値)の測定
前述した経緯から、更に、単純な引張り負荷ではなく、接着力測定が容易に測定でき、実際の機器に用いたときその負荷に近い接着力評価法を探索した。本発明者の出した結論であり、提唱する「せん断接着粘り性」の測定である。表2は、同一材質の金属材同士を接着したとき、図1に示した試験片で前述した「せん断接着粘り性」の測定結果である。即ち、既述したように、先に測定したせん断接着強さ値を参考にして、その約75%の力量を300回かけ、破断しなければ2MPaほど力量を上げてそのまま300回加え、それでも破断しなければこれを繰り返すものである。表2に示した結果で分かるように、NAT処理品で全ての対象金属については測定し、NAT5、NAT7処理品についても「せん断接着粘り性」値を測定した。なお、実用的な判断としては、「せん断接着粘り性」は50MPa以上が好ましい。

Figure 2021123035
[Experimental Example B4] Measurement of Adhesive Strength (Shear Adhesive Stickiness Value) of Various Metal Materials From the above-mentioned background, the adhesive strength can be easily measured instead of a simple tensile load, and when used in an actual device. We searched for an adhesive strength evaluation method that is close to the load. This is the conclusion drawn by the present inventor and the proposed measurement of "shear adhesive stickiness". Table 2 shows the measurement results of the above-mentioned "shear adhesion stickiness" in the test piece shown in FIG. 1 when metal materials of the same material are bonded to each other. That is, as described above, with reference to the shear adhesive strength value measured earlier, the force of about 75% is applied 300 times, and if it does not break, the force is increased by about 2 MPa and added 300 times as it is, but it still breaks. If not, this will be repeated. As can be seen from the results shown in Table 2, all the target metals were measured in the NAT-treated product, and the "shear adhesive stickiness" value was also measured in the NAT5 and NAT7-treated products. As a practical judgment, the "shear adhesive stickiness" is preferably 50 MPa or more.
Figure 2021123035

[実験例B5]異種金属材同士の1液性エポキシ接着剤の接着力(せん断接着強さ)の測定
上述の実験例A内に示したのと同じ化成処理を行った45mm×18mm×(4.5〜6.0)mmの金属片を、1液性エポキシ接着剤「EW2040」を使用して、異種金属片同士の試験片(図1に示す形状物)を170℃×20分の硬化条件で作成した。その結果を表3に示した。前述したように、1液性エポキシ接着剤は、通常150〜180℃、15〜30分で硬化する。本発明の実験では、「EW2040」使用したとき、その硬化条件は全て170℃×20分とした。それ故、硬化を終えて熱風乾燥機から出すと、直ちに放冷され1時間も放置すれば完全に常温に戻る。即ち、接着面は170℃下で固定され、常温に戻った後は、約150℃も環境温度は下げられたことになる。図1に示した試験片である形状物が、異種金属材同士の接着対であり、その異材間に大きな線膨張率差があれば、接着剤硬化層の一部、又は全破損が進むか、又は、接着状況は変わらぬものの、目視では不明瞭でも正確にはやや変形するはずである。試験片の変形に見合った内部応力が発生して、接着力がその分だけ低下しているはずである。何れにしてもそのまま引張り試験機でせん断接着強さを測定すれば数値は必ず低下する。もし、硬化後の接着対を−50℃/+150℃の温度衝撃試験にかければ、より明確に悪化状況が分かるであろうと推定した。
[Experimental Example B5] Measurement of Adhesive Strength (Shear Adhesive Strength) of One-Liquid Epoxy Adhesives Between Dissimilar Metal Materials 45 mm × 18 mm × (4) subjected to the same chemical conversion treatment as shown in Experimental Example A above. Using a one-component epoxy adhesive "EW2040" to cure a metal piece of .5-6.0) mm, a test piece of dissimilar metal pieces (the shape shown in FIG. 1) was cured at 170 ° C. for 20 minutes. Created with conditions. The results are shown in Table 3. As mentioned above, the one-component epoxy adhesive usually cures at 150-180 ° C. for 15-30 minutes. In the experiment of the present invention, when "EW2040" was used, the curing conditions were all 170 ° C. × 20 minutes. Therefore, when it is taken out of the hot air dryer after curing, it is immediately allowed to cool and returns to room temperature completely if left for 1 hour. That is, the adhesive surface was fixed at 170 ° C., and after returning to room temperature, the environmental temperature was lowered by about 150 ° C. If the shape of the test piece shown in FIG. 1 is an adhesive pair of dissimilar metal materials and there is a large difference in linear expansion coefficient between the dissimilar materials, will part or all of the adhesive hardening layer be damaged? Or, although the bonding condition does not change, it should be slightly deformed even if it is not visible visually. Internal stress commensurate with the deformation of the test piece should be generated, and the adhesive strength should be reduced by that amount. In any case, if the shear bond strength is measured with a tensile tester as it is, the value will surely decrease. It was estimated that if the cured adhesive pair was subjected to a temperature impact test at -50 ° C / + 150 ° C, the deterioration situation would be more clearly understood.

この測定用接着対として4対を作成し、この2対は接着操作の翌日に接着力測定を行い、残り2対は−50℃/+150℃の温度衝撃100サイクル試験後に測定した。しかしながら、前者2対と後者2対で明確な差異はなかったので、表3には4対の平均値を記載した。その結果、一方がA1050Al合金とA7075Al合金と接着した異材同士の接着対では、せん断接着強さが55〜57MPaであり、線膨張率差が殆どないわけだから当然ながら接着力は全て高かつた。又、純アルミニウム系アルミニウム合金であるA1050アルミニウム合金と線膨張係数が大きく異なる異材質と接着したとき、約55MPa以上と不思議なことであるが、温度衝撃試験の前後の物双方共に強い接着力の得られていることが分かる。このデータは、本発明では重要な意味を有し、本発明の原点である。 Four pairs were prepared as the adhesive pairs for measurement, the adhesive strength of these two pairs was measured the day after the bonding operation, and the remaining two pairs were measured after a temperature impact 100 cycle test at −50 ° C./+ 150 ° C. However, since there was no clear difference between the former 2 pairs and the latter 2 pairs, Table 3 shows the average value of 4 pairs. As a result, in the adhesive pair of different materials bonded to the A1050Al alloy and the A7075Al alloy on one side, the shear adhesion strength was 55 to 57 MPa, and there was almost no difference in the coefficient of linear expansion, so that the adhesive strength was naturally high. Also, when bonded to a different material whose linear expansion coefficient is significantly different from that of A1050 aluminum alloy, which is a pure aluminum-based aluminum alloy, it is strange that it is about 55 MPa or more, but both before and after the temperature impact test have strong adhesive strength. You can see that it has been obtained. This data has an important meaning in the present invention and is the origin of the present invention.

一方、表3の下部の欄に示したが、線膨張率差が明確に大きく異なる高強度材同士の1液性エポキシ接着剤による接着物は、せん断接着強さが大きく低下する。硬化後の放冷で、接着剤硬化層の一部が破損したと推定される。図1に示す形状物である試験片での接着面積は、0.7cm程度である。このような小面積でも、線膨張率差は大きく影響することが分る。要するに、表3のデータにおいて、せん断接着強さの低下が見られない明確な事実は、純アルミ系アルミニウム合金であるA1050、A1085アルミニウム合金による軟質金属の物性が生んだ現象である。

Figure 2021123035
On the other hand, as shown in the lower column of Table 3, the shear adhesive strength of the adhesive made of the one-component epoxy adhesive between the high-strength materials whose linear expansion coefficient difference is clearly significantly reduced. It is presumed that a part of the adhesive curing layer was damaged by allowing to cool after curing. The adhesive area of the test piece, which is the shape shown in FIG. 1, is about 0.7 cm 2. It can be seen that even with such a small area, the difference in linear expansion coefficient has a large effect. In short, in the data in Table 3, the clear fact that the shear bond strength does not decrease is a phenomenon caused by the physical properties of the soft metal due to the pure aluminum-based aluminum alloys A1050 and A1085 aluminum alloys.
Figure 2021123035

[実験例B6]多層金属接着物における各試験片間の接着力(せん断接着強さ)の測定
本発明の異材質構造材を含む積層された接合一体化物は、「A」材と「B」材を両端部材とし、この「A」材と「B」材の間に、前述した「C」材、「D」材を挟み込んだ4層又は5層に接着剤で積層された接合一体化物である。この接合一体化物は、接着面が3面又は4面がある。そこで、これらの各接着面においての実際の接着力(せん断接着強さ)は、どのようになっているかを実測せんとした。この4層又は5層の接着物の積層例は、図5(5層)、図6(4層)に示す。しかしながら、図5(5層)、及び図6(4層)に示す積層体のままでは、せん断接着強さ、温度衝撃強さは測定できない。5層の積層体として図7に示す試験片、4層の積層体として図8の試験片により得られた測定結果を表4に示した。
[Experimental Example B6] Measurement of Adhesive Force (Shear Adhesive Strength) Between Test Pieces in Multilayer Metal Adhesive A bonded integrated product in which the material is used as both end members, and the above-mentioned "C" material and "D" material are sandwiched between the "A" material and the "B" material, and the four or five layers are laminated with an adhesive. be. This joint integrated product has three or four adhesive surfaces. Therefore, it was decided to actually measure how the actual adhesive force (shear adhesive strength) on each of these adhesive surfaces is. Examples of laminating the four-layer or five-layer adhesive are shown in FIGS. 5 (5 layers) and 6 (4 layers). However, the shear adhesion strength and the temperature impact strength cannot be measured with the laminates shown in FIGS. 5 (5 layers) and 6 (4 layers). Table 4 shows the measurement results obtained by the test piece shown in FIG. 7 as a 5-layer laminate and the test piece of FIG. 8 as a 4-layer laminate.

表4には、9例の測定例を示したが、ここでは「A」材、「B」材として、64Ti合金、A2017Al合金(ジュラルミン)、A7075Al合金(超々ジュラルミン)、SUS304鋼、CFRP片、等を使用した。又、C材として、A5052Al合金0.75mm薄板、A6061Al合金0.5mm厚薄板、SUS304の0.28mm薄板、を使用し、「D」材としてA1050Al合金1.5mm板を使用した。各接着部のせん断接着強さ(表4の//の部分)は、55〜58MPaと高く、同じ試験片を−50℃/+150℃の温度衝撃千サイクル試験に投入後のせん断接着強さの差も少なく、温度衝撃試験後も、接着部の接着強度上問題ないものであった。このデータは、図7及び図8の接着例から理解されるように、純アルミニウム系アルミニウム合金であるA1050Al合金と接着する接着部分が接着面積も狭く最も弱い。従って、この試験により、少なくともA1050Al合金と接着される部材と接着される部分のせん断接着強さ、温度衝撃強さのデータは得られた。

Figure 2021123035
Table 4 shows nine measurement examples. Here, as the "A" material and the "B" material, 64Ti alloy, A2017Al alloy (duralumin), A7075Al alloy (super duralumin), SUS304 steel, CFRP piece, Etc. were used. Further, as the C material, an A5052Al alloy 0.75 mm thin plate, an A6061 Al alloy 0.5 mm thick thin plate, and a SUS304 0.28 mm thin plate were used, and as the "D" material, an A1050 Al alloy 1.5 mm plate was used. The shear adhesive strength of each adhesive part (// part in Table 4) is as high as 55 to 58 MPa, and the shear adhesive strength after the same test piece is put into a temperature impact 1000 cycle test at -50 ° C / + 150 ° C. The difference was small, and even after the temperature impact test, there was no problem in the adhesive strength of the bonded portion. As can be understood from the bonding examples of FIGS. 7 and 8, this data shows that the bonding portion to be bonded to the A1050Al alloy, which is a pure aluminum-based aluminum alloy, has a narrow bonding area and is the weakest. Therefore, by this test, data of at least the shear adhesion strength and the temperature impact strength of the portion to be bonded to the member to be bonded to the A1050Al alloy were obtained.
Figure 2021123035

[実験例B7]図1に示す形状の1液性エポキシ接着剤の試験片の耐湿熱性試験の実験
前述した表4のデータは、高温、高湿度の環境下での試験データではない。本発明は、「A」材と「B」材の間に、「C」材、「D」材を挟み込んだ3層、4層、又は5層の積層された接着物である。この接着物でまず必要なことは、「C」材、「D」材共に、自動車等の構造材として使用されたとき、厳しい環境下において、その接着面の接着力が強度的に耐えうるか否かである。具体的には前述した温度衝撃試験で問題がないとしても、高湿度環境下での試験も必要である。一般的な高湿度試験では、温度50℃、湿度95%の湿度試験であるが、本実験では、これを加速させて、温度85℃、湿度85%の高温高湿試験機に、千時間晒す試験を実施した。但し、アルミニウム合金は、その表面に薄い水酸化物(錆)が発生し色調が変化し、かつ、試験中に試験機扉を開け閉めする時に水滴が付着すると錆がでる。そこで、試験片を試験機に投入前に、本実験では一般的に市販されているエンジンオイル(10W−30)を塗布した後、これを試験機に投入した。試料は、表5に示すように、「C」材、「D」材で使用するA1085Al合金、A1050Al合金、A6061Al合金、及びSUS304であるが、参考に「A」材、「B」材として使用する可能性が高い、64チタン合金も試験をした。接着剤は、前述した「EW2040」である。その結果を表5に示した。この表5に示すデータは、純アルミニウム系アルミニウム合金は、対湿熱試験にかけてもせん断接着強さは低下していないが、他の素材は低下した。

Figure 2021123035
[Experimental Example B7] Experiment of Moisture and Heat Resistance Test of Test Piece of One-Liquid Epoxy Adhesive with Shape Shown in FIG. 1 The data in Table 4 described above is not the test data in a high temperature and high humidity environment. The present invention is a three-layer, four-layer, or five-layer laminated adhesive in which a "C" material and a "D" material are sandwiched between an "A" material and a "B" material. The first thing that is required for this adhesive is whether or not both the "C" material and the "D" material can withstand the adhesive strength of the adhesive surface in a harsh environment when used as structural materials for automobiles and the like. Is it? Specifically, even if there is no problem in the above-mentioned temperature impact test, a test in a high humidity environment is also necessary. In a general high humidity test, a humidity test with a temperature of 50 ° C and a humidity of 95% is performed, but in this experiment, this is accelerated and exposed to a high temperature and high humidity tester with a temperature of 85 ° C and a humidity of 85% for 1000 hours. The test was carried out. However, aluminum alloys are rusted when thin hydroxides (rust) are generated on the surface and the color tone changes, and when water droplets adhere when opening and closing the tester door during the test. Therefore, before the test piece was put into the testing machine, engine oil (10W-30), which is generally commercially available in this experiment, was applied and then put into the testing machine. As shown in Table 5, the samples are A1085Al alloy, A1050Al alloy, A6061Al alloy, and SUS304 used for "C" material and "D" material, but they are used as "A" material and "B" material for reference. A 64 titanium alloy, which is likely to be used, was also tested. The adhesive is the aforementioned "EW2040". The results are shown in Table 5. The data shown in Table 5 show that the pure aluminum-based aluminum alloy did not decrease in shear adhesion strength even when subjected to the heat resistance test, but other materials decreased.
Figure 2021123035

即ち、表5の結果から見て、85℃85%湿度の千時間の高温高湿下に置かれる経過を受けて、その接着力は純アルミニウム系アルミニウム合金(日本工業規格の1000番台)を除いて、せん断接着強さで約45MPa付近に低下した。その結果から、この理由は、接着剤硬化物(エポキシ樹脂硬化物)が長期の高温高湿下で水分子を吸湿し、やや軟化によるものと判断した。純アルミニウム系アルミニウム合金で、接着力低下が僅かに収まったのは、吸湿し軟化した接着剤硬化物と、純アルミニウム系アルミニウム合金の硬度が近づき応力が分散されたためと理解した。即ち、接着剤との間で硬度差が大きいA6061Al合金、SUS304等の場合、金属と接着剤の硬度差が大きくなり、応力集中により破断し易くなったものと解された。 That is, as seen from the results in Table 5, the adhesive strength of the product excluding pure aluminum-based aluminum alloys (Japanese Industrial Standards 1000 series) is subject to the process of being placed under high temperature and high humidity of 85 ° C. and 85% humidity for 1000 hours. As a result, the shear adhesion strength decreased to around 45 MPa. From the results, it was judged that the reason for this was that the cured adhesive (cured epoxy resin) absorbed water molecules under high temperature and high humidity for a long period of time and was slightly softened. It was understood that the reason why the decrease in adhesive strength was slightly suppressed in the pure aluminum-based aluminum alloy was that the hardness of the cured adhesive that had absorbed and softened and the hardness of the pure aluminum-based aluminum alloy approached and the stress was dispersed. That is, in the case of A6061Al alloy, SUS304, etc., which have a large hardness difference with the adhesive, it was understood that the hardness difference between the metal and the adhesive became large, and the material was easily broken due to stress concentration.

それ故に、この吸湿した接着対を温度80℃で92時間加熱し、次に170℃×1時間の熱風乾燥をして、狭い接着剤硬化層内に落ち着いていた水分子を追い出せたと判断した。この85℃85%湿度の千時間の高温高湿試験は、実際の環境ではあり得ない厳しい条件に置く加速試験であり、問題は接着対から水分を除いて不可逆な問題がどれだけ残るかを知ることだった。それ故に、上記のような乾燥工程を実施した。最初に、80℃で長時間加熱したのは当初から150℃以上の高温下に置くと、十分に吸水した接着剤硬化物から蒸気が噴出して、その接着剤硬化物構造を壊すことを防いだのである。そして過半の水分子を除いた後に150℃以上で加熱してほぼ完全に吸湿物を追い出したと考えた。 Therefore, it was determined that the hygroscopic adhesive pair was heated at a temperature of 80 ° C. for 92 hours and then dried with hot air at 170 ° C. for 1 hour to expel the water molecules that had settled in the narrow adhesive curing layer. This 1000-hour high-temperature and high-humidity test at 85 ° C and 85% humidity is an accelerated test under harsh conditions that cannot be achieved in an actual environment. It was to know. Therefore, the drying step as described above was carried out. First, when it was heated at 80 ° C for a long time and placed at a high temperature of 150 ° C or higher from the beginning, it prevented steam from ejecting from the sufficiently absorbed adhesive cured product and damaging the adhesive cured product structure. It is. Then, after removing the majority of water molecules, it was considered that the hygroscopic material was almost completely expelled by heating at 150 ° C. or higher.

表5の結果から分かることは、厳しい吸湿条件を経た1液性エポキシ接着剤「EW2040」硬化物による、同種金属片同士の接着対は、NAT処理64Tiを除いて、全て53〜55MPaであり、本発明者は好結果だと判断した。要するに、自動車等の地上を移動する移動機械が晒される地球上の環境湿度条件は、最大で概ね40℃で百%湿度であり、又、世界で最も多雨のインド北東部でも気温は25〜30℃である。それ故に、表5に示す64チタン合金で、せん断接着強さの低下がやや大きく43MPaである。しかしながらチタン材については、本発明で言う「A」材と「B」材に使われるので、「C」材として使用する薄板材のチタン材に対する接着力が弱いときは、接着面積を増加させることでカバーできる。逆に言えば、「C」材と「D」材の接着性能が、この高湿度環境での加速試験で、接着力の不可逆的な低下がみられなければ、本発明が実用面で厄介な大問題を抱えなくて済むことになる。その意味で、「C」材として使用できるA6061アルミニウム合金、SUS304ステンレス鋼、そして「D」材として使用できるA1050、A1085アルミニウム合金に関して、同じ金属種同士の接着ではあるが、高温高湿下で強い接着強度が得られることが判明した。 As can be seen from the results in Table 5, the adhesive pairs between the same metal pieces by the cured product of the one-component epoxy adhesive "EW2040" that has undergone severe moisture absorption conditions are all 53 to 55 MPa except for the NAT-treated 64Ti. The present inventor has determined that the result is good. In short, the environmental humidity conditions on the earth to which mobile machines moving on the ground such as automobiles are exposed are 100% humidity at a maximum of about 40 ° C, and the temperature is 25 to 30 even in the world's heaviest northeastern India. ℃. Therefore, in the 64 titanium alloy shown in Table 5, the decrease in shear adhesive strength is slightly large and is 43 MPa. However, since the titanium material is used for the "A" material and the "B" material referred to in the present invention, when the adhesive force of the thin plate material used as the "C" material to the titanium material is weak, the adhesive area should be increased. Can be covered with. Conversely, if the adhesive performance of the "C" material and the "D" material does not show an irreversible decrease in the adhesive strength in this accelerated test in a high humidity environment, the present invention is practically troublesome. You don't have to have a big problem. In that sense, regarding A6061 aluminum alloy and SUS304 stainless steel that can be used as "C" material, and A1050 and A1085 aluminum alloy that can be used as "D" material, the same metal types are bonded to each other, but they are strong under high temperature and high humidity. It was found that adhesive strength was obtained.

[実験例B8]64Ti/純アルミニウム系Al合金の面接着物(予備試験1)
以上の実験の考察から、「D」材として純アルミニウム系アルミ合金が、積層体としての有効性を確認するために、一液性エポキシ加熱硬化型接着剤によるTi合金と純アルミニウム系アルミ合金との接着強度を測定した。45mm×18mm×3mm厚の64Ti合金の[実験例A9−1]に記載の新NAT処理物と、45mm×18mm×1.5mm厚のA1080Al合金板の[実験例A1−1]に記載のNAT処理物を、一液性エポキシ加熱硬化型接着剤である「EW2040」でNAT接着法により面接着した。次に、45mm×18mm×3mm厚の64Ti合金の上記と同様の表面処理物と、45mm×18mm×1.5mm厚のA1050Al合金板のNAT処理物を、前述の「EW2040」でNMT接着法により面接着した。
[Experimental Example B8] 64Ti / Pure Aluminum-based Al Alloy Surface Adhesive (Preliminary Test 1)
From the consideration of the above experiments, in order to confirm the effectiveness of the pure aluminum-based aluminum alloy as the "D" material as a laminate, the Ti alloy and the pure aluminum-based aluminum alloy with the one-component epoxy heat-curable adhesive were used. The adhesive strength of the aluminum was measured. The new NAT-treated product described in [Experimental Example A9-1] of a 64Ti alloy having a thickness of 45 mm × 18 mm × 3 mm and the NAT described in [Experimental Example A1-1] of an A1080Al alloy plate having a thickness of 45 mm × 18 mm × 1.5 mm. The treated product was surface-bonded by a NAT bonding method with "EW2040", which is a one-component epoxy heat-curable adhesive. Next, a surface-treated product of a 64 Ti alloy having a thickness of 45 mm × 18 mm × 3 mm and a NAT-treated product of an A1050 Al alloy plate having a thickness of 45 mm × 18 mm × 1.5 mm were subjected to the above-mentioned “EW2040” by the NMT bonding method. Surface-bonded.

更に、45mm×18mm×3mm厚の64Ti合金の前述した同じ表面処理物と、45mm×18mm×1.5mm厚のA1100Al合金板のNAT処理物を、前述した「EW2040」にて、NMT接着法により面接着した。要するに、64Ti厚板に対し、A1080、A1050、A1100というAl合金板を、同様の方法で接着面積45mm×18mmの8.1cmで面接着した。各3個単位で合計9個作成し、これら接着物を、−50℃/+150℃の温度衝撃サイクル試験機に投入して、千サイクルの負荷をかけた。この負荷試験により、64Ti/A1100Al合金の接着物は、3個共に面破断しており、他の6個には異常が見つからなかった。それ故に、温度衝撃試験を続け、2千サイクル時に取り出すと、64Ti/A1050Al合金の接着物は、その4隅の1カ所か2か所に、小さい剥がれらしき様相が非破壊検査機で2個とも観察され、64Ti/A1080Al合金の試験片は、3個共に剥がれは観察されなかった。 Further, the same surface-treated product of the above-mentioned 64Ti alloy having a thickness of 45 mm × 18 mm × 3 mm and the NAT-treated product of the A1100Al alloy plate having a thickness of 45 mm × 18 mm × 1.5 mm were subjected to the above-mentioned “EW2040” by the NMT bonding method. Surface-bonded. In short, Al alloy plates A1080, A1050, and A1100 were surface-bonded to a 64Ti thick plate in the same manner with an adhesion area of 45 mm × 18 mm and 8.1 cm 2 . A total of 9 pieces were prepared in units of 3 pieces each, and these adhesives were put into a temperature shock cycle tester at −50 ° C./+ 150 ° C. and loaded with 1000 cycles. By this load test, all three of the 64Ti / A1100Al alloy adhesives were surface-broken, and no abnormality was found in the other six. Therefore, when the temperature impact test was continued and taken out after 2,000 cycles, the 64Ti / A1050Al alloy adhesive had two small peeling-like appearances in one or two of its four corners with a non-destructive inspection machine. Observed, no peeling was observed in all three of the 64Ti / A1080Al alloy test pieces.

この実験により、軟質のAl合金であっても最も軟質なA1080はともかく、A1050Al合金ではTi材との接着面で僅かだが明確に問題を生じた。前述した表2によると、実験例A1のA1050(NAT処理品)での試験片における「せん断接着粘り性」値は、本実験で想定する許容せん断粘り性の値として、50.5MPaとギリギリレベルであり、[実験例A9−1]の64Ti(新型NAT処理品)での「せん断接着粘り性」値は、45.8MPaと明らかに低い。この実験開始時には、[実験例A9−1]の64Ti合金(最新型NAT処理品)は未だ見つかっていなかったのである。それ故に、この結果を受けて、[実験例A10]のTi合金である前述の「KSTi−9」の新型NAT処理品を作り、これで45mm×18mm×1mm厚板を3枚重ね接着したTi合金「KSTi−9」の新型NAT処理物と、45mm×18mm×1.5mm厚のA1050Al合金板のNAT処理物を、前述の「EW2040」にてNAT接着した物を2枚作った。使用した「KSTi−9」は、表2に記録したように「せん断接着粘り性」値が56.5MPaと非常に高く、仮に、64TiとA1050Al合金の間の接着力不足により、温度衝撃2千サイクル付近で端部剥がれを生じさせたのであれば、被接着力の弱い方のTi材を置き換えれば良いと考えたからである。温度衝撃3千サイクル試験にかけた結果、全く支障なく端部剥がれは生じなかった。 In this experiment, aside from the softest A1080, even if it is a soft Al alloy, the A1050 Al alloy caused a slight but clear problem in terms of adhesion to the Ti material. According to Table 2 described above, the "shear adhesive stickiness" value in the test piece of A1050 (NAT-treated product) of Experimental Example A1 is 50.5 MPa, which is the limit level as the value of the allowable shear stickiness assumed in this experiment. The "shear adhesive stickiness" value of 64Ti (new NAT-treated product) of [Experimental Example A9-1] is clearly low at 45.8 MPa. At the start of this experiment, the 64Ti alloy (latest NAT-treated product) of [Experimental Example A9-1] had not yet been found. Therefore, in response to this result, a new NAT-treated product of the above-mentioned "KSTi-9", which is a Ti alloy of [Experimental Example A10], was made, and three 45 mm × 18 mm × 1 mm thick plates were laminated and bonded to each other. A new NAT-treated product of the alloy "KSTi-9" and a NAT-treated product of an A1050Al alloy plate having a thickness of 45 mm x 18 mm x 1.5 mm were NAT-bonded with the above-mentioned "EW2040" to prepare two sheets. As recorded in Table 2, the "KSTi-9" used had a very high "shear adhesive stickiness" value of 56.5 MPa, and the temperature impact was 2,000 due to insufficient adhesive force between 64Ti and A1050Al alloy. This is because, if the end peeling occurs in the vicinity of the cycle, it is considered that the Ti material having the weaker adhesive force should be replaced. As a result of subjecting to a temperature shock 3,000 cycle test, there was no problem at all and no end peeling occurred.

[実験例B9]A1050板挟んだAl合金とTi合金の試験片(予備試験2)
図4に示す形状の3層型接着物を作成した。45mm×18mm×3mm厚の64Ti合金の新型NAT処理物と45mm×18mm×1.5mm厚のA1050Al合金のNAT処理物と45mm×18mm×3mm厚のA7075Al合金のNAT処理物を「EW2040」にて、NAT接着法で面接着した。3層型とは言うが、正確には本実験では、全て1.5mm厚の金属片を使用し、64Ti合金は2枚重ね、A7075Al合金も2枚重ねの積層接着物であり、全体は5枚重ねの面接着物となった。同じ物を2個作成し、これを‐50℃/+150℃の温度衝撃3千サイクル試験にかけた。
[Experimental Example B9] Test piece of Al alloy and Ti alloy sandwiched between A1050 plates (preliminary test 2)
A three-layer adhesive having the shape shown in FIG. 4 was prepared. A new NAT-treated product of 64Ti alloy with a thickness of 45 mm x 18 mm x 3 mm, a NAT-treated product with an A1050 Al alloy with a thickness of 45 mm x 18 mm x 1.5 mm, and a NAT-treated product with an A7075 Al alloy with a thickness of 45 mm x 18 mm x 3 mm are used in "EW2040". , The surface was bonded by the NAT bonding method. Although it is said to be a three-layer type, to be precise, in this experiment, all metal pieces with a thickness of 1.5 mm were used, two 64Ti alloys were laminated, and the A7075Al alloy was also a two-layer laminated adhesive. It became a layered surface adhesive. Two identical products were prepared and subjected to a temperature shock 3,000 cycle test at -50 ° C / + 150 ° C.

試験機から出した接着物は目視観察では何処にも支障がなかった。前述の実験結果から、64Ti合金部とA1050Al合金板の間の4隅部に剥がれがある可能性が十分にあり、この点は非破壊検査機にて調べた。その結果、この4隅部の1カ所に剥がれのシグナルが得られた。そして、その他の部分には全く剥がれの信号は検出できなかった。結果的に、この試験結果は実験B8と同じ結果を示したに過ぎなかった。 The adhesive taken out from the testing machine did not cause any trouble by visual observation. From the above experimental results, there is a sufficient possibility that there is peeling at the four corners between the 64Ti alloy part and the A1050Al alloy plate, and this point was investigated by a non-destructive inspection machine. As a result, a peeling signal was obtained at one of the four corners. And no signal of peeling could be detected in other parts. As a result, this test result was only the same as that of Experiment B8.

[実験例B10]Al合金とTi合金の間にA5052Al合金薄板とA1050Al合金板を挟み込んだ試験片(本試験1)
図5に示す接合一体化物は、5材、5層からなる積層体である。図6に示す接合一体化物は、4材、4層からなる積層体である。図5に示す接合一体化物は、45mm×18mm×3mm厚の64Ti合金(A材)の最新型NAT処理物、45mm×18mm×0.75mm厚のA5052Al合金薄板(C材)のNAT7処理物、45mm×18mm×1.5mm厚のA1050Al合金(D材)のNAT処理物、45mm×18mm×0.75mm厚のA5052Al合金(C材)薄板のNAT7処理物、及び、45mm×18mm×3mm厚のA2017Al合金(B材)のNAT7処理物を、前述した接着剤「EW2040」により積層した全5層型の接着物を作成した。
[Experimental Example B10] A test piece in which an A5052Al alloy thin plate and an A1050Al alloy plate are sandwiched between an Al alloy and a Ti alloy (main test 1).
The joint integrated product shown in FIG. 5 is a laminated body composed of 5 materials and 5 layers. The joint integrated product shown in FIG. 6 is a laminated body composed of four materials and four layers. The bonded integrated product shown in FIG. 5 is the latest NAT-treated product of 64Ti alloy (A material) having a thickness of 45 mm × 18 mm × 3 mm, and the NAT7-treated product of A5052Al alloy thin plate (C material) having a thickness of 45 mm × 18 mm × 0.75 mm. 45 mm x 18 mm x 1.5 mm thick A1050 Al alloy (D material) NAT treated product, 45 mm x 18 mm x 0.75 mm thick A5052 Al alloy (C material) thin plate NAT7 treated product, and 45 mm x 18 mm x 3 mm thick A NAT7-treated product of A2017Al alloy (B material) was laminated with the above-mentioned adhesive "EW2040" to prepare a five-layer type adhesive.

図6に示した接合一体化物は、図5に示した積層体の簡略形であり、4材、4層からなる積層体である。この積層体は、45mm×18mm×3mm厚の64Ti合金(A材)の最新型NAT処理物、45mm×18mm×0.75mm厚のA5052Al(C材)合金薄板の表面処理物、45mm×18mm×1.5mm厚のA1050Al合金(D材)の表面処理物、及び45mm×18mm×3mm厚のA2017Al合金(B材)の表面処理物の積層体であり、前述した接着剤「EW2040」による全4層型の接着物である。 The bonded integrated product shown in FIG. 6 is a simplified form of the laminated body shown in FIG. 5, and is a laminated body composed of four materials and four layers. This laminate is the latest NAT-treated product of 64Ti alloy (A material) with a thickness of 45 mm x 18 mm x 3 mm, the surface-treated product of A5052Al (C material) alloy thin plate with a thickness of 45 mm x 18 mm x 0.75 mm, 45 mm x 18 mm x It is a laminate of a 1.5 mm thick A1050 Al alloy (D material) surface-treated product and a 45 mm × 18 mm × 3 mm thick A2017 All alloy (B material) surface-treated product. It is a layered adhesive.

予備的な実験例での温度衝撃試験結果を検討し、これらの積層複合体により、本実験例では64Ti合金とA1050Al合金の間に、A5052Al合金薄板を挿入(介在)しても何ら支障がないことを確認した。64Ti合金とA5052Al合金薄板とが接着すると、「C」材のA5052Al合金薄板は、温度衝撃試験からの加熱、又は冷却を受けて、64Ti合金厚板の肉厚が厚く剛性が大きいので、64Ti合金厚板が伸縮に追従して伸縮する。従って、せん断破断的な内部応力が発生するのは、「C」材のA5052Al合金の薄板が伸縮に応じて、剛性が低く軟質のためにこれに追従する「D」材のA1050Al合金の間である。ここでの内部応力がA5052とA1050間の接着力を越えると、破断が生じるが、理論的には双方共に自らの試験片におけるせん断接着粘り性が強いこと、そして内部応力がA1050Al合金内の弾性的変形と塑性的変形(比喩的)の双方によって小さくなっていることである。この実験時点では、A1050はNAT処理物を使用し、A5052Al合金薄板はNAT7処理品を使用しているので、両者間の接着力は十分に高いはずである。 The results of the temperature impact test in the preliminary experimental example were examined, and with these laminated composites, there is no problem even if an A5052Al alloy thin plate is inserted (intervened) between the 64Ti alloy and the A1050Al alloy in this experimental example. It was confirmed. When the 64Ti alloy and the A5052Al alloy thin plate are adhered, the A5052Al alloy thin plate of the "C" material is heated or cooled from the temperature impact test, and the 64Ti alloy thick plate is thick and has high rigidity. The plank expands and contracts following the expansion and contraction. Therefore, shear fracture internal stress occurs between the A1050Al alloy of the "D" material, which follows the thin plate of the A5052Al alloy of the "C" material due to its low rigidity and softness as it expands and contracts. be. If the internal stress here exceeds the adhesive force between A5052 and A1050, fracture will occur, but theoretically both have strong shear adhesive stickiness in their own test pieces, and the internal stress is elasticity in the A1050Al alloy. It is reduced by both physical deformation and plastic deformation (figurative). At the time of this experiment, A1050 uses a NAT-treated product, and A5052Al alloy thin plate uses a NAT7-treated product, so the adhesive force between the two should be sufficiently high.

[実験例B11]高強度材厚板と薄板材との接着力を測定する
次に、構造用金属製の薄板材とチタン合金材とのせん断接着強さを計測した。これは、チタン合金材の線膨張率が0.8×10−5−1と金属中では最も小さく、他の構造用金属材はSUS304でも1.7×10−5−1程度、ジュラルミン含むアルミニウム合金は全て2.3×10−5−1程度なので、これらの金属片とチタン材片とを1液性エポキシ接着剤で接着すると、通常は高いせん断接着強さは得られぬ。これは1液性エポキシ接着剤の硬化条件が150〜180℃と高いからである。硬化後の放冷で常温下になると接着剤硬化層の一部が壊れるからである。唯一接着剤硬化物が破壊されず強い接着状態が得られ保たれるのは、チタン材に接着する金属素材を薄板にして剛性を低くする以外ない。ただし、どの程度の薄板が使用可能か、又、耐力と縦弾性係数がどの程度までの金属材が使用できるのか、を知るには実際に接着対を作成し、そのせん断接着強さを測定して決めるべきである。図15は、この試験のための試験片の作り方を示す説明図である。薄板材は剛性がないので、せん断試験にかけても曲げ変形するので、これを補強するために厚板材の部材を接着する(図15の下段)。なお、一般に金属片の厚さを4〜6mmにはしないと、せん断破断前に薄板材側が変形し、変形による応力集中で剥がれが起きて早く破断する。又は、薄板での引き千切れ破断が起きる。チタン合金材と、SUS又はアルミニウム合金とを接着したときのせん断接着強さ、せん断接着粘り性の測定結果を表6に示す。
[Experimental Example B11] Measuring the adhesive strength between the high-strength lumber thick plate and the thin plate material Next, the shear adhesive strength between the structural metal thin plate material and the titanium alloy material was measured. This is because the linear expansion rate of the titanium alloy material is 0.8 × 10 -5 K -1 , which is the smallest among the metals, and the other structural metal materials are about 1.7 × 10 -5 K -1 even in SUS304, duralumin. Since all the aluminum alloys contained are about 2.3 × 10 -5 K- 1 , when these metal pieces and titanium material pieces are bonded with a one-component epoxy adhesive, usually high shear bonding strength cannot be obtained. This is because the curing conditions of the one-component epoxy adhesive are as high as 150 to 180 ° C. This is because a part of the adhesive curing layer is broken when the temperature is lowered to room temperature by allowing to cool after curing. The only way to obtain and maintain a strong adhesive state without destroying the cured adhesive is to make the metal material that adheres to the titanium material a thin plate to reduce its rigidity. However, in order to know how much thin plate can be used and how much metal material with proof stress and Young's modulus can be used, actually create an adhesive pair and measure its shear adhesion strength. Should be decided. FIG. 15 is an explanatory diagram showing how to make a test piece for this test. Since the thin plate material has no rigidity, it bends and deforms even when subjected to a shear test, so a member of the thick plate material is adhered to reinforce this (lower part of FIG. 15). In general, if the thickness of the metal piece is not set to 4 to 6 mm, the thin plate material side is deformed before shear fracture, and peeling occurs due to stress concentration due to the deformation, resulting in early fracture. Alternatively, the thin plate is torn and broken. Table 6 shows the measurement results of the shear bond strength and the shear bond stickiness when the titanium alloy material and the SUS or aluminum alloy are bonded.

表6に記載のせん断接着強さ、せん断接着粘り性値から見て、0.28mm厚のSUS304鋼薄板は、「C」材として使用可能と判断される。又、A5052アルミニウム合金は0.75mm厚以下であれば使用可能であるが、より薄くした0.5mm厚では、強いせん断方向の外力が負荷された場合に、破断してしまい構造材、増幅材の役目が果たせなく場合があることを示している。次に0.5mm厚A6061アルミニウム合金は「C」材として全く問題がないと判断される。この実験で更に言えることは、「A」材にCFRP材やCFRTP材が使用される場合には、「A」材と「C」材間の線膨張率差が、この実験シリーズより更に大きくなることである。「C」材がアルミニウム合金の場合、「A」材がチタン材の場合の線膨張率差は1.5×10−5−1に対して、「A」材が例えばCFRP材の場合には2.2×10−5−1となり、その差異が5割増しになる。表6に示すデータでは、「A」材のチタン合金と「B」材の高強度Al合金との接着においては、最も従順に「A」材に追従しうる「C」材としては、0.75mm厚のAl合金が好ましいことが判明した。 Judging from the shear adhesive strength and shear adhesive tenacity values shown in Table 6, it is judged that the 0.28 mm thick SUS304 steel thin plate can be used as the "C" material. Further, the A5052 aluminum alloy can be used as long as it has a thickness of 0.75 mm or less, but if it is thinner and has a thickness of 0.5 mm, it will break when an external force in a strong shearing direction is applied, resulting in a structural material or an amplification material. It shows that the role of may not be fulfilled. Next, it is judged that the 0.5 mm thick A6061 aluminum alloy has no problem as a "C" material. What can be further said in this experiment is that when CFRP material or CFRTP material is used for "A" material, the difference in linear expansion coefficient between "A" material and "C" material becomes even larger than in this experimental series. That is. When the "C" material is an aluminum alloy, the linear expansion coefficient difference when the "A" material is a titanium material is 1.5 x 10-5 K- 1, whereas when the "A" material is a CFRP material, for example. Is 2.2 × 10 -5 K -1 , and the difference is increased by 50%. According to the data shown in Table 6, in the adhesion between the titanium alloy of the "A" material and the high-strength Al alloy of the "B" material, the "C" material that can most obediently follow the "A" material is 0. It turned out that a 75 mm thick Al alloy was preferable.

しかしながら、「A」材としてCFRP材を使い、「B」材として高強度Al合金を使う接着した接着一体物おいて、「C」材に0.75mm厚のAl合金が使用可能かは疑問になる。即ち、仮に、線膨張率差が5割増しになるなら、「C」材の厚さは、1/1.5の0.5mm厚にすべきだという意味である。この考えに従えば、「C」材として使用できるのは、0.5mm厚でも引き千切り現象が生じない耐力を有するアルミニウム合金であり、それはA5052ではなく、少なくともA5083、又は、A6061Al合金以上の高耐力を有するアルミニウム合金である。即ち、表6に示したデータでは、0.5mm厚のA6061Al合金が、この性能要求に耐えうると判断される。同様の考えで、SUS304鋼薄板について推察すると、先ずは対Ti合金に関して0.28mm厚の薄板が使えるが、これを対CFRP材への接着とすると、厚さを1/1.5の1.8〜1.9mm厚にすべきとなる。ただ、この厚さのSUS304薄板の入手は、市場ではやや困難であり、かつ、SUS304鋼での化成処理であるNAT型処理で、厚さが両面で0.02mm程度は減少するので、鋼材自身の化学安定性も特に信頼性の高いものが必要になる。本発明者は、これらの実験結果から「C」材の標準使用物としては、0.5mm厚のA6061Al合金を選ぶべきと考えられる。 However, it is doubtful that a 0.75 mm thick Al alloy can be used for the "C" material in the bonded integral body that uses the CFRP material as the "A" material and the high-strength Al alloy as the "B" material. Become. That is, if the difference in linear expansion coefficient increases by 50%, it means that the thickness of the "C" material should be 0.5 mm, which is 1 / 1.5. According to this idea, what can be used as the "C" material is an aluminum alloy having a yield strength that does not cause the tearing phenomenon even at a thickness of 0.5 mm, which is not A5052 but at least A5083 or A6061Al alloy or higher. It is an aluminum alloy with proof stress. That is, according to the data shown in Table 6, it is judged that the A6061Al alloy having a thickness of 0.5 mm can withstand this performance requirement. Based on the same idea, if we infer the SUS304 steel thin plate, we can first use a thin plate with a thickness of 0.28 mm for the Ti alloy, but if this is used for adhesion to the CFRP material, the thickness will be 1 / 1.5. It should be 8 to 1.9 mm thick. However, it is a little difficult to obtain a SUS304 thin sheet of this thickness in the market, and the NAT type treatment, which is a chemical conversion treatment with SUS304 steel, reduces the thickness by about 0.02 mm on both sides, so the steel material itself. The chemical stability of the steel is also required to be particularly reliable. From these experimental results, it is considered that the present inventor should select an A6061Al alloy having a thickness of 0.5 mm as a standard use of the "C" material.

Figure 2021123035
Figure 2021123035

[実験例B12]CFRP片とジュラルミン材の間にA6061薄板とA1050軟質金属材含む全接着構造物の作成と温度衝撃試験(本試験2)
前述した表6のデータで理解されるように、「C」材として0.5mm厚のA6061アルミニウム合金が最も対応性あるものらしいことが判明した。この「C」材に接着される「D」材として、少なくとも1.5mm厚のA1050アルミニウム合金が使用可能とみられる。この考察を実際の接合一体化物で確認するために、図10に示すような、CFRP(A材)、アルミニウム合金(C材)、純アルミニウム系アルミニウム合金(D材)、及びアルミニウム合金(B材)の4材を積層した接合一体化物を作成した。そこで「A」材としてCFRP厚板、「B」材としてA2017アルミニウム合金厚板を使用した全接着構造物を作成し、そして、この積層した接合一体化物を、−50℃/+150℃の温度衝撃3千サイクル試験で試験した。
[Experimental Example B12] Preparation of all-adhesive structure containing A6061 thin plate and A1050 soft metal material between CFRP piece and duralumin material and temperature impact test (main test 2)
As can be seen from the data in Table 6 above, it was found that 0.5 mm thick A6061 aluminum alloy seems to be the most compatible as the "C" material. As the "D" material to be adhered to the "C" material, it seems that an A1050 aluminum alloy having a thickness of at least 1.5 mm can be used. In order to confirm this consideration with an actual bonded integrated product, CFRP (material A), aluminum alloy (material C), pure aluminum-based aluminum alloy (material D), and aluminum alloy (material B) as shown in FIG. ) Was laminated to create a bonded integrated product. Therefore, a fully bonded structure using a CFRP thick plate as the "A" material and an A2017 aluminum alloy thick plate as the "B" material was prepared, and this laminated bonded integrated product was subjected to a temperature impact of -50 ° C / + 150 ° C. Tested in a 3,000 cycle test.

但し、「A」材であるCFRP材と「C」材の間の接着に、接着ミスが生じないように、全体の接着構造物の作成方法は以下のようにした。即ち、90mm×18mm×3mm厚のCFRP片(「A」材)に、45mm×18mm×0.5mm厚のA6061Al合金薄板(「C」材)がエポキシ接着剤で接着して、複合板材であるCFRP材とA6061Al合金薄板の接合一体化物を作成した。その製作手法は、予め0.5mm厚のA6061合金薄板を上記矩形形状に切断し、これをNAT7処理した上で、その片面に前述した1液性エポキシ接着剤「EW2040」を薄く塗った。この塗った面上に、テフロンシートを押し付けて、更にポリエチ袋に入れて密閉し、5℃冷蔵庫に入れさせて接着準備物として保管した。この接着準備物と、CFRPプリプレグである「P225S−25」(東レ株式会社(本社:日本国東京都)製)の双方を使って45mm×18mmのA5052Al合金薄板付きの90mm×18mm×3mm厚のCFRP厚板形状物が出来るように加工専門企業に作成を委託した。この作成はオートクレーブ法であり、加熱条件として150℃×40分とするよう指定して加熱した。 However, in order to prevent an adhesion error from occurring in the adhesion between the CFRP material which is the "A" material and the "C" material, the method for producing the entire adhesive structure is as follows. That is, a CFRP piece (“A” material) having a thickness of 90 mm × 18 mm × 3 mm is bonded to an A6061 Al alloy thin plate (“C” material) having a thickness of 45 mm × 18 mm × 0.5 mm with an epoxy adhesive to form a composite plate material. A joint integrated product of CFRP material and A6061 Al alloy thin plate was prepared. In the manufacturing method, a 0.5 mm thick A6061 alloy thin plate was cut into the above rectangular shape in advance, treated with NAT7, and then thinly coated with the above-mentioned one-component epoxy adhesive "EW2040" on one side thereof. A Teflon sheet was pressed onto the coated surface, further placed in a polyethylene bag, sealed, and placed in a refrigerator at 5 ° C. for storage as an adhesive preparation. Using both this adhesive preparation and the CFRP prepreg "P225S-25" (manufactured by Toray Industries, Inc. (Headquarters: Tokyo, Japan)), a 45 mm x 18 mm A5052Al alloy thin plate with a thickness of 90 mm x 18 mm x 3 mm We outsourced the production to a processing specialist company so that CFRP thick plate shapes can be produced. This preparation was performed by an autoclave method, and heating was performed by designating the heating conditions to be 150 ° C. × 40 minutes.

こうして得られたA6061アルミニウム合金薄板付きのCFRP厚板は、A6061合金薄板の露出部がこれら作業で汚れている可能性があるので、#600のサンドペーパーで研磨して金属光沢を得た後、CFRP板を接着させた状態で、CFRPが接着されていない表面にNAT処理を行った。この液処理後、A6061合金薄板付きのCFRP厚板材は、次工程用として用意しておいた。他にNAT処理した45mm×15mm×1.5mm厚のA1050Al合金、及び、NAT7処理した45mm×18mm×3mm厚のA2017Al合金を用意して、これらと共に1液性エポキシ接着剤「EW2040」を使用して3つの材料をNAT接着(染み込まし処理付きの接着操作をこのように称する。)法で面接着し、最終的には図10に示す形状とした。この図10に示す接合一体化物を−50℃/+150℃の温度衝撃3千サイクル試験に投入した。その結果、どの接着面にも異状は生じていなかった。 The CFRP thick plate with the A6061 aluminum alloy thin plate thus obtained may have the exposed part of the A6061 alloy thin plate dirty due to these operations. Therefore, after polishing with # 600 sandpaper to obtain a metallic luster, With the CFRP plate adhered, the surface to which the CFRP was not adhered was subjected to NAT treatment. After this liquid treatment, a CFRP thick plate material with an A6061 alloy thin plate was prepared for the next process. In addition, a NAT7-treated 45 mm x 15 mm x 1.5 mm thick A1050 Al alloy and a NAT7 treated 45 mm x 18 mm x 3 mm thick A2017 Al alloy are prepared, and a one-component epoxy adhesive "EW2040" is used together with these. The three materials were surface-bonded by the NAT bonding (adhesion operation with soaking treatment is referred to in this way) method, and finally the shape shown in FIG. 10 was obtained. The joint integrated product shown in FIG. 10 was put into a temperature impact of 3,000 cycle test at −50 ° C./+ 150 ° C. As a result, no abnormality occurred on any of the adhesive surfaces.

[実験例B13]大型の全接着構造物の作成
前述した本発明でいう「D」材である純アルミニウム系アルミニウム合金は、平板の板材の部材であった。しかしながら、この「D」材は、平板でなく図13に示すように、下面は平面又は曲面であり、上面には円形又は角状の柱状物が並列して多数林立している板状体であっても良い。なお、本例の板状体では、円形又は角状の柱状物の断面積は、0.05〜0.25cmである。この板状体の製造方法は、純アルミニウム系アルミニウム合金であるA1050Al合金の厚板を、機械加工して図13に示す寸法、形状になるように切断鋸等の工具で機械加工により製造した。この板状体を前述した実験例A1に従って、NAT処理をした。
[Experimental Example B13] Preparation of a large-sized all-adhesive structure The pure aluminum-based aluminum alloy, which is the "D" material in the present invention described above, was a member of a flat plate material. However, this "D" material is not a flat plate, but as shown in FIG. 13, the lower surface is a flat surface or a curved surface, and the upper surface is a plate-like body in which a large number of circular or square columnar objects are lined up in parallel. There may be. In the plate-like body of this example, the cross-sectional area of the circular or square columnar object is 0.05 to 0.25 cm 2 . In this method of manufacturing a plate-like body, a thick plate of A1050Al alloy, which is a pure aluminum-based aluminum alloy, was machined and manufactured by machining with a tool such as a cutting saw so as to have the dimensions and shape shown in FIG. This plate-like body was subjected to NAT treatment according to Experimental Example A1 described above.

更に、200mm×100mm×0.75mmのA5052Al合金薄板片を[実験例A2−1]に記載の方法でNAT7処理をした。又、前述のCFRPプリプレグ「P225S−25」と、上記の表面処理済みA5052Al合金片1枚とを1液性エポキシ接着剤「EW2040」を使用して、300mm×100mm×5mm厚のCFRP厚板片の上に、200mm×100mm×0.75mmのAl合金薄板が一方の端面で一致する形の金属板付きCFRP板をオートクレーブ法で作成した。CFRP上のA5052Al合金板が汚れていたのでその全面を#1000サンドペーパーで研磨し、その上で、CFRP板に接着させたまま再度実験例A2の表面処理を行った。 Further, a 200 mm × 100 mm × 0.75 mm A5052Al alloy thin plate piece was subjected to NAT7 treatment by the method described in [Experimental Example A2-1]. Further, using the above-mentioned CFRP prepreg "P225S-25" and the above-mentioned surface-treated A5052Al alloy piece with the one-component epoxy adhesive "EW2040", a CFRP thick plate piece having a thickness of 300 mm x 100 mm x 5 mm. On top of this, a CFRP plate with a metal plate in which 200 mm × 100 mm × 0.75 mm Al alloy thin plates match on one end face was produced by an autoclave method. Since the A5052Al alloy plate on the CFRP was dirty, the entire surface was polished with # 1000 sandpaper, and then the surface treatment of Experimental Example A2 was performed again while adhering to the CFRP plate.

又、300mm×100mm×3mm厚の64Ti合金厚板片を入手し、実験例A9の記載した通りに表面処理して用意した。その上で、全てを接着剤「EW2040」を使用して全接着した。即ち、64Ti合金板の上にA5052Al合金薄板を接着し、そのA5052Al合金薄板の上に、最初に得たA1050Al合金の立体化物を接着し、更にその上にA5052Al合金薄板付きのCFRP板を金属部が下になる形で接着した。これでA1050Al合金片が担当する面積、即ち見かけの接着面積が200mm×100mm=200cmの大型の全接着の構造物が作成出来た。 Further, a 64Ti alloy thick plate piece having a thickness of 300 mm × 100 mm × 3 mm was obtained and prepared by surface treatment as described in Experimental Example A9. Then, all were completely bonded using the adhesive "EW2040". That is, an A5052Al alloy thin plate is adhered onto a 64Ti alloy plate, a three-dimensional product of the first obtained A1050Al alloy is adhered onto the A5052Al alloy thin plate, and a CFRP plate with an A5052Al alloy thin plate is further attached to the metal portion. It was glued so that it was on the bottom. With this, a large fully bonded structure having an area covered by the A1050Al alloy piece, that is, an apparent bonding area of 200 mm × 100 mm = 200 cm 2, was completed.

この接着物は図5に示したものと類似しているが、A1050Al合金部が単純な板材でなく、空隙ある立体化物であることが大きく異なっている。この空隙部の占める面積率であるが、接着面が200mm×100mm=200cmに対して実接着面積は200mm×100mm×(9/25)=72cmであり、64%となる。これを−50℃/+150℃の温度衝撃試験機に3千サイクルかけ、非破壊検査機で柱上部が接着している面を観察したが、剥がれは観察されなかった。 This adhesive is similar to that shown in FIG. 5, except that the A1050Al alloy portion is not a simple plate material but a three-dimensional product with voids. Regarding the area ratio occupied by this gap, the actual adhesive area is 200 mm × 100 mm × (9/25) = 72 cm 2 with respect to the adhesive surface of 200 mm × 100 mm = 200 cm 2, which is 64%. This was applied to a temperature impact tester at −50 ° C./+ 150 ° C. for 3,000 cycles, and the surface where the upper part of the column was adhered was observed with a non-destructive inspection machine, but no peeling was observed.

[実験例B14]大型の全接着構造物の作成
厚さ3mm厚のA1050Al合金厚板を入手し、機械加工して図14に示す形状物を得た。即ち、直径10mmの中心部はそのままで、幅2mm深さ2mmの溝を円形に切って3mm幅の円周型の壁が2mm幅の間隔で沢山重なった形の200mm×100mmの厚板を作成した。そして、多数の線状の壁付きのA1050Al合金片を、前述した[実験例A1]と同様の化成処理に従って表面処理をした。
[Experimental Example B14] Preparation of a large-sized all-adhesive structure An A1050Al alloy plate having a thickness of 3 mm was obtained and machined to obtain the shape shown in FIG. That is, a 200 mm × 100 mm thick plate is created by cutting a groove with a width of 2 mm and a depth of 2 mm into a circle while leaving the central part with a diameter of 10 mm as it is, and a lot of 3 mm wide circumferential walls are overlapped at intervals of 2 mm. bottom. Then, a large number of A1050Al alloy pieces with linear walls were surface-treated according to the same chemical conversion treatment as in [Experimental Example A1] described above.

一方、実験例B12で使用したCFRP材とA5052Al合金薄板に代えて300mm×100mm×3mm厚のSUS304ステンレス鋼の表面処理物(実験例A7と同じ処理法)、及び、表面処理済みのA5052Al合金薄板0.75mm厚を用意した。これらを使用して、実験例B11で示した図10形状物を使用した200cmの大型の全接着構造物とA1050Al合金部の立体形状、CFRP材ではなくSUS304鋼が使われている形状は同じ外観の物を作成した。これを−50℃/+150℃の温度衝撃試験機に3千サイクル試験にかけ、非破壊検査機で柱上部が接着している面を観察したが、剥がれは観察されなかった。 On the other hand, instead of the CFRP material and A5052Al alloy thin plate used in Experimental Example B12, a surface-treated product of SUS304 stainless steel having a thickness of 300 mm × 100 mm × 3 mm (the same treatment method as in Experimental Example A7) and a surface-treated A5052Al alloy thin plate. A 0.75 mm thickness was prepared. Using these, the three-dimensional shape of the 200 cm 2 large all-adhesive structure using the Fig. 10 shape shown in Experimental Example B11 and the A1050 Al alloy part, and the shape in which SUS304 steel is used instead of CFRP material are the same. I made an appearance thing. This was subjected to a 3,000 cycle test on a temperature impact tester at −50 ° C./+ 150 ° C., and the surface where the upper part of the column was adhered was observed with a non-destructive inspection machine, but no peeling was observed.

[実験例C]追加の接着力向上の為の実験と試験
[実験例C1]A1050Al合金の接着力向上の新アイデアを実践する
前述した[実験例B7]で得た表5、そして[実験例B11]で得た表6の結果から、本発明の実際の接合一体化物は、「A」材、又は「B」材と、「C」材の接着性能が最重要であることが判明した。本発明の接合一体化物は、せん断接着強さのみでの評価ではなく、「せん断接着粘り性」値の評価法に変え、かつ、耐湿熱性などの耐久性能も確認して来た。しかし、接合一体化物として見れば、「A」材、又は「B」材と、「C」材の接着性能のみで十分ではなく、「D」材に必要な基本性能、即ち、その軟性とその表皮の接着性能につき再検討すべきと考えた。
[Experimental Example C] Experiments and tests for additional adhesive strength improvement [Experimental Example C1] Practicing a new idea for improving the adhesive strength of A1050Al alloy Table 5 obtained in the above-mentioned [Experimental Example B7], and [Experimental Example] From the results in Table 6 obtained in [B11], it was found that the adhesive performance between the "A" material or the "B" material and the "C" material is the most important in the actual bonded integrated product of the present invention. The bonded integrated product of the present invention has been changed from the evaluation method based only on the shear adhesive strength to the evaluation method of the "shear adhesive tenacity" value, and the durability performance such as moisture and heat resistance has also been confirmed. However, when viewed as a bonded integrated product, the adhesive performance between the "A" material or the "B" material and the "C" material is not sufficient, but the basic performance required for the "D" material, that is, its softness and its softness. We thought that the adhesive performance of the epidermis should be reexamined.

要するに、表5に示した純アルミニウム系アルミニウム合金であるA1085、A1050合金のせん断接着強さのデータでは、高温高湿試験の前後で大きく変化しなかった。A1085では55MPa同士で変化なし、A1050では試験前が54MPaで試験後は50MPaまで低下したが、乾燥すると54MPaで元に戻る。高温高湿熱の供与で最も変化するのは、金属材ではなく接着剤硬化物の吸湿であり、これは接着剤硬化物が若干軟化したことを示している。それ故に、A1085やA1050で接着力があまり変化なかったということは、接着剤硬化物の硬度変化が、A1085やA1050の硬度レベルと近い故に引張り破断力がかかった場合に、例えば地盤(金属側)と釘(接着剤硬化物)の硬さが近い故に、金属側と接着剤硬化物が共に変形して、破断を遅らせる効果あると推定した。硬質の金属、表5ではSUS304や64チタン合金では、当初のせん断接着強さは、約60MPa付近だったのが、樹脂部吸湿による軟化で43〜45MPaに急低下している。そして、SUS304では樹脂部の乾燥で53MPaまで回復した。金属側が硬質で、かつ金属側の表面形状が高湿度で変化しなければ、このSUS304と同様に、せん断接着強さの変動を起こしたと本発明者は理解した。要するに、純アルミニウム系アルミニウム合金であるA1085やA1050は、軟質故にSUS304等と異なる経過を辿った。 In short, the data on the shear adhesion strength of the pure aluminum-based aluminum alloys A1085 and A1050 shown in Table 5 did not change significantly before and after the high-temperature and high-humidity test. In A1085, there was no change between 55 MPa, and in A1050, it decreased to 54 MPa before the test and 50 MPa after the test, but returned to the original at 54 MPa when dried. It is the moisture absorption of the cured adhesive, not the metal, that changes most with the application of high temperature and high humidity, indicating that the cured adhesive has softened slightly. Therefore, the fact that the adhesive strength did not change much in A1085 and A1050 means that the change in hardness of the cured adhesive was close to the hardness level of A1085 and A1050, so that when a tensile breaking force was applied, for example, the ground (metal side). ) And the nail (hardened adhesive) are close in hardness, so it is estimated that both the metal side and the hardened adhesive are deformed, which has the effect of delaying breakage. For hard metals, SUS304 and 64 titanium alloys in Table 5, the initial shear adhesion strength was around 60 MPa, but it dropped sharply to 43 to 45 MPa due to softening due to moisture absorption of the resin part. Then, in SUS304, the resin portion was dried to recover to 53 MPa. The present inventor understood that if the metal side was hard and the surface shape of the metal side did not change with high humidity, the shear bond strength fluctuated as in the case of SUS304. In short, the pure aluminum-based aluminum alloys A1085 and A1050 followed a different course from SUS304 and the like because of their softness.

そこで、A1050やA1085の表面処理法の最終工程を少し変更して表皮だけをより硬質にすればどうなるかを予期した。軟質金属である純アルミニウム系アルミニウム合金の外皮が硬質で、内部が軟質の構造である。表皮をより硬く、かつ、少し厚くして外皮は硬く内部は柔らかな軟質のままとすることである。少なくとも表6と同じ試験をしてせん断接着強さが54〜55MPaという他材より明らかに低い状態は抜け出せるのではないかと推定した。その結果、A1050アルミニウム合金の新しい表面処理法に関して試験実験を開始した。[実験例A]の中の[実験例A1−3]〜[実験例A1−7]の5項目は、[実験例A]と[実験例B]の全項目が終了した後に、上記したように表5、表6のデータを分析し後に、前述した表面処理法とは異なる実験をしたものである。その実験結果を表7にしたものである。即ち、表7に示すデータは、純アルミニウム系アルミニウム合金の表面のみをより硬化させた化成処理である。 Therefore, I expected what would happen if the final process of the surface treatment method of A1050 or A1085 was slightly changed to make only the epidermis harder. The outer skin of pure aluminum-based aluminum alloy, which is a soft metal, is hard, and the inside is soft. The epidermis should be harder and slightly thicker to leave the outer skin hard and the inside soft and soft. At least the same test as in Table 6 was carried out, and it was estimated that the state where the shear adhesive strength was 54 to 55 MPa, which was clearly lower than that of other materials, could be escaped. As a result, a test experiment was started on a new surface treatment method for A1050 aluminum alloy. The five items [Experimental Example A1-3] to [Experimental Example A1-7] in [Experimental Example A] are as described above after all the items of [Experimental Example A] and [Experimental Example B] are completed. After analyzing the data in Tables 5 and 6, an experiment different from the above-mentioned surface treatment method was performed. The experimental results are shown in Table 7. That is, the data shown in Table 7 is a chemical conversion treatment in which only the surface of the pure aluminum-based aluminum alloy is further cured.

Figure 2021123035
Figure 2021123035

表7に示したデータの上部を見ると、NAT処理品やNAT5処理品では最終の5%濃度の過酸化水素水への浸漬時間は、5分だったのだが20分にすると、NAT処理品ではせん断接着強さが57.5MPaから60MPaに上昇し、せん断接着粘り性値は50.5MPa付近で変わらなかった。一方、NMT5処理品では過酸化水素水への浸漬を5分から20分に変えると、せん断接着強さが55.5MPaから57MPaに上昇し、せん断接着粘り性値は51MPaから53.4MPaに上昇した。最も変化が大きいのは、陽極酸化処理品であり、NAT−Ano処理品でせん断接着強さ68MPaという高値が得られ、せん断接着粘り性値はこれも高い57.5MPaが得られ、NAT5−Ano処理品でせん断接着強さ63MPa、せん断接着粘り性値は54MPaが得られている。 Looking at the upper part of the data shown in Table 7, the final immersion time in the 5% concentration hydrogen peroxide solution for the NAT-treated product and NAT5-treated product was 5 minutes, but if it is set to 20 minutes, the NAT-treated product The shear bond strength increased from 57.5 MPa to 60 MPa, and the shear bond stickiness value did not change at around 50.5 MPa. On the other hand, in the NMT5 treated product, when the immersion in the hydrogen peroxide solution was changed from 5 minutes to 20 minutes, the shear adhesion strength increased from 55.5 MPa to 57 MPa, and the shear adhesion stickiness value increased from 51 MPa to 53.4 MPa. .. The largest change is in the anodized product, and the NAT-Ano treated product has a high shear adhesive strength of 68 MPa, and the shear adhesive tenacity value is also high, 57.5 MPa, and NAT5-Ano. The treated product has a shear adhesive strength of 63 MPa and a shear adhesive tenacity value of 54 MPa.

過酸化水素処理を長く行うことで表面の酸化アルミ薄層が強化されたことは間違いなく、「D」材の外皮を硬く、内部を柔らかくすることが有効なことが確認できた。又、A1050合金の表面層が陽極酸化による未封孔型アルマイトになって、更に硬い表層を有する構造になり、驚く高さのせん断接着強さとせん断接着粘り性を発揮したことを確認した。純アルミニウム系アルミニウム合金ではない別のA6061、A2024アルミニウム合金の場合には、過酸化水素水処理の強化品と陽極酸化品にてせん断接着粘り性で差異がつかない例の方が多く、これは軟性アルミニウム合金の特徴と推察される。要するに、A1050アルミニウム合金のような軟質金属では、間違いなく表面層を硬度高くすることで、接着力を向上し得ること、又、それは陽極酸化法等でより確実に達成できることがした確認された。 There is no doubt that the aluminum oxide thin layer on the surface was strengthened by long-term hydrogen peroxide treatment, and it was confirmed that it is effective to harden the outer skin and soften the inside of the "D" material. It was also confirmed that the surface layer of the A1050 alloy became an unsealed alumite by anodizing, and the structure had a harder surface layer, and exhibited surprisingly high shear adhesion strength and shear adhesion tenacity. In the case of other A6061 and A2024 aluminum alloys that are not pure aluminum-based aluminum alloys, there are many cases where there is no difference in shear adhesion stickiness between the reinforced product of hydrogen peroxide solution treatment and the anodized product. It is presumed to be a characteristic of soft aluminum alloy. In short, it was confirmed that in a soft metal such as A1050 aluminum alloy, the adhesive strength can be improved by undoubtedly increasing the hardness of the surface layer, and that it can be more reliably achieved by an anodizing method or the like.

異種構造材を含む接合一体化物は、航空機、自動車等の移動機械、工作機械等の産業機械等の構造物に適用できる。 Joined integrated products containing different types of structural materials can be applied to structures such as mobile machines such as aircraft and automobiles, and industrial machines such as machine tools.

Claims (19)

FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は前記純アルミニウム系アルミニウム合金の構造物が積層されたものであり、
前記「A」材、前記「D」材、及び「B」材の順に接合面が固着積層された3材からなる
ことを特徴とする異種構造材を含む接合一体化物。
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a plate-like product of a pure aluminum-based aluminum alloy having a thickness of 1.5 to 5.0 mm, which is a "D" material, or a structure of the pure aluminum-based aluminum alloy. It is a stack of things,
A joint integrated product containing dissimilar structural materials, which comprises three materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "D" material, and the "B" material.
FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び「B」材の順に接合面が固着積層された4材からなる
ことを特徴とする異種構造材を含む接合一体化物。
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
A joint integrated product containing dissimilar structural materials, which comprises four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material.
FRP材、及び、構造用金属材群から選択される「A」材、及び「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接着剤で接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物であり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなる
ことを特徴とする異種構造材を含む接合一体化物。
Two different types of FRP material, "A" material and "B" material selected from the structural metal material group are used at both ends.
It is an integrated product in which members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more are joined with an adhesive.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to It is a plate-like product of 5.0 mm pure aluminum-based aluminum alloy.
A heterogeneous structural material characterized in that the joint surface is fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material. Joining integration including.
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び前記「B」材の順に接合面が固着積層された4材からなり、
前記FRTP材と前記「C」材の接合法は、前記「C」材に射出接合法により、前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合した後、前記FRTP材と前記樹脂を熱融着により接合されたものであり、
前記熱融着以外の他の接合の前記接合面は、接着剤による接合されたものである
ことを特徴とする異種構造材を含む接合一体化物。
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is composed of four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material.
The method of joining the FRTP material and the "C" material is to join the "C" material with a resin of the same type as the matrix resin of the FRTP material by an injection joining method, and then join the FRTP material. The resin is joined by heat fusion, and is
A joint integrated product containing a dissimilar structural material, wherein the joint surface of a joint other than the heat fusion is one that is joined by an adhesive.
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材、前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなり、
前記FRTP材と前記「C」材の接合法は、前記「C」材に、前記FRTP材のマトリックス樹脂と同種の樹脂をインサート成形で接合した後、前記FRTP材と前記樹脂を熱融着により接合されたものであり、
前記熱融着以外の他の接合部の前記接合面は、接着剤により接合されたものである
ことを特徴とする異種構造材を含む接合一体化物。
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is composed of 5 materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material.
In the method of joining the FRTP material and the "C" material, a resin of the same type as the matrix resin of the FRTP material is joined to the "C" material by insert molding, and then the FRTP material and the resin are heat-sealed. It is joined and
A joint integrated product containing a dissimilar structural material, wherein the joint surface of a joint portion other than the heat fusion is one that is joined by an adhesive.
請求項1〜5から選択される1項に記載の異種構造材含む接合一体化物において、
前記「D」材は、純アルミニウム系アルミニウム合金であり、日本工業規格A1080、A1085、及びA1050から選択される1種であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 1 to 5.
The "D" material is a pure aluminum-based aluminum alloy, and is a bonded integrated product containing a dissimilar structural material, which is one selected from Japanese Industrial Standards A1080, A1085, and A1050.
請求項2〜5から選択される1項に記載の異種構造材含む接合一体化物において、
前記「C」材は、日本工業規格のA5052アルミニウム合金、A5083アルミニウム合金、A6061アルミニウム合金、及びSUS304ステンレス鋼から選択される1種であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 2 to 5.
The "C" material is a bonded integrated product containing a dissimilar structural material selected from A5052 aluminum alloy, A5083 aluminum alloy, A6061 aluminum alloy, and SUS304 stainless steel of Japanese Industrial Standards.
請求項1〜5から選択される1項に記載の異種構造材含む接合一体化物において、
前記接合面は、平面、曲面、及び円筒面から選択される1以上の面を含むものであることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 1 to 5.
The joint surface is a joint integrated product containing dissimilar structural materials, which comprises one or more surfaces selected from a flat surface, a curved surface, and a cylindrical surface.
請求項1〜8から選択される1項に記載の異種構造材含む接合一体化物において、
前記「D」材は、下面は平面又は曲面であり、上面には断面積0.05〜0.25cmの円形又は角状の柱状物が並列して多数林立している板状体であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 1 to 8.
The "D" material is a plate-like body having a flat surface or a curved surface on the lower surface and a large number of circular or square columnar objects having a cross-sectional area of 0.05 to 0.25 cm 2 standing side by side on the upper surface. A joint integrated product containing dissimilar structural materials.
請求項1〜8から選択される1項に記載の異種構造材含む接合一体化物において、
前記「D」材は、下面は平面又は曲面であり、上面には厚さ3〜5mmの壁が幅2〜3mmの間隔あけて多数林立している壁状突起、又は、厚さ3〜5mmの壁が幅2〜3mmの間隔あけて同心円状の壁状突起を有する板状体であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 1 to 8.
The lower surface of the "D" material is a flat surface or a curved surface, and a large number of walls having a thickness of 3 to 5 mm are standing on the upper surface at intervals of 2 to 3 mm, or wall-shaped protrusions having a thickness of 3 to 5 mm. A joint integrated product containing dissimilar structural materials, characterized in that the walls of the above are plate-like bodies having concentric wall-shaped protrusions at intervals of 2 to 3 mm in width.
請求項10の異種構造材含む接合一体化物において、
前記同心円状の前記壁状突起の中心は、1〜5cmの部分は厚さ1〜5mmの円形の厚板状であることを特徴とする異種構造材を含む接合一体化物。
In the joint integrated product containing dissimilar structural materials according to claim 10.
The center of the concentric wall-shaped protrusion is a joint integrated product containing a different type of structural material, characterized in that a portion of 1 to 5 cm 2 is a circular thick plate having a thickness of 1 to 5 mm.
請求項2〜5から選択される1項に記載の異種構造材含む接合一体化物において、
前記「A」材、前記「B」材、前記「C」材、及び前記「D」材の5材間の接合において、接着剤で接合された接合部に存在する接着剤硬化層は、全て1液性エポキシ接着剤の硬化層、又は、2液性エポキシ接着剤の硬化層が含まれたものであることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 2 to 5.
In the bonding between the five materials of the "A" material, the "B" material, the "C" material, and the "D" material, all the adhesive hardening layers existing in the joint portion joined by the adhesive are all. A bonded integrated product containing a dissimilar structural material, which comprises a cured layer of a one-component epoxy adhesive or a cured layer of a two-component epoxy adhesive.
請求項2〜5から選択される1項に記載の異種構造材含む接合一体化物において、
前記「A」材、前記「B」材、前記「C」材、及び前記「D」材の4材以上が接合されたものにおいて、接着剤で接合された接合部に換えて一部がクラッド結合部であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 2 to 5.
In the case where four or more materials of the "A" material, the "B" material, the "C" material, and the "D" material are joined, a part is clad instead of the joint portion joined by the adhesive. A joint integrated product containing dissimilar structural materials characterized by being a joint.
請求項12又は13に記載の異種構造材を含む接合一体化物において、
前記1液性エポキシ接着剤は、引張り破断試験において、せん断接着強さが23℃下で50MPa以上を示し、かつ、150℃下で25MPa以上を示す耐熱型1液性エポキシ接着剤であることを特徴とする異種構造材を含む接合一体化物。
In the joint integrated product containing the dissimilar structural material according to claim 12 or 13.
The one-component epoxy adhesive is a heat-resistant one-component epoxy adhesive having a shear adhesion strength of 50 MPa or more at 23 ° C. and 25 MPa or more at 150 ° C. in a tensile break test. A joint integrated product containing different types of structural materials.
請求項1〜14から選択される1項に記載の異種構造材を含む接合一体化物であって、
前記「A」材、及び前記「B]材は、CFRP材とチタン合金材、CFRP材と一般鋼材、CFRP材とステンレス鋼材、CFRP材と高強度アルミニウム合金材、GFRP材と高強度アルミニウム合金材、CFRTP材とチタン合金材、CFRTP材と一般鋼材、CFRTP材とステンレス鋼材、CFRTP材と高強度アルミニウム合金材、チタン材と一般鋼材、チタン材とステンレス鋼材、チタン材と高強度アルミニウム合金材、一般鋼材とステンレス鋼材、一般鋼材と高強度アルミニウム合金材、フェライト系ステンレス鋼材とオーステナイト系ステンレス鋼材、及び、ステンレス鋼材と高強度アルミニウム合金材から選択される1種であることを特徴とする異種構造材を含む接合一体化物。
A bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 1 to 14.
The "A" material and the "B" material are CFRP material and titanium alloy material, CFRP material and general steel material, CFRP material and stainless steel material, CFRP material and high-strength aluminum alloy material, GFRP material and high-strength aluminum alloy material. , CFRTP material and titanium alloy material, CFRTP material and general steel material, CFRTP material and stainless steel material, CFRTP material and high strength aluminum alloy material, titanium material and general steel material, titanium material and stainless steel material, titanium material and high strength aluminum alloy material, A heterogeneous structure characterized by being one selected from general steel and stainless steel, general steel and high-strength aluminum alloy, ferrite-based stainless steel and austenite-based stainless steel, and stainless steel and high-strength aluminum alloy. Joined alloy containing material.
請求項4〜13から選択される1項に記載の異種構造材含む接合一体化物において、
前記「A」材のFRTPがCFRTPであり、
前記樹脂は、0.5mm厚以上の高結晶性熱可塑性合成樹脂組成物であり、前記「C」材と前記樹脂の厚みの合計は、厚さ2mm以下の複合板であり、
前記「A」材と前記「C」材の接合は、前記CFRTPのマトリックス樹脂と高結晶性熱可塑性合成樹脂組成物を熱融着により固着したものであり、
前記「B」材は、チタン合金材、一般鋼材、ステンレス鋼材、及び、高強度アルミニウム合金材から選択される1種であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing the dissimilar structural material according to claim 1, which is selected from claims 4 to 13.
The FRTP of the "A" material is CFRTP, and
The resin is a highly crystalline thermoplastic synthetic resin composition having a thickness of 0.5 mm or more, and the total thickness of the "C" material and the resin is a composite plate having a thickness of 2 mm or less.
The bonding between the "A" material and the "C" material is obtained by fixing the CFRTP matrix resin and the highly crystalline thermoplastic synthetic resin composition by heat fusion.
The "B" material is a bonded integrated product containing a dissimilar structural material, which is one selected from a titanium alloy material, a general steel material, a stainless steel material, and a high-strength aluminum alloy material.
請求項15に記載の異種構造材含む接合一体化物において、
前記高強度アルミニウム合金材は、日本工業規格のA2014、A2017、A2024、及びA7075から選択されるジュラルミン類、又は、日本工業規格のA5052、A5083、A6061、及びA6063から選択される1種のアルミニウム合金であることを特徴とする異種構造材を含む接合一体化物。
In the bonded integrated product containing different structural materials according to claim 15.
The high-strength aluminum alloy material is duralumins selected from Japanese industrial standards A2014, A2017, A2024, and A7075, or one type of aluminum alloy selected from Japanese industrial standards A5052, A5083, A6061, and A6063. A bonded integrated product containing dissimilar structural materials.
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材と前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、及び前記「B」材の順に接合面が固着積層された4材からなる異種構造材を含む接合一体化物の製造方法であって、
前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合するために、前記「C」材を金型にインサートした後、前記樹脂を射出してFRTP材と前記「C」材を接合する射出接合工程と、
前記射出接合後、前記FRTP材と前記樹脂を熱融着により接合する熱融着工程と、
他の接合部は、接着剤による接合工程法と
からなることを特徴とする異種構造材を含む接合一体化物の製造方法。
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
It is a method for manufacturing a joint integrated product containing dissimilar structural materials consisting of four materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, and the "B" material. hand,
In order to bond a resin of the same type as the matrix resin of the FRTP material to the "C" material, the "C" material is inserted into a mold, and then the resin is injected to bond the FRTP material and the "C" material. Injection joining process to join and
After the injection joining, a heat fusion step of joining the FRTP material and the resin by heat fusion,
The other joint is a method for manufacturing a joint integrated product containing dissimilar structural materials, which comprises a joining process method using an adhesive.
FRTP材を「A」材、構造用金属材群から選択される「B」材の異種2材を両端とし、
前記「A」材と前記「B」材の線膨張率の差が、0.3×10−5−1以上ある部材を接合した一体化物であって、
前記一体化物は、
前記「A」材、前記「B」材の間に、「C」材である耐力が150MPaより高い金属材の1.0mm厚以下の薄板、及び「D」材である厚さ1.5〜5.0mmの純アルミニウム系アルミニウム合金の板状物、又は構造物である前記「C」材が積層されたものであり、
前記「A」材、前記「C」材、前記「D」材、前記「C」材、及び「B」材の順に接合面が固着積層された5材からなる異種構造材を含む接合一体化物の製造方法であって、
前記FRTP材のマトリックス樹脂と同種の樹脂を前記「C」材に接合するために、前記「C」材を金型にインサートした後、前記樹脂を射出してFRTP材と前記「C」材を接合する射出接合工程と、
前記射出接合後、前記FRTP材と前記樹脂を熱融着により接合する熱融着工程と、
他の接合部は、接着剤による接合工程法と
からなることを特徴とする異種構造材を含む接合一体化物の製造方法。
The FRTP material is "A" material, and two different types of "B" material selected from the structural metal material group are used at both ends.
It is an integrated product obtained by joining members having a difference in linear expansion coefficient between the "A" material and the "B" material of 0.3 × 10-5 K -1 or more.
The integrated product is
Between the "A" material and the "B" material, a thin plate of a metal material having a proof stress of more than 150 MPa, which is a "C" material, and a thickness of 1.0 mm or less, and a "D" material having a thickness of 1.5 to A 5.0 mm pure aluminum-based aluminum alloy plate-like material or a structure in which the above-mentioned "C" material is laminated.
A joint integrated product containing five different structural materials in which the joint surfaces are fixed and laminated in the order of the "A" material, the "C" material, the "D" material, the "C" material, and the "B" material. It is a manufacturing method of
In order to bond a resin of the same type as the matrix resin of the FRTP material to the "C" material, the "C" material is inserted into a mold, and then the resin is injected to bond the FRTP material and the "C" material. Injection joining process to join and
After the injection joining, a heat fusion step of joining the FRTP material and the resin by heat fusion,
The other joint is a method for manufacturing a joint integrated product containing dissimilar structural materials, which comprises a joining process method using an adhesive.
JP2020018513A 2020-02-06 2020-02-06 Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof Pending JP2021123035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018513A JP2021123035A (en) 2020-02-06 2020-02-06 Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018513A JP2021123035A (en) 2020-02-06 2020-02-06 Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021123035A true JP2021123035A (en) 2021-08-30

Family

ID=77458637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018513A Pending JP2021123035A (en) 2020-02-06 2020-02-06 Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021123035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476142A (en) * 2023-03-21 2024-01-30 哈尔滨理工大学 Solving method for reversely identifying and correcting constitutive parameters based on cutting force

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476142A (en) * 2023-03-21 2024-01-30 哈尔滨理工大学 Solving method for reversely identifying and correcting constitutive parameters based on cutting force
CN117476142B (en) * 2023-03-21 2024-04-19 哈尔滨理工大学 Solving method for reversely identifying and correcting constitutive parameters based on cutting force

Similar Documents

Publication Publication Date Title
Pramanik et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys–A review
KR101161928B1 (en) Aluminum alloy composite and method of bonding therefor
JP5094849B2 (en) Stainless steel composite
JP2008307842A (en) Tubular composite article and its manufacturing method
Calabrese et al. Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment
Patil et al. Characterization of glass laminate aluminium reinforced epoxy-a review
Reyes et al. Manufacturing and mechanical properties of thermoplastic hybrid laminates based on DP500 steel
Chen et al. Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments
US10232587B2 (en) Method for producing metal containing composite and metal containing composite formed by adhesion
JP2021123035A (en) Adhesive integrated body containing heterogeneous construction materials and manufacturing method thereof
JP2016221784A (en) Integrally assembled product of cfrp pipe and metal part, and bonding method therefor
Shimamoto et al. Effects of surface treatment on the critical energy release rates of welded joints between glass fiber reinforced polypropylene and a metal
US8343294B2 (en) Method for enhancing the fatigue life of a structure
Huang et al. Mechanical properties and fatigue failure mechanisms of purely self-piercing riveted (SPR) and hybrid (SPR-bonded) joints under salt spray environment
Kim et al. An experimental study on the effect of overlap length on the failure of composite-to-aluminum single-lap bonded joints
Park et al. The guidelines of material design and process control on hybrid fiber metal laminate for aircraft structures
Jaiswal et al. Unified methodology for characterisation of global fatigue damage evolution in adhesively bonded joints
US11554573B2 (en) Plastic fiber composite material/aluminum laminate, production and use thereof
Okada et al. Shear strength of adhesive lamination joint of aluminum and CFRP sheets treated by homogeneous low energy electron beam irradiation prior to lamination assembly and hot-press
WO2016090405A1 (en) A method of forming a fibre metal composite component
JP5714864B2 (en) CFRP prepreg and bonded material
Özenç et al. Effect of surface pre-treatment and temperature on the adhesive strength of hybrid aluminum joints
Baharin et al. Observing the simulation behaviour of Magnesium alloy metal sandwich panel under cyclic loadings
JP2020040368A (en) Method for manufacturing composite body of coated metal contouring material and resin material
Zubkov et al. Surface reinforcement of carbon composites with microstructural metal materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430