JP2021117909A - Three-dimensional image generation device and three-dimensional image generation method - Google Patents

Three-dimensional image generation device and three-dimensional image generation method Download PDF

Info

Publication number
JP2021117909A
JP2021117909A JP2020012709A JP2020012709A JP2021117909A JP 2021117909 A JP2021117909 A JP 2021117909A JP 2020012709 A JP2020012709 A JP 2020012709A JP 2020012709 A JP2020012709 A JP 2020012709A JP 2021117909 A JP2021117909 A JP 2021117909A
Authority
JP
Japan
Prior art keywords
voxel
dimensional image
voxels
brightness
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012709A
Other languages
Japanese (ja)
Other versions
JP7450245B2 (en
JP2021117909A5 (en
Inventor
隆也 金城
Takanari Kaneshiro
隆也 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Robotics Holdings Co Ltd
Original Assignee
Yamaha Robotics Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Robotics Holdings Co Ltd filed Critical Yamaha Robotics Holdings Co Ltd
Priority to JP2020012709A priority Critical patent/JP7450245B2/en
Publication of JP2021117909A publication Critical patent/JP2021117909A/en
Publication of JP2021117909A5 publication Critical patent/JP2021117909A5/ja
Application granted granted Critical
Publication of JP7450245B2 publication Critical patent/JP7450245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Wire Bonding (AREA)

Abstract

To generate a three-dimensional image of an object in a short time.SOLUTION: A three-dimensional image generation device comprises: a plurality of cameras 10, 20, 30 using image pick-up devices 11, 21, 31; and a control unit 40 which processes each image photographed by the cameras 10, 20, 30. The control unit 40 sets a plurality of voxels V in a space including the object, images the plurality of voxels V from a plurality of directions, (a) detects each brightness of each of the image pick-up devices 11, 21, 31 corresponding to one voxel V of the plurality of voxels V, (b) specifies the smallest one in the detected brightness as the minimum brightness of the one voxel V, (c) specifies the one voxel V as the specific voxel including the object when the specified minimum brightness is equal to or greater than a prescribed threshold, repeatedly executes the operations of (a)-(c) for all the voxels V, and generates the three-dimensional image of the object by connecting the specific voxels specified in (c).SELECTED DRAWING: Figure 1

Description

本発明は、カメラを用いた対象物の三次元画像生成装置及び三次元画像生成方法に関する。 The present invention relates to a three-dimensional image generation device and a three-dimensional image generation method for an object using a camera.

半導体チップのパッドと基板のリードとを接続するボンディングワイヤ(以下、ワイヤという)等の対象物の三次元画像を生成する方法が提案されている(例えば、特許文献1参照)。 A method of generating a three-dimensional image of an object such as a bonding wire (hereinafter referred to as a wire) connecting a pad of a semiconductor chip and a lead of a substrate has been proposed (see, for example, Patent Document 1).

特許文献1に記載された方法は、ワイヤをリング状照明器で照明し、焦点深度を浅くした光学系を用いて合焦高さを変化させながらワイヤ画像を撮像し、各ワイヤ画像の中心に現出した暗部を検出することにより、各合焦高さにおけるワイヤの各XY座標を検出し、それらのデータからワイヤ全体の三次元形状を検出し、三次元画像を生成するものである。 In the method described in Patent Document 1, a wire is illuminated with a ring-shaped illuminator, a wire image is imaged while changing the focusing height using an optical system having a shallow focal depth, and the wire image is centered on each wire image. By detecting the appearing dark part, each XY coordinate of the wire at each focusing height is detected, the three-dimensional shape of the entire wire is detected from the data, and a three-dimensional image is generated.

特許第3235009号明細書Patent No. 3235009

しかし、特許文献1に記載の方法では、光学系の合焦高さを変化させて複数の画像を撮像することが必要なため、三次元画像の生成に掛かる時間が長くなってしまうという問題があった。 However, the method described in Patent Document 1 has a problem that it takes a long time to generate a three-dimensional image because it is necessary to capture a plurality of images by changing the focusing height of the optical system. there were.

そこで、本発明は、短時間に対象物の三次元画像を生成することを目的とする。 Therefore, an object of the present invention is to generate a three-dimensional image of an object in a short time.

本発明の三次元画像生成装置は、撮像素子を用いた複数のカメラと、カメラが撮像した各画像を処理する制御部と、を備え、制御部は、対象物を含む空間内に複数のボクセルを設定し、複数のカメラで複数の方向から複数のボクセルを撮像し、(a)複数のボクセルの内の一ボクセルに対応する各カメラの各撮像素子の各明度を検出し、(b)各カメラが検出した各明度の内で一番小さいものを一ボクセルの最小明度として特定し、(c)特定した最小明度が所定の閾値以上の場合に、一ボクセルを対象物を含む特定ボクセルとして特定し、(a)〜(c)の動作を複数のボクセル全てについて繰り返し実行し、(c)で特定した複数の特定ボクセルを接続して対象物の三次元画像を生成すること、を特徴とする。 The three-dimensional image generation device of the present invention includes a plurality of cameras using an image pickup element and a control unit for processing each image captured by the cameras, and the control unit includes a plurality of voxels in a space including an object. Is set, a plurality of voxels are imaged from a plurality of directions by a plurality of cameras, (a) each brightness of each imaging element of each camera corresponding to one voxel among the plurality of voxels is detected, and (b) each The smallest of the lightness detected by the camera is specified as the minimum lightness of one voxel, and (c) when the specified minimum lightness is equal to or higher than a predetermined threshold, one voxel is specified as a specific voxel including an object. Then, the operations (a) to (c) are repeatedly executed for all the plurality of voxels, and the plurality of specific voxels specified in (c) are connected to generate a three-dimensional image of the object. ..

本発明の三次元画像生成方法は、撮像素子を用いた複数のカメラを準備し、対象物を含む空間内に複数のボクセルを設定し、複数のカメラで複数の方向から複数のボクセルを撮像し、(a)複数のボクセルの内の一ボクセルに対応する各カメラの各撮像素子の各明度を検出し、(b)各カメラが検出した各明度の内で一番小さいものを一ボクセルの最小明度として特定し、(c)特定した最小明度が所定の閾値以上の場合に、一ボクセルを対象物を含む特定ボクセルとして特定し、(a)〜(c)の動作を複数のボクセル全てについて繰り返し実行し、(c)で特定した複数の特定ボクセルを接続して対象物の三次元画像を生成すること、を特徴とする。 In the three-dimensional image generation method of the present invention, a plurality of cameras using an imaging element are prepared, a plurality of voxels are set in a space including an object, and a plurality of voxels are imaged from a plurality of directions by the plurality of cameras. , (A) Detect each brightness of each imaging element of each camera corresponding to one voxel among a plurality of voxels, and (b) the smallest of each brightness detected by each camera is the minimum of one voxel. It is specified as lightness, and (c) when the specified minimum lightness is equal to or higher than a predetermined threshold, one voxel is specified as a specific voxel including an object, and the operations (a) to (c) are repeated for all of a plurality of voxels. It is characterized in that it is executed and a plurality of specific voxels specified in (c) are connected to generate a three-dimensional image of an object.

このように、複数のカメラで撮影した画像を処理して三次元画像を生成するので、光学系の合焦高さを変化させる等のハードウェアの動作を伴わずに三次元画像を生成することができ、短時間で対象物の三次元画像の生成を行うことができる。 In this way, since images taken by a plurality of cameras are processed to generate a three-dimensional image, it is possible to generate a three-dimensional image without hardware operations such as changing the focusing height of the optical system. It is possible to generate a three-dimensional image of an object in a short time.

本発明の三次元画像生成方法において、対象物を上方から照明し、複数のカメラは、対象物の上方に設定してもよい。 In the three-dimensional image generation method of the present invention, the object may be illuminated from above, and the plurality of cameras may be set above the object.

これにより、簡便な方法で三次元画像の生成を行うことができる。 This makes it possible to generate a three-dimensional image by a simple method.

本発明の三次元画像生成方法において、対象物は、半導体素子の電極と基板の電極、又は、半導体素子の一の電極と半導体素子の他の電極とを接続するワイヤでもよい。 In the three-dimensional image generation method of the present invention, the object may be an electrode of a semiconductor element and an electrode of a substrate, or a wire connecting one electrode of the semiconductor element and another electrode of the semiconductor element.

このように、ワイヤの三次元画像生成を短時間に行うことができる。 In this way, the three-dimensional image generation of the wire can be performed in a short time.

本発明は、短時間に対象物の三次元画像を生成することができる。 The present invention can generate a three-dimensional image of an object in a short time.

実施形態の三次元画像生成方法を実行する三次元画像生成装置の構成を示す系統図である。It is a system diagram which shows the structure of the 3D image generation apparatus which executes the 3D image generation method of embodiment. 図1に示すy=y1の面のボクセルを複数のカメラで撮像した場合の各ボクセル中心と各カメラの撮像素子の位置との関係を示す説明図である。It is explanatory drawing which shows the relationship between the center of each voxel and the position of the image sensor of each camera when the voxel of the surface of y = y1 shown in FIG. 1 is imaged by a plurality of cameras. 実施形態の三次元画像生成方法の工程を示すフローチャートである。It is a flowchart which shows the process of the 3D image generation method of embodiment. 図3に示す工程中の対象物を含む特定ボクセルを特定する処理を示すフローチャートである。It is a flowchart which shows the process of specifying the specific voxel including the object in the process shown in FIG. 各ボクセルの最小明度と特定ボクセルの特定処理を説明する表である。It is a table explaining the minimum brightness of each voxel and the specific processing of a specific voxel.

以下、図面を参照しながら実施形態の三次元画像生成方法を実行する三次元画像生成装置100について説明する。以下の説明では、三次元画像生成装置100は、図1に示すように、半導体素子の電極51と基板の電極52とを接続するワイヤ53の三次元画像を生成することとして説明するが、他の対象物の三次元画像の生成を行うことも可能である。 Hereinafter, the three-dimensional image generation device 100 that executes the three-dimensional image generation method of the embodiment will be described with reference to the drawings. In the following description, as shown in FIG. 1, the three-dimensional image generator 100 will be described as generating a three-dimensional image of the wire 53 connecting the electrode 51 of the semiconductor element and the electrode 52 of the substrate. It is also possible to generate a three-dimensional image of the object of.

三次元画像生成装置100は、撮像素子を用いた3つのカメラ10,20,30と、カメラ10,20,30が撮像した画像を処理して対象物であるワイヤ53の三次元画像を生成する制御部40と、ワイヤ53を照明する光源45とを含んでいる。本実施形態では、カメラは3つとして説明するが、複数であれば3つに限らず、2つでも4つ以上でもよい。 The three-dimensional image generation device 100 processes the images captured by the three cameras 10, 20, 30 using the image sensor and the cameras 10, 20, 30 to generate a three-dimensional image of the wire 53, which is an object. It includes a control unit 40 and a light source 45 that illuminates the wire 53. In the present embodiment, the number of cameras is described as three, but the number of cameras is not limited to three, and may be two or four or more.

光源45はワイヤ53の上方に配置されている。また、カメラ10は、ワイヤ53の上方に配置されており、カメラ20,30は、ワイヤ53の上方で各光軸20a,30aがカメラ10の光軸10aに対して傾斜するようにして配置されている。制御部40は、内部に情報処理を行うCPU41とメモリ42とを含むコンピュータで構成されている。 The light source 45 is arranged above the wire 53. Further, the camera 10 is arranged above the wire 53, and the cameras 20 and 30 are arranged above the wire 53 so that the optical axes 20a and 30a are inclined with respect to the optical axis 10a of the camera 10. ing. The control unit 40 is composed of a computer including a CPU 41 that processes information internally and a memory 42.

ワイヤ53を含む空間には、複数のボクセルVが設定されている。ボクセルVはワイヤ53が存在する空間内全てに設定されている。ボクセルVの各中心座標はVc(x,y,h)で表される。図1では、ワイヤ53を含む空間に設定された9つのボクセルV1〜V9を示す。9つのボクセルV1〜V9は、各中心座標はVc(x,y,h)のy方向の座標がy1の平面内に位置しており、x座標がx1,x2,x3で、それぞれ高さhがh1,h2,h3の位置となっている。また、Vc(x2,y1,h2)に中心があるボクセルV5にはワイヤ53のy=y1の断面が位置している。 A plurality of voxels V are set in the space including the wire 53. The voxel V is set in the entire space where the wire 53 exists. Each center coordinate of voxel V is represented by Vc (x, y, h). FIG. 1 shows nine voxels V1 to V9 set in the space including the wire 53. In each of the nine voxels V1 to V9, the center coordinates of Vc (x, y, h) are located in the plane of y1 in the y direction, the x coordinates are x1, x2, x3, and the heights are h, respectively. Are the positions of h1, h2, and h3. Further, the cross section of the wire 53 y = y1 is located in the voxel V5 centered on Vc (x2, y1, h2).

次に図2を参照しながら、図1を参照して説明した9つのボクセルV1〜V9と、各カメラ10,20,30の各撮像素子11,21,31の各画素の位置との関係の例について説明する。 Next, with reference to FIG. 2, the relationship between the nine voxels V1 to V9 described with reference to FIG. 1 and the position of each pixel of each image sensor 11, 21, 31 of each camera 10, 20, 30. An example will be described.

ボクセルV1は、中心位置Vc(x1,y1,h1)であり、カメラ10の撮像素子11の画素P11、カメラ20の撮像素子21の画素P23、カメラ30の撮像素子31の画素P31に対応する。同様にボクセルV2の中心位置Vc(x2,y1,h1)は、撮像素子11の画素P12に対応し、撮像素子21の画素P24、撮像素子31の画素P32に対応する。また、ボクセルV3の中心位置Vc(x3,y1,h1)は、撮像素子11の画素P13に対応し、撮像素子21の画素P25、撮像素子31の画素P33に対応する。以下、同様に、同様にボクセルV4の中心位置Vc(x1,y1,h2)は画素P11、画素P22、画素P32に対応し、ボクセルV5の中心位置Vc(x2,y1,h2)は画素P12、画素P23、画素P33に対応し、ボクセルV6の中心位置Vc(x3,y1,h2)は画素P13、画素P24、画素P34に対応する。更に、ボクセルV7の中心位置Vc(x1,y1,h3)は画素P11、画素P21、画素P33に対応し、ボクセルV8の中心位置Vc(x2,y1,h3)は画素P12、画素P22、画素P34に対応し、ボクセルV9の中心位置Vc(x3,y1,h3)は画素P13、画素P23、画素P35に対応する。 The voxel V1 is at the center position Vc (x1, y1, h1) and corresponds to the pixel P11 of the image sensor 11 of the camera 10, the pixel P23 of the image sensor 21 of the camera 20, and the pixel P31 of the image sensor 31 of the camera 30. Similarly, the center position Vc (x2, y1, h1) of the voxel V2 corresponds to the pixel P12 of the image sensor 11, and corresponds to the pixel P24 of the image sensor 21 and the pixel P32 of the image sensor 31. Further, the center position Vc (x3, y1, h1) of the voxel V3 corresponds to the pixel P13 of the image sensor 11, and corresponds to the pixel P25 of the image sensor 21 and the pixel P33 of the image sensor 31. Similarly, similarly, the center position Vc (x1, y1, h2) of the voxel V4 corresponds to the pixel P11, the pixel P22, and the pixel P32, and the center position Vc (x2, y1, h2) of the voxel V5 corresponds to the pixel P12. The center position Vc (x3, y1, h2) of the voxel V6 corresponds to the pixel P23 and the pixel P33, and corresponds to the pixel P13, the pixel P24, and the pixel P34. Further, the center position Vc (x1, y1, h3) of the voxel V7 corresponds to the pixel P11, the pixel P21, and the pixel P33, and the center position Vc (x2, y1, h3) of the voxel V8 corresponds to the pixel P12, the pixel P22, and the pixel P34. The center position Vc (x3, y1, h3) of the voxel V9 corresponds to the pixel P13, the pixel P23, and the pixel P35.

そして、各カメラ10,20,30でボクセルV1〜V9を撮像すると、各ボクセルV1〜V9明度は対応する各カメラ10,20,30の各撮像素子11,21,31の各対応する画素の明度として検出される。 Then, when the voxels V1 to V9 are imaged by the cameras 10, 20 and 30, the brightness of the voxels V1 to V9 is the brightness of the corresponding pixels of the image sensors 11 and 21 and 31 of the corresponding cameras 10, 20 and 30. Is detected as.

次に図3から図5を参照して三次元画像生成装置100の動作について説明する。 Next, the operation of the three-dimensional image generator 100 will be described with reference to FIGS. 3 to 5.

三次元画像生成装置100の制御部40のCPU41は、図3のステップS101に示すように、複数のカメラ10,20,30で複数の方向から複数のボクセルVを撮像する。そして、ステップS102で各カメラ10,20,30が撮像した画像分析面をy=0の面に設定し、ステップS103でy=0の面の中で対象物であるワイヤ53を含むボクセルVを特定ボクセルとして特定する。そして、yがボクセルVの存在するyの最大値であるyendとなるまでステップS105でyをΔyずつ増加させてステップS103を繰り返し実行する。そして、ステップS104でYESと判断した場合には、図3のステップS106に進んでステップS103で特定した複数の特定ボクセルを接続して対象物の三次元画像を生成する。 As shown in step S101 of FIG. 3, the CPU 41 of the control unit 40 of the three-dimensional image generation device 100 images a plurality of voxel Vs from a plurality of directions with the plurality of cameras 10, 20, and 30. Then, the image analysis surface imaged by the cameras 10, 20, and 30 in step S102 is set to the surface of y = 0, and the voxel V including the wire 53 which is the object in the surface of y = 0 is set in step S103. Specify as a specific voxel. Then, in step S105, y is increased by Δy until y becomes the maximum value of y in which the voxel V exists, and step S103 is repeatedly executed. If YES is determined in step S104, the process proceeds to step S106 of FIG. 3 to connect a plurality of specific voxels specified in step S103 to generate a three-dimensional image of the object.

ここで、制御部40のCPU41が実行する図3のステップS103の対象物を含む特定ボクセルを特定する処理の例について、図4、図5を参照しながら説明する。以下の説明では、図1に示すy=y1の平面に中心座標が位置するボクセルV1〜V9において対象物であるワイヤ53を含む特定ボクセルを特定する処理について説明する。 Here, an example of a process for identifying a specific voxel including an object in step S103 of FIG. 3 executed by the CPU 41 of the control unit 40 will be described with reference to FIGS. 4 and 5. In the following description, a process of specifying a specific voxel including the wire 53 which is an object in the voxels V1 to V9 whose center coordinates are located on the plane of y = y1 shown in FIG. 1 will be described.

図3を参照して説明したように、各カメラ10,20,30でボクセルV1〜V9を撮像すると、各ボクセルV1〜V9の明度は対応する各カメラ10,20,30の各撮像素子11,21,31の各対応する画素の明度として検出される。ワイヤ53を含むボクセルVはワイヤ53で光が反射されるためワイヤ53を含むボクセルVに対応する画素は明るい明度1を検出する。一方、ワイヤ53を含まないボクセルVは光を反射しないので暗い明度0を検出する。ただし、ボクセルVと画素との光路の間又は光路の延長上にワイヤ53を含む他のボクセルVが存在するとその画素は、他のボクセルVの明るい明度1を検出する。 As described with reference to FIG. 3, when the voxels V1 to V9 are imaged by the cameras 10, 20 and 30, the brightness of the voxels V1 to V9 is the image sensor 11 of the corresponding cameras 10, 20 and 30. It is detected as the brightness of each of the corresponding pixels of 21 and 31. Since the voxel V including the wire 53 reflects light on the wire 53, the pixel corresponding to the voxel V including the wire 53 detects a bright brightness 1. On the other hand, since the voxel V that does not include the wire 53 does not reflect light, it detects a dark brightness of 0. However, if another voxel V including the wire 53 is present between the optical path between the voxel V and the pixel or on the extension of the optical path, the pixel detects the bright brightness 1 of the other voxel V.

図4のステップS201に示すように、制御部40のCPU41は、カメラ10,20,30が撮像した画像から、複数のボクセルの内の一ボクセルに対応する各カメラ10,20,30の各撮像素子11,21,31の各明度を検出する。 As shown in step S201 of FIG. 4, the CPU 41 of the control unit 40 captures each of the cameras 10, 20, and 30 corresponding to one voxel among the plurality of voxels from the images captured by the cameras 10, 20, and 30. Each brightness of the elements 11, 1, 21 and 31 is detected.

CPU41がボクセルV1の明度を検出する場合について説明する。図2、図5に示すように、ボクセルV1は、ワイヤ53を含まないボクセルVである。対応するカメラ10,30の各撮像素子11,31の画素P11、P31は、画素P11,P31とボクセルV1との間にワイヤ53が存在しないので、ボクセルV1の暗い明度0を検出する。一方、対応するカメラ20の撮像素子21の画素P23はボクセルV1と画素P23との間にワイヤ53を含むボクセルV5が存在するので、ボクセルV1の暗い明度ではなく、ボクセルV5の明るい明度1を検出する。このため、CPU41は、図5に示すように、ボクセルV1に対応する3つの画素P11,P23,P31の明度を、それぞれ明度0,1,0と検出する。 A case where the CPU 41 detects the brightness of the voxel V1 will be described. As shown in FIGS. 2 and 5, the voxel V1 is a voxel V that does not include the wire 53. The pixels P11 and P31 of the image sensors 11 and 31 of the corresponding cameras 10 and 30 detect the dark brightness 0 of the voxel V1 because the wire 53 does not exist between the pixels P11 and P31 and the voxel V1. On the other hand, since the pixel P23 of the image sensor 21 of the corresponding camera 20 has the voxel V5 including the wire 53 between the voxel V1 and the pixel P23, the bright brightness 1 of the voxel V5 is detected instead of the dark brightness of the voxel V1. do. Therefore, as shown in FIG. 5, the CPU 41 detects the brightness of the three pixels P11, P23, and P31 corresponding to the voxel V1 as brightness 0, 1, 0, respectively.

次にCPU41は、図4のステップS202に進んで、各カメラ10,20,30が検出した各明度の内で一番小さいものをそのボクセルVの最小明度として特定する。ボクセルV1では、検出した明度は、0,1,0であるから、最小明度は0と特定する。 Next, the CPU 41 proceeds to step S202 of FIG. 4, and identifies the smallest of the lightnesses detected by the cameras 10, 20, and 30 as the minimum lightness of the voxel V. In voxel V1, the detected brightness is 0, 1, 0, so the minimum brightness is specified as 0.

そして、CPU41は、図4のステップS203に進んで、特定した最小明度が所定の閾値よりも大きい場合に、そのボクセルは対象物であるワイヤ53を含む特定ボクセルと特定する。閾値は、0よりも大きい所定の値とすることができ、例えば、1としてもよい。ボクセルV1の場合は、最小明度が0であるから、CPU41は、ボクセルV1を特定ボクセルと特定せずに図4のステップS204に進み、y=y1の面に中心がある全てのボクセルVについてステップS201〜S203の処理を行ったかどうか判断し、NOの場合、ステップS201に戻って次のボクセルVについてステップS201〜S203の処理を行う。 Then, the CPU 41 proceeds to step S203 of FIG. 4, and when the specified minimum brightness is larger than a predetermined threshold value, the voxel is specified as a specific voxel including the wire 53 which is an object. The threshold value can be a predetermined value larger than 0, and may be 1, for example. In the case of voxel V1, since the minimum brightness is 0, the CPU 41 proceeds to step S204 of FIG. 4 without specifying voxel V1 as a specific voxel, and steps for all voxels V centered on the plane of y = y1. It is determined whether or not the processes of S201 to S203 have been performed, and if NO, the process returns to step S201 and the processes of steps S201 to S203 are performed for the next voxel V.

CPU41は、ボクセルV1の処理を行った後、図4のステップS204でNOと判断して図4のステップS201に戻り、ボクセルV2についてステップS201〜S203の処理を行う。 After processing the voxel V1, the CPU 41 determines NO in step S204 of FIG. 4, returns to step S201 of FIG. 4, and performs the processing of steps S201 to S203 for voxel V2.

CPU41は、図5に示すように、ボクセルV1と同様に、ボクセルV2に対応する3つの画素P12,P24,P32の明度を検出する。この場合、ボクセルV2と画素P12の間にはワイヤ53を含むボクセルV5が位置しているので、画素P12は明度1を検出する。従って、CPU41は、ボクセルV2に対応する3つの画素P12,P24,P32の明度を1,0,0と検出する。そして、CPU41は、ステップS202でボクセルV2の最小明度を0と特定し、ステップS203でボクセルV2を特定ボクセルと特定せずに図4のステップS204に進み、ボクセルV3の処理をおこなう。 As shown in FIG. 5, the CPU 41 detects the brightness of the three pixels P12, P24, and P32 corresponding to the voxel V2, similarly to the voxel V1. In this case, since the voxel V5 including the wire 53 is located between the voxel V2 and the pixel P12, the pixel P12 detects the brightness 1. Therefore, the CPU 41 detects the brightness of the three pixels P12, P24, and P32 corresponding to the voxel V2 as 1,0,0. Then, the CPU 41 specifies the minimum brightness of the voxel V2 as 0 in step S202, proceeds to step S204 of FIG. 4 without specifying the voxel V2 as a specific voxel in step S203, and processes the voxel V3.

以下、同様にCPU41は、図5に示すように、ボクセルV3〜V4について各画素の明度を特定し、最小明度を0と特定し、ボクセルV3〜V4を特定ボクセルとしない。 Hereinafter, similarly, as shown in FIG. 5, the CPU 41 specifies the brightness of each pixel for the voxels V3 to V4, specifies the minimum brightness as 0, and does not use the voxels V3 to V4 as the specific voxels.

CPU41は、ボクセルV5に対応する各画素P12,P23,P33の各明度を検出する。ボクセルV5はワイヤ53をそれぞれ含むボクセルVであるから、各カメラ10,20,30のいずれの撮像素子11,21,31の対応する画素P12,P23,P33も明るい明度1を検出する。従って、CPU41は、ボクセルV5の最小明度を1と特定し、ボクセルV5を特定ボクセルに特定してボクセルV6の処理に進む。 The CPU 41 detects the brightness of each pixel P12, P23, and P33 corresponding to the voxel V5. Since the voxel V5 is a voxel V including the wire 53, the corresponding pixels P12, P23, and P33 of the image pickup elements 11 and 21, 31 of each of the cameras 10, 20, and 30 also detect the bright brightness 1. Therefore, the CPU 41 specifies the minimum brightness of the voxel V5 as 1, identifies the voxel V5 as the specific voxel, and proceeds to the process of the voxel V6.

図5に示すように、CPU41は、ステップS201でボクセルV6に対応する各画素の各明度をそれぞれ、0,0,0と特定する。そして、CPU41はステップS202でボクセルV6の最小明度を0と特定し、ボクセルV6を特定ボクセルとせずにボクセルV7の処理に進む。 As shown in FIG. 5, the CPU 41 specifies the brightness of each pixel corresponding to the voxel V6 as 0, 0, 0 in step S201, respectively. Then, the CPU 41 specifies the minimum brightness of the voxel V6 as 0 in step S202, and proceeds to the process of the voxel V7 without setting the voxel V6 as the specific voxel.

ボクセルV7はボクセルV7とカメラ30の対応する画素P33との間の光路の延長線上にワイヤ53が位置している。このため、CPU41は、ボクセルV7に対応する各画素P11,P21,P31をそれぞれ0,0,1と特定する。そして、CPU41は、ボクセルV7の最小明度を0と特定し、ボクセルV7を特定ボクセルとせずにボクセルV8,V9の処理に進む。 In the voxel V7, the wire 53 is located on the extension line of the optical path between the voxel V7 and the corresponding pixel P33 of the camera 30. Therefore, the CPU 41 specifies the pixels P11, P21, and P31 corresponding to the voxel V7 as 0, 0, 1, respectively. Then, the CPU 41 specifies the minimum brightness of the voxel V7 as 0, and proceeds to the processing of the voxels V8 and V9 without setting the voxel V7 as the specific voxel.

ボクセルV7と同様、CPU41は、ボクセルV8,V9の対応する画素の明度をそれぞれ、1,0,0、及び、0,1,0と検出し、各最小明度を0と特定し、ボクセルV8,V9を特定ボクセルとしないで図4のステップS204に進み、ステップS204でYESと判断して図3のステップS103に示す対象物を含む特定するボクセルを特定する処理を終了する。 Similar to voxel V7, the CPU 41 detects the brightness of the corresponding pixels of voxels V8 and V9 as 1,0,0 and 0,1,0, respectively, specifies each minimum brightness as 0, and voxel V8, The process proceeds to step S204 of FIG. 4 without using V9 as the specific voxel, and a determination of YES in step S204 ends the process of identifying the voxel to be specified including the object shown in step S103 of FIG.

この処理により、CPU41は、図5に示すようにy=y1の平面に座標中心にある9つのボクセルV1〜V9の内でワイヤ53を含むボクセルV5のみを特定ボクセルとして特定する。 By this process, as shown in FIG. 5, the CPU 41 identifies only the voxels V5 including the wire 53 among the nine voxels V1 to V9 at the coordinate center on the plane of y = y1 as the specific voxels.

CPU41はyをΔyずつ変化させて、ボクセルVが存在する全ての空間で図3のステップS103の処理を実行したら、図3のステップS104でYESと判断して図3のステップS106に進んで各平面における特定ボクセルを接続することにより、ワイヤ53の三次元画像を生成する。 The CPU 41 changes y by Δy, executes the process of step S103 of FIG. 3 in all the spaces where the voxel V exists, determines YES in step S104 of FIG. 3, and proceeds to step S106 of FIG. By connecting specific voxels in a plane, a three-dimensional image of the wire 53 is generated.

このように、実施形態の三次元画像生成方法は、対象物を含む空間内に複数のボクセルVを設定し、複数のボクセルVを異なる角度から複数のカメラ10,20,30で撮像した場合、対象物を含むボクセルVに対応する各カメラ10,20,30の各画素が検出する明度は対象物による反射により全て明るい明度1となり、そのボクセルVの最小明度は1となる。一方、対象物が存在しないボクセルVに対応する各カメラ10,20,30の各画素が検出する明度の少なくとも1つが暗い明度0となり、そのボクセルVの最小明度は0となる。これにより、最小明度が1となる場合にそのボクセルVを対象物を含む特定ボクセルに特定し、その特定ボクセルを接続して対象物の三次元画像を生成するものである。 As described above, in the three-dimensional image generation method of the embodiment, when a plurality of voxels V are set in a space including an object and a plurality of voxels V are imaged from different angles by a plurality of cameras 10, 20, 30. The brightness detected by each pixel of each of the cameras 10, 20, and 30 corresponding to the voxel V including the object becomes a bright brightness 1 due to the reflection by the object, and the minimum brightness of the voxel V becomes 1. On the other hand, at least one of the lightness detected by each pixel of each of the cameras 10, 20, and 30 corresponding to the voxel V in which the object does not exist becomes a dark lightness 0, and the minimum lightness of the voxel V becomes 0. As a result, when the minimum brightness becomes 1, the voxel V is specified as a specific voxel including the object, and the specific voxel is connected to generate a three-dimensional image of the object.

以上説明したように、実施形態の三次元画像生成装置100は、複数のカメラ10,20,30で撮影した画像を処理して三次元画像を生成するので、光学系の合焦高さを変化させる等のハードウェアの動作を伴わずに三次元画像を生成することができ、短時間でワイヤ53等の対象物の三次元画像の生成を行うことができる。 As described above, the three-dimensional image generation device 100 of the embodiment processes the images captured by the plurality of cameras 10, 20, and 30 to generate a three-dimensional image, so that the focusing height of the optical system is changed. It is possible to generate a three-dimensional image without any hardware operation such as making the wire 53, and it is possible to generate a three-dimensional image of an object such as a wire 53 in a short time.

10,20,30 カメラ、10a,20a,30a 光軸、11,21,31 撮像素子、40 制御部、41 CPU、42 メモリ、45 光源、51,52 電極、53 ワイヤ、100 三次元画像生成装置。 10, 20, 30 camera, 10a, 20a, 30a optical axis, 11,21,31 image sensor, 40 control unit, 41 CPU, 42 memory, 45 light source, 51, 52 electrodes, 53 wires, 100 3D image generator ..

Claims (4)

三次元画像生成装置であって、
撮像素子を用いた複数のカメラと、
前記カメラが撮像した各画像を処理する制御部と、を備え、
前記制御部は、
対象物を含む空間内に複数のボクセルを設定し、
複数の前記カメラで複数の方向から複数のボクセルを撮像し、
(a)複数のボクセルの内の一ボクセルに対応する各前記カメラの各前記撮像素子の各明度を検出し、
(b)各前記カメラが検出した各明度の内で一番小さいものを前記一ボクセルの最小明度として特定し、
(c)特定した最小明度が所定の閾値以上の場合に、前記一ボクセルを前記対象物を含む特定ボクセルとして特定し、
前記(a)〜(c)の動作を複数のボクセル全てについて繰り返し実行し、
(c)で特定した複数の特定ボクセルを接続して前記対象物の三次元画像を生成すること、
を特徴とする三次元画像生成装置。
It is a three-dimensional image generator,
Multiple cameras using an image sensor and
A control unit that processes each image captured by the camera is provided.
The control unit
Set multiple voxels in the space containing the object,
Multiple voxels are imaged from multiple directions with the plurality of cameras.
(A) Detecting each brightness of each image sensor of each camera corresponding to one voxel among a plurality of voxels,
(B) The smallest of the brightness detected by each camera is specified as the minimum brightness of the one voxel.
(C) When the specified minimum brightness is equal to or higher than a predetermined threshold value, the one voxel is specified as a specific voxel containing the object.
The operations (a) to (c) are repeatedly executed for all of the plurality of voxels, and the operations are repeatedly executed.
To generate a three-dimensional image of the object by connecting a plurality of specific voxels specified in (c).
A three-dimensional image generator characterized by.
三次元画像生成方法であって、
撮像素子を用いた複数のカメラを準備し、
対象物を含む空間内に複数のボクセルを設定し、
複数の前記カメラで複数の方向から複数のボクセルを撮像し、
(a)複数のボクセルの内の一ボクセルに対応する各前記カメラの各前記撮像素子の各明度を検出し、
(b)各前記カメラが検出した各明度の内で一番小さいものを前記一ボクセルの最小明度として特定し、
(c)特定した最小明度が所定の閾値以上の場合に、前記一ボクセルを前記対象物を含む特定ボクセルとして特定し、
前記(a)〜(c)の動作を複数のボクセル全てについて繰り返し実行し、
(c)で特定した複数の特定ボクセルを接続して前記対象物の三次元画像を生成すること、
を特徴とする三次元画像生成方法。
It is a three-dimensional image generation method.
Prepare multiple cameras using the image sensor,
Set multiple voxels in the space containing the object,
Multiple voxels are imaged from multiple directions with the plurality of cameras.
(A) Detecting each brightness of each image sensor of each camera corresponding to one voxel among a plurality of voxels,
(B) The smallest of the brightness detected by each camera is specified as the minimum brightness of the one voxel.
(C) When the specified minimum brightness is equal to or higher than a predetermined threshold value, the one voxel is specified as a specific voxel containing the object.
The operations (a) to (c) are repeatedly executed for all of the plurality of voxels, and the operations are repeatedly executed.
To generate a three-dimensional image of the object by connecting a plurality of specific voxels specified in (c).
A three-dimensional image generation method characterized by.
請求項2に記載の三次元画像生成方法であって、
前記対象物を上方から照明し、
複数の前記カメラは、前記対象物の上方に設定すること、
を特徴とする三次元画像生成方法。
The three-dimensional image generation method according to claim 2.
Illuminate the object from above
The plurality of the cameras should be set above the object.
A three-dimensional image generation method characterized by.
請求項2又は3に記載の三次元画像生成方法であって、
前記対象物は、半導体素子の電極と基板の電極、又は、前記半導体素子の一の電極と前記半導体素子の他の電極とを接続するワイヤであること、
を特徴とする三次元画像生成方法。
The three-dimensional image generation method according to claim 2 or 3.
The object is a wire that connects an electrode of a semiconductor element and an electrode of a substrate, or one electrode of the semiconductor element and another electrode of the semiconductor element.
A three-dimensional image generation method characterized by.
JP2020012709A 2020-01-29 2020-01-29 Three-dimensional image generation device and three-dimensional image generation method Active JP7450245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012709A JP7450245B2 (en) 2020-01-29 2020-01-29 Three-dimensional image generation device and three-dimensional image generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012709A JP7450245B2 (en) 2020-01-29 2020-01-29 Three-dimensional image generation device and three-dimensional image generation method

Publications (3)

Publication Number Publication Date
JP2021117909A true JP2021117909A (en) 2021-08-10
JP2021117909A5 JP2021117909A5 (en) 2023-01-24
JP7450245B2 JP7450245B2 (en) 2024-03-15

Family

ID=77175009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012709A Active JP7450245B2 (en) 2020-01-29 2020-01-29 Three-dimensional image generation device and three-dimensional image generation method

Country Status (1)

Country Link
JP (1) JP7450245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450245B2 (en) 2020-01-29 2024-03-15 ヤマハロボティクスホールディングス株式会社 Three-dimensional image generation device and three-dimensional image generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732506B (en) 2019-04-22 2021-07-01 日商新川股份有限公司 Line shape measuring device, line three-dimensional image generating method, and line shape measuring method
JP7450245B2 (en) 2020-01-29 2024-03-15 ヤマハロボティクスホールディングス株式会社 Three-dimensional image generation device and three-dimensional image generation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450245B2 (en) 2020-01-29 2024-03-15 ヤマハロボティクスホールディングス株式会社 Three-dimensional image generation device and three-dimensional image generation method

Also Published As

Publication number Publication date
JP7450245B2 (en) 2024-03-15

Similar Documents

Publication Publication Date Title
US11900586B2 (en) Hot spot defect detecting method and hot spot defect detecting system
EP0041870B1 (en) Pattern position recognition apparatus
EP3709266A1 (en) Human-tracking methods, apparatuses, systems, and storage media
JP2007129709A (en) Method for calibrating imaging device, method for calibrating imaging system including arrangement of imaging devices, and imaging system
CN101877764A (en) Camera system and method for carrying out assisted drawing by utilizing same
WO2022126870A1 (en) Three-dimensional imaging method and method based on light field camera and three-dimensional imaging measuring production line
JP2021117909A (en) Three-dimensional image generation device and three-dimensional image generation method
KR20200096426A (en) Moving body detecting device, moving body detecting method, and moving body detecting program
WO2023007657A1 (en) Three-dimensional image generation device and three-dimensional image generation method
JP2023169254A (en) Imaging element, operating method for the same, program, and imaging system
JP6433810B2 (en) Bonding wire detection method and bonding wire detection device
JP2021022637A (en) Inspection equipment of bonding wire, inspection method of bonding wire, and inspection program of bonding wire
JP2014062837A (en) Defect inspection device and defect reviewing device
CN110780982A (en) Image processing method, device and equipment
TWI794909B (en) Three-dimensional image generation device and three-dimensional image generation method
CN115082552A (en) Marking hole positioning method and device, assembly equipment and storage medium
JP2023535005A (en) Method and system or apparatus for recognizing objects in electronic images
JPS6354680A (en) Position detector
JP2020150093A (en) Wire shape detector of bonding wire and wire shape detection method
WO2023163219A1 (en) Information processing device, robot control system, and program
WO2023174068A1 (en) Data acquisition method and apparatus, device, and system
WO2021192371A1 (en) Image processing system and computer program
US20220414916A1 (en) Systems and methods for assigning a symbol to an object
JPH04242950A (en) Pattern recognition
JPH0617776B2 (en) Bonding wire inspection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7450245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150