JP2021121420A - Production method for fluid catalytic cracking catalyst - Google Patents

Production method for fluid catalytic cracking catalyst Download PDF

Info

Publication number
JP2021121420A
JP2021121420A JP2020014949A JP2020014949A JP2021121420A JP 2021121420 A JP2021121420 A JP 2021121420A JP 2020014949 A JP2020014949 A JP 2020014949A JP 2020014949 A JP2020014949 A JP 2020014949A JP 2021121420 A JP2021121420 A JP 2021121420A
Authority
JP
Japan
Prior art keywords
cracking catalyst
catalytic cracking
fluid catalytic
catalyst
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020014949A
Other languages
Japanese (ja)
Other versions
JP7348095B2 (en
Inventor
由佳 瀬戸
Yuka SETO
由佳 瀬戸
隆喜 水野
Takayoshi Mizuno
隆喜 水野
知宏 三津井
Tomohiro Mitsui
知宏 三津井
桂 ▲黒▼崎
桂 ▲黒▼崎
Kei Kurosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020014949A priority Critical patent/JP7348095B2/en
Publication of JP2021121420A publication Critical patent/JP2021121420A/en
Application granted granted Critical
Publication of JP7348095B2 publication Critical patent/JP7348095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

To provide a production method for a fluid catalytic cracking catalyst excellent in various characteristics.SOLUTION: A production method for fluid catalytic cracking catalysts comprises: obtaining a mixed slurry including a matrix containing zeolite and basic aluminum chloride, which is a binder component, and lantern carbonate; obtaining the precursor of the fluid catalytic cracking catalyst by atomization-drying the mixed slurry; filtrating the precursor after suspending in an aqueous solution having pH of 5.5 to 7.5 and temperature of 40 to 70°C and further performing cleansing by hot water to obtain a cleansing cake 1; filtrating the cleansing cake 1 after suspending in the aqueous solution of ammonium sulfate having the pH controlled in a range of 5 to 7 and carrying out cleansing by hot water to obtain a cleansing cake 2; adding the aqueous solution including RE2O3 precursor to the cleansing cake 2 after suspending in hot water, agitating, filtrating, cleansing by hot water and drying to obtain a rare earth-substituted fluid catalytic cracking catalyst including lantern carbonate of 5 mass% or more as La2O3 in a catalyst standard.SELECTED DRAWING: None

Description

本発明は、メタル耐性および耐摩耗性が高い流動接触分解触媒に関し、さらに詳しくは塩基性塩化アルミニウムをバインダー成分とし、ゼオライトと、炭酸ランタンを含有する流動接触分解触媒の製造方法に関する。 The present invention relates to a fluid cracking catalyst having high metal resistance and abrasion resistance, and more particularly to a method for producing a fluid cracking catalyst containing basic aluminum chloride as a binder component, zeolite, and lanthanum carbonate.

近年の石油供給事情より、残渣油などの重質炭化水素油を接触分解の原料油として用いるケースが増加している。原料油の重質炭化水素油中には、バナジウムやニッケルなどの金属化合物が含まれているため、これらの金属化合物は接触分解反応において種々の悪影響を及ぼすことが知られている。触媒組成物に沈着したバナジウムは活性成分である結晶性アルミノシリケートゼオライトを破壊して触媒活性の低下を起こし、また、ニッケルは脱水素反応を促進するため水素およびコークの生成が多くなる問題があった。 Due to the recent petroleum supply situation, cases where heavy hydrocarbon oils such as residual oils are used as raw material oils for catalytic cracking are increasing. Since the heavy hydrocarbon oil of the raw material oil contains metal compounds such as vanadium and nickel, it is known that these metal compounds have various adverse effects in the catalytic cracking reaction. Vanadium deposited in the catalyst composition destroys the crystalline aluminosilicate zeolite, which is the active ingredient, causing a decrease in catalytic activity, and nickel promotes the dehydrogenation reaction, which causes a problem of increased hydrogen and cork production. rice field.

これらの問題については、プロセス面からの改良や流動接触分解触媒(以下、単にFCC触媒ともいう)の開発によりある程度解決されて来ている。残渣油などの重質炭化水素油の接触分解に使用して、バナジウムやニッケルに対する耐メタル性が高く、残渣油の分解能に優れ、水素、コークなどの生成量が少なく、ガソリンや灯軽油留分(LCO)の収率の高い触媒が種々提案されている。 These problems have been solved to some extent by improving the process and developing a fluid cracking catalyst (hereinafter, also simply referred to as FCC catalyst). Used for catalytic cracking of heavy hydrocarbon oils such as residual oils, it has high metal resistance to vanadium and nickel, excellent resolution of residual oils, low production of hydrogen and cork, and fractions of gasoline and kerosene oil. Various catalysts with high yields of (LCO) have been proposed.

さらに、特許文献1には、結晶性アルミノシリケートゼオライトおよび炭酸ランタンを含有することを特徴とする炭化水素油流動接触分解用触媒組成物が開示されており、また、特許文献2には、スラリー調整時に予め水酸化マグネシウム、水酸化カルシウム、炭酸水素ナトリウム、炭酸ナトリウムを含む製造方法が開示されている。さらに特許文献3には、塩基性塩化アルミニウムをバインダー成分として用いた流動接触分解触媒が開示されており、噴霧乾燥後に硫酸化物(硫酸塩)が1〜8質量%担持することで硫酸アルミニウムに表面改質し隣り合う塩化アルミニウムの結晶の接触面の結合力を高めることで細孔容積が大きく、しかも、耐摩耗性が高い流動接触分解触媒が得られることを開示している。 Further, Patent Document 1 discloses a catalyst composition for fluid catalytic cracking of hydrocarbon oil, which is characterized by containing crystalline aluminosilicate zeolite and lanthanum carbonate, and Patent Document 2 discloses slurry preparation. Sometimes, a production method containing magnesium hydroxide, calcium hydroxide, sodium hydrogen carbonate, and sodium carbonate is disclosed in advance. Further, Patent Document 3 discloses a fluid cracking catalyst using basic aluminum chloride as a binder component, and the surface of aluminum sulfate is surfaced by supporting 1 to 8% by mass of sulfate (sulfate) after spray drying. It is disclosed that a fluid catalytic cracking catalyst having a large pore volume and high wear resistance can be obtained by modifying and increasing the bonding force of the contact surfaces of adjacent aluminum chloride crystals.

特開2004−337758号公報Japanese Unexamined Patent Publication No. 2004-337758 特開2009−000657号公報JP-A-2009-000657 特開2009−207948号公報JP-A-2009-207948

しかしながら、流動接触分解触媒に炭酸ランタンを酸化物換算(La)で5質量%以上含有した場合、耐摩耗性が低下するため、流動接触分解装置では使用できないという問題点があった。 However, when lanthanum carbonate is contained in the fluid cracking catalyst in an oxide equivalent (La 2 O 3 ) of 5% by mass or more, the wear resistance is lowered, so that there is a problem that it cannot be used in a fluid cracking apparatus.

本発明の目的は、ゼオライトと炭酸ランタンと塩基性塩化アルミニウムを含有する耐メタル性に優れ、分解活性が高くしかも水素、ガスおよびコークの生成が少なく、ガソリンや灯軽油留分が高収率で得られ、さらに耐摩耗性の高い流動接触分解触媒の製造方法を提供することにある。 An object of the present invention is to have excellent metal resistance containing zeolite, lanthanum carbonate and basic aluminum chloride, high cracking activity, low production of hydrogen, gas and cork, and high yield of gasoline and kerosene distillate. It is an object of the present invention to provide a method for producing a fluid catalytic cracking catalyst which is obtained and has higher wear resistance.

このような技術的背景のもと、発明者らは、耐メタル性に優れた流動接触分解触媒(以下、単にFCC触媒ともいう)の改善について鋭意研究した結果、炭酸ランタンを酸化物(La)換算で5質量%以上含有したFCC触媒が従来の酸化ランタンを含有したFCC触媒よりも格段に優れた耐メタル性を示すことを見出し、本発明を完成するに至った。 Against this technical background, the inventors have diligently studied the improvement of a fluid cracking catalyst (hereinafter, also simply referred to as an FCC catalyst) having excellent metal resistance, and as a result, lanthanum carbonate is an oxide (La 2). O 3 ) We have found that an FCC catalyst containing 5% by mass or more in terms of conversion exhibits significantly better metal resistance than a conventional FCC catalyst containing lanthanum oxide, and have completed the present invention.

前記課題を解決し上記の目的を実現するため開発した本発明は、下記のとおりのものである。すなわち、本発明は、バインダー成分、ゼオライトおよび炭酸ランタンを触媒基準でLaとして5質量%以上含む流動接触分解触媒の製造方法であって、
ゼオライトおよびバインダー成分の塩基性塩化アルミニウムを含むマトリックスと炭酸ランタンとを含む混合スラリーを得る第一工程と、
前記第一工程で得られた混合スラリーを噴霧乾燥することにより流動接触分解触媒の前駆体を得る第二工程と、
前記第二工程で得られた流動接触分解触媒の前駆体を、pHが5.5〜7.5の範囲にあり、温度が40〜70℃の範囲にある水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ1を得る第三工程と、
前記第三工程で得られた洗浄ケーキ1をさらにpHを5〜7の範囲に調整した硫酸アンモニウム水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ2を得る第四工程と、
前記第四工程で得られた洗浄ケーキ2を、さらに温水中に懸濁させた後、RE前駆体を含む水溶液を添加・撹拌し、濾別を行いさらに温水洗浄後、乾燥して希土類置換流動接触分解触媒を得る第五工程と、
を含む流動接触分解触媒の製造方法である。
The present invention developed to solve the above problems and realize the above object is as follows. That is, the present invention is a method for producing a fluid catalytic cracking catalyst containing 5% by mass or more of La 2 O 3 as La 2 O 3 based on a catalyst component, a binder component, zeolite and lanthanum carbonate.
The first step of obtaining a mixed slurry containing a matrix containing zeolite and basic aluminum chloride as a binder component and lanthanum carbonate, and
The second step of obtaining a precursor of a fluid cracking catalyst by spray-drying the mixed slurry obtained in the first step, and
The precursor of the fluid cracking catalyst obtained in the second step is suspended in an aqueous solution having a pH in the range of 5.5 to 7.5 and a temperature in the range of 40 to 70 ° C., and then filtered. The third step of performing another process and further washing with warm water to obtain a washing cake 1
The washing cake 1 obtained in the third step is further suspended in an aqueous ammonium sulfate solution whose pH is adjusted to a pH range of 5 to 7, and then filtered and further washed with warm water to obtain a washing cake 2. ,
The washing cake 2 obtained in the fourth step is further suspended in warm water, then an aqueous solution containing a RE 2 O 3 precursor is added and stirred, filtered, separated by filtration, washed with warm water, and then dried. The fifth step of obtaining a rare earth substitution fluid catalytic cracking catalyst,
It is a method for producing a fluid catalytic cracking catalyst including.

なお、本発明に係る上記流動接触分解触媒の製造方法については、
(1)前記第二工程において、スプレー出口温度が200〜250℃の範囲であること、
(2)前記第三工程の懸濁時に用いる水溶液には、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムのいずれか1つのナトリウム塩を含むこと、
(3)前記第三工程の懸濁液中のアニオン量は、バインダー由来のAl量[Al(バインダー成分)]に対するアニオン量[A]のモル比が、[A]/[Al(バインダー成分)]=0.1〜1の範囲である、ただし、[A]にOHやバインダー由来のClは含まないこと、
などがより好ましい解決手段になり得るものと考えられる。
Regarding the method for producing the above-mentioned fluid catalytic cracking catalyst according to the present invention,
(1) In the second step, the spray outlet temperature is in the range of 200 to 250 ° C.
(2) The aqueous solution used at the time of suspension in the third step contains a sodium salt of any one of sodium carbonate, sodium hydrogen carbonate, and sodium hydroxide.
(3) As for the amount of anion in the suspension of the third step, the molar ratio of the amount of anion [A ] to the amount of Al 2 O 3 derived from the binder [Al 2 O 3 (binder component)] is [A −. ] / [Al 2 O 3 (binder component)] = 0.1 to 1, but [A ] does not contain OH − or Cl − derived from the binder.
Etc. may be a more preferable solution.

以上説明したように、本発明によれば、耐メタル性に優れ、分解活性が高くしかも水素、ガスおよびコークの生成が少なく、ガソリンや灯軽油留分が高収率で得られ、更に耐摩耗性の高い流動接触分解触媒の製造方法を提供することができるようになる。 As described above, according to the present invention, according to the present invention, metal resistance is excellent, cracking activity is high, hydrogen, gas and cork are less generated, gasoline and kerosene distillate can be obtained in high yield, and wear resistance is further increased. It becomes possible to provide a method for producing a fluid catalytic cracking catalyst having high properties.

<流動接触分解触媒>
本発明に係わる流動接触分解触媒は、塩基性塩化アルミニウムをバインダー成分とし、ゼオライトおよび炭酸ランタンを触媒基準でLaとして5質量%以上含有するものである。本発明で用いる結晶性アルミノシリケートゼオライト(以下、ゼオライトという)としては、通常の接触分解触媒に使用されるゼオライトが使用可能であり、例えば、X型ゼオライト、Y型ゼオライト、モルデナイト、ZSM型ゼオライトなどの合成ゼオライトおよび天然ゼオライトなどが挙げられる。これらのゼオライトは通常の接触分解触媒に使用される場合と同様に、水素、アンモニウムおよび多価金属から選ばれるカチオンでイオン交換された形で使用される。Y型ゼオライト、特に超安定化Y型ゼオライト(USY)は耐水熱安定性に優れているので好適である。
<Fluid catalytic cracking catalyst>
The fluid cracking catalyst according to the present invention contains basic aluminum chloride as a binder component and contains zeolite and lanthanum carbonate as La 2 O 3 in an amount of 5% by mass or more based on the catalyst. As the crystalline aluminosilicate zeolite (hereinafter referred to as zeolite) used in the present invention, zeolite used as an ordinary catalytic cracking catalyst can be used, and for example, X-type zeolite, Y-type zeolite, mordenite, ZSM-type zeolite and the like can be used. Synthetic zeolites and natural zeolites of. These zeolites are used in the form of ion exchange with cations selected from hydrogen, ammonium and multivalent metals, as they are used in conventional cracking catalysts. Y-type zeolite, particularly ultra-stabilized Y-type zeolite (USY), is suitable because it has excellent water and thermal stability.

本発明における炭酸ランタンとしては、一般に市販されている炭酸ランタンを使用することができる。 As the lanthanum carbonate in the present invention, a commercially available lanthanum carbonate can be used.

本発明に係わる流動接触分解触媒は、通常の接触分解触媒と同様に多孔性無機酸化物マトリックスが使用される。多孔性無機酸化物マトリックスには、塩基性塩化アルミニウムをバインダーとし、カオリン、ハロイサイト、モンモリナイトなどの粘土鉱物、活性アルミナ、シリカ―アルミナ、シリカ―マグネシア、アルミナ―マグネシア、シリカ―マグネシア―アルミナなどの固体酸を有するマトリックス、二酸化マンガン、カルシウムアルミネート、水酸化アルミニウムなどの金属捕捉剤などを併用して含有することができる。 As the flow catalytic cracking catalyst according to the present invention, a porous inorganic oxide matrix is used as in the case of a normal catalytic cracking catalyst. The porous inorganic oxide matrix uses basic aluminum chloride as a binder, clay minerals such as kaolin, halloysite, and montmorillonite, and solids such as active alumina, silica-alumina, silica-magnesia, alumina-magnesia, and silica-magnesia-alumina. It can be contained in combination with a matrix having an acid, a metal trapping agent such as manganese dioxide, calcium aluminate, and aluminum hydroxide.

本発明の流動接触分解触媒は、前記ゼオライトと前記炭酸ランタンとが前記多孔性無機酸化物マトリックス中に分散してなることを特徴とするものである。該流動接触分解触媒では、前述のゼオライトは好ましくは、5〜50質量%、さらに好ましくは10〜40質量%の範囲で含有し、また、前述の炭酸ランタンがLaとしては5質量%以上含有し、好ましくは5〜20質量%、さらに好ましくは5〜15質量%の範囲で含有し、前述の多孔性無機酸化物マトリックス中に均一に分散していることが望ましい。 The fluid catalytic cracking catalyst of the present invention is characterized in that the zeolite and the lanthanum carbonate are dispersed in the porous inorganic oxide matrix. In the fluid catalytic cracking catalyst, the above-mentioned zeolite is preferably contained in the range of 5 to 50% by mass, more preferably 10 to 40% by mass, and the above-mentioned lanthanum carbonate is 5% by mass as La 2 O 3. It is desirable that the above content is contained, preferably in the range of 5 to 20% by mass, more preferably 5 to 15% by mass, and uniformly dispersed in the above-mentioned porous inorganic oxide matrix.

該ゼオライトの含有量が5質量%未満では、得られる触媒組成物の分解活性が低くなることがあり、一方、50質量%より多い場合には分解活性が高すぎて水素、ガスおよびコークの生成が増加するためにガソリン収率が低くなることがある。また、前記炭酸ランタンの含有量がLaとして5質量%未満では所望の効果が得られず、一方、20質量%より多い場合には触媒組成物の耐摩耗性(Attr.Res.)が低下することがある。また、該流動接触分解触媒では、前述の多孔性無機酸化物マトリックスを30〜90質量%、好ましくは30〜85質量%の範囲で含んでいることが望ましい。なお、該触媒組成物の各成分の質量%は合計で100質量%となるようにそれぞれの範囲内で決められる。 If the content of the zeolite is less than 5% by mass, the decomposition activity of the obtained catalyst composition may be low, while if it is more than 50% by mass, the decomposition activity is too high to produce hydrogen, gas and cork. May decrease due to the increase in gasoline yield. Further, when the content of the lanthanum carbonate is less than 5% by mass as La 2 O 3 , the desired effect cannot be obtained, while when it is more than 20% by mass, the abrasion resistance of the catalyst composition (Attr. Res.) May decrease. Further, it is desirable that the fluidized catalytic cracking catalyst contains the above-mentioned porous inorganic oxide matrix in the range of 30 to 90% by mass, preferably 30 to 85% by mass. The mass% of each component of the catalyst composition is determined within each range so as to be 100% by mass in total.

― 流動接触分解触媒の製造方法 −
前述の流動接触分解触媒は、前述の多孔性無機酸化物マトリックス前駆物質として、塩基性塩化アルミニウムに前述のゼオライトを加えて均一に分散させ、得られた混合物スラリーに前述の炭酸ランタンを加えて均一に分散させた混合物スラリーを以下の工程で噴霧乾燥および洗浄することによって製造することができる。
-Manufacturing method of fluid catalytic cracking catalyst-
In the above-mentioned fluid catalytic cracking catalyst, as the above-mentioned porous inorganic oxide matrix precursor, the above-mentioned zeolite is added to basic aluminum chloride and uniformly dispersed, and the above-mentioned lanthanum carbonate is added to the obtained mixture slurry to be homogeneous. It can be produced by spray-drying and washing the mixture slurry dispersed in the following steps.

<第一工程>
ゼオライトとバインダー成分の塩基性塩化アルミニウムを含むマトリックスと炭酸ランタンを触媒基準でLaとして5質量%以上含む混合スラリーを得る工程を第一工程とする。
ここで得られる混合スラリーは、その後の噴霧乾燥工程に適応するために固形分濃度が25〜50質量%の範囲で調整することが好ましい。固形分濃度が、25質量%未満では、触媒の嵩密度の低下や耐摩耗性の悪化があり、50質量%以上では、調合スラリーの粘度上昇により噴霧乾燥が困難になる場合がある。
<First process>
The first step is to obtain a mixed slurry containing 5% by mass or more of La 2 O 3 as La 2 O 3 based on a matrix containing zeolite and basic aluminum chloride as a binder component and lanthanum carbonate.
The mixed slurry obtained here preferably has a solid content concentration in the range of 25 to 50% by mass in order to be adapted to the subsequent spray drying step. If the solid content concentration is less than 25% by mass, the bulk density of the catalyst is lowered and the wear resistance is deteriorated, and if it is 50% by mass or more, spray drying may be difficult due to an increase in the viscosity of the prepared slurry.

<第二工程>
前記第一工程で得られた混合スラリーを噴霧乾燥することにより流動接触分解触媒の前駆体を得る工程を第二工程とする。
本工程での噴霧乾燥の条件は、スプレー出口温度が200〜250℃の範囲であることが好ましい。出口温度が、200℃以下では触媒を洗浄した後に粒子形状を保つことが困難となり、耐摩耗性が悪化し、一方、250℃以上では洗浄した後の粒子形状は保てるものの、乾燥速度が速くなるため触媒粒子に割れなどが発生しやすくなり、かえって耐摩耗性が悪化する場合がある。
<Second process>
The step of obtaining a precursor of the fluid cracking catalyst by spray-drying the mixed slurry obtained in the first step is referred to as a second step.
The conditions for spray drying in this step are preferably such that the spray outlet temperature is in the range of 200 to 250 ° C. When the outlet temperature is 200 ° C or lower, it becomes difficult to maintain the particle shape after cleaning the catalyst, and the wear resistance deteriorates. On the other hand, when the outlet temperature is 250 ° C or higher, the particle shape after cleaning can be maintained, but the drying speed becomes faster. Therefore, the catalyst particles are liable to crack, and the wear resistance may be deteriorated.

<第三工程>
前記第二工程で得られた流動接触分解触媒の前駆体を、pH5.5〜7.5の範囲、40〜70℃の水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ1を得る工程を第三工程とする。
本工程で懸濁時に用いる水溶液には、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムのナトリウム塩を含む水溶液であることが好ましく、水溶液のpHが所望の範囲内になるように調整して用いることが好ましい。また、水酸化ナトリウムの場合は、硫酸アンモニウムを同時に用いることが好ましい。
<Third process>
The precursor of the fluid catalytic cracking catalyst obtained in the second step was suspended in an aqueous solution having a pH range of 5.5 to 7.5 and at 40 to 70 ° C., filtered, and further washed with warm water for washing. The step of obtaining the cake 1 is referred to as a third step.
The aqueous solution used for suspension in this step is preferably an aqueous solution containing sodium salts of sodium carbonate, sodium hydrogen carbonate, and sodium hydroxide, and the pH of the aqueous solution should be adjusted to be within a desired range. Is preferable. In the case of sodium hydroxide, it is preferable to use ammonium sulfate at the same time.

水溶液の温度は、40℃より低いと、バインダー成分由来の残存塩素量が増加するため流動接触分解装置を腐食する可能性が高くなり、一方、70℃より高いとバインダー成分の加水分解が起こりやすくなり、耐摩耗性が悪化する場合がある。 If the temperature of the aqueous solution is lower than 40 ° C, the amount of residual chlorine derived from the binder component increases, so that the fluid catalytic cracking apparatus is more likely to be corroded. On the other hand, if the temperature is higher than 70 ° C, the binder component is likely to be hydrolyzed. As a result, wear resistance may deteriorate.

さらに、洗浄時の前駆体の固形分と水溶液との割は、質量比で固形分/水溶液=1/3〜1/15の範囲であることが好ましい。該質量比が、1/3より高くなると固形分濃度が高すぎて、pH調整が困難となり、一方、1/15より低いと固形分濃度が低いため、溶解しやすい物質の溶出量が増加しやすくなり、耐摩耗性が悪化する。 Further, percentage of solids and aqueous wash when the precursor is preferably in the range of solids / solution = 1 / 3-1 / 15 in mass ratio. When the mass ratio is higher than 1/3, the solid content concentration is too high and it is difficult to adjust the pH. On the other hand, when the mass ratio is lower than 1/15, the solid content concentration is low and the elution amount of easily soluble substances increases. It becomes easy and the wear resistance deteriorates.

ここで用いる水溶液に含まれるアニオン種A(OH基、およびバインダー由来のアニオン種以外)の含有量は、アニオン比=[A]/[Al(バインダー成分)]が、モル比で0.1〜1.0の範囲であることが好ましい。該アニオン比が、モル比で0.1未満では、炭酸ランタンの溶出を抑制できず、更にはバインダーの加水分解が促進され耐摩耗性が悪化する。一方、1.0超えではバインダー成分へのアニオン種の堆積やバインダー成分の変質により耐摩耗性が悪化する場合がある。また、最終的な洗浄後の触媒に残存塩が多く残りやすくなり、触媒性能が悪化する場合がある。 The content of the anion species A − (other than the OH group and the anion species derived from the binder) contained in the aqueous solution used here is such that the anion ratio = [A − ] / [Al 2 O 3 (binder component)] is the molar ratio. It is preferably in the range of 0.1 to 1.0. If the anion ratio is less than 0.1 in terms of molar ratio, elution of lanthanum carbonate cannot be suppressed, further hydrolysis of the binder is promoted, and wear resistance is deteriorated. On the other hand, if it exceeds 1.0, the wear resistance may deteriorate due to the deposition of anionic species on the binder component and the alteration of the binder component. In addition, a large amount of residual salt tends to remain in the catalyst after the final cleaning, which may deteriorate the catalyst performance.

<第四工程>
前記第三工程で得られた洗浄ケーキ1をさらにアンモニア水でpHを5〜7の範囲に調整した硫酸アンモニウム水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ2を得る工程を第四工程とする。
<Fourth process>
A step of suspending the washing cake 1 obtained in the third step in an aqueous ammonium sulfate solution whose pH is adjusted to a pH range of 5 to 7 with aqueous ammonia, filtering the cake 1 and further washing with warm water to obtain the washing cake 2. Is the fourth step.

<第五工程>
前記第四工程で得られた洗浄ケーキ2を、さらに温水中に懸濁させた後、RE前駆体を含む水溶液を添加・撹拌し、濾別を行いさらに温水洗浄後、乾燥して希土類置換した流動接触分解触媒を得る工程を第五工程とする。
<Fifth process>
The washing cake 2 obtained in the fourth step is further suspended in warm water, then an aqueous solution containing a RE 2 O 3 precursor is added and stirred, filtered, separated by filtration, washed with warm water, and then dried. The step of obtaining a fluid catalytic cracking catalyst substituted with rare earths is referred to as a fifth step.

前記第三、第四および第五工程で用いる温水は50〜70℃の温度範囲のものを用いる。 The hot water used in the third, fourth and fifth steps is in the temperature range of 50 to 70 ° C.

本発明の流動接触分解触媒は、従来の炭化水素油流動接触分解法に使用でき、従来の流動接触分解条件が採用可能である。また、本発明の触媒組成物は、任意の従来の炭化水素油供給原料油の流動接触分解に使用できるが、特にニッケルやバナジウムなどを含む重質炭化水素油の流動接触分解に好適に使用される。 The fluidized catalytic cracking catalyst of the present invention can be used in the conventional hydrocracking oil cracking method, and the conventional hydraulic cracking conditions can be adopted. Further, the catalyst composition of the present invention can be used for fluid cracking of any conventional hydrocarbon oil supply raw material oil, but is particularly preferably used for cracking of heavy hydrocarbon oil containing nickel, vanadium and the like. NS.

<化学組成(Al、La、Na、Cl、S)>
本発明の流動接触分解触媒の成分組成のうちアルミニウム、ランタン、ナトリウムは、プラズマ発光分析(ICP)法で、塩素は銀滴定法、硫黄は燃焼法により測定した。
<Chemical composition (Al, La, Na, Cl, S)>
Of the component compositions of the fluid catalytic cracking catalyst of the present invention, aluminum, lanthanum, and sodium were measured by an inductively coupled plasma (ICP) method, chlorine was measured by an argentometry method, and sulfur was measured by a combustion method.

<強熱減量LOI>
本発明の流動接触分解触媒の強熱減量(LOI:Loss on ignition)は、1000℃に加熱し、揮発分(水分等)による重量減少を測定した。
<Ignition weight loss LOI>
The ignition loss (LOI) of the fluid cracking catalyst of the present invention was heated to 1000 ° C., and the weight loss due to volatile matter (moisture, etc.) was measured.

[物性の評価方法]
第五工程で得た流動接触分解触媒を、600℃で2時間加熱処理したものの物性評価を行った。
<全比表面積SA、マトリックスの比表面積MSA,ゼオライトの比表面積ZSAの測定方法>
全比表面積SAは、素吸着―脱着等温線を基にしてBET(Brunauer−Emmett−Teller)の式にて算出し、マトリックスの比表面積MSAは、t−plot解析にて算出し、ゼオライトの比表面積ZSAは、全比表面積からマトリックスの比表面積を引いて求めた。
[Evaluation method of physical properties]
The physical properties of the fluid catalytic cracking catalyst obtained in the fifth step were evaluated by heat-treating at 600 ° C. for 2 hours.
<Measurement method of total specific surface area SA, matrix specific surface area MSA, zeolite specific surface area ZSA>
The total specific surface area SA is calculated by the formula of BET (Brunauer-Emmett-Teller) based on the elementary adsorption-desorption isotherm, and the specific surface area MSA of the matrix is calculated by t-prot analysis and is the ratio of zeolite. The surface area ZSA was determined by subtracting the specific surface area of the matrix from the total specific surface area.

<触媒の平均粒子径>
本発明の流動接触分解触媒は、各々試料の粒度分布の測定を、堀場製作所(株)製レーザー回折・散乱式粒度分布測定装置(LA−950V2)にて行うことができる。具体的には、光線透過率が70〜95%の範囲となるように試料を溶媒(水)に投入し、循環速度:2.8L/min、超音波印加:3min、反復回数:30で測定した。メディアン径(D50)を平均粒子径として採用し、本発明の流動接触分解触媒の平均粒子径は、40〜100μmが好適であり、50〜90μmがより一層好ましい。
<Average particle size of catalyst>
In the fluid catalytic cracking catalyst of the present invention, the particle size distribution of each sample can be measured by a laser diffraction / scattering type particle size distribution measuring device (LA-950V2) manufactured by HORIBA, Ltd. Specifically, the sample was put into a solvent (water) so that the light transmittance was in the range of 70 to 95%, and the measurement was performed at a circulation speed of 2.8 L / min, ultrasonic application of 3 min, and number of repetitions of 30. bottom. The median diameter (D50) is adopted as the average particle diameter, and the average particle diameter of the fluidized cracking catalyst of the present invention is preferably 40 to 100 μm, and even more preferably 50 to 90 μm.

<細孔容積(PV)>
本発明の流動接触分解触媒は、水銀圧入法により測定した4〜1000nmの細孔径範囲の細孔容積(PV)が0.05〜0.50ml/g、好適には0.10〜0.45ml/gの範囲内にあることが好ましい。流動触媒として使用した場合、細孔容積が0.05ml/gを下回ると、十分な接触分解活性が得られないおそれがある。一方で、細孔容積が0.50ml/gを超えるものは触媒強度が低下するおそれがある。
<Pore volume (PV)>
The flow catalytic cracking catalyst of the present invention has a pore volume (PV) in the pore diameter range of 4 to 1000 nm measured by a mercury intrusion method of 0.05 to 0.50 ml / g, preferably 0.10 to 0.45 ml. It is preferably in the range of / g. When used as a flow catalyst, if the pore volume is less than 0.05 ml / g, sufficient catalytic cracking activity may not be obtained. On the other hand, if the pore volume exceeds 0.50 ml / g, the catalyst strength may decrease.

<嵩密度(ABD)>
本発明の流動接触分解触媒の嵩密度(ABD)の測定方法は、25mlのシリンダーを用いて、触媒の質量を測定し、単位体積当たりの質量から嵩密度を計算した。嵩密度は0.65g/mlを下限とすることが好ましい。嵩密度が0.65g/mlより低い場合は、触媒が反応塔外に飛散するなどのおそれがある。
<Bulk Density (ABD)>
In the method for measuring the bulk density (ABD) of a fluid cracking catalyst of the present invention, the mass of the catalyst was measured using a 25 ml cylinder, and the bulk density was calculated from the mass per unit volume. The lower limit of the bulk density is preferably 0.65 g / ml. If the bulk density is lower than 0.65 g / ml, the catalyst may scatter outside the reaction column.

<Attrition評価結果>
本発明の流動接触分解触媒の耐摩耗性指数(CAI)は小孔を備えた蓋が上下に取り付けられた筒状容器内に所定量(例えば、100g)の流動接触分解触媒を入れた後、下方の小孔から空気を234m/sの速度で送り、12〜42時間の間で摩耗して粉化した触媒の重量を測定し、粉化した重量と初期の重量との割合を耐摩耗指数として求めた。
<Attrition evaluation result>
The abrasion resistance index (CAI) of the fluid cracking catalyst of the present invention is obtained after a predetermined amount (for example, 100 g) of the fluid cracking catalyst is placed in a tubular container in which lids having small holes are attached vertically. Air is sent from the lower pores at a rate of 234 m / s, the weight of the catalyst worn and pulverized between 12 and 42 hours is measured, and the ratio of the pulverized weight to the initial weight is the abrasion resistance index. Asked as.

(実施例1)流動接触分解触媒1の製造
<第一工程>
スチームジャケット付きのチタン製のタンク(容量60L)に、10.14kgの塩化アルミニウム6水和物と38.9kgの純水とを入れて十分に撹拌し、塩化アルミニウム水溶液を得た。この塩化アルミニウム水溶液を撹拌しながら95℃まで加温し、液温を保持したまま、純度99.9%のアルミニウムホイル(アルミ箔)5.67kgを6時間かけて少量ずつ(15.75g/分)投入して、アルミ箔を溶解させた。なお、アルミ箔の溶解時には、大量の水素ガスが発生し、水溶液中の水が水蒸気として蒸発するため、タンク内の水溶液の貯留量が一定になるように95℃の純水を補給した。アルミ箔が完全に溶解した後、この水溶液を35℃まで冷却して、54.7kgの塩基性塩化アルミニウム水溶液を得た。この塩基性塩化アルミニウム水溶液は、pH3.6であり、Alとして23.5質量%の塩基性塩化アルミニウムを含んでいた。このようにして調製した塩基性塩化アルミニウム水溶液3191.5gと水3420.0gとを混合した。次いで、この撹拌混合液に、超安定化Y型ゼオライトをシリカ−アルミナ基準で1500.0gとカオリンを乾燥基準で1600.0gと活性アルミナを乾燥基準で650.0gと炭酸ランタン(La濃度:69.9質量%)を715.3gとを順次添加し、良く撹拌し調合スラリー(混合スラリー)を得た。得られた調合スラリーはコロイドミルを用いて粉砕処理を行い、固形分濃度42質量%、pH4.6だった。
(Example 1) Production of fluid cracking catalyst 1
<First process>
10.14 kg of aluminum chloride hexahydrate and 38.9 kg of pure water were placed in a titanium tank (capacity 60 L) with a steam jacket and sufficiently stirred to obtain an aluminum chloride aqueous solution. This aluminum chloride aqueous solution is heated to 95 ° C. with stirring, and while maintaining the liquid temperature, 5.67 kg of aluminum foil (aluminum foil) having a purity of 99.9% is applied little by little (15.75 g / min) over 6 hours. ) It was put in and the aluminum foil was melted. When the aluminum foil was melted, a large amount of hydrogen gas was generated and the water in the aqueous solution evaporated as water vapor. Therefore, pure water at 95 ° C. was replenished so that the amount of the aqueous solution stored in the tank was constant. After the aluminum foil was completely dissolved, the aqueous solution was cooled to 35 ° C. to obtain 54.7 kg of a basic aluminum chloride aqueous solution. This basic aluminum chloride aqueous solution had a pH of 3.6 and contained 23.5% by mass of basic aluminum chloride as Al 2 O 3. 3191.5 g of the basic aluminum chloride aqueous solution thus prepared and 3420.0 g of water were mixed. Next, in this stirring mixture, 1500.0 g of ultra-stabilized Y-zeolite on a silica-alumina basis, 1600.0 g of kaolin on a drying basis, 650.0 g of activated alumina on a drying basis, and lanthanum carbonate (La 2 O 3). Concentration: 69.9% by mass) was sequentially added with 715.3 g, and the mixture was stirred well to obtain a mixed slurry (mixed slurry). The obtained prepared slurry was pulverized using a colloidal mill to have a solid content concentration of 42% by mass and a pH of 4.6.

<第二工程>
調合スラリーを液滴として、入口温度が480℃、出口温度が240℃に設定された噴霧乾燥器で噴霧乾燥を行い、平均粒子径が70μmの球状粒子の触媒前駆体1を得た。
<Second process>
Using the prepared slurry as droplets, spray drying was performed with a spray dryer set to an inlet temperature of 480 ° C. and an outlet temperature of 240 ° C. to obtain a catalyst precursor 1 of spherical particles having an average particle diameter of 70 μm.

<第三工程>
触媒前駆体1を乾燥基準で300gと7質量%の炭酸水素ナトリウム溶液とを、撹拌しつつ60℃に維持した純水1500g中にpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1aを得た。
<Third process>
300 g of the catalyst precursor 1 and a 7 mass% sodium hydrogen carbonate solution were added to 1500 g of pure water maintained at 60 ° C. while stirring while adjusting the pH to 6.5, and the mixture was stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue and washed to obtain a washing cake 1a.

<第四工程>
洗浄ケーキ1aを60℃の純水1500gに再懸濁した水溶液に、硫酸アンモニウム15.2gを加え、さらにpH5〜7に調整した水溶液を、60℃で3分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛水して洗浄した。この操作を2回繰り返し、洗浄ケーキ2aを得た。
<Fourth process>
15.2 g of ammonium sulfate was added to an aqueous solution in which the washing cake 1a was resuspended in 1500 g of pure water at 60 ° C., and the aqueous solution adjusted to pH 5 to 7 was stirred at 60 ° C. for 3 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue for washing. This operation was repeated twice to obtain a washing cake 2a.

<第五工程>
次いで、洗浄ケーキ2aを60℃の純水1500gに再懸濁し、La換算で21.0質量%の塩化ランタン溶液を33.4g添加し、20分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄した後、濾過残渣粒子を150℃で一晩乾燥させ、流動接触分解触媒1(平均粒子径が70μmの球状粒子)を得た。
<Fifth process>
Next, the washing cake 2a was resuspended in 1500 g of pure water at 60 ° C., 33.4 g of a 21.0 mass% lanthanum chloride solution in terms of La 2 O 3 was added, and the mixture was stirred for 20 minutes. After suction filtration, 1500 g of pure water at 60 ° C. is sprinkled on the filtration residue for washing, and then the filtered residue particles are dried at 150 ° C. overnight to obtain a fluid cracking catalyst 1 (spherical particles having an average particle diameter of 70 μm). Got

(実施例2)流動接触分解触媒2の製造
第三工程として、実施例1の第二工程で得た触媒前駆体1を乾燥基準で300gと10質量%の炭酸ナトリウム水溶液とを、撹拌しつつ60℃に維持した純水1500g中にpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1bを得た。洗浄ケーキ2bを得る第四工程以降は実施例1と同様に行い流動接触分解触媒2を得た。
(Example 2) Production of fluid catalytic cracking catalyst 2 As a third step, 300 g of the catalyst precursor 1 obtained in the second step of Example 1 and a 10 mass% sodium carbonate aqueous solution are stirred while stirring. The mixture was added to 1500 g of pure water maintained at 60 ° C. while adjusting the pH to 6.5, and stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue and washed to obtain a washing cake 1b. The fourth and subsequent steps for obtaining the washing cake 2b were carried out in the same manner as in Example 1 to obtain a flow catalytic cracking catalyst 2.

(実施例3)流動接触分解触媒3の製造
第三工程として、60℃の純水1500gに硫酸アンモニウムを22.8g溶解し、この硫酸アンモニウム溶液を60℃に維持し撹拌中に、実施例1の第二工程で得た触媒前駆体1を乾燥基準で300gと10質量%の水酸化ナトリウム溶液とをpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1cを得た。洗浄ケーキ2cを得る第四工程以降は実施例1と同様に行い流動接触分解触媒3を得た。
(Example 3) Production of fluid catalytic cracking catalyst 3 As a third step, 22.8 g of ammonium sulfate is dissolved in 1500 g of pure water at 60 ° C., and this ammonium sulfate solution is maintained at 60 ° C. during stirring. 300 g of the catalyst precursor 1 obtained in the two steps and a 10 mass% sodium hydroxide solution were added while adjusting the pH to 6.5, and the mixture was stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue for washing, and a washing cake 1c was obtained. The fourth and subsequent steps for obtaining the washing cake 2c were carried out in the same manner as in Example 1 to obtain a fluid catalytic cracking catalyst 3.

(実施例4)流動接触分解触媒4の製造
第二工程として、実施例1の第一工程で得た調合スラリーを液滴として、入口温度が415℃、出口温度が215℃に設定された噴霧乾燥器で噴霧乾燥を行い、平均粒子径が70μmの球状微粒子の触媒前駆体2を得た。第三工程として、60℃の純水1500gに硫酸アンモニウムを14.4g溶解し、この硫酸アンモニウム溶液を60℃に維持し撹拌中に、触媒前駆体2を乾燥基準で300gと10質量%の水酸化ナトリウム溶液とをpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1dを得た。洗浄ケーキ2dを得る第四工程以降は実施例1と同様に行い流動接触分解触媒4を得た。
(Example 4) Production of fluidized catalytic cracking catalyst 4 As a second step, spraying the prepared slurry obtained in the first step of Example 1 as droplets with an inlet temperature set to 415 ° C and an outlet temperature set to 215 ° C. Spray drying was carried out with a dryer to obtain a catalyst precursor 2 of spherical fine particles having an average particle diameter of 70 μm. As a third step, 14.4 g of ammonium sulfate was dissolved in 1500 g of pure water at 60 ° C., and the catalyst precursor 2 was added to 300 g and 10% by mass of sodium hydroxide on a drying basis while the ammonium sulfate solution was maintained at 60 ° C. and stirred. The solution was added while adjusting the pH to 6.5, and the mixture was stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue and washed to obtain a washing cake 1d. The fourth and subsequent steps for obtaining the washing cake 2d were carried out in the same manner as in Example 1 to obtain a flow catalytic cracking catalyst 4.

(比較例1)流動接触分解触媒5の製造
第三工程として、実施例1の第二工程で得た触媒前駆体1を乾燥基準で300gと15質量%のアンモニウム溶液とを、撹拌しつつ60℃に維持した純水1500g中にpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1eを得た。洗浄ケーキ2eを得る第四工程以降は実施例1と同様に行い流動接触分解触媒5を得た。
(Comparative Example 1) Production of Flow Contact Cracking Catalyst 5 As a third step, 300 g of the catalyst precursor 1 obtained in the second step of Example 1 and a 15 mass% ammonium solution are stirred while stirring 60. The mixture was added to 1500 g of pure water maintained at ° C. while adjusting the pH to 6.5, and stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue for washing to obtain a washing cake 1e. The fourth and subsequent steps for obtaining the washing cake 2e were carried out in the same manner as in Example 1 to obtain a flow catalytic cracking catalyst 5.

(比較例2)流動接触分解触媒6の製造
第三工程として、実施例1の第二工程で得た触媒前駆体1を乾燥基準で300gと10質量%の水酸化ナトリウム溶液とを、撹拌しつつ60℃に維持した純水1500g中にpH6.5に調整しながら加え、5分間撹拌した。吸引濾過した後、濾過残渣に60℃の純水1500gを掛け水して洗浄し、洗浄ケーキ1fを得た。洗浄ケーキ2fを得る第四工程以降は実施例1と同様に行い流動接触分解触媒6を得た。
(Comparative Example 2) Production of Flow Contact Cracking Catalyst 6 As a third step, 300 g of the catalyst precursor 1 obtained in the second step of Example 1 and a 10% by mass sodium hydroxide solution are stirred on a drying basis. The mixture was added to 1500 g of pure water maintained at 60 ° C. while adjusting the pH to 6.5, and the mixture was stirred for 5 minutes. After suction filtration, 1500 g of pure water at 60 ° C. was sprinkled on the filtration residue and washed to obtain a washing cake 1f. The fourth and subsequent steps for obtaining the washing cake 2f were carried out in the same manner as in Example 1 to obtain a flow catalytic cracking catalyst 6.

(比較例3)流動接触分解触媒7の製造
第三工程として、実施例1の第二工程で得た触媒前駆体1を乾燥基準で300gを撹拌しつつ60℃に維持した純水1500g中に加え、5分間撹拌した。5分撹拌後のpHは4.7だった。吸引濾過にて所定の濾過時間を超過したため、触媒調製を中断した。
以上、流動接触分解触媒1〜7の製造条件をまとめて、表1に示す。なお、流動接触分解触媒2〜6も流動接触分解触媒1と同様、平均粒子径70μmの球状粒子であった。
(Comparative Example 3) Production of Flow Contact Cracking Catalyst 7 As a third step, 300 g of the catalyst precursor 1 obtained in the second step of Example 1 was stirred in 1500 g of pure water maintained at 60 ° C. on a drying basis. In addition, the mixture was stirred for 5 minutes. The pH after stirring for 5 minutes was 4.7. The catalyst preparation was interrupted because the predetermined filtration time was exceeded by suction filtration.
As described above, the production conditions of the flow catalytic cracking catalysts 1 to 7 are summarized in Table 1. Similar to the flow catalytic cracking catalyst 1, the fluid cracking catalysts 2 to 6 were spherical particles having an average particle diameter of 70 μm.

Figure 2021121420
Figure 2021121420

上記で調製した流動接触分解触媒1〜6について、強熱減量(LOI)、化学組成、嵩密度(ABD)、全比表面積SA、マトリックスの比表面積MSA,ゼオライトの比表面積ZSA、細孔容積(PV)を求めて、表2に示す。 Regarding the flow catalytic cracking catalysts 1 to 6 prepared above, ignition loss (LOI), chemical composition, bulk density (ABD), total specific surface area SA, specific surface area MSA of matrix, specific surface area ZSA of zeolite, pore volume ( PV) is calculated and shown in Table 2.

<Attrition評価結果>
上記で調製した流動接触分解触媒1〜6について、耐摩耗性指数(CAI)を測定し、表2に示す。発明例の流動接触分解触媒1から4は、バインダーの加水分解を抑制でき、結合力を保った為、十分な耐摩耗性を有している。一方、比較例の流動接触分解触媒5から6は、バインダーの加水分解が進行し、結合力が低下し耐摩耗性が悪化する結果であった。
<Attrition evaluation result>
The wear resistance index (CAI) was measured for the fluid cracking catalysts 1 to 6 prepared above, and is shown in Table 2. The fluidized catalytic cracking catalysts 1 to 4 of the invention example have sufficient abrasion resistance because they can suppress the hydrolysis of the binder and maintain the binding force. On the other hand, in the flow catalytic cracking catalysts 5 to 6 of the comparative example, the hydrolysis of the binder proceeded, the binding force decreased, and the wear resistance deteriorated.

Figure 2021121420
Figure 2021121420

Claims (4)

バインダー成分、ゼオライトおよび炭酸ランタンを触媒基準でLaとして5質量%以上含む流動接触分解触媒の製造方法であって、
ゼオライトおよびバインダー成分の塩基性塩化アルミニウムを含むマトリックスと炭酸ランタンとを含む混合スラリーを得る第一工程と、
前記第一工程で得られた混合スラリーを噴霧乾燥することにより流動接触分解触媒の前駆体を得る第二工程と、
前記第二工程で得られた流動接触分解触媒の前駆体を、pHが5.5〜7.5の範囲にあり、温度が40〜70℃の範囲にある水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ1を得る第三工程と、
前記第三工程で得られた洗浄ケーキ1をさらにpHを5〜7の範囲に調整した硫酸アンモニウム水溶液に懸濁させた後、濾別を行いさらに温水洗浄して洗浄ケーキ2を得る第四工程と、
前記第四工程で得られた洗浄ケーキ2を、さらに温水中に懸濁させた後、RE前駆体を含む水溶液を添加・撹拌し、濾別を行いさらに温水洗浄後、乾燥して希土類置換流動接触分解触媒を得る第五工程と、
を含む流動接触分解触媒の製造方法。
A method for producing a fluid catalytic cracking catalyst containing 5% by mass or more of La 2 O 3 as La 2 O 3 based on a catalyst, which contains a binder component, zeolite, and lanthanum carbonate.
The first step of obtaining a mixed slurry containing a matrix containing zeolite and basic aluminum chloride as a binder component and lanthanum carbonate, and
The second step of obtaining a precursor of a fluid cracking catalyst by spray-drying the mixed slurry obtained in the first step, and
The precursor of the fluid cracking catalyst obtained in the second step is suspended in an aqueous solution having a pH in the range of 5.5 to 7.5 and a temperature in the range of 40 to 70 ° C., and then filtered. The third step of performing another process and further washing with warm water to obtain a washing cake 1
The washing cake 1 obtained in the third step is further suspended in an aqueous ammonium sulfate solution whose pH is adjusted to a pH range of 5 to 7, and then filtered and further washed with warm water to obtain a washing cake 2. ,
The washing cake 2 obtained in the fourth step is further suspended in warm water, then an aqueous solution containing a RE 2 O 3 precursor is added and stirred, filtered, separated by filtration, washed with warm water, and then dried. The fifth step of obtaining a rare earth substitution fluid catalytic cracking catalyst,
A method for producing a fluid catalytic cracking catalyst including.
前記第二工程において、スプレー出口温度が200〜250℃の範囲であること、
を特徴とする請求項1に記載の流動接触分解触媒の製造方法。
In the second step, the spray outlet temperature is in the range of 200 to 250 ° C.
The method for producing a fluid catalytic cracking catalyst according to claim 1.
前記第三工程の懸濁時に用いる水溶液には、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムのいずれか1つのナトリウム塩を含むこと、
を特徴とする請求項1または2に記載の流動接触分解触媒の製造方法。
The aqueous solution used for suspension in the third step contains a sodium salt of any one of sodium carbonate, sodium hydrogen carbonate, and sodium hydroxide.
The method for producing a fluid catalytic cracking catalyst according to claim 1 or 2.
前記第三工程の懸濁液中のアニオン量は、バインダー由来のAl量[Al(バインダー成分)]に対するアニオン量[A]のモル比が、[A]/[Al(バインダー成分)]=0.1〜1の範囲である、ただし、[A]にOHやバインダー由来のClは含まないこと、
を特徴とする請求項1ないし3のいずれか1項に記載の流動接触分解触媒の製造方法。
As for the amount of anion in the suspension of the third step, the molar ratio of the amount of anion [A ] to the amount of Al 2 O 3 derived from the binder [Al 2 O 3 (binder component)] is [A − ] / [. Al 2 O 3 (binder component)] = 0.1 to 1, but [A ] does not contain OH − or Cl − derived from the binder.
The method for producing a fluid catalytic cracking catalyst according to any one of claims 1 to 3, wherein the flow catalytic cracking catalyst is produced.
JP2020014949A 2020-01-31 2020-01-31 Method for producing fluid catalytic cracking catalyst Active JP7348095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020014949A JP7348095B2 (en) 2020-01-31 2020-01-31 Method for producing fluid catalytic cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020014949A JP7348095B2 (en) 2020-01-31 2020-01-31 Method for producing fluid catalytic cracking catalyst

Publications (2)

Publication Number Publication Date
JP2021121420A true JP2021121420A (en) 2021-08-26
JP7348095B2 JP7348095B2 (en) 2023-09-20

Family

ID=77364770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014949A Active JP7348095B2 (en) 2020-01-31 2020-01-31 Method for producing fluid catalytic cracking catalyst

Country Status (1)

Country Link
JP (1) JP7348095B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337758A (en) * 2003-05-16 2004-12-02 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrocarbon fluid catalytic cracking and fluid catalytic cracking method for heavy hydrocarbon using it
JP2008518760A (en) * 2004-11-05 2008-06-05 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Catalysts for light olefins and LPG in fluid catalytic reactors
JP2014231034A (en) * 2013-05-28 2014-12-11 日揮触媒化成株式会社 Catalyst for fluid catalytic cracking and method for producing the same
JP2018103120A (en) * 2016-12-27 2018-07-05 日揮触媒化成株式会社 Metal scavenger, manufacturing method of metal scavenger, and fluid contact decomposition catalyst
JP2018167213A (en) * 2017-03-30 2018-11-01 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337758A (en) * 2003-05-16 2004-12-02 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrocarbon fluid catalytic cracking and fluid catalytic cracking method for heavy hydrocarbon using it
JP2008518760A (en) * 2004-11-05 2008-06-05 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Catalysts for light olefins and LPG in fluid catalytic reactors
JP2014231034A (en) * 2013-05-28 2014-12-11 日揮触媒化成株式会社 Catalyst for fluid catalytic cracking and method for producing the same
JP2018103120A (en) * 2016-12-27 2018-07-05 日揮触媒化成株式会社 Metal scavenger, manufacturing method of metal scavenger, and fluid contact decomposition catalyst
JP2018167213A (en) * 2017-03-30 2018-11-01 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst

Also Published As

Publication number Publication date
JP7348095B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
US5051385A (en) Monodispersed mesoporous catalyst matrices and FCC catalysts thereof
KR101505223B1 (en) Structurally enhanced cracking catalysts
EP1333920B1 (en) Structurally enhanced cracking catalysts
US10807076B2 (en) Mesoporous FCC catalysts with excellent attrition resistance
JP6793004B2 (en) Residual oil cracking active flow catalytic cracking catalyst and its manufacturing method
JPS58112052A (en) Composition
JP6915985B2 (en) Metal scavengers, methods for producing metal scavengers, and fluid catalytic cracking catalysts
JP5940935B2 (en) Hydrocarbon catalytic cracking catalyst
US9682366B2 (en) Method of producing FCC catalysts with reduced attrition rates
JP2005528201A (en) Method for enhancing the activity of FCC catalysts
JP4115843B2 (en) Zeolite-based catalyst with extremely high dynamic conversion activity
JP7348095B2 (en) Method for producing fluid catalytic cracking catalyst
JP2013111528A (en) Hydrocarbon catalytic cracking catalyst and method for manufacturing the same
NL8104636A (en) CRACKING CATALYST AND METHOD FOR CRACKING A HYDROCARBON FEED USING THIS CATALYST.
JPS61278351A (en) Cracking catalyst and its use
JP7441148B2 (en) Method for producing fluid catalytic cracking catalyst
JPH0216955B2 (en)
JP4167123B2 (en) Hydrocarbon fluid catalytic cracking catalyst composition and fluid catalytic cracking method of heavy hydrocarbons using the same
JP2020032350A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP7101004B2 (en) Active matrix and its production method, as well as (residual oil) fluid catalytic cracking catalyst
JP7208125B2 (en) Additive for fluid catalytic cracking catalyst, method for producing additive for fluid catalytic cracking catalyst, and catalyst composition
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP2022188609A (en) Metal scavenger and method for producing metal scavenger, and fluid catalytic cracking catalyst
JP2020151684A (en) Metal capture agent, method for producing metal capture agent, and fluid contact degradation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7348095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150