JP2021120531A - Prediction program and waterway management system based on learning model of waterway control - Google Patents

Prediction program and waterway management system based on learning model of waterway control Download PDF

Info

Publication number
JP2021120531A
JP2021120531A JP2020014488A JP2020014488A JP2021120531A JP 2021120531 A JP2021120531 A JP 2021120531A JP 2020014488 A JP2020014488 A JP 2020014488A JP 2020014488 A JP2020014488 A JP 2020014488A JP 2021120531 A JP2021120531 A JP 2021120531A
Authority
JP
Japan
Prior art keywords
data
waterway
power generation
water
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020014488A
Other languages
Japanese (ja)
Other versions
JP7087231B2 (en
Inventor
桂士朗 上田
Keishiro Ueda
桂士朗 上田
剛慈 上田
Takeji Ueda
剛慈 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Front Co Ltd
Original Assignee
Energy Front Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Front Co Ltd filed Critical Energy Front Co Ltd
Priority to JP2020014488A priority Critical patent/JP7087231B2/en
Publication of JP2021120531A publication Critical patent/JP2021120531A/en
Application granted granted Critical
Publication of JP7087231B2 publication Critical patent/JP7087231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To solve the problem in which, although it is desirable to manage waterways through data acquisition and machine learning, it has been difficult to acquire data from various locations of waterways due to the lack of a maintenance-free, running water-powered measurement and communication system that can be installed relatively easily in inaccessible areas such as sewer systems and mountainous areas, and that can acquire flow rate and water level data, and in addition, a communication network that can function even during power outages is desirable as a disaster countermeasure.SOLUTION: The objective of this invention is to install a maintenance-free, running water-powered measurement and communication system at various locations in a water area, acquire observation data and external environmental data from the system, as well as management and control data from dams and sluice gates, and use machine learning to estimate the flow distribution and inundation prediction of the waterway network using the observation data, external environmental data, and management and control data as inputs. In waterways where power generation amount for continuous communication can be secured, the measurement and communication equipment itself is used as a communication relay, or the power generation mechanism is used as a power source for the communication infrastructure.SELECTED DRAWING: Figure 3

Description

本発明は、下水道や山間部河川などの水路環境のデータ取得から学習し予測し制御に活用する方法、および配備した計測通信網を情報インフラとして活用する方法に関する。 The present invention relates to a method of learning from data acquisition of a waterway environment such as a sewer or a mountain river and utilizing it for prediction and control, and a method of utilizing the deployed measurement communication network as an information infrastructure.

豪雨時の水害には河川の水が堤防から溢れ出る外水氾濫と、下水道の処理能力を超えて溢れる内水氾濫がある。外水氾濫の対策として水位計測や雨量のレーダーによる情報収集とその収集データに基づくダム・樋門・排水機場・水門など河川管理施設での配水管理が行われている。内水氾濫のハード的対策としては雨水管を用いた河川への内水の排出や貯留・浸透施設の設置、雨水ポンプの設置が行われている。ソフト的対策としてリアルタイムの冠水情報提供やハザードマップの提供が行われている(たとえば特許文献1)。 Flood damage during heavy rains includes flooding of river water overflowing from the embankment and flooding of inland water that exceeds the capacity of sewerage. As a countermeasure against outside water inundation, water level measurement and rainfall radar information collection and water distribution management at river management facilities such as dams, gutter gates, drainage pump stations, and floodgates based on the collected data are carried out. As hard measures against inland water inundation, inland water discharge to rivers using rainwater pipes, storage / infiltration facilities, and rainwater pumps are being installed. As a soft measure, real-time flooding information and hazard maps are provided (for example, Patent Document 1).

降水量によっては外水氾濫と内水氾濫は同時に起こりうる。またより被害の大きい外水氾濫を抑制するために下水から河川への排出ポンプを止めて内水氾濫とすることで被害を最小にとどめることがある。この総合的判断をより迅速かつ合理的に行う手段が求められている。このために状況把握手段としての計測器の各所配置と水門開閉等管理技術の自動化が進められている(たとえば特許文献2および3)。 Depending on the amount of precipitation, inundation of outside water and inundation of inland water can occur at the same time. In addition, the damage may be minimized by stopping the discharge pump from the sewage to the river to prevent the inundation of the inland water in order to control the inundation of the outside water, which is more damaging. There is a need for a means to make this comprehensive judgment more quickly and rationally. For this reason, the arrangement of measuring instruments as a means for grasping the situation and the automation of management techniques such as opening and closing of floodgates are being promoted (for example, Patent Documents 2 and 3).

上記のように天候等外部環境に起因する水路の状況把握と制御手段の行使を一体的に行うことが求められている。状況把握は氾濫の対策のみならず、土砂崩れ等のリスクの予測にもつながる可能性がある。例えば、土砂崩れが起きる前に水路の流量や水質が変わったという異変に近隣の居住者は気がついても行政が把握できていなければ非難勧告につながらない。このように、(1)各所からの情報の集積と、(2)専門性に基づいた全体制御もしくは対策の判断の両面が必要になる。各所から集めたデータから総合的な管理をする手段として、機械学習が利用され始めている(たとえば特許文献4)。 As described above, it is required to grasp the condition of the waterway due to the external environment such as the weather and to exercise the control means in an integrated manner. Understanding the situation may lead not only to countermeasures against flooding but also to predict risks such as landslides. For example, even if the residents in the neighborhood notice the change in the flow rate and water quality of the waterway before the landslide occurs, if the administration does not understand it, it will not lead to a criticism recommendation. In this way, it is necessary to have both (1) accumulation of information from various places and (2) overall control based on expertise or judgment of countermeasures. Machine learning has begun to be used as a means for comprehensive management from data collected from various places (for example, Patent Document 4).

計測器の各所設置の障害要因として計測器への電源の供給の困難さがある。下水道や山間部、海底では簡単に電線を引けない場合が多い。この解決策として、その場の環境で発電するエネルギーハーベスティングが注目されている。太陽光発電、マイクロ水流発電などが該当する。電線が引けない場所では通信も無線で行うことになる(たとえば特許文献1および5)。 Difficulty in supplying power to the measuring instrument is one of the obstacles to the installation of the measuring instrument. In many cases, it is not easy to draw electric wires in sewers, mountainous areas, and the seabed. As a solution to this, energy harvesting, which generates electricity in the environment on the spot, is attracting attention. This includes solar power generation and micro-water flow power generation. Communication will also be performed wirelessly in places where electric wires cannot be drawn (for example, Patent Documents 1 and 5).

水路各所での電力確保は災害時の停電対策としても重要である。通信インフラを継続使用するために、再生可能エネルギーの利用が検討されている(たとえば特許文献6)。 Securing electric power in various parts of the waterway is also important as a countermeasure against power outages in the event of a disaster. The use of renewable energy is being studied for continuous use of communication infrastructure (for example, Patent Document 6).

特開2018―97778号公報JP-A-2018-97778 特開2005―229320号公報Japanese Unexamined Patent Publication No. 2005-22320 特開2009―103028号公報Japanese Unexamined Patent Publication No. 2009-103028 特開2019―194424号公報Japanese Unexamined Patent Publication No. 2019-194424 特開2019―174279号公報Japanese Unexamined Patent Publication No. 2019-174279 特開2018―93465号公報JP-A-2018-93465

水路は生活圏に必ず存在する重要なインフラであり、また氾濫等につながるリスクを持つ制御が難しいインフラでもある。上記のように治水のために様々な技術の導入によって対策が行われている。しかしながら、それぞれが部分的な解決策を提供しているものの、水路全域把握と制御の予測を行うシステムとはなっていない。さらに停電時にも活用可能な情報・電力インフラとしての側面を水路に持たせるようになっていない。 Waterways are an important infrastructure that always exists in the living area, and are also difficult-to-control infrastructures that have the risk of flooding. As mentioned above, measures are being taken by introducing various technologies for hydraulic control. However, although each provides a partial solution, it is not a system for grasping the entire channel and predicting control. Furthermore, the waterways are not designed to have an aspect as an information / power infrastructure that can be used even in the event of a power outage.

たとえば特許文献1に記載されているセンシング部を備えるハザードマップシステムにおいては、太陽光発電で充電される水位センサーを冠水や浸水が発生やすい場所に設置し、無線通信で時刻と共に位置情報と水位情報をサーバーに送りハザードマップ上に表示するようになっている。これは冠水の結果を周辺居住者に知らせる上で有効であるが、冠水発生前に対策を示すものではない。また、冠水しやすい場所に太陽光発電で動作するセンサーを設置し無線通信することは電線を引く制約を受けない有効な手段であるが、下水道や山間部や豪雨時の河川など、日射が良好でないが氾濫の前兆把握にとって重要な地点で電力不足となりやすく、停電で通信網が機能不全に陥ると情報提供が不可能となるリスクがある。 For example, in the hazard map system provided with the sensing unit described in Patent Document 1, a water level sensor charged by photovoltaic power generation is installed in a place where flooding or inundation is likely to occur, and position information and water level information are provided along with time by wireless communication. Is sent to the server and displayed on the hazard map. This is effective in notifying the residents of the surrounding area of the result of flooding, but it does not indicate countermeasures before flooding occurs. In addition, installing a sensor that operates by solar power generation in a place where it is easy to be flooded and wireless communication is an effective means that is not restricted by pulling electric wires, but good sunlight such as sewers, mountainous areas, and rivers during heavy rains. However, there is a risk that power will be insufficient at points that are important for grasping the signs of flooding, and if the communication network malfunctions due to a power outage, it will not be possible to provide information.

特許文献2では水位が閾値を超えると管理者の携帯電話に通報し、管理者がその情報を受けて携帯電話で制御信号を送ると自動で水門を開閉する遠隔操作を行うシステムである。また、特許文献3では水位データとファジー推論を活用することで雨水ポンプを自動制御する技術である。これらは比較的安価に当該水門またはポンプの遠隔操作または自動制御を可能とし、対策の遅れを回避するために有効である。一方で、これらの技術は停電時に機能しない弱点があり、局所的な最善として内水氾濫の回避を行ったことが結果的に外水氾濫につながるリスクがあり、水路の全体的制御の観点からは課題が残る。 Patent Document 2 is a system that notifies an administrator's mobile phone when the water level exceeds a threshold value, and when the administrator receives the information and sends a control signal with the mobile phone, it automatically opens and closes the water gate. Further, Patent Document 3 is a technique for automatically controlling a rainwater pump by utilizing water level data and fuzzy inference. These enable remote control or automatic control of the floodgate or pump at a relatively low cost, and are effective in avoiding delays in countermeasures. On the other hand, these technologies have a weakness that they do not work in the event of a power outage, and there is a risk that avoiding inland waters as a local best will result in external waters inundation, and from the perspective of overall control of waterways. Remains a challenge.

特許文献4では観測所からの水位や、雨量・風速等の天候データ、さらには分水地点の衛星画像等から学習したニューラルネットワーク等を用いて流域の挙動予測を行い、社会経済的情報から重み付けをした最適化アルゴリズムによって意思決定を行い、通信システムを通じて放流すること、なお、上記にかかるリソースを低速発電機等による発電で駆動させることが記載されている。しかしながら特許文献4にはデータの取得、社会経済情報を踏まえた予測制御システムおよび発電機が動かす対象である水文リソースのそれぞれに具体的記述がなく実施可能な技術となっていない。また、下水道や山間部など観測が難しいが予測にとって重要な地点のデータ取得手段の提示がない。 In Patent Document 4, the behavior of the basin is predicted using the water level from the observatory, the weather data such as rainfall and wind speed, and the neural network learned from the satellite image of the diversion point, and weighted from the socioeconomic information. It is described that a decision is made by the optimization algorithm described above and discharged through a communication system, and that the above resources are driven by power generation by a low-speed generator or the like. However, Patent Document 4 does not have a specific description for each of the data acquisition, the predictive control system based on socio-economic information, and the hydrological resource to be operated by the generator, and is not a feasible technology. In addition, there is no presentation of data acquisition means for points that are difficult to observe, such as sewers and mountainous areas, but are important for prediction.

特許文献1および5には太陽光発電を活用した無線水位計が開示されている。これらはいずれも分散計測の観測点を増やす有効な方法である。さらに特許文献6では太陽光発電を活用した通信基地局のバックアップ電源について記載されており災害時の対策となる。一方で、太陽光発電利用から来る制限として、下水や日当たりの悪い山間部あるいは雨天が続く状況では電力不足に陥るリスクがある。水路での発電としてはマイクロ水力発電などが知られているが、水路の漂流物が絡みやすいため定期的な清掃をしなければ動作不全に陥り易いため、下水道や山間部河川などアクセスの悪い地点の計測には殆ど活用されていない。これらの水路では水深が数センチメートルという状況は珍しくなく、比較的径の小さい下水管や浅い河川で使用可能かつ漂流物が絡みにくいマイクロ水力発電はなかった。 Patent Documents 1 and 5 disclose a wireless water level gauge utilizing solar power generation. All of these are effective methods for increasing the number of observation points for dispersion measurement. Further, Patent Document 6 describes a backup power source for a communication base station utilizing solar power generation, which is a countermeasure in the event of a disaster. On the other hand, as a limitation due to the use of solar power generation, there is a risk of power shortage in sewage, sunny mountainous areas, or in continuous rainy weather. Micro hydroelectric power generation is known as power generation in waterways, but since drifting objects in waterways are easily entangled, it is easy to malfunction unless regular cleaning is performed, so points with poor access such as sewers and mountain rivers. It is rarely used for the measurement of. It is not uncommon for these channels to have a depth of several centimeters, and there was no micro hydropower that could be used in relatively small diameter sewer pipes and shallow rivers and was resistant to drifting debris.

以上のようにこれらの諸問題は個別に議論されて対策が検討されているが、実現可能な一つのシステムとして検討されていない。その理由として、下水道や山間部などのアクセスの悪い地点において比較的簡単に設置でき、流量や水位データを取得するメンテナンスフリーかつ流水発電可能な計測通信システムがなかったために水路各所のデータ取得が現実的に実行困難だったことが挙げられる。 As described above, these problems have been individually discussed and countermeasures have been examined, but they have not been examined as one feasible system. The reason is that it is relatively easy to install in places with poor access such as sewers and mountainous areas, and because there was no maintenance-free and running water power generation measurement communication system that can acquire flow rate and water level data, data acquisition in various parts of the waterway is a reality. It was difficult to carry out.

集めた大量のデータを活用することこそが真に重要である。複雑な水路網の各地のデータと天候や河川管理施設の動作との相関を機械学習させることで学習済みモデルを作成することによって、リアルタイムの河川状況と天候状況から予測に基づいた手動または自動の水路管理を行うことが可能になる。 It is really important to utilize the large amount of data collected. Manual or automatic based on predictions from real-time river and weather conditions by creating trained models by machine learning the correlation between local data in complex waterway networks and the weather and behavior of river management facilities. It becomes possible to manage waterways.

各所に設置する計測通信システムは、通信インフラとして活用できることが望ましい。 It is desirable that the measurement communication systems installed in various places can be used as communication infrastructure.

そこで本発明では、メンテナンスフリーかつ流水発電可能な計測通信システムを水域各所に設置し、そこからの観測データと外部環境データや、ダムや水門等の管理制御データを取得して機械学習により学習し、観測データと外部環境データと管理制御データを入力として水路網の流量分布や氾濫の予測を推定することを目的とする。また、継続的な通信を行う発電量が確保できる水路では計測通信機そのものを通信中継機として、あるいは発電機構を通信インフラの電源とすることを目的とする。 Therefore, in the present invention, maintenance-free measurement communication systems capable of running water power generation are installed in various places in the water area, and observation data and external environment data from the measurement communication system and management control data of dams, water gates, etc. are acquired and learned by machine learning. The purpose is to estimate the flow distribution and flood prediction of the channel network by inputting observation data, external environment data, and management control data. Further, in a waterway where the amount of power generation for continuous communication can be secured, the purpose is to use the measurement communication device itself as a communication repeater or the power generation mechanism as a power source for the communication infrastructure.

本発明では、水路各所に設置され発電・計測・無線通信を行う分散モジュールを全体システムを形成する基本構造とし、サーバーに集めた時刻と位置情報を伴う計測結果と、雨量と水路管理施設の制御状況を入力として水路網への排水分布を出力とする学習モデルを構築する。その学習モデルとリアルタイムの計測値と雨量から水路網全体に関する最適な制御の予測を行い、水管理施設各所の人的制御または自動制御および/あるいは居住者への注意喚起や避難のための情報を与える。 In the present invention, a distributed module installed in various places in a waterway for power generation, measurement, and wireless communication is used as a basic structure to form an entire system, and measurement results accompanied by time and position information collected on a server, and control of rainfall and waterway management facilities. Build a learning model that inputs the situation and outputs the distribution of drainage to the canal network. From the learning model, real-time measured values and rainfall, the optimum control of the entire waterway network is predicted, and human control or automatic control of various parts of the water management facility and / or information for alerting residents and evacuation is provided. give.

自然下流式でない下水道は停電時に流れを失うことがあるが、継続的な流水が維持される様々な水路や河川では分散モジュールは動作を続けることができる。分散モジュール間の無線中継を通して基地局につなぎ災害時にも通信インフラとして機能させる。安定した河川に設置されたモジュールは通信基地局の電源ともなる。 Non-naturally downstream sewers can lose their flow during power outages, but distributed modules can continue to operate in various channels and rivers where continuous flow is maintained. It connects to a base station through wireless relay between distributed modules and functions as a communication infrastructure even in the event of a disaster. Modules installed in stable rivers also serve as power sources for communication base stations.

分散モジュールを比較的径の小さい下水管や浅い河川でも使用可能とするためには、堅牢性が高く漂流物が絡みにくいマイクロ水力発電機構が必須となる。本発明ではこのための機構として、流体励起振動によって往復回動運動を行う棒状体を活用する。 In order to make the dispersion module usable even in relatively small diameter sewer pipes and shallow rivers, a micro hydroelectric power generation mechanism with high robustness and less entanglement of drifting objects is indispensable. In the present invention, as a mechanism for this purpose, a rod-shaped body that reciprocates by fluid excitation vibration is utilized.

本発明によれば、これまで困難であった下水網や山間部の河川などアクセスが悪く水深が浅い河川や水路に関してデータ取得が可能となる。 According to the present invention, it is possible to acquire data on rivers and waterways with poor access and shallow water depth, such as sewage networks and rivers in mountainous areas, which have been difficult so far.

データ取得が可能となることにより、複雑でシミュレーションを行い難い水路網に対して降雨量と管理施設の制御と配水分布の相関について学習モデルを構築することが可能となる。 By making it possible to acquire data, it becomes possible to construct a learning model for the correlation between rainfall, control of management facilities, and distribution distribution for a complex and difficult-to-simulate waterway network.

前期学習モデルを構築することで予測が可能となり、全体的最適化の観点で水路管理を行うことが可能となる。リスク判断から居住者への避難警告や各人が持つモバイル機器への情報提供が可能となる。 By constructing the first-term learning model, it becomes possible to make predictions, and it becomes possible to manage waterways from the viewpoint of overall optimization. From risk judgment, it is possible to warn residents of evacuation and provide information to each person's mobile device.

分散モジュールは発電機能と通信機能をその本質として持ち、日照の影響も受けず停電時にも水流があれば機能することができる。このため、分散モジュールを無線中継機として、あるいは無線基地局の電源として活用可能であり、水路網を通信インフラとしても機能させることが可能となる。 The distributed module has a power generation function and a communication function as its essence, and can function if there is a water flow even in the event of a power outage without being affected by sunlight. Therefore, the distributed module can be used as a wireless repeater or as a power source for a wireless base station, and the water channel network can also function as a communication infrastructure.

実施形態におけるシステム全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole system in embodiment. 分散モジュールの構成を示すブロック図である。It is a block diagram which shows the structure of a distributed module. 分散モジュールの実施形態の外観図である。It is an external view of embodiment of a distributed module. 分散モジュール発電系の往復回動動作を説明する図である。It is a figure explaining the reciprocating rotation operation of a distributed module power generation system.

以下、図面を参照して説明する。 Hereinafter, description will be made with reference to the drawings.

図1はシステム全体の構成を示すブロック図である。サーバー1には水路各点に設置された分散モジュール2からの観測データと各地の降水観測データ4および各地の管理施設の運転状況6が通信網7を通じて受信部8に受信される。土砂崩れや堤防の決壊など関連する災害が発生した場合には関連災害情報3として入力される。ここで管理施設とはダム、排水機場、樋門、水門等の河川施設と雨水貯留施設、ポンプ施設等の下水施設の両方を含む。 FIG. 1 is a block diagram showing the configuration of the entire system. The server 1 receives the observation data from the distribution module 2 installed at each point of the waterway, the precipitation observation data 4 in each place, and the operation status 6 of the management facility in each place to the receiving unit 8 through the communication network 7. When a related disaster such as a landslide or a levee break occurs, it is input as related disaster information 3. Here, the management facility includes both river facilities such as dams, drainage pump stations, gutters and floodgates, and sewage facilities such as rainwater storage facilities and pump facilities.

このとき、いずれのデータも水路上の位置とデータ発生時刻を伴って発信され入力される。図では管理施設からのデータや関連災害情報が通信網を経由せずに受信または入力される例が示されているが、通信網7を経由させても構わない。 At this time, all the data are transmitted and input together with the position on the water channel and the data generation time. The figure shows an example in which data from the management facility and related disaster information are received or input without going through the communication network, but the communication network 7 may be used.

これらの入力データを用いて機械学習を繰り返し、学習モデルが生成部9で作成される。本発明の特徴はこれまで困難であった下水道や山間部などの水路からも後述する分散モジュールから取得できることにあり、降水履歴と管理施設の運転が如何に配水状況に影響するかの相関データを正確に積み上げることができ、学習モデルの予測精度を高める点にある。 Machine learning is repeated using these input data, and a learning model is created in the generation unit 9. The feature of the present invention is that it can be obtained from the dispersion module described later from waterways such as sewers and mountainous areas, which has been difficult so far, and correlation data of how the precipitation history and the operation of the management facility affect the water distribution situation can be obtained. The point is that it can be stacked accurately and the prediction accuracy of the learning model is improved.

学習モデルは学習モデルデータベース(DB)に格納される。この学習モデルをもとに、分散モジュールからの配水状況と降水データと管理施設の運転状況から現在の管理施設の運転状況で生じる今後の配水状況と氾濫リスクの推定および/あるいは氾濫リスクを低減する望ましい管理施設の運転状態を出力する。 The learning model is stored in the learning model database (DB). Based on this learning model, the future water distribution status and flood risk estimation and / or flood risk that will occur in the current management facility operating status from the water distribution status and precipitation data from the distributed module and the operating status of the management facility are reduced. Output the operating status of the desired management facility.

この予測から複雑な水路に対して全体最適化の観点のもとで管理施設の手動または自動の制御を行うことができる。氾濫リスクの予測から避難勧告や避難の方向をハザードマップとして通知することは当然に可能である。 From this prediction, manual or automatic control of the management facility can be performed for complex waterways from the viewpoint of overall optimization. It is naturally possible to notify evacuation advisories and evacuation directions as a hazard map from the prediction of flood risk.

本発明では各地の流水状況を集め相関を学習させることができるので、これまで難しかった土砂崩れ等の災害予測の可能性が期待でき、地震等の前触れとしての湧水の変動との関係等の統計的妥当性についても捉える可能性が出てくる。 In the present invention, since it is possible to collect the flowing water conditions in each region and learn the correlation, it is expected that there is a possibility of predicting disasters such as landslides, which has been difficult so far, and statistics such as the relationship with fluctuations in spring water as a precursor to earthquakes and the like. There is a possibility of grasping the appropriateness.

水路各点での最も標準的な計測量は水位または流量であるが、分散モジュールのセンサー種を準備することで水質や水温、重金属濃度などの望む情報の取得が可能となる。勿論、最も簡単な装置構成として流量と相関のある発電量を出力させることができる。 The most standard measurement amount at each point of the waterway is the water level or flow rate, but by preparing the sensor type of the dispersion module, it is possible to obtain desired information such as water quality, water temperature, and heavy metal concentration. Of course, as the simplest device configuration, it is possible to output the amount of power generation that correlates with the flow rate.

図1では分散モジュール2と通信網7は別の表現で与えられているが、分散モジュールを連携・中継させて無線通信網として用いることが可能である。後述するように分散モジュールは発電機構で自律動作するため、水路の流水が継続する限りにおいて停電の影響を受けず機能する通信インフラとなる。ただし、無線通信可能な距離や連続動作可能時間は発電量に依存する。設置場所によって通信インフラとなりえる場所と計測データを間欠的に発信する場所とが生じる。 Although the distributed module 2 and the communication network 7 are given in different expressions in FIG. 1, the distributed modules can be linked and relayed to be used as a wireless communication network. As will be described later, since the distributed module operates autonomously by the power generation mechanism, it becomes a communication infrastructure that functions without being affected by a power outage as long as the water flow in the waterway continues. However, the distance that can be wirelessly communicated and the continuous operation time depend on the amount of power generation. Depending on the installation location, there will be a location that can be a communication infrastructure and a location that intermittently transmits measurement data.

十分な発電が得られる場所では無線基地局の電源を兼ねた分散モジュールとして設計することで水路の通信網化を進めることができる。勿論、生活の電力や農業での利用や獣害対策電力あるいは街頭等の電力を分散発電する分散電力網ともなりえる。 In places where sufficient power generation can be obtained, it is possible to promote the communication network of waterways by designing it as a distributed module that also serves as a power source for wireless base stations. Of course, it can also be a distributed power grid that disperses power for daily life, use in agriculture, power for animal damage control, or power for streets.

図2には本発明で用いられる分散モジュール2の基本構成の例が示されている。分散モジュールは発電部13を有し、流水の発電によってモジュールを駆動させる。DC−DCコンバーター14によってこの場合はまず蓄電池15に蓄電し、制御部16によってセンサー17で得られた情報が無線部19より発信され親機20と通信網を通じてサーバーに送られる。履歴等必要に応じて記録部18の容量を決めて用いる。発電量がある程度安定している場所ではDC−DCコンバーターから直接制御部や計測部を動かすことは可能である。無線部19の設計によって無線中継機としての機能を持たせることも可能となる。 FIG. 2 shows an example of the basic configuration of the dispersion module 2 used in the present invention. The distributed module has a power generation unit 13 and drives the module by power generation of running water. In this case, the DC-DC converter 14 first stores electricity in the storage battery 15, and the information obtained by the sensor 17 by the control unit 16 is transmitted from the wireless unit 19 and sent to the server through the master unit 20 and the communication network. The capacity of the recording unit 18 is determined and used as needed, such as history. In places where the amount of power generation is stable to some extent, it is possible to move the control unit and measurement unit directly from the DC-DC converter. The design of the wireless unit 19 also makes it possible to have a function as a wireless repeater.

無線通信の手段として得られる電力と通信地点までの距離に応じた任意の技術を用いることができる。たとえばLPWA通信、赤外線通信、音響通信などが可能である。 Any technology can be used according to the power obtained as a means of wireless communication and the distance to the communication point. For example, LPWA communication, infrared communication, acoustic communication and the like are possible.

図3には分散モジュールの実施例の外観が示されている。モジュールは軸21とその軸の周りで往復回動する棒状体22を有する。図の手前側から回動軸方向に沿った水の流れが矢印群で表現されている。この流れによって棒状体の周りには流れの剥離または渦が生じ、その力で棒状体は右回りまたは左回りに動く。このときに回動軸が復原力を持つようにバネや圧縮空気や磁石など弾性作用を持つ機構を併用することにより、棒状体は継続的に往復回転運動する。この流体励起振動から電力に変換することができる。変換方法はコイルと磁石を用いた電磁変換のほか、ラチェットを入れた発電機との結合、あるいはピエゾ素子を弾性変形させる手法など様々な技術が選択可能である。 FIG. 3 shows the appearance of an embodiment of the distributed module. The module has a shaft 21 and a rod-shaped body 22 that reciprocates around the shaft 21. The flow of water along the rotation axis direction from the front side of the figure is represented by a group of arrows. This flow creates a flow separation or vortex around the rod, which causes the rod to move clockwise or counterclockwise. At this time, the rod-shaped body continuously reciprocates and rotates by using a mechanism having an elastic action such as a spring, compressed air, and a magnet so that the rotating shaft has a restoring force. This fluid excitation vibration can be converted into electric power. As a conversion method, various techniques can be selected, such as electromagnetic conversion using a coil and a magnet, coupling with a generator containing a ratchet, or a method of elastically deforming a piezo element.

図4は回動状態にある分散モジュールの発電部を軸方向からみた状況を説明している。一般的な回転ローターを用いた発電機は最低でも直径分の水深を必要とするが、本発明の構成によれば最低限の水深でも発電させることができ、浅い河川や下水管でも使えるコンパクトな形状に作ることが可能になる。回動運動は漂流物が絡みにくく、装置は安価かつ堅牢に作ることが可能である。 FIG. 4 illustrates a situation in which the power generation unit of the distributed module in the rotating state is viewed from the axial direction. A generator using a general rotating rotor requires a water depth of at least the diameter, but according to the configuration of the present invention, it is possible to generate electricity even at the minimum water depth, and it is compact and can be used even in shallow rivers and sewer pipes. It becomes possible to make it into a shape. The rotary motion is less likely to cause drifting objects to get entangled, and the device can be made inexpensively and robustly.

以上、本発明の一実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。 Although one embodiment of the present invention has been described in detail above, it should be understood that modifications, modifications and changes can be made without departing from the scope of claims.

1 サーバー
2 分散モジュール
3 災害関連情報発信部
4 降水情報発信部
5 管理施設
6 運転状況出力部
7 通信網
8 サーバー受信部
9 学習モデル生成部
10 学習モデルDB
11 予測部
12 制御用入力部
13 発電部
14 DC−DCコンバーター
15 蓄電部
16 制御部
17 計測部
18 記録部
19 無線部
20 無線親機
21 回動軸
22 棒状体
1 Server 2 Distributed module 3 Disaster-related information transmission unit 4 Precipitation information transmission unit 5 Management facility 6 Operation status output unit 7 Communication network 8 Server reception unit 9 Learning model generation unit 10 Learning model DB
11 Prediction unit 12 Control input unit 13 Power generation unit 14 DC-DC converter 15 Power storage unit 16 Control unit 17 Measurement unit 18 Recording unit 19 Wireless unit 20 Wireless master unit 21 Rotating shaft 22 Rod-shaped body

Claims (4)

各水路に設置される発電機能と計測機能および無線通信機能を持つ分散モジュールによる計測データ、各地域の気象データおよび水路管理システムの運転動作データと、水路網の水流分布の変動を含む教師データを複数取得し、前記教師データおよび水路管理システム制御データを入力、前記水路網の水流分布の変動に関する値を出力とする学習モデルを生成する学習モデルの生成方法。 Measurement data by a distributed module with power generation function, measurement function and wireless communication function installed in each water channel, weather data of each region, operation data of water channel management system, and teacher data including fluctuation of water flow distribution of water channel network A method of generating a learning model for generating a learning model in which a plurality of data are acquired, the teacher data and the water channel management system control data are input, and the value related to the fluctuation of the water flow distribution of the water channel network is output. 各水路に設置される発電機能と計測機能および無線通信機能を持つ分散モジュールの計測データ、各地域の気象データおよび水路管理システムの運転制御データを取得し、各水路のデータ、各地域の気象データおよび水路管理システムの動作データを入力、水路網の水流分布の変動に関する値を出力、または各水路のデータ、各地域の気象データまたは望ましい水位分布を入力し、あるべき水路管理システムの動作データを出力するプログラム。 The measurement data of the distributed module with power generation function, measurement function and wireless communication function installed in each waterway, the weather data of each area and the operation control data of the waterway management system are acquired, and the data of each waterway and the weather data of each area are acquired. And input the operation data of the waterway management system, output the value related to the fluctuation of the water flow distribution of the waterway network, or input the data of each waterway, the meteorological data of each region or the desired water level distribution, and input the operation data of the waterway management system as it should be. The program to output. 水流の流れに並行な軸に対して流れがないときには水平状態で平衡位置となり、流れがあるときには流体励起振動により回動運動する棒状体を発電機構とすることを特徴とする、各水路に設置される発電機能と計測機能および無線通信機能を持つ分散モジュールからデータを取得する、水路管理システム。 When there is no flow with respect to an axis parallel to the flow of water flow, the equilibrium position is reached in a horizontal state, and when there is a flow, a rod-shaped body that rotates by fluid excitation vibration is used as a power generation mechanism. A waterway management system that acquires data from a distributed module that has power generation, measurement, and wireless communication functions. 前記各水路に設置される前記分散モジュールが、中継機能を有し無線通信網を形成することを特徴とする請求項3に記載の水路管理システム。 The waterway management system according to claim 3, wherein the distributed module installed in each waterway has a relay function and forms a wireless communication network.
JP2020014488A 2020-01-31 2020-01-31 Sensing / prediction system and control system for rivers and waterways Active JP7087231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020014488A JP7087231B2 (en) 2020-01-31 2020-01-31 Sensing / prediction system and control system for rivers and waterways

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020014488A JP7087231B2 (en) 2020-01-31 2020-01-31 Sensing / prediction system and control system for rivers and waterways

Publications (2)

Publication Number Publication Date
JP2021120531A true JP2021120531A (en) 2021-08-19
JP7087231B2 JP7087231B2 (en) 2022-06-21

Family

ID=77269794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014488A Active JP7087231B2 (en) 2020-01-31 2020-01-31 Sensing / prediction system and control system for rivers and waterways

Country Status (1)

Country Link
JP (1) JP7087231B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168179A (en) * 2001-12-03 2003-06-13 Foundation Of River & Basin Integrated Communications Japan Real time hazard map system
JP2006184206A (en) * 2004-12-28 2006-07-13 Mitsui Kyodo Kensetsu Consultant Kk System and program for predicting distributed outflow
JP2014234674A (en) * 2013-06-04 2014-12-15 株式会社東芝 Flow rate prediction device, flow rate prediction method, flow rate prediction program and flow rate prediction system
JP2019148058A (en) * 2018-02-26 2019-09-05 三菱電機株式会社 Flooding prediction evaluation device
JP2019194424A (en) * 2018-02-16 2019-11-07 エンリケ・メノッティ・ペスカルモーナ Process and system for hydrological analysis and control related to river basin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168179A (en) * 2001-12-03 2003-06-13 Foundation Of River & Basin Integrated Communications Japan Real time hazard map system
JP2006184206A (en) * 2004-12-28 2006-07-13 Mitsui Kyodo Kensetsu Consultant Kk System and program for predicting distributed outflow
JP2014234674A (en) * 2013-06-04 2014-12-15 株式会社東芝 Flow rate prediction device, flow rate prediction method, flow rate prediction program and flow rate prediction system
JP2019194424A (en) * 2018-02-16 2019-11-07 エンリケ・メノッティ・ペスカルモーナ Process and system for hydrological analysis and control related to river basin
JP2019148058A (en) * 2018-02-26 2019-09-05 三菱電機株式会社 Flooding prediction evaluation device

Also Published As

Publication number Publication date
JP7087231B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
Siddula et al. Water level monitoring and management of dams using IoT
KR101381192B1 (en) Intelligent management system and method for rainwater based on real time control
CN103968913A (en) Intelligent on-line liquid level monitoring and early warning system
Mohamed et al. Power harvesting for smart sensor networks in monitoring water distribution system
Aarthi et al. IoT based drainage and waste management monitoring and alert system for smart city
CN103727983A (en) Wireless hydrologic monitoring device for nuclear power plant
CN104864935A (en) System and method for real-time monitoring of city drainage pipelines
CN109405924A (en) A kind of online remote supervision system of drainage pipeline networks liquid level and method
Siddula et al. Real time monitoring and controlling of water level in dams using iot
KR100681662B1 (en) Generation control system of a tidal power station and method controlling thereof
CN111765934A (en) Drainage pipe flow monitoring device
JP7087231B2 (en) Sensing / prediction system and control system for rivers and waterways
KR100920604B1 (en) Generation control system of a tidal power station and method controlling thereof
KR101849681B1 (en) A water-loop operating system for allocationing and supplying multy-water source using SD
KR20230102277A (en) Meteorological Agency data-based flood prevention system
Liang et al. Wireless water consumption sensing system for building energy efficiency: A visual-based approach with self-powered operation
Feng Image Recognition and Early Warning System of Urban Waterlogging Based on Tensorflow
Giovando et al. Ice Management Operations at Albeni Falls Dam
JP2005285080A (en) Power self-supply type disaster prevention management system for unitarily managing disaster information and power information including job maintenance effectively utilizing distributed power supply system
Phong Truong et al. An IoT-based Water Level Monitoring and Management System for Open Ditch Drainage
CN108981846A (en) A kind of monitoring system
KR102279852B1 (en) Irrigation equipment remote control system for self-generation
CN203629617U (en) Wireless hydrologic monitoring device of nuclear power plant
Saha et al. Automatic floodgates control using PLC with added focus on human safety
Gharib-Yosry et al. Internet of Energy Applied to Water Hydrokinetic Smart-Grids: A Test Rig Example

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220513

R150 Certificate of patent or registration of utility model

Ref document number: 7087231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350