JP2021120174A - Electromagnetic holder - Google Patents
Electromagnetic holder Download PDFInfo
- Publication number
- JP2021120174A JP2021120174A JP2020014274A JP2020014274A JP2021120174A JP 2021120174 A JP2021120174 A JP 2021120174A JP 2020014274 A JP2020014274 A JP 2020014274A JP 2020014274 A JP2020014274 A JP 2020014274A JP 2021120174 A JP2021120174 A JP 2021120174A
- Authority
- JP
- Japan
- Prior art keywords
- core
- adsorbed
- electromagnetic holder
- attracted
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001179 sorption measurement Methods 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 11
- 229910000889 permalloy Inorganic materials 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 5
- 230000004907 flux Effects 0.000 abstract description 30
- 230000035699 permeability Effects 0.000 abstract description 16
- 239000000463 material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
Description
本発明は、軟質磁性材料からなる部品、部材を吸着保持する電磁ホルダにかかわり、特に板厚の薄い被吸着物や吸着部の幅の狭い被吸着物あるいは異形状をした被吸着物を吸着保持するのに最適な電磁ホルダに関するものである。 The present invention relates to a component made of a soft magnetic material and an electromagnetic holder that adsorbs and holds a member, and particularly adsorbs and holds an adsorbed object having a thin plate thickness, an adsorbed object having a narrow adsorption portion, or an object to be adsorbed having an irregular shape. It is about the best electromagnetic holder to do.
磁性材料からなる被吸着物、たとえば電磁石の部品である被吸着コアを一つずつ把持して搬送する手段として、電磁吸着により被吸着コアを保持する電磁ホルダが知られている。(特許文献1等参照)
図2aは従来の電磁ホルダ1の縦断面図である。電磁ホルダには磁性体からなるコア2と巻線を多数回巻いたコイル3が使用されている。コアは外側の円筒と内側の円柱があり、これを底でつなぐ円板から一体ないしは組立で構成されている。円柱と円筒の端面は平面になっている。
As a means for gripping and transporting an object to be adsorbed made of a magnetic material, for example, a core to be adsorbed which is a component of an electromagnet one by one, an electromagnetic holder that holds the core to be adsorbed by electromagnetic adsorption is known. (Refer to
FIG. 2a is a vertical cross-sectional view of the conventional
コイルに通電すると、円柱と円筒の端部には磁極NとSが誘起され、ここから被吸着コアの磁極が当接する部分に反対の磁極N,Sが誘起され、電磁ホルダに吸着される。被吸着コアを離す場合には通電を切ればよいが、電磁ホルダのコア又は被吸着コアの残留磁束密度が大きい場合にはその残留磁束により被吸着コアが離れない場合がある。その時には、コイルに最初流した電流の10%程度の逆向き電流を流せば残留磁束密度がほぼ零となるのでスムーズに離れる。 When the coil is energized, magnetic poles N and S are induced at the ends of the cylinder and the cylinder, and opposite magnetic poles N and S are induced from this to the portion where the magnetic poles of the core to be attracted abut, and are attracted to the electromagnetic holder. When separating the adsorbed core, the energization may be turned off, but when the residual magnetic flux density of the core of the electromagnetic holder or the adsorbed core is large, the adsorbed core may not be separated due to the residual magnetic flux. At that time, if a reverse current of about 10% of the current initially passed through the coil is passed, the residual magnetic flux density becomes almost zero, so that the coil is separated smoothly.
近年は製品・部材の組立に際し、従来の自動機に代わり画像判別センサとロボットの組み合わが多用されるようになってきている。部品はパーツフィーダなどで供給され、この部品を画像センサで方向などを確認し、ロボット先端にとりつけられた把持装置でつかみ指定場所に置くという使われ方である。把持装置としては本発明の電磁ホルダなどがある。 In recent years, when assembling products and members, a combination of an image discrimination sensor and a robot has come to be widely used instead of the conventional automatic machine. Parts are supplied by a parts feeder, etc., and the direction of these parts is confirmed by an image sensor, etc., and the gripping device attached to the tip of the robot grabs the parts and places them in a designated place. The gripping device includes the electromagnetic holder of the present invention.
従来の電磁ホルダを使用する場合の問題点としては、部品同士が接触して置かれている場合や薄板材料で2枚以上重なっている場合などに、通常使用されている丸形の電磁ホルダでは隣接している例えば被吸着コアを同時に持ち上げたり、重なっている下のコアも同時に持ち上げたりで、1枚のみを吸着保持できないという欠点があげられる。 The problem with using a conventional electromagnetic holder is that it is a round electromagnetic holder that is normally used when parts are placed in contact with each other or when two or more thin plate materials are overlapped. There is a drawback that only one sheet cannot be adsorbed and held by simultaneously lifting the adjacent cores to be adsorbed, for example, or simultaneously lifting the overlapping lower cores.
こうした問題が起こるのは、電磁ホルダの磁極から出る磁束が被吸着コアのみを通らずに外部に漏れ、この漏れ磁束が接触している別のコアや重なったコアを吸着してしまうということにより発生するものである。 This problem occurs because the magnetic flux emitted from the magnetic poles of the electromagnetic holder leaks to the outside without passing only through the core to be attracted, and this leak flux attracts another core or an overlapping core that is in contact with it. It occurs.
電磁ホルダの吸着力FはF〔N〕=B〔T〕*B〔T〕*Ae〔m2〕/2/μoで計算される。Bは被吸着コアに誘起される磁束密度であり、Aeは被吸着コアの吸着部の実効断面積であり、μoは真空透磁率である。つまり、被吸着コアを吸着するのに必要な吸着力がFであるとき、磁極両端に現れる磁束密度が、Fを与える上記計算式で計算された磁束密度以上になれば被吸着コアを吸着できるということになる。 The adsorption force F of the electromagnetic holder is calculated by F [N] = B [T] * B [T] * Ae [m 2 ] / 2 / μo. B is the magnetic flux density induced in the core to be adsorbed, Ae is the effective cross-sectional area of the adsorbed portion of the core to be adsorbed, and μo is the vacuum magnetic permeability. That is, when the adsorption force required to adsorb the adsorbed core is F, the adsorbed core can be adsorbed if the magnetic flux density appearing at both ends of the magnetic pole becomes equal to or higher than the magnetic flux density calculated by the above formula that gives F. It turns out that.
一方電磁ホルダから誘起される磁束密度BはB=μ*H〔T〕で計算される。Hは磁界強さであり、H=I〔A〕*N〔巻線数〕/Lm〔m〕で単位は〔A/m〕である。Lmは磁気回路の平均磁路長である。この平均磁路長は電磁ホルダに使われるコアの平均磁路長と被吸着コアに当たる電磁ホルダの磁極の長さを足したものになる。 On the other hand, the magnetic flux density B induced from the electromagnetic holder is calculated by B = μ * H [T]. H is the strength of the magnetic field, and H = I [A] * N [number of windings] / Lm [m], and the unit is [A / m]. Lm is the average magnetic path length of the magnetic circuit. This average magnetic path length is the sum of the average magnetic path length of the core used for the electromagnetic holder and the length of the magnetic pole of the electromagnetic holder corresponding to the core to be attracted.
これらの式から分るのは、必要な吸着力は電磁ホルダの寸法と電磁ホルダに使用されるコアの透磁率と被吸着コアの透磁率及びコイルの巻線数が決まれば電磁ホルダのコイルに流れる電流の大きさで決まるということである。
この場合、透磁率が低いと磁界を大きくしないと必要な磁束密度は得られないということであり、透磁率が高ければより小さい磁界で必要な磁束が得られるということである。磁界が小さければ当然漏れ磁束は小さくなるし、電磁ホルダの磁極の距離が小さければ、透磁率の低い被吸着コア内に通る磁束の経路も短くなるので漏れ磁束は減少するということになる。
From these equations, it can be seen that the required suction force is the coil of the electromagnetic holder if the dimensions of the electromagnetic holder, the magnetic permeability of the core used for the electromagnetic holder, the magnetic permeability of the core to be attracted, and the number of coil windings are determined. It is determined by the magnitude of the flowing current.
In this case, if the magnetic permeability is low, the required magnetic flux density cannot be obtained unless the magnetic field is increased, and if the magnetic permeability is high, the required magnetic flux can be obtained with a smaller magnetic field. If the magnetic field is small, the leakage flux is naturally small, and if the distance between the magnetic poles of the electromagnetic holder is small, the path of the magnetic flux passing through the core to be attracted having low magnetic permeability is also shortened, so that the leakage flux is reduced.
本発明の発明者は、これらの問題を解決するために、鋭意検討の結果、漏れ磁束が極力発生しない構造の創作及び材料の選択を行うことにより、これら問題を解決するに至った。 As a result of diligent studies, the inventor of the present invention has solved these problems by creating a structure in which leakage flux is not generated as much as possible and selecting a material.
本願の発明は、以下の態様を含む。
[1]端部が磁極を形成する磁性体からなるコアと、巻き線を多数回巻いたコイルとを含む電磁ホルダであって、吸着時に磁極端面が被吸着物からはみ出さない寸法を有する、前記電磁ホルダ。
[2]磁極端面形状が、離間し整列した二つの長方形状である、[1]に記載の電磁ホルダ。
[3]電磁ホルダの磁極コアが板状であり、磁極間の距離及び磁極の厚みを被吸着物の吸着部の幅の50%以下とする[1]または[2]に記載の電磁ホルダ。
[4]被吸着物が異形品である場合に、異形品の重心位置を通る線上の2点以上に[1]〜[3]のいずれかに記載の電磁ホルダを複数配置したことを特徴とする、組み合わせ電磁ホルダ。
[5]複数の、[1]〜[3]のいずれかに記載の電磁ホルダの端面方向を、被吸着物の形状に整合するように整列した、組み合わせ電磁ホルダ。
[6]電磁ホルダに使用される部材がPC又はPBパーマロイからなることを特徴とする、[1]〜[5]のいずれかに記載の電磁ホルダ。
The invention of the present application includes the following aspects.
[1] An electromagnetic holder including a core made of a magnetic material whose end forms a magnetic pole and a coil in which a winding is wound many times, and has a dimension that the magnetic pole end face does not protrude from the object to be adsorbed at the time of adsorption. The electromagnetic holder.
[2] The electromagnetic holder according to [1], wherein the magnetic pole end face shape is two rectangular shapes that are separated and aligned.
[3] The electromagnetic holder according to [1] or [2], wherein the magnetic pole core of the electromagnetic holder is plate-shaped, and the distance between the magnetic poles and the thickness of the magnetic poles are 50% or less of the width of the suction portion of the object to be adsorbed.
[4] When the object to be adsorbed is a deformed product, a plurality of electromagnetic holders according to any one of [1] to [3] are arranged at two or more points on a line passing through the position of the center of gravity of the deformed product. Combined electromagnetic holder.
[5] A combination electromagnetic holder in which the end face directions of a plurality of electromagnetic holders according to any one of [1] to [3] are aligned so as to match the shape of the object to be adsorbed.
[6] The electromagnetic holder according to any one of [1] to [5], wherein the member used for the electromagnetic holder is made of a PC or PB permalloy.
本発明の電磁ホルダは、磁極が被吸着物と接する部分の形状を工夫し、被吸着物に接する2つの磁極が被吸着物の吸着部からはみ出さず、磁極間距離が被吸着物の幅以下であることにより漏れ磁束を小さくすることができるものである。
さらに言えば、電磁ホルダの磁極厚みと磁極間距離を被吸着物の吸着部の幅の50%
以下としたことで確実に漏れ磁束を低減できる
In the electromagnetic holder of the present invention, the shape of the portion where the magnetic poles are in contact with the object to be adsorbed is devised so that the two magnetic poles in contact with the object to be adsorbed do not protrude from the adsorbed portion of the object to be adsorbed, and the distance between the magnetic poles is the width of the object to be adsorbed. The leakage flux can be reduced by the following.
Furthermore, the magnetic pole thickness of the electromagnetic holder and the distance between the magnetic poles are 50% of the width of the suction part of the object to be adsorbed.
Leakage flux can be reliably reduced by the following.
電磁ホルダの磁極の端面形状が長方形状すなわち一方向に長いほぼ四角い形状、好ましくは矩形であり、二つの磁極端面の並び方向に直角な方向の寸法を厚みと定義すると、被吸着物の吸着部の幅よりも磁極の厚みが大きければ、被吸着物から磁極がはみ出すことになるので、漏れ磁束が大きくなる。これを防止するために磁極の厚みを被吸着物の吸着部の幅以下、でき得れば50%以下となるようにした。そうすると磁極端面の面積が小さくなるので、二つの磁極端面の並び方向の長さで調整するようにした。
このような磁極端面形状にすることによって、被吸着物が細長い形状の場合でも、漏れ磁束を低減することができる。
なお、長方形状とは、ほぼ長方形のことであるが、角が直角である必要はなく、例えば楕円形に近いような一方向に伸びた細長い形状をも表すものとする。
The shape of the end face of the magnetic pole of the electromagnetic holder is rectangular, that is, a substantially square shape that is long in one direction, preferably a rectangle. If the thickness of the magnetic pole is larger than the width of the above, the magnetic pole will protrude from the object to be adsorbed, so that the leakage flux will increase. In order to prevent this, the thickness of the magnetic pole is set to be less than or equal to the width of the adsorption portion of the object to be adsorbed, preferably 50% or less. Then, the area of the magnetic pole end faces becomes smaller, so the length of the two magnetic pole end faces in the alignment direction is adjusted.
By adopting such a magnetic pole end face shape, the leakage flux can be reduced even when the object to be adsorbed has an elongated shape.
The rectangular shape is substantially rectangular, but the corners do not have to be right angles, and it also represents an elongated shape extending in one direction, for example, which is close to an ellipse.
被吸着コアは一般的に加工上がりのコアが多いので、その透磁率は非常に低い。透磁率の低いコアの中を長い距離を通すと磁束はその性質上漏れ出しやすくなる。そこで磁極間の距離を極力短くするようにした。被吸着コアの板幅以下、または板幅の50%以下とした。 Since many cores to be adsorbed are generally processed cores, their magnetic permeability is very low. When a long distance is passed through a core with low magnetic permeability, the magnetic flux tends to leak due to its nature. Therefore, the distance between the magnetic poles was made as short as possible. It was set to be less than or equal to the plate width of the core to be adsorbed, or 50% or less of the plate width.
前記したように、透磁率が高ければ小さい磁界で必要な磁束密度が得られる。一般の電磁ホルダなどでは一般構造用圧延鋼材SS400などが用いられているが、これらを始め軟鉄などでも透磁率がそれほど大きいとは言えない。本発明では透磁率の非常に高いPC,PBパーマロイを使用した。低電流での透磁率が非常に高いので、巻線数も小さくできるし、感度が高いので磁束密度の微妙な調整も可能になった。 As described above, if the magnetic permeability is high, the required magnetic flux density can be obtained with a small magnetic field. Although rolled steel material SS400 for general structure is used in general electromagnetic holders and the like, it cannot be said that the magnetic permeability is so large even in soft iron and the like. In the present invention, a PC or PB permalloy having a very high magnetic permeability was used. Since the magnetic permeability at low current is very high, the number of windings can be reduced, and the high sensitivity makes it possible to finely adjust the magnetic flux density.
最近は異形形状でかつ小さな部品が増えている。電磁ホルダをロボットハンドの先端につけて部品を吸着搬送する場合に、その移動スピードを上げる要求が多い。異形部品を図3に示すようにコアの中心点8で従来の電磁ホルダ一点で保持すると垂直移動、回転移動の際にコア4の両端部に力のモーメントが働き、コアが落ちたり回転したりしてしまう。しかし、コアの重心点を通る線10とコアの交わる点11,12の2点で本発明の電磁ホルダ6,7で吸着保持すると、コアの移動スピードがかなり大きくてもコアが落ちたり回転したりすることがなくなる。
Recently, the number of irregularly shaped and small parts is increasing. When an electromagnetic holder is attached to the tip of a robot hand to attract and transport parts, there are many demands for increasing the moving speed. As shown in FIG. 3, when the deformed part is held at the center point 8 of the core by one conventional electromagnetic holder, moments of force act on both ends of the core 4 during vertical movement and rotational movement, causing the core to drop or rotate. Resulting in. However, if the
また、図3に示すように、従来の電磁ホルダで狭幅のコアを中心点8で吸着保持すると、電磁ホルダ自体のコア外筒は被吸着コアよりも外側に飛び出してしまい、この部分に隣接した別のコアも吸着してしまい、移動中に落下するなどの問題を引き起こす。しかし、本発明の電磁ホルダ6,7に示すように被吸着コアの幅から磁極が外にはみ出していない場合には、隣接したコアを吸着することはない。
被吸着物が狭幅の異形形状の場合、磁極端面形状を整列した矩形とし、さらに図3に示すように、整列した矩形の長手方向を、異形形状の被吸着物の形状、すなわち延びた方向に揃えることによって、より大きな吸着力を発揮することができる。
さらに、磁極端面の整列方向を異形形状被吸着物からはみ出さないように整列させれば、被吸着物の重心を通る線上でない場合でも、充分な吸着力を発揮することができる。
Further, as shown in FIG. 3, when the narrow core is attracted and held at the center point 8 with the conventional electromagnetic holder, the core outer cylinder of the electromagnetic holder itself protrudes to the outside of the core to be attracted and is adjacent to this portion. Another core that has been removed will also be adsorbed, causing problems such as falling during movement. However, as shown in the
When the object to be adsorbed has a narrow irregular shape, the shape of the magnetic pole end faces is made into an aligned rectangle, and as shown in FIG. 3, the longitudinal direction of the aligned rectangle is the shape of the object to be adsorbed, that is, the extending direction. By aligning with, a larger adsorption force can be exhibited.
Further, if the alignment directions of the magnetic pole end faces are aligned so as not to protrude from the deformed object to be adsorbed, sufficient adsorption force can be exhibited even if it is not on the line passing through the center of gravity of the object to be adsorbed.
さらに透磁率の高いパーマロイを使用したので、巻線数を大幅に減らすことができ、かつ通電流値も下げることができるのでランニングコストを下げることもできる。また電流の微妙な調整により磁束密度を精度よく調整できるようになり、2枚重なっていても表面の1枚目のみを吸着保持することが可能になった。 Furthermore, since permalloy with high magnetic permeability is used, the number of windings can be significantly reduced, and the current flow value can also be reduced, so that the running cost can be reduced. In addition, the magnetic flux density can be adjusted accurately by finely adjusting the current, and even if two sheets are overlapped, only the first sheet on the surface can be adsorbed and held.
以上説明したように、本発明によれば、被吸着材料の部品幅に対し電磁ホルダのコアの厚みと磁極間距離を小さくなるように調整したので、漏れ磁束を減少させ、隣接の接触材料を吸着することをなくす効果を発揮した。また材料コアにPB,PCコアを使用することにより巻線数を減らし、コイルへの通電電流も減らしたので2枚重ねのコアでも1枚だけを吸着することができるようになった。またコア形状もコの字状になったのでレーザー加工機で少量生産でき、切削加工などが不要になりコスト低減にもつながった。巻線数も大幅に下がったので巻線加工費も低減できた。 As described above, according to the present invention, since the thickness of the core of the electromagnetic holder and the distance between the magnetic poles are adjusted to be smaller than the component width of the material to be adsorbed, the leakage flux is reduced and the adjacent contact material is used. It exerted the effect of eliminating adsorption. Further, by using PB and PC cores for the material cores, the number of windings is reduced and the energizing current to the coil is also reduced, so that only one core can be adsorbed even with a two-layered core. In addition, since the core shape is U-shaped, it can be produced in small quantities with a laser processing machine, eliminating the need for cutting and reducing costs. Since the number of windings has also decreased significantly, the winding processing cost has also been reduced.
本発明にかかる電磁ホルダ(6,7)の実施の形態を、図1及び図3を参照して詳細に説明する。図1のaは本実施の形態による縦断面図であり、bは底面図である。本発明の電磁ホルダ(6,7)は非常にシンプルである。ロボットハンドに取り付ける際のネジ穴等は省略してある。磁束を通すための電磁ホルダのコア(2)と電流を通電するためのコイル(3)からのみ構成されている。電磁ホルダのコア(2)は注文が大量にある時は金型を製作してプレス抜きすればよいし、少量の場合はレーザー加工機でカットすればよい。材料には高透磁率のPCパーマロイかPBパーマロイを用いる。被吸着物がより微小の場合には、磁束密度は低いが高透磁率のPCパーマロイを使用する方がベターである。そうでない場合には材料価格が安く高磁束密度のPBパーマロイが適している。電磁ホルダの磁極の厚みと幅は、被吸着コアの重量により、および/または幅に応じて調整する。電磁ホルダの磁極の厚みは被吸着コアの幅からはみ出さないように調整し、重量が重い場合には磁極の幅をより広くして磁極端面の面積が大きくなるように調整する。一般的には、被吸着コアの厚みが0.05〜2mm位であれば磁極間の距離は1mmとすればよい。あとは被吸着コアの形状と重さに合わせて、コイルの巻線数と電流の大きさを調整すればよい。 Embodiments of the electromagnetic holders (6, 7) according to the present invention will be described in detail with reference to FIGS. 1 and 3. FIG. 1A is a vertical sectional view according to the present embodiment, and FIG. 1B is a bottom view. The electromagnetic holders (6, 7) of the present invention are very simple. Screw holes and the like when attaching to the robot hand are omitted. It is composed only of a core (2) of an electromagnetic holder for passing magnetic flux and a coil (3) for passing an electric current. When there are a large number of orders, the core (2) of the electromagnetic holder may be die-made and pressed out, and when the quantity is small, it may be cut with a laser processing machine. High magnetic permeability PC permalloy or PB permalloy is used as the material. When the object to be adsorbed is smaller, it is better to use a PC permalloy having a low magnetic flux density but a high magnetic permeability. If this is not the case, PB permalloy, which has a low material price and a high magnetic flux density, is suitable. The thickness and width of the magnetic poles of the electromagnetic holder are adjusted according to the weight of the core to be attracted and / or the width. The thickness of the magnetic pole of the electromagnetic holder is adjusted so as not to protrude from the width of the core to be attracted, and when the weight is heavy, the width of the magnetic pole is widened and the area of the magnetic pole end face is adjusted to be large. Generally, if the thickness of the core to be adsorbed is about 0.05 to 2 mm, the distance between the magnetic poles may be 1 mm. After that, the number of coil windings and the magnitude of the current may be adjusted according to the shape and weight of the core to be adsorbed.
図3には、異形の被吸着コアの1例を4として示す。被吸着コアの中心点を8で示す。従来の電磁ホルダ5の場合は、このコアの中心点8の位置を狙いコアを吸着する。このコアの中心点8を1点で吸着し、紙面の上方向に持ち上げた場合、そのスピードが遅い場合には問題がほとんど起こらないが、少しスピードを上げると、被吸着コアの両先端部分にモーメントが生じコアが脱落するという問題が発生する。これを防ごうと、吸着力あげるために電流を上げると、電磁ホルダの磁極の磁束が大きくなり、被吸着コアに隣接しているコアを同時に吸着したり、2枚重ねになっている場合には2枚とも吸着してしまうと言う不具合を生じる。 FIG. 3 shows an example of a deformed core to be adsorbed as 4. The center point of the core to be adsorbed is indicated by 8. In the case of the conventional electromagnetic holder 5, the core is attracted to the position of the center point 8 of the core. When the center point 8 of this core is adsorbed at one point and lifted upward on the paper surface, there is almost no problem if the speed is slow, but if the speed is increased a little, both tips of the core to be adsorbed There is a problem that a moment is generated and the core falls off. To prevent this, if the current is increased to increase the adsorption force, the magnetic flux of the magnetic poles of the electromagnetic holder will increase, and the cores adjacent to the core to be adsorbed will be adsorbed at the same time, or if two sheets are stacked. Causes a problem that both of them are adsorbed.
本発明の場合、こうした異形コアを吸着する場合には、コアの重心位置9を通る線10とコアと交差する点11と12の2点で吸着するようにする。被吸着コアが細い直線状の場合には、その中心点の1点を吸着すればよい。こうして2点を吸着すれば、ロボットハンドの上昇スピードが最大となってもコアを落とすことはないし、ロボットハンドが急速に旋回されたとしてもこれを落とすことはなくなる。そして磁極は被吸着コアの幅からはみ出しておらずかつ磁極間距離も短いので、漏洩磁束もほとんどなく隣接接触コアを吸引することもない。またPC,PBパーマロイを使用しているので電流も細かく調整可能なので、2枚重なっていても2枚目を吸着するという事もない。
In the case of the present invention, when such a deformed core is adsorbed, it is adsorbed at two points, a
本発明により、被吸着コアが微小であったり、幅が狭かったり、あるいは異形形状であったりしても、また被吸着コア同士が接触していてもまた重なったりしていても、1枚だけを選択吸着できるような電磁ホルダを安価に提供することが可能になる。 According to the present invention, even if the cores to be adsorbed are minute, narrow, or irregularly shaped, and even if the cores to be adsorbed are in contact with each other or overlap each other, only one core is provided. It becomes possible to provide an electromagnetic holder capable of selectively adsorbing.
1 電磁ホルダ
2 電磁ホルダのコア
3 コイル
4 被吸着コア
5 従来の電磁ホルダ
6 本発明の電磁ホルダ
7 本発明の電磁ホルダ
8 被吸着コアの中心点
9 被吸着コアの重心点
10 被吸着コアの重心点を通る線
11 被吸着コアの重心点を通る線とコアの交点
12 被吸着コアの重心点を通る線とコアの交点
21 電磁ホルダの磁極厚み
22 電磁ホルダの磁極間距離
41 被吸着コアの板幅
N 磁極N
S 磁極S
1
S magnetic pole S
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020014274A JP7122766B2 (en) | 2020-01-31 | 2020-01-31 | electromagnetic holder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020014274A JP7122766B2 (en) | 2020-01-31 | 2020-01-31 | electromagnetic holder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021120174A true JP2021120174A (en) | 2021-08-19 |
JP7122766B2 JP7122766B2 (en) | 2022-08-22 |
Family
ID=77270251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020014274A Active JP7122766B2 (en) | 2020-01-31 | 2020-01-31 | electromagnetic holder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7122766B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023075826A (en) * | 2021-11-19 | 2023-05-31 | カネテック株式会社 | Attachment for bipolar-type electromagnetic holder and bipolar-type electromagnetic holder mounted with the same |
JP2023075827A (en) * | 2021-11-19 | 2023-05-31 | カネテック株式会社 | Multipolar-type electromagnetic holder |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357187A (en) * | 1986-08-25 | 1988-03-11 | 三明電機株式会社 | Magnetic chuck |
JPS63197930A (en) * | 1986-12-05 | 1988-08-16 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Light transmitting screen and manufacture thereof |
JPH01143325U (en) * | 1988-03-28 | 1989-10-02 | ||
JPH03238745A (en) * | 1990-02-16 | 1991-10-24 | Hitachi Ltd | Transplantation device transfer equipment |
JPH0538695A (en) * | 1991-07-31 | 1993-02-19 | Tamotsu Fujita | Electromagnetic holder for thin plate |
JPH08169548A (en) * | 1994-12-20 | 1996-07-02 | Sanmei Denki Kk | Lifter magnet |
CN104097211A (en) * | 2014-07-08 | 2014-10-15 | 南京工业职业技术学院 | Adaptive method for grabbing various curved-surface objects |
JP2015101441A (en) * | 2013-11-25 | 2015-06-04 | トヨタ自動車株式会社 | Device for transporting annular member |
JP2018062024A (en) * | 2016-10-12 | 2018-04-19 | 住友電気工業株式会社 | Electromagnetic holder |
-
2020
- 2020-01-31 JP JP2020014274A patent/JP7122766B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357187A (en) * | 1986-08-25 | 1988-03-11 | 三明電機株式会社 | Magnetic chuck |
JPS63197930A (en) * | 1986-12-05 | 1988-08-16 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Light transmitting screen and manufacture thereof |
JPH01143325U (en) * | 1988-03-28 | 1989-10-02 | ||
JPH03238745A (en) * | 1990-02-16 | 1991-10-24 | Hitachi Ltd | Transplantation device transfer equipment |
JPH0538695A (en) * | 1991-07-31 | 1993-02-19 | Tamotsu Fujita | Electromagnetic holder for thin plate |
JPH08169548A (en) * | 1994-12-20 | 1996-07-02 | Sanmei Denki Kk | Lifter magnet |
JP2015101441A (en) * | 2013-11-25 | 2015-06-04 | トヨタ自動車株式会社 | Device for transporting annular member |
CN104097211A (en) * | 2014-07-08 | 2014-10-15 | 南京工业职业技术学院 | Adaptive method for grabbing various curved-surface objects |
JP2018062024A (en) * | 2016-10-12 | 2018-04-19 | 住友電気工業株式会社 | Electromagnetic holder |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023075826A (en) * | 2021-11-19 | 2023-05-31 | カネテック株式会社 | Attachment for bipolar-type electromagnetic holder and bipolar-type electromagnetic holder mounted with the same |
JP2023075827A (en) * | 2021-11-19 | 2023-05-31 | カネテック株式会社 | Multipolar-type electromagnetic holder |
JP7393024B2 (en) | 2021-11-19 | 2023-12-06 | カネテック株式会社 | Attachment for bipolar electromagnetic holder and bipolar electromagnetic holder equipped with this attachment |
JP7393025B2 (en) | 2021-11-19 | 2023-12-06 | カネテック株式会社 | Multipolar electromagnetic holder |
Also Published As
Publication number | Publication date |
---|---|
JP7122766B2 (en) | 2022-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021120174A (en) | Electromagnetic holder | |
JP2018510790A5 (en) | ||
JPWO2018003990A1 (en) | Magnetic chip conveyor | |
JP2009166952A (en) | Sheet carrying device | |
JPH0254036B2 (en) | ||
US4145625A (en) | Electro-magnetic devices | |
JP3980497B2 (en) | Lifter magnet | |
SE524930C2 (en) | Method, special magnet, pickup means and robot comprising a special magnet inserted in one of the articles partially enclosed space | |
JPS6038843B2 (en) | magnetic attraction device | |
JP3440370B2 (en) | Lifter magnet | |
JP2009084025A (en) | Stripping tool and stripping device | |
JP4980683B2 (en) | Lifting electromagnet device | |
JPH08243968A (en) | End effector | |
JP5019278B2 (en) | Work suction device | |
JPH0263610A (en) | Press brake | |
JPH09290344A (en) | Workpiece conveyer | |
JP5253245B2 (en) | Parts supply device | |
JP6594753B2 (en) | Peeling jig and peeling device | |
JPH04352303A (en) | Magnetic body carrier magnet | |
JPH03243544A (en) | Separation device for laminated tabular body | |
JPH0538695A (en) | Electromagnetic holder for thin plate | |
GB2177669A (en) | Transport system for items of ferromagnetic material | |
JPH01186604A (en) | Electromagnet | |
JPH0624881U (en) | Electromagnet for adsorption and transfer of small parts | |
JPS6254691A (en) | Method of controlling robot hand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7122766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |