JP2021114975A - Recombinant protein and method for producing the same - Google Patents

Recombinant protein and method for producing the same Download PDF

Info

Publication number
JP2021114975A
JP2021114975A JP2020012371A JP2020012371A JP2021114975A JP 2021114975 A JP2021114975 A JP 2021114975A JP 2020012371 A JP2020012371 A JP 2020012371A JP 2020012371 A JP2020012371 A JP 2020012371A JP 2021114975 A JP2021114975 A JP 2021114975A
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
recombinant protein
protein
bfgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020012371A
Other languages
Japanese (ja)
Inventor
一弥 枝村
Kazuya Edamura
一弥 枝村
孝典 石井
Takanori Ishii
孝典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
CellFree Sciences Co Ltd
Original Assignee
Nihon University
CellFree Sciences Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, CellFree Sciences Co Ltd filed Critical Nihon University
Priority to JP2020012371A priority Critical patent/JP2021114975A/en
Publication of JP2021114975A publication Critical patent/JP2021114975A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a recombinant protein having functions as a canine basic fibroblast growth factor, from which harmful substances such as endotoxin are removed.SOLUTION: The present disclosure provides a method for producing a recombinant protein that comprises a specific amino acid sequence and has a growth stimulation action on a canine fibroblast, by a wheat germ acellular protein synthesis system. There is also provided a recombinant protein obtained by the method.SELECTED DRAWING: None

Description

本発明は、組換えタンパク質及びその製造方法に関する。 The present invention relates to a recombinant protein and a method for producing the same.

塩基性線維芽細胞増殖因子(bFGF、FGF−2)は、FGFファミリーに属し、人体に広く分布する血管新生因子である。bFGFは、血管新生(angiogenesis)及び動脈形成(arteriogenesis)を促進する機能を有し、神経や骨の形成にも関与していることが知られている。さらに、近年、bFGFが、ヒト人工多能性幹細胞等の多能性幹細胞の未分化状態の維持に必要な因子であることが明らかとなっている。 Basic fibroblast growth factor (bFGF, FGF-2) is an angiogenic factor that belongs to the FGF family and is widely distributed in the human body. bFGF has a function of promoting angiogenesis and arteriogenesis, and is known to be involved in the formation of nerves and bones. Furthermore, in recent years, it has become clear that bFGF is a factor necessary for maintaining the undifferentiated state of pluripotent stem cells such as human induced pluripotent stem cells.

骨の再生医療においては、骨癒合の促進を目的として遺伝子組換えヒトbFGF(rh−bFGF)を用いた治療が実施されており、イヌでも同様に、rh−bFGFの有効性が示されている(例えば、非特許文献1〜2参照)。しかしながら、イヌにおけるbFGFによる治療を展開する場合には、遺伝子組換えイヌbFGF(rc−bFGF)を用いることが望ましいと考えられている。そのため、rc−bFGFの作製が世界の多くの研究施設で試みられているが、そのほとんどは大腸菌を用いた手法である。 In bone regenerative medicine, treatment using transgenic human bFGF (rh-bFGF) has been carried out for the purpose of promoting bone union, and the effectiveness of rh-bFGF has also been shown in dogs as well. (See, for example, Non-Patent Documents 1 and 2). However, it is considered desirable to use recombinant canine bFGF (rc-bFGF) when developing treatment with bFGF in dogs. Therefore, the production of rc-bFGF has been attempted at many research facilities in the world, but most of them are methods using Escherichia coli.

Nakamura T et al., “Recombinant Human Basic Fibroblast Growth Factor Accelerates Fracture Healing by Enhancing Callus Remodeling in Experimental Dog Tibial Fracture.”, JOURNAL OF BONE AND MINERAL RESEARCH, Vol. 13, No. 6, pp. 942-949, 1998.Nakamura T et al., “Recombinant Human Basic Fibroblast Growth Factor Accelerates Fracture Healing by Enhancing Callus Remodeling in Experimental Dog Tibial Fracture.”, JOURNAL OF BONE AND MINERAL RESEARCH, Vol. 13, No. 6, pp. 942-949, 1998 .. Honnami M, et al., “Bone Regeneration by the Combined Use of Tetrapod-Shaped Calcium Phosphate Granules with Basic Fibroblast Growth Factor-Binding Ion Complex Gel in Canine Segmental Radial Defects.”, J. Vet. Med. Sci., Vol. 76, No.7, pp. 955-961, 2014.Honnami M, et al., “Bone Regeneration by the Combined Use of Tetrapod-Shaped Calcium Phosphate Granules with Basic Fibroblast Growth Factor-Binding Ion Complex Gel in Canine Segmental Radial Defects.”, J. Vet. Med. Sci., Vol. 76, No.7, pp. 955-961, 2014.

しかしながら、rc−bFGFによるサイトカイン療法を臨床応用するためには、大腸菌を用いた従来の方法では、得られた組換えタンパク質からエンドトキシン等の有害物質を完全に排除することが難しく、さらに、bFGFとしての各種機能を保持したものを精製することは困難なことが多い。 However, in order to clinically apply cytokine therapy using rc-bFGF, it is difficult to completely eliminate harmful substances such as endotoxin from the obtained recombinant protein by the conventional method using Escherichia coli, and further, as bFGF. It is often difficult to purify a product that retains the various functions of.

本発明は、上記事情に鑑みてなされたものであって、イヌ塩基性線維芽細胞増殖因子としての機能を有する組換えタンパク質及びその製造方法を提供する。 The present invention has been made in view of the above circumstances, and provides a recombinant protein having a function as a canine basic fibroblast growth factor and a method for producing the same.

すなわち、本発明は、以下の態様を含む。
(1) 以下の(a)〜(c)のいずれかのアミノ酸配列からなり、イヌ線維芽細胞に対する増殖促進能を有し、且つ、コムギ胚芽無細胞タンパク質合成系による合成物である、組換えタンパク質。
(a)配列番号1に示されるアミノ酸配列;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列との同一性が98%以上であるアミノ酸配列
(2) 以下の(a)〜(c)のいずれかのアミノ酸配列からなり、イヌ線維芽細胞に対する増殖促進能を有する組換えタンパク質の製造方法であって、
コムギ胚芽無細胞タンパク質合成系を用いて前記組換えタンパク質を合成する、製造方法。
(a)配列番号1に示されるアミノ酸配列;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列との同一性が98%以上であるアミノ酸配列
(3) 前記合成後の前記組換えタンパク質は、そのN末端又はC末端にヒスチジンタグが結合されており、前記合成後の前記組換えタンパク質を、前記ヒスチジンタグを利用して精製する、(2)に記載の製造方法。
That is, the present invention includes the following aspects.
(1) Recombinant consisting of any of the following amino acid sequences (a) to (c), having a growth-promoting ability for canine fibroblasts, and being a compound by a wheat germ cell-free protein synthesis system. protein.
(A) Amino acid sequence shown in SEQ ID NO: 1;
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) Amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1 (2) Proliferation against canine fibroblasts consisting of any of the following amino acid sequences (a) to (c) A method for producing a recombinant protein having a facilitating ability.
A production method for synthesizing the recombinant protein using a wheat germ cell-free protein synthesis system.
(A) Amino acid sequence shown in SEQ ID NO: 1;
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) Amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1 (3) The synthesized recombinant protein has a histidine tag attached to its N-terminal or C-terminal. The production method according to (2), wherein the synthesized recombinant protein is purified using the histidine tag.

上記態様の組換えタンパク質及びその製造方法によれば、イヌ塩基性線維芽細胞増殖因子としての機能を有する組換えタンパク質及びその製造方法を提供することができる。得られた組換えタンパク質は、サイトカイン療法等のイヌの再生医療に用いることができる。 According to the recombinant protein of the above aspect and the method for producing the same, it is possible to provide the recombinant protein having a function as a canine basic fibroblast growth factor and the method for producing the same. The obtained recombinant protein can be used for canine regenerative medicine such as cytokine therapy.

実施例1における組換えイヌbFGFを添加したHEK293細胞でのpErkの発現を確認した結果を示す画像である。It is an image which shows the result of confirming the expression of pErk in the HEK293 cell which added the recombinant dog bFGF in Example 1. 実施例1における組換えイヌbFGFを添加して培養した線維芽細胞の様子を示す画像である。スケールバーは、500μmを示す。It is an image which shows the state of the fibroblast which was cultured by adding the recombinant dog bFGF in Example 1. The scale bar indicates 500 μm. 実施例1における組換えイヌbFGF添加群又は無添加群での細胞数の変化を示すグラフである。3 is a graph showing changes in the number of cells in the recombinant dog bFGF-added group or the non-added group in Example 1.

以下、本発明の一実施形態(以下、「本実施形態」と略記する)に係る組換えタンパク質及びその製造方法について、詳細を説明する。 Hereinafter, the recombinant protein according to one embodiment of the present invention (hereinafter, abbreviated as “the present embodiment”) and the method for producing the same will be described in detail.

≪組換えタンパク質≫
本実施形態の組換えタンパク質は、以下の(a)〜(c)のいずれかのアミノ酸配列からなり、イヌ線維芽細胞に対する増殖促進能を有し、且つ、コムギ胚芽無細胞タンパク質合成系による合成物である。
(a)配列番号1に示されるアミノ酸配列;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列との同一性が98%以上であるアミノ酸配列
≪Recombinant protein≫
The recombinant protein of the present embodiment comprises any of the following amino acid sequences (a) to (c), has a proliferative ability for canine fibroblasts, and is synthesized by a wheat germ cell-free protein synthesis system. It is a thing.
(A) Amino acid sequence shown in SEQ ID NO: 1;
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) An amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1.

従来の大腸菌等の遺伝子組換え生物を用いた合成方法では、遺伝子組換え生物に由来する有害物質や夾雑物を完全に排除することが難しく、また、充分なイヌbFGFとしての機能を有する組換えイヌbFGFの合成は困難であった。
これに対して、本実施形態の組換えタンパク質は、コムギ胚芽無細胞タンパク質合成系を用いることで、イヌ線維芽細胞に対する増殖促進能等のイヌbFGFとしての各機能を保持した組換えイヌbFGFを得ることができる。ここでいう「イヌ線維芽細胞に対する増殖促進能」とは、イヌ線維芽細胞の細胞増殖を促進する能力を意味する。具体的には、例えば、後述する実施例に示すように、1.5×10cellsのイヌ線維芽細胞をイヌbFGF無添加条件下で5日間培養した際の細胞増殖率(培養後の細胞数/培養前の細胞数×100)に対する、1.5×10cellsのイヌ線維芽細胞をイヌbFGF添加条件下で5日間培養した際の細胞増殖率が1.1倍以上、好ましくは1.2倍以上、より好ましくは1.5倍以上である場合に、当該イヌbFGFはイヌ線維芽細胞に対する増殖促進能を有すると評価することができる。
イヌbFGFとしての機能としては、イヌ線維芽細胞に対する増殖促進能に加えて、血管新生及び動脈形成を促進する機能、ERKの活性化能(ERKのリン酸化能)等のbFGFとして公知の機能が挙げられる。
It is difficult to completely eliminate harmful substances and impurities derived from genetically modified organisms by the conventional synthetic method using genetically modified organisms such as Escherichia coli, and the recombination has a sufficient function as a canine bFGF. Synthesis of canine bFGF was difficult.
On the other hand, the recombinant protein of the present embodiment is a recombinant dog bFGF that retains each function as a dog bFGF such as a growth promoting ability for canine fibroblasts by using a wheat germ cell-free protein synthesis system. Obtainable. The "proliferative ability of canine fibroblasts" as used herein means the ability of canine fibroblasts to promote cell proliferation. Specifically, for example, as shown in Examples described later , the cell proliferation rate (cells after culture) when 1.5 × 10 4 cells of canine fibroblasts were cultured for 5 days under the condition of no addition of canine bFGF. The cell proliferation rate when 1.5 × 10 4 cells of canine fibroblasts were cultured for 5 days under the condition of adding canine bFGF to the number / number of cells before culture × 100) was 1.1 times or more, preferably 1. When it is 2 times or more, more preferably 1.5 times or more, it can be evaluated that the dog bFGF has a proliferation promoting ability for dog fibroblasts.
In addition to the ability to promote proliferation of canine fibroblasts, the functions of canine bFGF include functions known as bFGF such as angiogenesis and angiogenesis and ERK activation ability (ERK phosphorylation ability). Can be mentioned.

本実施形態の組換えタンパク質は、以下の(a)のアミノ酸配列からなる。
(a)配列番号1に示されるアミノ酸配列
The recombinant protein of the present embodiment consists of the following amino acid sequence (a).
(A) Amino acid sequence shown in SEQ ID NO: 1.

配列番号1に示されるアミノ酸配列は、イヌbFGFのアミノ酸配列であり、Genbankのアクセッション番号:XP_003432529として開示されている。 The amino acid sequence shown in SEQ ID NO: 1 is the amino acid sequence of canine bFGF and is disclosed as Genbank accession number: XP_003432529.

本実施形態の組換えタンパク質は、前記(a)のアミノ酸配列からなるタンパク質と機能的に同等なタンパク質として、以下の(b)又は(c)のアミノ酸配列からなるタンパク質であってもよい。
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列と同一性が98%以上であるアミノ酸配列
The recombinant protein of the present embodiment may be a protein having the following amino acid sequence (b) or (c) as a protein functionally equivalent to the protein having the amino acid sequence of (a).
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) An amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1.

前記(b)のアミノ酸配列において、欠失、置換、若しくは付加されてもよいアミノ酸の数としては、1個以上3個以下が好ましく、1個以上2個以下がより好ましく、1個がさらに好ましい。 In the amino acid sequence of (b), the number of amino acids that may be deleted, substituted, or added is preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, and even more preferably 1. ..

なお、ここでいう「置換」は、化学的に同様な側鎖を有する他のアミノ酸残基で置換することが好ましい。化学的に同様なアミノ酸側鎖を有するアミノ酸残基のグループは、本実施形態の組換えタンパク質の属する技術分野でよく知られている。例えば、酸性アミノ酸(アスパラギン酸及びグルタミン酸)、塩基性アミノ酸(リシン、アルギニン及びヒスチジン)、中性アミノ酸においては、炭化水素鎖を持つアミノ酸(グリシン、アラニン、バリン、ロイシン、イソロイシン及びプロリン)、ヒドロキシ基を持つアミノ酸(セリン及びトレオニン)、硫黄を含むアミノ酸(システイン及びメチオニン)、アミド基を持つアミノ酸(アスパラギン及びグルタミン)、イミノ基を持つアミノ酸(プロリン)、芳香族基を持つアミノ酸(フェニルアラニン、チロシン及びトリプトファン)等で分類することができる。一般的に起こり得るアミノ酸の置換としては、例えば、アラニン/セリン、バリン/イソロイシン、アスパラギン酸/グルタミン酸、トレオニン/セリン、アラニン/グリシン、アラニン/トレオニン、セリン/アスパラギン、アラニン/バリン、セリン/グリシン、チロシン/フェニルアラニン、アラニン/プロリン、リシン/アルギニン、アスパラギン酸/アスパラギン、ロイシン/イソロイシン、ロイシン/バリン、アラニン/グルタミン酸、アスパラギン酸/グリシン等が挙げられる。 The "substitution" referred to here is preferably substituted with another amino acid residue having a chemically similar side chain. A group of amino acid residues having chemically similar amino acid side chains is well known in the art to which the recombinant protein of this embodiment belongs. For example, acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine and histidine), neutral amino acids, amino acids having a hydrocarbon chain (glycine, alanine, valine, leucine, isoleucine and proline), hydroxy groups. Amino acids with (serine and threonine), amino acids containing sulfur (cysteine and methionine), amino acids with amide groups (asparagin and glutamine), amino acids with imino groups (proline), amino acids with aromatic groups (phenylalanine, tyrosine and It can be classified by tryptophan) and the like. Commonly possible amino acid substitutions include, for example, alanine / serine, valine / isoleucine, aspartic acid / glutamic acid, threonine / serine, alanine / glycine, alanin / threonine, serine / asparagine, alanin / valine, serine / glycine, Examples thereof include tyrosine / phenylalanine, alanine / proline, lysine / arginine, aspartic acid / aspartic acid, leucine / isoleucine, leucine / valine, alanine / glutamic acid, aspartic acid / glycine and the like.

前記(c)のアミノ酸配列からなるタンパク質は、前記(a)のアミノ酸配列からなるタンパク質と機能的に同等なタンパク質であるためには98%以上の配列同一性を有する。係る配列同一性としては、98.5%以上が好ましく、99%以上がより好ましく、99.5%以上がさらに好ましく、99.7%以上が特に好ましく、99.9%以上が最も好ましい。 The protein consisting of the amino acid sequence of (c) has 98% or more sequence identity in order to be a protein functionally equivalent to the protein consisting of the amino acid sequence of (a). The sequence identity is preferably 98.5% or more, more preferably 99% or more, further preferably 99.5% or more, particularly preferably 99.7% or more, and most preferably 99.9% or more.

ここで、基準アミノ酸配列に対する、対象アミノ酸配列の配列同一性は、例えば次のようにして求めることができる。まず、基準アミノ酸配列及び対象アミノ酸配列をアラインメントする。ここで、各アミノ酸配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準アミノ酸配列及び対象アミノ酸配列において、一致したアミノ酸の数を算出し、下記式にしたがって、配列同一性を求めることができる。 Here, the sequence identity of the target amino acid sequence with respect to the reference amino acid sequence can be obtained, for example, as follows. First, the reference amino acid sequence and the target amino acid sequence are aligned. Here, each amino acid sequence may include a gap so as to maximize the sequence identity. Subsequently, the number of matching amino acids in the reference amino acid sequence and the target amino acid sequence can be calculated, and the sequence identity can be determined according to the following formula.

「配列同一性(%)」 = [一致したアミノ酸の数]/[対象アミノ酸配列のアミノ酸の総数]×100 "Sequence identity (%)" = [Number of matched amino acids] / [Total number of amino acids in the target amino acid sequence] x 100

なお、前記(b)又は前記(c)のアミノ酸配列からなるタンパク質は、イヌ線維芽細胞に対する増殖促進能を有することを要する。 The protein consisting of the amino acid sequence of (b) or (c) is required to have a proliferative ability for canine fibroblasts.

≪組換えタンパク質の製造方法≫
本実施形態の組換えタンパク質は、前記(a)〜(c)のいずれかのアミノ酸配列からなるタンパク質であって、コムギ胚芽無細胞タンパク質合成系により合成されてなるものである。すなわち、本実施形態の組換えタンパク質の製造方法(以下、単に「本実施形態の製造方法」と称する場合がある)では、コムギ胚芽無細胞タンパク質合成系を用いて前記組換えタンパク質を合成する。
≪Production method of recombinant protein≫
The recombinant protein of the present embodiment is a protein consisting of any of the amino acid sequences (a) to (c) above, and is synthesized by a wheat germ cell-free protein synthesis system. That is, in the method for producing a recombinant protein of the present embodiment (hereinafter, may be simply referred to as "the method for producing the present embodiment"), the recombinant protein is synthesized using a wheat germ cell-free protein synthesis system.

次いで、コムギ胚芽無細胞タンパク質合成系を用いる本実施形態の製造方法について、以下に詳細を説明する。 Next, the production method of the present embodiment using the wheat germ cell-free protein synthesis system will be described in detail below.

本実施形態の製造方法は、例えば、以下の1)〜3)の工程(以下、それぞれ「工程1)」、「工程2)」及び「工程3)」と称する場合がある)を含む。
1)転写鋳型を調製する工程;
2)転写反応溶液と転写鋳型を混合し、転写反応を行う工程;
3)転写反応産物であるmRNAを含む転写溶液を、タンパク質合成用コムギ胚芽由来の細胞抽出液に添加して、翻訳反応溶液を調製させた後、翻訳反応基質溶液を当該翻訳反応溶液に重層させて、翻訳反応を行う工程。
The manufacturing method of the present embodiment includes, for example, the following steps 1) to 3) (hereinafter, may be referred to as "step 1)", "step 2)", and "step 3)", respectively).
1) Step of preparing a transfer template;
2) A step of mixing a transfer reaction solution and a transfer template to carry out a transfer reaction;
3) A transcription solution containing mRNA, which is a transcription reaction product, is added to a cell extract derived from wheat germ for protein synthesis to prepare a translation reaction solution, and then the translation reaction substrate solution is layered on the translation reaction solution. The process of performing a translation reaction.

<工程1)>
本明細書において「転写鋳型」とは、インビトロ転写反応の鋳型分子として使用し得る核酸を意味し、適当なプロモーター配列の下流に上記組換えタンパク質をコードする塩基配列を少なくとも有する。適当なプロモーター配列とは、転写反応において使用されるRNAポリメラーゼが認識し得るプロモーター配列をいい、例えば、SP6プロモーター、T7プロモーター等が挙げられる。上記組換えタンパク質をコードする塩基配列としては、例えば、配列番号2に示される塩基配列等が挙げられる。なお、配列番号2に示される塩基配列は、「(a)配列番号1に示されるアミノ酸配列」からなるタンパク質をコードするものである。
<Step 1)>
As used herein, the term "transcription template" means a nucleic acid that can be used as a template molecule for an in vitro transcription reaction, and has at least a base sequence encoding the recombinant protein downstream of an appropriate promoter sequence. The appropriate promoter sequence refers to a promoter sequence that can be recognized by RNA polymerase used in the transcription reaction, and examples thereof include SP6 promoter and T7 promoter. Examples of the base sequence encoding the recombinant protein include the base sequence shown in SEQ ID NO: 2. The base sequence shown in SEQ ID NO: 2 encodes a protein consisting of "(a) the amino acid sequence shown in SEQ ID NO: 1".

転写鋳型は、プロモーター配列と目的タンパク質をコードする塩基配列との間に翻訳効率を制御する活性を有する塩基配列(翻訳エンハンサー)を有することが好ましく、例えば、タバコモザイクウイルス由来のΩ配列等のRNAウイルス由来の5'非翻訳領域、コザック配列、ランダム核酸配列プールから選別した完全人工配列E01等を用いることができる。さらに、転写鋳型は、上記組換えタンパク質をコードする塩基配列の下流に転写ターミネーション領域等を含む3'非翻訳領域を含むことが好ましい。3'非翻訳領域としては、終止コドンより下流の約1.0kb以上約3.0kb以下程度が好ましく用いられる。3'非翻訳領域は例えば、天然のイヌbFGF遺伝子のものを用いることができるが、他の遺伝子のものを用いてもよい。 The transcription template preferably has a base sequence (translation enhancer) having an activity of controlling translation efficiency between the promoter sequence and the base sequence encoding the target protein, and for example, an RNA such as an Ω sequence derived from tobacco mosaic virus. A fully artificial sequence E01 selected from a 5'untranslated region derived from a virus, a Kozak sequence, a random nucleic acid sequence pool, or the like can be used. Further, the transcription template preferably contains a 3'untranslated region including a transcription termination region and the like downstream of the base sequence encoding the recombinant protein. As the 3'untranslated region, about 1.0 kb or more and about 3.0 kb or less downstream of the stop codon is preferably used. For the 3'untranslated region, for example, that of the natural canine bFGF gene can be used, but that of another gene may be used.

上記組換えタンパク質をコードするDNAをPCR法によって増幅及び合成した反応産物を精製することなくそのまま転写鋳型として用いることができる。
上記のようにして得られる転写鋳型DNAはクロロホルム抽出やアルコール沈殿により精製した後に転写反応に供してもよいが、本実施形態の製造方法では、PCR反応後の反応液をそのまま転写鋳型溶液として使用することが可能である。
The DNA encoding the recombinant protein can be used as it is as a transcription template without purifying the reaction product amplified and synthesized by the PCR method.
The transcription template DNA obtained as described above may be purified by chloroform extraction or alcohol precipitation and then subjected to a transcription reaction, but in the production method of the present embodiment, the reaction solution after the PCR reaction is used as it is as a transcription template solution. It is possible to do.

また、上記組換えタンパク質をコードするDNAは、例えば、発現ベクターに挿入された形態であってもよい。ここで用いられる発現ベクターとしては、用いる宿主や目的等に応じて適宜選択することができ、例えば、プラスミド、ファージベクター、ウイルスベクター等が挙げられる。例えば、宿主が大腸菌である場合には、コムギ無細胞タンパク質合成系で合成効率を最大限に発揮するために最適化された発現ベクターであるpEU等のプラスミドベクターを用いることができる。 Further, the DNA encoding the recombinant protein may be, for example, in a form inserted into an expression vector. The expression vector used here can be appropriately selected depending on the host to be used, the purpose, and the like, and examples thereof include a plasmid, a phage vector, and a viral vector. For example, when the host is Escherichia coli, a plasmid vector such as pEU, which is an expression vector optimized for maximizing the synthesis efficiency in a wheat cell-free protein synthesis system, can be used.

発現ベクターは、発現誘導可能なプロモーター、シグナル配列をコードする遺伝子、選択用マーカー遺伝子、ターミネーター等の因子を適宜有していてもよい。また、単離精製が容易になるように、チオレドキシン、ヒスチジン(His)タグ、GST(グルタチオンS−トランスフェラーゼ)等との融合タンパク質として発現する配列が付加されていてもよい。中でも、発現ベクターは、ヒスチジン(His)タグとの融合タンパク質として発現する配列が付加されていることが好ましい。 The expression vector may appropriately have factors such as a promoter capable of inducing expression, a gene encoding a signal sequence, a marker gene for selection, and a terminator. In addition, a sequence expressed as a fusion protein with thioredoxin, histidine (His) tag, GST (glutathione S-transferase), etc. may be added so as to facilitate isolation and purification. Above all, it is preferable that the expression vector is added with a sequence expressed as a fusion protein with a histidine (His) tag.

<工程2)>
工程1)で調製した転写鋳型DNAから、インビトロ転写反応により翻訳鋳型であるmRNAを生成させる。工程2)は、反応系(例えば、96穴タイタープレート等の市販の容器)に提供された転写鋳型を含む溶液と、転写鋳型中のプロモーターに適合するRNAポリメラーゼ(例えば、SP6 RNAポリメラーゼ等)やRNA合成用の基質(4種類のリボヌクレオシド3リン酸)等の転写反応に必要な成分を含む溶液(「転写反応用溶液」ともいう)とを混合した後、20℃以上60℃以下程度、好ましくは30℃以上42℃以下程度で約30分間以上16時間以下程度、好ましくは2時間以上10時間以下程度、該混合液をインキュベートすることにより行われる。
<Step 2)>
From the transcription template DNA prepared in step 1), mRNA, which is a translation template, is generated by an in vitro transcription reaction. In step 2), the solution containing the transfer template provided in the reaction system (for example, a commercially available container such as a 96-well titer plate), RNA polymerase compatible with the promoter in the transfer template (for example, SP6 RNA polymerase, etc.) and the like. After mixing with a solution containing components necessary for transcription reaction (also referred to as "transcription reaction solution") such as a substrate for RNA synthesis (4 types of ribonucleoside triphosphate), about 20 ° C. or higher and 60 ° C. or lower. It is preferably carried out by incubating the mixed solution at about 30 ° C. or higher and 42 ° C. or lower for about 30 minutes or more and 16 hours or less, preferably about 2 hours or more and 10 hours or less.

<工程3)>
工程2)で得られた転写溶液を、タンパク質合成用コムギ胚芽由来の細胞抽出液に直接添加する。ここで、直接添加とは、転写反応産物のmRNAを含む転写溶液に何ら精製工程を加えることなく、タンパク質合成用コムギ胚芽由来の細胞抽出液に添加することを意味する。また、ここで用いられるタンパク質合成用コムギ胚芽由来の細胞抽出液としては、翻訳鋳型を翻訳して該鋳型にコードされるタンパク質を生成させ得るものであれば如何なるものであってもよい。具体的には、市販のものを用いてもよく、既知の方法、具体的には、〔Madin K et al., “”, Proc Natl Acad Sci USA, Vol. 97, Issue 2, pp. 559-564, 2000.〕(参考文献1)や国際公開第00/68412号(参考文献2)に記載の方法等に準じて調製することもできる。
市販のタンパク質合成用コムギ胚芽由来の細胞抽出液としては、「WEPRO(登録商標、以下「登録商標」との記載を省略する)7240H Expression Kit」(商品名)(セルフリーサイエンス社製)に添付のもの(「WEPRO7240H」(商品名))等が挙げられる。さらに、調製されたタンパク質合成用コムギ胚芽由来の細胞抽出液である場合には、調製工程において混入した胚乳成分及び低分子のタンパク質合成阻害物質が実質的に除去されたコムギ種子胚芽抽出液が好適である。これらは従来のコムギ種子胚芽抽出液と比較して、抽出液中のタンパク質合成阻害に関与する成分及び物質が低減されているためである。
<Step 3)>
The transcription solution obtained in step 2) is directly added to the cell extract derived from wheat germ for protein synthesis. Here, direct addition means addition to a cell extract derived from wheat germ for protein synthesis without adding any purification step to the transcription solution containing mRNA of the transcription reaction product. Further, the cell extract derived from wheat germ for protein synthesis used here may be any cell extract as long as it can translate a translation template to produce a protein encoded by the template. Specifically, a commercially available product may be used, and a known method, specifically, [Madin K et al., “”, Proc Natl Acad Sci USA, Vol. 97, Issue 2, pp. 559- 564, 2000.] (Reference 1) and International Publication No. 00/68412 (Reference 2) can be used for preparation.
As a commercially available cell extract derived from wheat germ for protein synthesis, it is attached to "WEPRO (registered trademark, hereinafter the description of" registered trademark "is omitted) 7240H Expression Kit" (trade name) (manufactured by CellFree Sciences). ("WEPRO7240H" (trade name)) and the like. Further, in the case of the prepared cell extract derived from wheat germ for protein synthesis, the wheat seed germ extract from which the endosperm component and the low molecular weight protein synthesis inhibitor mixed in the preparation step have been substantially removed is preferable. Is. This is because the components and substances involved in the inhibition of protein synthesis in the extract are reduced as compared with the conventional wheat seed germ extract.

次いで、転写溶液とタンパク質合成用コムギ胚芽由来の細胞抽出液との混合液(以下、「翻訳反応液」と称する場合がある)に、基質となるアミノ酸、エネルギー源、各種イオン、緩衝液、ATP再生系、核酸分解酵素阻害剤、tRNA、還元剤、ポリエチレングリコール、3',5'−cAMP、葉酸塩、抗菌剤等の、翻訳反応に必要又は好適な成分を含有する溶液(「翻訳反応基質溶液」ともいう)を添加して、翻訳反応に適した温度で適当な時間インキュベートすることにより翻訳反応を行うことができる。 Next, in a mixed solution of a transfer solution and a cell extract derived from wheat germ for protein synthesis (hereinafter, may be referred to as "translation reaction solution"), an amino acid as a substrate, an energy source, various ions, a buffer solution, and ATP are added. A solution containing components necessary or suitable for a translation reaction, such as a regeneration system, a nucleolytic enzyme inhibitor, tRNA, a reducing agent, polyethylene glycol, 3', 5'-cAMP, a folate, and an antibacterial agent ("Translation reaction substrate"). The translation reaction can be carried out by adding a solution) and incubating at a temperature suitable for the translation reaction for an appropriate time.

基質となるアミノ酸は、通常、タンパク質を構成する20種類の天然アミノ酸であるが、目的に応じてそのアナログや異性体を用いることもできる。また、エネルギー源としては、ATP、GTP等が挙げられる。各種イオンとしては、酢酸カリウム、酢酸マグネシウム、酢酸アンモニウム等の酢酸塩、グルタミン酸塩等が挙げられる。緩衝液としては、Hepes−KOH、Tris−酢酸等が用いられる。またATP再生系としては、ホスホエノールピルベートとピルビン酸キナーゼの組み合わせ、クレアチンリン酸(クレアチンホスフェート)とクレアチンキナーゼの組み合わせ等が挙げられる。核酸分解酵素阻害剤としては、リボヌクレアーゼインヒビター、ヌクレアーゼインヒビター等が挙げられる。このうち、リボヌクレアーゼインヒビターの具体例としては、ヒト胎盤由来のRNase inhibitor(TOYOBO社製等)等が用いられる。tRNAは、市販のものを用いることができる。還元剤としては、ジチオスレイトール等が挙げられる。抗菌剤としては、アジ化ナトリウム、アンピシリン等が挙げられる。これらの添加量は、無細胞タンパク質合成において通常使用され得る範囲で適宜選択することができる。 The amino acids used as substrates are usually 20 kinds of natural amino acids constituting proteins, but analogs and isomers thereof can also be used depending on the purpose. Moreover, as an energy source, ATP, GTP and the like can be mentioned. Examples of various ions include acetates such as potassium acetate, magnesium acetate and ammonium acetate, glutamate and the like. As the buffer solution, Hepes-KOH, Tris-acetic acid and the like are used. Examples of the ATP regeneration system include a combination of phosphoenolpyruvate and pyruvate kinase, a combination of creatine phosphate (creatine phosphate) and creatine kinase, and the like. Examples of the nucleolytic enzyme inhibitor include ribonuclease inhibitors and nuclease inhibitors. Among these, as a specific example of the ribonuclease inhibitor, a human placenta-derived RNase inhibitor (manufactured by TOYOBO, etc.) or the like is used. Commercially available tRNA can be used. Examples of the reducing agent include dithiothreitol and the like. Examples of the antibacterial agent include sodium azide, ampicillin and the like. The amount of these additions can be appropriately selected within a range that can be usually used in cell-free protein synthesis.

翻訳反応液に対する翻訳反応基質溶液の添加の態様は、コムギ胚芽無細胞タンパク質合成法に適用し得る自体公知のいずれの系であってもよく、例えば、バッチ法や、アミノ酸、エネルギー源等を連続的に反応系に供給する連続式無細胞タンパク質合成法、透析法、重層法等が挙げられる。更には、合成反応系に鋳型のRNA、アミノ酸、エネルギー源等を必要時に供給し、合成物や分解物を必要時に排出する不連続ゲル濾過法や、合成反応槽が分子篩可能な担体によって調製され、上記の合成材料等が該担体を移動相として展開され、展開中に合成反応が実行され、結果として合成されたタンパク質を回収し得る方法等を用いることができる。中でも、合成系の構造の単純化、省スペース、低コスト、ハイスループット解析に適用可能な多検体同時合成システムの提供の点から、バッチ法又は重層法が好ましく、比較的大量のタンパク質を得ることができる点で重層法が特に好ましい。 The mode of addition of the translation reaction substrate solution to the translation reaction solution may be any system known per se that can be applied to the wheat germ cell-free protein synthesis method, and for example, a batch method, amino acids, energy sources, etc. are continuously used. Examples thereof include a continuous cell-free protein synthesis method, a dialysis method, and a multi-layer method, which are supplied to the reaction system. Furthermore, it is prepared by a discontinuous gel filtration method in which template RNA, amino acids, energy sources, etc. are supplied to the synthetic reaction system when necessary and the synthetics and decomposition products are discharged when necessary, and a carrier capable of molecular sieving the synthetic reaction tank. , The above-mentioned synthetic material or the like is developed using the carrier as a mobile phase, a synthetic reaction is carried out during the development, and a method capable of recovering the synthesized protein as a result can be used. Among them, the batch method or the multi-layer method is preferable from the viewpoint of simplifying the structure of the synthetic system, saving space, low cost, and providing a multi-sample simultaneous synthesis system applicable to high-throughput analysis, and a relatively large amount of protein can be obtained. The multi-layer method is particularly preferable in that it can be used.

バッチ法により翻訳反応を行う場合、翻訳反応基質溶液を、翻訳反応液に添加して混合すればよい。或いは、翻訳反応基質溶液に含まれる成分を予めタンパク質合成用コムギ胚芽由来の細胞抽出液と混合した場合には、翻訳反応基質溶液の添加を省略することもできる。翻訳反応液と翻訳反応基質溶液との混合液の組成としては、例えば、10mM以上50mM以下のHEPES−KOH(pH7.8)、55mM以上120mM以下の酢酸カリウム、1mM以上5mM以下の酢酸マグネシウム、0.1mM以上0.6mM以下のスペルミジン、L−アミノ酸(各アミノ酸濃度は、0.025mM以上1mM以下)、20μM以上70μM以下、好ましくは30μM以上50μM以下のDTT、1mM以上1.5mM以下のATP、0.2mM以上0.5mM以下のGTP、10mM以上20mM以下のクレアチンリン酸、0.5units/μL以上1.0units/μL以下のリボヌクレアーゼインヒビター、0.01μM以上10μM以下のタンパク質ジスルフィドイソメラーゼ、及び24v/w%以上75v/w%以下のコムギ胚芽由来の細胞抽出液を含むもの等が用いられる。このような翻訳反応液を用いた場合、プレインキュベーションは10℃以上40℃以下程度で5分間以上10分間以下程度、本反応(翻訳反応)におけるインキュベーションは同じく10℃以上40℃以下程度、好ましくは18℃以上30℃以下程度、より好ましくは20℃以上26℃以下程度で、反応が停止するまで、バッチ法では通常10分間以上7時間以下程度行う。 When the translation reaction is carried out by the batch method, the translation reaction substrate solution may be added to the translation reaction solution and mixed. Alternatively, when the components contained in the translation reaction substrate solution are mixed with the cell extract derived from wheat germ for protein synthesis in advance, the addition of the translation reaction substrate solution can be omitted. The composition of the mixed solution of the translation reaction solution and the translation reaction substrate solution is, for example, HEPES-KOH (pH 7.8) of 10 mM or more and 50 mM or less, potassium acetate of 55 mM or more and 120 mM or less, 1 mM or more and magnesium acetate of 5 mM or less, 0. .1 mM or more and 0.6 mM or less spermidine, L-amino acid (each amino acid concentration is 0.025 mM or more and 1 mM or less), 20 μM or more and 70 μM or less, preferably 30 μM or more and 50 μM or less DTT, 1 mM or more and 1.5 mM or less ATP, GTP of 0.2 mM or more and 0.5 mM or less, creatine phosphate of 10 mM or more and 20 mM or less, ribonuclease inhibitor of 0.5 units / μL or more and 1.0 units / μL or less, protein disulfide isomerase of 0.01 μM or more and 10 μM or less, and 24v / Those containing a cell extract derived from wheat germ of w% or more and 75 v / w% or less are used. When such a translation reaction solution is used, the pre-incubation is about 10 ° C. or higher and 40 ° C. or lower for about 5 minutes or more and 10 minutes or less, and the incubation in this reaction (translation reaction) is also about 10 ° C. or higher and 40 ° C. or lower, preferably about 10 ° C. or higher. At 18 ° C. or higher and 30 ° C. or lower, more preferably 20 ° C. or higher and 26 ° C. or lower, the batch method is usually carried out for about 10 minutes or longer and 7 hours or shorter until the reaction is stopped.

さらに、基質及びエネルギー源供給溶液(供給相)を自由落下又は送液ポンプによって、基質及びエネルギー源分子を反応相の翻訳反応系へ連続又は不連続に供給すると共に、転写溶液由来の高マグネシウムイオンやヌクレオチド類及び反応相で生じた副生成物を希釈することにより、合成反応の持続時間を延長し、合成反応の効率を高める、供給バッチ式による無細胞タンパク質合成方法(以下、供給バッチ法)も採用することができる。
供給バッチ法では、供給相からの送液により、反応槽のサイズや形態には制約がなく、さらに、タンパク質合成速度の重要な律速パラメーターである両液の混合速度を自由に制御することにより、合成反応の制御が可能となり、効率の高い大規模なタンパク質製造が可能となる。さらに、mRNAを追加した供給相とすることにより、合成反応の効率をさらに高めることができる。具体的な供給液の添加速度は、反応開始時の反応相と同量の供給液を、5分間以上15時間以下程度、好ましくは10分間以上10時間以下程度で反応相に連続又は不連続に供給できる範囲の流速がよい。
Further, the substrate and the energy source supply solution (supply phase) are continuously or discontinuously supplied to the translation reaction system of the reaction phase by a free drop or a liquid feed pump, and high magnesium ions derived from the transfer solution are supplied. Cell-free protein synthesis method by feed batch method (hereinafter referred to as feed batch method) that prolongs the duration of the synthetic reaction and enhances the efficiency of the synthetic reaction by diluting the by-products generated in the reaction phase and the nucleotides. Can also be adopted.
In the feed batch method, the size and morphology of the reaction vessel are not restricted by the liquid feed from the feed phase, and the mixing rate of both liquids, which is an important rate-determining parameter of the protein synthesis rate, is freely controlled. The synthesis reaction can be controlled, and highly efficient large-scale protein production becomes possible. Furthermore, the efficiency of the synthetic reaction can be further enhanced by using the feed phase to which mRNA is added. The specific rate of addition of the feed solution is such that the same amount of feed solution as the reaction phase at the start of the reaction is continuously or discontinuously added to the reaction phase in about 5 minutes or more and 15 hours or less, preferably about 10 minutes or more and 10 hours or less. The flow velocity within the supply range is good.

重層法により翻訳反応を行う場合、国際公開第02/24939号(参考文献3)に記載の方法を用いて行なうことができる。具体的には、翻訳反応液上に、翻訳反応用溶液を、界面を乱さないように重層することによりタンパク質合成を行う。より具体的には、例えば、必要に応じて適当時間プレインキュベートしたタンパク質合成用コムギ胚芽由来の細胞抽出液を翻訳鋳型であるmRNAを含む転写溶液に添加して混合し、反応相とする。この反応相の上層に翻訳反応用溶液(供給相)を、界面を乱さないように重層して反応を行う。両相の界面は必ずしも重層によって水平面状に形成させる必要はなく、両相を含む混合液を遠心分離することによって、水平面を形成することも可能である。両相の円形界面の直径が7mmの場合、反応相と供給相の容量比は1:4以上1:8以下が適当であるが、1:5が好適である。両相からなる界面面積は大きいほど拡散による物質交換率が高く、タンパク質合成効率が上昇する。従って、両相の容量比は、両相の界面面積によって変化する。翻訳反応は、例えば、静置条件下、10℃以上40℃以下程度、好ましくは13℃以上30℃以下程度、より好ましくは13℃以上26℃以下程度で、通常10時間以上20時間以下程度行うことができる。 When the translation reaction is carried out by the multi-layer method, it can be carried out by using the method described in International Publication No. 02/24939 (Reference 3). Specifically, protein synthesis is performed by layering a translation reaction solution on the translation reaction solution so as not to disturb the interface. More specifically, for example, a cell extract derived from wheat germ for protein synthesis, which has been pre-incubated for an appropriate time as needed, is added to a transcription solution containing mRNA as a translation template and mixed to prepare a reaction phase. The translation reaction solution (supply phase) is layered on the upper layer of this reaction phase so as not to disturb the interface, and the reaction is carried out. The interface between the two phases does not necessarily have to be formed in a horizontal plane by multiple layers, and it is also possible to form a horizontal plane by centrifuging the mixed solution containing both phases. When the diameter of the circular interface between the two phases is 7 mm, the volume ratio between the reaction phase and the supply phase is preferably 1: 4 or more and 1: 8 or less, but 1: 5 is preferable. The larger the interface area consisting of both phases, the higher the substance exchange rate due to diffusion, and the higher the protein synthesis efficiency. Therefore, the capacitance ratio of both phases changes depending on the interface area of both phases. The translation reaction is carried out, for example, under static conditions at about 10 ° C. or higher and 40 ° C. or lower, preferably about 13 ° C. or higher and 30 ° C. or lower, more preferably about 13 ° C. or higher and 26 ° C. or lower, and usually about 10 hours or longer and 20 hours or shorter. be able to.

さらに、(1)タンパク質合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給相と反応相を混合処理する工程、(2)濃縮膜等を用いて、合成開始の液量程度まで遠心濃縮を行う工程、(3)供給相となる供給液を反応相に重層させて合成を再開する工程、及び、(4)上記(1)〜(3)の工程を複数回繰り返す工程を含む、重層繰り返し式による無細胞タンパク質合成方法(以下、繰り返し重層法)も採用することができる。 Further, (1) a step of mixing and treating the supply phase and the reaction phase before and after the protein synthesis rate is substantially reduced, before and after the synthesis reaction is substantially stopped, or in the middle of them, and (2) the start of synthesis using a concentrated membrane or the like. The steps of centrifugally concentrating to about the amount of liquid, (3) the step of superimposing the feed liquid to be the supply phase on the reaction phase and restarting the synthesis, and (4) the above steps (1) to (3) are repeated a plurality of times. A cell-free protein synthesis method (hereinafter, repeated layering method) by a layered repeating method including a repeating step can also be adopted.

<工程4)>
上記工程3)で得られた組換えタンパク質をそのまま各種利用してもよいが、精製して用いることができる。すなわち、本実施形態の製造方法は、上記工程1)〜3)に加えて、工程3)の後に、4)得られた上記組換えタンパク質を精製する工程(以下、「工程4)」と称する場合がある)を更に含んでもよい。
<Step 4)>
The recombinant protein obtained in the above step 3) may be used as it is, but it can be purified and used. That is, the production method of the present embodiment is referred to as a step of purifying the obtained recombinant protein after step 3) in addition to the steps 1) to 3) (hereinafter, "step 4)". In some cases) may be further included.

上記組換えタンパク質を精製する方法としては、例えば、塩析、イオン交換クロマトグラフィー、吸着クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィー等が挙げられる。また、上記組換えタンパク質を、Hisタグ、GST等との融合タンパク質として発現させた場合は、これら融合タンパク質やタグの性質を利用した精製法により単離及び精製することができる。具体的には、例えば、上記組換えタンパク質とHisタグとの融合タンパク質として発現させた場合には、ニッケル(Ni)が結合した支持体又は担体等を用いて精製することができる。例えば、上記組換えタンパク質とGSTとの融合タンパク質として発現させた場合には、グルタチオンが結合した支持体又は担体等を用いて精製することができる。上記支持体及び上記担体としては、例えば、レジン、ガラス、磁性体等の材質からなり、カラム、ビーズ、チップ等の形状のものを用いることができる。
また、本実施形態の製造方法は、上記組換えタンパク質が各種タグとの融合タンパク質である場合に、上記工程4)の後に、当該タグを、酵素等を用いて、除去する工程を更に含むことができる。
Examples of the method for purifying the recombinant protein include salting out, ion exchange chromatography, adsorption chromatography, affinity chromatography, gel filtration chromatography and the like. When the recombinant protein is expressed as a fusion protein with His tag, GST, etc., it can be isolated and purified by a purification method utilizing the properties of these fusion proteins and tags. Specifically, for example, when it is expressed as a fusion protein of the recombinant protein and His tag, it can be purified using a support or a carrier to which nickel (Ni) is bound. For example, when expressed as a fusion protein of the above recombinant protein and GST, it can be purified using a support or carrier to which glutathione is bound. As the support and the carrier, for example, those made of materials such as resin, glass, and magnetic material and having shapes such as columns, beads, and chips can be used.
In addition, the production method of the present embodiment further includes a step of removing the tag using an enzyme or the like after the step 4) when the recombinant protein is a fusion protein with various tags. Can be done.

本実施形態の製造方法は、上記工程1)から上記工程3)(必要に応じて、上記工程4))までの各工程を自動化した装置を用いて行なうことができる。ここで「自動化」とは、一連の工程中に、実験者が反応系(反応容器)に直接的に手動の操作を加えないことを意味する。従って、各工程を実行させるに際し、用いられる自動合成装置に設けられた所定の操作ボタンやスイッチ等の操作を実験者が手動で行うことは、本明細書中における「自動」の要件を損なうものではない。
市販の自動合成装置としては、例えば、「Protemist(登録商標) DT II」(商品名)(セルフリーサイエンス社製)等を用いることができる。
The manufacturing method of the present embodiment can be performed using an apparatus that automates each step from the above steps 1) to the above steps 3) (if necessary, the above steps 4)). Here, "automation" means that the experimenter does not directly operate the reaction system (reaction vessel) during a series of steps. Therefore, when the experimenter manually operates the predetermined operation buttons, switches, etc. provided in the automatic synthesizer used when executing each process, the requirement of "automatic" in the present specification is impaired. is not it.
As a commercially available automatic synthesizer, for example, "Protemist (registered trademark) DT II" (trade name) (manufactured by Cellfree Science Co., Ltd.) can be used.

以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.

[実施例1]
(コムギ胚芽無細胞タンパク質合成系を用いたrc−bFGFの製造)
rc−bFGFの製造は、セルフリーサイエンス社製の無細胞タンパク質合成キット「WEPRO7240H Expression Kit」(商品名)を用いて、全自動タンパク質合成・精製機(「Protemist(登録商標) DT II」(商品名)、セルフリーサイエンス社製)により行なった。
[Example 1]
(Manufacture of rc-bFGF using wheat germ cell-free protein synthesis system)
The rc-bFGF is manufactured using a fully automatic protein synthesizer / purifier (“Protemist® DT II” (trademark)) using the cell-free protein synthesis kit “WEPRO7240H Expression Kit” (trade name) manufactured by CellFree Sciences. Name), manufactured by CellFree Sciences).

具体的には、まず、イヌbFGFをコードするcDNA(配列番号2)をpEU−E01−MCSベクターのマルチクローニングサイトに挿入して、ベクター[pEU−E01−His−TEV−DogbFGF]を得た。ベクター[pEU−E01−His−TEV−DogbFGF]を大腸菌にトランスフォームして培養した。Plasmid Midi Kit(QIAGEN社製)を用いて大腸菌からプラスミドDNAの抽出及び精製を行った、次いで、精製したプラスミドDNAの濃度及び純度を確認した後、プラスミドDNA濃度が1.0μg/μLとなるように、TEバッファーを適量加えて、鋳型DNA溶液を得た。なお、ベクターのマルチクローニングサイトにイヌbFGFのDNAが挿入されていることは、シークエンス解析により確認した。 Specifically, first, a cDNA encoding canine bFGF (SEQ ID NO: 2) was inserted into the multicloning site of the pEU-E01-MCS vector to obtain a vector [pEU-E01-His-TEV-DogbFGF]. The vector [pEU-E01-His-TEV-DogbFGF] was transformed into Escherichia coli and cultured. The plasmid DNA was extracted and purified from Escherichia coli using the plasmid Midi Kit (manufactured by QIAGEN), and then the concentration and purity of the purified plasmid DNA were confirmed so that the plasmid DNA concentration was 1.0 μg / μL. An appropriate amount of TE buffer was added to obtain a plasmid DNA solution. It was confirmed by sequence analysis that the DNA of canine bFGF was inserted into the multi-cloning site of the vector.

転写反応溶液(5×Transcription Buffer LM)に、次いで、鋳型DNA溶液(1.0μg/μL)25μLを加えて、静かにピペッティングした。次いで、37℃で6時間反応させた。転写反応後、1μLの転写産物をアガロースゲル電気誘導し、mRNAの合成を確認した。さらに、得られたmRNAについてRT−PCRを行い、イヌbFGFのcDNAを得た。このcDNAについて、コントロールとして大腸菌由来のイヌbFGFのcDNAと共にアガロースゲル電気泳動を行なったところ、同じ位置にバンドが認められた。 To the transcription reaction solution (5 × Transscription Buffer LM), then 25 μL of the template DNA solution (1.0 μg / μL) was added and gently pipetting was performed. Then, the reaction was carried out at 37 ° C. for 6 hours. After the transcription reaction, 1 μL of the transcript was electroinduced on an agarose gel, and mRNA synthesis was confirmed. Furthermore, RT-PCR was performed on the obtained mRNA to obtain cDNA of canine bFGF. When this cDNA was subjected to agarose gel electrophoresis together with the cDNA of dog bFGF derived from Escherichia coli as a control, a band was observed at the same position.

次いで、得られたmRNAを用いて翻訳反応を行った。翻訳には、ヒスチジン(His)タグを付加したタンパク質の合成及び精製に至適化されたコムギ胚芽抽出液(「WEPRO(登録商標)7240H」(商品名)、セルフリーサイエンス社製)を使用した。mRNAを含む転写反応液を室温まで温度を下げ、静かにピペッティングして懸濁させた後、懸濁した転写反応液250μLをコムギ胚芽抽出液250μL、クレアチンキナーゼ1μLに加え、泡立てないように静かにピペッティングした(この混合液を以下、「翻訳反応液」と称する場合がある)。次いで、翻訳反応液全量(501μL)を、翻訳反応基質溶液(「SUB−AMIX(登録商標) SGC」(商品名))(5.5mL)の底に注意深く注ぎ入れて重層を形成し、重層反応を行った。15℃で20時間保温して翻訳反応を行った。 Then, a translation reaction was carried out using the obtained mRNA. For translation, a wheat germ extract (“WEPRO® 7240H” (trade name), manufactured by Cellfree Science) optimized for the synthesis and purification of a histidine (His) -tagged protein was used. .. After lowering the temperature of the transcription reaction solution containing mRNA to room temperature and gently pipetting and suspending it, add 250 μL of the suspended transcription reaction solution to 250 μL of wheat germ extract and 1 μL of creatine kinase, and quietly so as not to foam. (This mixed solution may be referred to as "translation reaction solution" below). Then, the entire amount of the translation reaction solution (501 μL) is carefully poured into the bottom of the translation reaction substrate solution (“SUB-AMIX® SGC” (trade name)) (5.5 mL) to form a layer, and the layer reaction is performed. Was done. The translation reaction was carried out by keeping the temperature at 15 ° C. for 20 hours.

翻訳反応後、反応液を静かにピペッティングし、合成タンパク質溶液の精製を行った。精製は、ニッケル樹脂を用いてHisタグが付加された組換えイヌbFGF(rc−bFGF)を吸着させ、洗浄バッファー(20mM Na−Phosphate(pH7.5)、300mM NaCl、20mM Imidazole)で樹脂を洗浄後、通常の半分量の溶出バッファー(20mM Na−Phosphate(pH7.5)、300mM NaCl、500mM Imidazole)で目的タンパク質を溶出させた。このとき、溶出バッファーの使用量を通常の半分量にすることで、溶出後の濃縮操作を不要とし、結果として濃縮操作によるrc−bFGFの損失を無くし、rc−bFGF濃度1mg/mLという効率的な生産を実現した。 After the translation reaction, the reaction solution was gently pipetted to purify the synthetic protein solution. For purification, a His-tagged recombinant canine bFGF (rc-bFGF) is adsorbed using a nickel resin, and the resin is washed with a washing buffer (20 mM Na-Phosphate (pH 7.5), 300 mM NaCl, 20 mM Imidazole). Then, the target protein was eluted with half the usual amount of elution buffer (20 mM Na-Phosphate (pH 7.5), 300 mM NaCl, 500 mM Imidazole). At this time, by reducing the amount of the elution buffer used to half the normal amount, the concentration operation after elution becomes unnecessary, and as a result, the loss of rc-bFGF due to the concentration operation is eliminated, and the rc-bFGF concentration is as efficient as 1 mg / mL. Realized production.

得られた精製タンパク質について、コントロールとして大腸菌由来のイヌbFGFタンパク質と共にウェスタンブロッティング解析を行なったところ、同じ位置にバンドが認められた。よって、rc−bFGFが得られたことが確かめられた。 Western blotting analysis was performed on the obtained purified protein together with the canine bFGF protein derived from Escherichia coli as a control, and a band was observed at the same position. Therefore, it was confirmed that rc-bFGF was obtained.

また、得られたrc−bFGFをHEK細胞に添加し、pErkの発現をウェスタンブロッティング解析により確認した(図1参照)。その結果、pErkの発現が確認された。 In addition, the obtained rc-bFGF was added to HEK cells, and the expression of pErk was confirmed by Western blotting analysis (see FIG. 1). As a result, the expression of pErk was confirmed.

さらに、得られたrc−bFGFをイヌ線維芽細胞に添加し、培養した(図2及び図3参照)。その結果、rc−bFGF無添加群と比較して、rc−bFGF添加群において、細胞数の増加が確認された。 Further, the obtained rc-bFGF was added to canine fibroblasts and cultured (see FIGS. 2 and 3). As a result, an increase in the number of cells was confirmed in the rc-bFGF-added group as compared with the rc-bFGF-free group.

以上のことから、得られたタンパク質が組換えイヌbFGF(rc−bFGF)であり、イヌbFGFとしての機能を有することが確かめられた。 From the above, it was confirmed that the obtained protein is recombinant canine bFGF (rc-bFGF) and has a function as canine bFGF.

本実施形態の組換えタンパク質及びその製造方法によれば、イヌ塩基性線維芽細胞増殖因子としての機能を有する組換えタンパク質及びその製造方法を提供することができる。得られた組換えタンパク質は、サイトカイン療法等の再生医療に用いることができる。 According to the recombinant protein of the present embodiment and the method for producing the same, it is possible to provide the recombinant protein having a function as a canine basic fibroblast growth factor and the method for producing the same. The obtained recombinant protein can be used for regenerative medicine such as cytokine therapy.

Claims (3)

以下の(a)〜(c)のいずれかのアミノ酸配列からなり、イヌ線維芽細胞に対する増殖促進能を有し、且つ、コムギ胚芽無細胞タンパク質合成系による合成物である、組換えタンパク質。
(a)配列番号1に示されるアミノ酸配列;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列との同一性が98%以上であるアミノ酸配列
A recombinant protein consisting of any of the following amino acid sequences (a) to (c), having a proliferative ability for canine fibroblasts, and being a compound obtained by a wheat germ cell-free protein synthesis system.
(A) Amino acid sequence shown in SEQ ID NO: 1;
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) An amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1.
以下の(a)〜(c)のいずれかのアミノ酸配列からなり、イヌ線維芽細胞に対する増殖促進能を有する組換えタンパク質の製造方法であって、
コムギ胚芽無細胞タンパク質合成系を用いて前記組換えタンパク質を合成する、製造方法。
(a)配列番号1に示されるアミノ酸配列;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列;
(c)配列番号1に示されるアミノ酸配列との同一性が98%以上であるアミノ酸配列
A method for producing a recombinant protein consisting of any of the following amino acid sequences (a) to (c) and having a proliferative ability for canine fibroblasts.
A production method for synthesizing the recombinant protein using a wheat germ cell-free protein synthesis system.
(A) Amino acid sequence shown in SEQ ID NO: 1;
(B) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) An amino acid sequence having 98% or more identity with the amino acid sequence shown in SEQ ID NO: 1.
前記合成後の前記組換えタンパク質は、そのN末端又はC末端にヒスチジンタグが結合されており、
前記合成後の前記組換えタンパク質を、前記ヒスチジンタグを利用して精製する、請求項2に記載の製造方法。
The recombinant protein after synthesis has a histidine tag attached to its N-terminal or C-terminal.
The production method according to claim 2, wherein the recombinant protein after synthesis is purified using the histidine tag.
JP2020012371A 2020-01-29 2020-01-29 Recombinant protein and method for producing the same Pending JP2021114975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012371A JP2021114975A (en) 2020-01-29 2020-01-29 Recombinant protein and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012371A JP2021114975A (en) 2020-01-29 2020-01-29 Recombinant protein and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021114975A true JP2021114975A (en) 2021-08-10

Family

ID=77173277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012371A Pending JP2021114975A (en) 2020-01-29 2020-01-29 Recombinant protein and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021114975A (en)

Similar Documents

Publication Publication Date Title
JP6294368B2 (en) Methods and compositions for producing orthogonal tRNA-aminoacyl tRNA synthetase pairs
JP6424156B2 (en) Modified polynucleotides for the production of nucleoproteins
Clayton Replication and transcription of vertebrate mitochondrial DNA
JP2019030327A (en) Modified polynucleotides for producing biologics and proteins associated with human disease
JP2011224002A5 (en)
Spirin et al. Cell-free protein synthesis: methods and protocols
JP6159808B2 (en) Fully automatic cell-free protein production equipment and protein production method using the same
JP2005247857A (en) Template molecule having generality and high efficiency function and cell-free protein-synthesizing means using the same
JP5497295B2 (en) Microginin-producing protein, nucleic acid encoding microginin gene cluster, and method for producing microginin
CN106467910A (en) L-DNA/L-RNA polymerase and its application
KR20030031993A (en) Design and construction of transcription template for synthesizing cell-free protein, and dilution batch-type method of synthesizing cell-free wheat germ protein by using the same
JP2021114975A (en) Recombinant protein and method for producing the same
Qiu et al. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits
Toro et al. Unambiguous identification of histone H1 in Trypanosoma cruzi
EP3336178B1 (en) Method for culturing pluripotent stem cells, method for manufacturing culture vessel, culture vessel, and scaffold material for culturing cells
JP4723713B2 (en) Screening method for potential translational regulator of mRNA
JP2004513652A (en) In vitro protein synthesis using glycolytic intermediates as energy source
WO2023138679A1 (en) Method for regulating and controlling heterologous synthetic flavonoid compound and use thereof
JP3701292B2 (en) Nucleotide sequences having translation efficiency control activity and use thereof
Spirin Cell-free protein synthesis
CA2359465A1 (en) The application of bi-directional promoters for modification of gene expression
Marszal et al. Study of cell‐free protein synthesis in aqueous two‐phase systems
RU2616273C1 (en) SYNTHETIC DNA ENCODING THE ANTI-MULLERIAN HUMAN HORMONE, EXPRESSION VECTOR pTVK4pu/MISOPT THAT CONTAINS THIS DNA, CHINESE HAMSTER OVARY CHO-MIS CELLS STRAIN - RECOMBINANT ANTI-MULLERIAN HUMAN HORMONE PRODUCER
KR101161786B1 (en) Processes for synthesis of peptides in a cell-free protein synthesis system containing detergent as a reagent for increasing translation efficiency, and compositions for the same
JP2022023684A (en) Medium for culture of canine mesenchymal stem cell, method for culture of canine mesenchymal stem cell, and method for production of canine mesenchymal stem cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240319