JP2021114809A - Power demand control method, power demand control device, and program - Google Patents

Power demand control method, power demand control device, and program Download PDF

Info

Publication number
JP2021114809A
JP2021114809A JP2020005144A JP2020005144A JP2021114809A JP 2021114809 A JP2021114809 A JP 2021114809A JP 2020005144 A JP2020005144 A JP 2020005144A JP 2020005144 A JP2020005144 A JP 2020005144A JP 2021114809 A JP2021114809 A JP 2021114809A
Authority
JP
Japan
Prior art keywords
power
rolling
power consumption
demand
predicted value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020005144A
Other languages
Japanese (ja)
Other versions
JP7381874B2 (en
Inventor
千尋 川口
Chihiro Kawaguchi
千尋 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020005144A priority Critical patent/JP7381874B2/en
Publication of JP2021114809A publication Critical patent/JP2021114809A/en
Application granted granted Critical
Publication of JP7381874B2 publication Critical patent/JP7381874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a power demand control method capable of improving the prediction accuracy of a demand prediction value, and a technology related thereto.SOLUTION: On the basis of first actual power consumption Pa used by a first power consumption facility, a first demand predicted value of the first power consumption facility is obtained. In addition, on the basis of second actual power consumption Pb used by a second power consumption facility, and predicted rolling power Qm proportional to the rolling volume flow rate which is the product of the rolling reduction of a steel sheet rolled in a rolling process, the width of the steel sheet, and the rolling speed of the steel sheet, a second demand predicted value of the second power consumption facility is obtained. Then, power supply to the predetermined power consumption facility from among a plurality of power consumption facilities is controlled such that the sum of the first demand predicted value and the second demand predicted value is less than contract power and is as close as possible to the contract power.SELECTED DRAWING: Figure 2

Description

本発明は、複数の電力消費設備への供給電力を制御する電力デマンド制御方法、およびそれに関連する技術に関する。 The present invention relates to a power demand control method for controlling power supply to a plurality of power consuming facilities, and a technique related thereto.

たとえば、製鉄所あるいは製鋼所などのように、複数の電力消費設備を備える電力需要家においては、電力会社との提携によって所定のデマンド周期内における契約電力が取り決められており、工場内には最大需要電力計(デマンド計)が設けられている。 For example, for electric power consumers equipped with multiple power consumption facilities such as steel mills or steel mills, contracted power within a predetermined demand cycle is agreed upon in partnership with an electric power company, and the maximum is in the factory. A demand power meter (demand meter) is provided.

デマンド計によって計測された総使用電力が契約電力を超過しないように、たとえば特許文献1では、複数の電力消費設備が第1電力消費設備と第2電力消費設備とに分割されるとともに、両者のデマンド予測値がそれぞれ求められて、両デマンド予測値の和が契約電力未満で且つ契約電力に可及的に近似するように電力消費設備への供給電力が制御されている。 For example, in Patent Document 1, a plurality of power consumption facilities are divided into a first power consumption facility and a second power consumption facility so that the total power consumption measured by the demand meter does not exceed the contract power, and both of them are used. Demand predicted values are obtained respectively, and the power supply to the power consuming equipment is controlled so that the sum of both demand predicted values is less than the contracted power and is as close as possible to the contracted power.

特開平6−284572号公報Japanese Unexamined Patent Publication No. 6-284572

ただし、上記の特許文献1に記載の技術には、デマンド予測値の予測精度に関して改善の余地がある。 However, there is room for improvement in the technique described in Patent Document 1 regarding the prediction accuracy of the demand prediction value.

そこで、本発明は、デマンド予測値の予測精度の向上を図ることが可能な電力デマンド制御方法、およびそれに関連する技術を提供することを課題とする。 Therefore, an object of the present invention is to provide a power demand control method capable of improving the prediction accuracy of a demand prediction value, and a technique related thereto.

(1)使用電力量が時間経過に略比例して増加する第1電力消費設備と、圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、を含む複数の電力消費設備への供給電力を制御する電力デマンド制御方法であって、所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求め、所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求め、前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御することを特徴とする電力デマンド制御方法。 (1) The first power consumption facility whose power consumption increases substantially in proportion to the passage of time and the rolling process are performed, and the rolling power amount, which is the power used for the rolling process, is a load according to the rolling conditions. A power demand control method for controlling power supply to a plurality of power consumption facilities including a second power consumption facility that varies depending on the above, and is a first power demand control method used by the first power consumption facility within a predetermined demand cycle. Based on the actual power consumption, the first demand predicted value of the first power consumption facility is obtained, the second actual power consumption used by the second power consumption facility within a predetermined demand cycle, and the rolling process. Second demand prediction of the second power consumption facility based on the predicted rolling electric energy proportional to the reduced volume flow rate, which is the product of the rolling amount of the steel plate rolled in, the width of the steel plate, and the rolling speed of the steel plate. A value is obtained, and the sum of the first demand predicted value and the second demand predicted value is predetermined among the plurality of power consuming facilities so as to be less than the contracted power and as close as possible to the contracted power. A power demand control method characterized by controlling the power supplied to power consuming equipment.

(2)使用電力量が時間経過に略比例して増加する第1電力消費設備と、圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、を含む複数の電力消費設備への供給電力を制御する電力デマンド制御装置であって、所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求める第1算出手段と、所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求める第2算出手段と、前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御可能なデマンド制御手段と、を含むことを特徴とする電力デマンド制御装置。 (2) The first power consumption facility whose power consumption increases substantially in proportion to the passage of time and the rolling process are performed, and the rolling power amount, which is the power used for the rolling process, is a load according to the rolling conditions. A power demand control device that controls power supply to a plurality of power consumption facilities including a second power consumption facility that fluctuates according to the above, and is a first power demand control device used by the first power consumption facility within a predetermined demand cycle. The first calculation means for obtaining the first demand predicted value of the first power consumption facility based on the actual power consumption, and the second actual power consumption used by the second power consumption facility within a predetermined demand cycle. The second power consumption facility is based on the predicted rolling electric energy proportional to the reduced volume flow rate, which is the product of the reduction amount of the steel plate rolled in the rolling process, the width of the steel plate, and the rolling speed of the steel plate. The sum of the first demand predicted value and the second demand predicted value is less than the contracted power and is as close as possible to the contracted power. A power demand control device including a demand control means capable of controlling power supply to a predetermined power consumption facility among a plurality of power consumption facilities.

(3)使用電力量が時間経過に略比例して増加する第1電力消費設備と、圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、を含む複数の電力消費設備への供給電力を制御する電力デマンド制御装置に内蔵されたコンピュータに、a)所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求めるステップと、b)所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求めるステップと、c)前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御するステップと、を実行させるためのプログラム。 (3) The first power consumption facility whose power consumption increases substantially in proportion to the passage of time and the rolling process are performed, and the rolling power amount, which is the power used for the rolling process, is a load according to the rolling conditions. A computer built in a power demand control device that controls power supply to a plurality of power consumption facilities including a second power consumption facility that varies depending on a) a) by the first power consumption facility within a predetermined demand cycle. A step of obtaining a first demand predicted value of the first power consuming equipment based on the first actual electric energy used, and b) a second used by the second power consuming equipment within a predetermined demand cycle. Based on the actual power consumption, the predicted rolling power amount proportional to the reduction volume flow rate, which is the product of the reduction amount of the steel plate rolled in the rolling process, the width of the steel plate, and the rolling speed of the steel plate, the first 2 The step of obtaining the second demand predicted value of the power consuming equipment and c) the sum of the first demand predicted value and the second demand predicted value is less than the contracted power and is as close as possible to the contracted power. A program for executing a step of controlling the power supply to a predetermined power consumption facility among the plurality of power consumption facilities.

なお、上記(1)〜(3)に記載の第1電力消費設備は、1つであってもよく、複数であってもよい。同様に、上記(1)〜(3)に記載の第2電力消費設備も、1つであってもよく、複数であってもよい。 The number of the first power consumption equipments described in the above (1) to (3) may be one or a plurality. Similarly, the second power consumption equipment described in (1) to (3) above may be one or a plurality of them.

本願発明によれば、デマンド予測値の予測精度の向上を図ることが可能である。 According to the invention of the present application, it is possible to improve the prediction accuracy of the demand prediction value.

本発明の一実施例に係るデマンド制御装置の系統図である。It is a system diagram of the demand control device which concerns on one Example of this invention. 実績電力および予測電力等を示すグラフである。It is a graph which shows the actual power, the predicted power, and the like.

以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例に係るデマンド制御装置1の系統図である。 FIG. 1 is a system diagram of a demand control device 1 according to an embodiment of the present invention.

たとえば冷間圧延工場内には、一定程度よりも少ない電力で稼働可能な小電力消費設備11と多量の電力(一定程度よりも多い電力)を使用する大電力消費設備12とを含む複数の電力消費設備10が設けられている。小電力消費設備11としては、各種プロセスラインおよび付帯設備などが例示され、大電力消費設備12としては、圧延設備が例示される。 For example, in a cold rolling plant, a plurality of electric powers including a small power consumption facility 11 that can operate with less than a certain amount of electric power and a large power consumption facility 12 that uses a large amount of electric power (more than a certain amount of electric power). The consumption facility 10 is provided. Examples of the low power consumption equipment 11 include various process lines and ancillary equipment, and examples of the high power consumption equipment 12 include rolling equipment.

ここでは、小電力消費設備11の使用電力量は、時間経過に略比例して増加するものとする。 Here, it is assumed that the amount of electric power used by the low power consumption equipment 11 increases substantially in proportion to the passage of time.

圧延設備12は、鋼板の圧延処理を行う設備である。当該圧延設備12での圧延処理に使用される電力量は、圧延条件(圧延対象の鋼板の厚みH、幅Bおよび/または圧延速度V等)に応じた負荷によって変動(変化)する。圧延処理に使用される電力量は、圧延電力量などとも称される。 The rolling equipment 12 is equipment for rolling a steel sheet. The amount of electric power used for the rolling process in the rolling equipment 12 varies (changes) depending on the load according to the rolling conditions (thickness H, width B and / or rolling speed V, etc. of the steel sheet to be rolled). The amount of electric power used in the rolling process is also referred to as the amount of rolling electric power.

電力会社から配電線を介して供給される電力は受電端2に与えられ、受電端2からの電力は、取引計器用変成器3を経て変圧器(不図示)によって変圧されて、小電力消費設備11および圧延設備12等に給電(供給)される。 The electric power supplied from the electric power company via the distribution line is given to the receiving end 2, and the electric power from the receiving end 2 is transformed by a transformer (not shown) through the transformer for trading instrument 3 and consumes a small amount of electric power. Power is supplied (supplied) to the equipment 11 and the rolling equipment 12 and the like.

当該受電端2と取引計器用変成器3との間には遮断器4が介在しているとともに、取引計器用変成器3には取引用計器(WHM)5が接続されている。そして、当該取引用計器5によって各電力消費設備10の総使用電力が求められる(取得される)。 A circuit breaker 4 is interposed between the power receiving end 2 and the transaction instrument transformer 3, and a transaction instrument (WHM) 5 is connected to the transaction instrument transformer 3. Then, the total power consumption of each power consumption facility 10 is obtained (acquired) by the transaction instrument 5.

取引用計器5には、総使用電力を例えば10kWH(キロワットアワー)/パルスのパルス信号に変換するパルス発信器が設けられており、当該総使用電力に対応するパルス信号は、デマンド制御手段9に入力される。また、圧延設備12と小電力消費設備11とのそれぞれの使用電力はパルス発信器付電力量計6によって電力量変化として検出されてデマンド制御手段9に与えられる(入力される)。 The trading instrument 5 is provided with a pulse transmitter that converts the total power consumption into, for example, 10 kWH (kilowatt hour) / pulse pulse signal, and the pulse signal corresponding to the total power consumption is transmitted to the demand control means 9. Entered. Further, the electric power used by the rolling equipment 12 and the low power consumption equipment 11 is detected as a change in electric energy by the watt hour meter 6 with a pulse transmitter and is given (input) to the demand control means 9.

また、圧延設備12の使用電力は、プロセスコンピュータなどによって実現される信号処理手段7に与えられて信号処理され、当該信号処理手段7からの使用電力量に関連する関連情報は、デマンド制御手段9に与えられる。当該関連情報は、たとえば、圧延設備12によって圧延される鋼板のコイル番号、圧延時間TM、圧延電力量Qmおよび/または停止時間等である。 Further, the power used by the rolling equipment 12 is given to the signal processing means 7 realized by a process computer or the like for signal processing, and the related information related to the amount of power used from the signal processing means 7 is the demand control means 9. Given to. The related information includes, for example, the coil number of the steel sheet rolled by the rolling equipment 12, the rolling time TM, the rolling electric energy Qm and / or the stop time and the like.

このように、デマンド制御手段9には、圧延設備12の使用電力量(kWH)と小電力消費設備11の使用電力量とがそれぞれ入力(取得)される。 In this way, the power consumption (kWH) of the rolling equipment 12 and the power consumption of the low power consumption equipment 11 are input (acquired) to the demand control means 9, respectively.

後述するように、デマンド制御手段9は、所定のデマンド周期DP(ここでは、30分周期)内に小電力消費設備11によって使用された実績使用電力量(使用電力量の実績値)Paに基づいて、小電力消費設備11のデマンド予測値Ra(kW(キロワット))を求める。また、デマンド制御手段9は、当該所定のデマンド周期DP内に圧延設備12によって使用された実績使用電力量Pb等に基づいて、圧延設備12のデマンド予測値Rb(kW)を求める。なお、ここでは、デマンド制御手段9が、各デマンド予測値Ra,Rbを求める算出手段としても機能するものとする。 As will be described later, the demand control means 9 is based on the actual power consumption (actual value of the power consumption) Pa used by the low power consumption equipment 11 within a predetermined demand cycle DP (here, a 30-minute cycle). Then, the predicted demand value Ra (kW (kilowatt)) of the low power consumption equipment 11 is obtained. Further, the demand control means 9 obtains a demand predicted value Rb (kW) of the rolling equipment 12 based on the actual power consumption Pb or the like used by the rolling equipment 12 within the predetermined demand period DP. Here, it is assumed that the demand control means 9 also functions as a calculation means for obtaining each demand predicted value Ra, Rb.

そして、デマンド制御手段9は、各デマンド予測値Ra,Rbの和R(=Ra+Rb)が契約電力(kW)未満で且つ当該契約電力に可及的に近似するように、複数の電力消費設備10のうち予め定められた電力消費設備への供給電力を制御する。たとえば、デマンド制御手段9は、当該契約電力よりも数%(たとえば3%)低い値である目標値をデマンド予測値Rが超過した際に、警報器8(ブザーまたは警報ランプ等)を動作させてオペレータ(操作者)に圧延設備12での鋼板の圧延速度Vを減速させる。 Then, the demand control means 9 has a plurality of power consumption facilities 10 so that the sum R (= Ra + Rb) of the predicted demand values Ra and Rb is less than the contract power (kW) and is as close as possible to the contract power. Of these, the power supplied to the predetermined power consumption equipment is controlled. For example, the demand control means 9 operates an alarm device 8 (buzzer, alarm lamp, etc.) when the demand prediction value R exceeds the target value, which is a value several percent (for example, 3%) lower than the contracted power. The operator (operator) is made to reduce the rolling speed V of the steel sheet in the rolling equipment 12.

なお、電力デマンド制御装置1には、CPU等を備えるコンピュータ(コンピュータシステム)が内蔵されており、当該コンピュータにおいて所定のソフトウエアプログラムが実行されることによって、デマンド制御手段9等の処理部が実現される。 A computer (computer system) equipped with a CPU or the like is built in the power demand control device 1, and a processing unit such as the demand control means 9 is realized by executing a predetermined software program on the computer. Will be done.

次に、図2を参照して、デマンド予測値R(=Ra+Rb)の算出方法等について説明する。 Next, a method of calculating the demand predicted value R (= Ra + Rb) and the like will be described with reference to FIG.

図2において、
T0は、所定のデマンド周期DPの開始時刻、
T1は、現在時刻(ここでは、次コイルの先端の溶接点が圧延設備12直前の位置に到達した時刻)、
T2は、時刻T1から所定時間ΔT経過後の時刻(ここでは、次コイルの圧延処理の完了予想時刻)、
TEは、所定のデマンド周期DPの終了時刻、
Paは、デマンド周期DP内において時刻T1の時点で(時刻T0から時刻T1までの間に)小電力消費設備11によって使用された実績使用電力量、
Pbは、デマンド周期DP内において時刻T1の時点で圧延設備12によって使用された実績使用電力量、
Qaは、時刻T2の時点で小電力消費設備11によって使用される予測使用電力量、
Qbは、時刻T2の時点で圧延設備12によって使用される予測使用電力量、
Qm1は、時刻T1から時刻T2までの期間ΔT内に圧延設備12での圧延処理に使用される予測圧延電力量、
Pkは、デマンド周期DPに対応する契約電力量(ここでは、契約電力/2)、
Qkは、デマンド周期DPでの目標電力量(たとえば、0.97Pk)、
を示している。
In FIG.
T0 is the start time of the predetermined demand cycle DP,
T1 is the current time (here, the time when the welding point at the tip of the next coil reaches the position immediately before the rolling equipment 12),
T2 is the time after a predetermined time ΔT has elapsed from the time T1 (here, the estimated completion time of the rolling process of the next coil).
TE is the end time of the predetermined demand cycle DP,
Pa is the actual amount of power used by the low power consumption facility 11 (between time T0 and time T1) at time T1 in the demand cycle DP.
Pb is the actual amount of power used by the rolling equipment 12 at time T1 within the demand cycle DP.
Qa is the estimated power consumption used by the low power consumption equipment 11 at time T2.
Qb is the estimated power consumption used by the rolling equipment 12 at time T2.
Qm1 is the predicted rolling power amount used for the rolling process in the rolling equipment 12 within the period ΔT from the time T1 to the time T2.
Pk is the contracted electric energy corresponding to the demand cycle DP (here, contracted electric energy / 2),
Qk is the target electric energy in the demand cycle DP (for example, 0.97 Pk),
Is shown.

まず、小電力消費設備11のデマンド予測値(デマンド周期DPの終了時刻TEでの最終デマンド予測値)Raは、下記の式(1)によって求められる。 First, the demand predicted value (final demand predicted value at the end time TE of the demand cycle DP) Ra of the low power consumption equipment 11 is calculated by the following equation (1).

Figure 2021114809
Figure 2021114809

なお、式(1)の右辺の括弧内の数値に対して値「60/DP」を乗じているのは、デマンド周期DP内の使用電力量(kWH)を使用電力(kW)に換算するためである。ここでは、デマンド周期DPが30分であるため、式(1)の右辺の括弧内の数値が2倍(=60/30)される。 The reason why the value "60 / DP" is multiplied by the value in parentheses on the right side of the equation (1) is to convert the power consumption (kWH) in the demand cycle DP into the power consumption (kW). Is. Here, since the demand cycle DP is 30 minutes, the numerical value in parentheses on the right side of the equation (1) is doubled (= 60/30).

また、圧延設備12のデマンド予測値(最終デマンド予測値)Rbは、下記の式(2)によって求められる。 Further, the demand predicted value (final demand predicted value) Rb of the rolling equipment 12 is calculated by the following formula (2).

Figure 2021114809
Figure 2021114809

式(2)のQmは、現在時刻T1からデマンド周期DPの終了時刻TEまでの期間(=TE−T2)内に圧延設備12によって使用される予測圧延電力量(kWH)である。 Qm of the formula (2) is a predicted rolling electric energy (kWH) used by the rolling equipment 12 within the period (= TE-T2) from the current time T1 to the end time TE of the demand cycle DP.

詳細には、予測圧延電力量Qmは、現在時刻T1からデマンド周期DPの終了時刻TEまでの間(デマンド周期DPの残り時間内)に圧延設備12に通板される複数のコイル(複数の圧延対象コイル)のそれぞれに関する圧延処理での予測圧延電力量Qmi(i=1,...,n(nは圧延対象コイルの数))の合計値である。 Specifically, the predicted rolling power amount Qm is a plurality of coils (plural rolling) that are passed through the rolling equipment 12 between the current time T1 and the end time TE of the demand cycle DP (within the remaining time of the demand cycle DP). It is the total value of the predicted rolling power amount Qmi (i = 1, ..., n (n is the number of rolling target coils)) in the rolling process for each of the target coils).

各コイルに関する予測圧延電力量Qmiは、次のようにして求められる。ここでは、現在時刻T1後における1番目(i=1)のコイル(次コイル)に関する予測圧延電力量Qm1について説明する。 The predicted rolling power amount Qmi for each coil is obtained as follows. Here, the predicted rolling power Qm1 for the first (i = 1) coil (next coil) after the current time T1 will be described.

まず、次コイルの圧延時間(予想圧延時間)TMが、下記の式(3)を用いて求められる。なお、下記の式(3)のLは次コイルの出側コイル長であり、Vは圧延速度である。 First, the rolling time (expected rolling time) TM of the next coil is obtained by using the following formula (3). In the following formula (3), L is the output coil length of the next coil, and V is the rolling speed.

Figure 2021114809
Figure 2021114809

次に、次コイルに関する予測圧延電力量(次コイルの圧延処理に使用されると予測される電力量)Qm1が、下記の式(4)によって求められる。 Next, the predicted rolling power amount (the amount of power predicted to be used for the rolling process of the next coil) Qm1 for the next coil is calculated by the following formula (4).

Figure 2021114809
Figure 2021114809

上記の式(4)において、Fは圧下体積流量(次述)であり、Mは比例定数(後述)である。 In the above equation (4), F is a reduced volume flow rate (described later), and M is a proportionality constant (described later).

圧下体積流量Fは、圧延処理で圧延される鋼板(圧延対象の鋼板)の圧下量ΔHと当該鋼板の幅(短手方向の長さ)Bと当該鋼板の圧延速度Vとの積(=ΔH×B×V)により算出される。圧下量ΔHは、次コイルの入側厚みH1と出側厚みH2との差分(=H2−H1)であり、所定の圧下率rによって求められる。 The rolling volume flow rate F is the product (= ΔH) of the rolling amount ΔH of the steel sheet to be rolled in the rolling process, the width (length in the lateral direction) B of the steel sheet, and the rolling speed V of the steel sheet. It is calculated by × B × V). The reduction amount ΔH is the difference (= H2-H1) between the entry side thickness H1 and the exit side thickness H2 of the next coil, and is obtained by a predetermined reduction rate r.

詳細には、圧延対象の鋼板の圧下量ΔHと幅Bとの積(ΔH×B)は、圧延処理による当該鋼板の断面積(鋼板の移動方向を垂線とする断面の面積)の変化量であり、当該鋼板の圧下体積流量Fは、この変化量(ΔH×B)に圧延速度Vを乗じて得られる体積流量(ΔH×B×V)である。 Specifically, the product (ΔH × B) of the rolling reduction amount ΔH and the width B of the steel sheet to be rolled is the amount of change in the cross-sectional area of the steel sheet (the area of the cross section whose vertical line is the moving direction of the steel sheet) due to the rolling process. The reduced volume flow rate F of the steel sheet is the volume flow rate (ΔH × B × V) obtained by multiplying this change amount (ΔH × B) by the rolling speed V.

圧延設備12に電力が供給された結果として当該鋼板が圧延される(圧下量ΔH分の断面積変化が生じる)ことから、本願出願人は、次コイルの圧下体積流量Fは単位時間あたりの圧延設備12の仕事(すなわち、電力(kW))に比例するとの思想を案出した。そして、これに上記の式(3)で求めた圧延時間TMを乗じることによって、次コイルの圧延処理での予測圧延電力量Qm1(kWH)が求められる。 Since the steel sheet is rolled as a result of the power being supplied to the rolling equipment 12 (the cross-sectional area changes by the amount of reduction ΔH), the applicant of the present application has applied that the rolling volume flow rate F of the next coil is rolling per unit time. He devised the idea that it is proportional to the work of equipment 12 (that is, electric power (kW)). Then, by multiplying this by the rolling time TM obtained by the above formula (3), the predicted rolling power amount Qm1 (kWH) in the rolling process of the next coil can be obtained.

なお、式(4)における比例定数Mは、データテーブルにおいて、鋼種およびロール肌毎(鋼種とロール肌との組合せ毎)に経験に基づいて予め定められている。たとえば、次コイルが第1の鋼種且つ第1のロール肌である場合は、データテーブルにおいて第1の鋼種と第1のロール肌との組合せに関して予め定められた比例定数Mが用いられる。 The proportionality constant M in the equation (4) is predetermined in the data table for each steel type and roll surface (for each combination of steel type and roll surface) based on experience. For example, when the next coil is the first steel type and the first roll surface, a predetermined proportionality constant M is used for the combination of the first steel type and the first roll surface in the data table.

このようにして、次コイルの圧下体積流量Fに基づいて、次コイルに関する予測圧延電力量Qm1が求められる。 In this way, the predicted rolling power Qm1 for the next coil is obtained based on the reduced volume flow rate F of the next coil.

同様にして、現在時刻T1後における2番目(i=2)以降の圧延対象コイルに関しても予測圧延電力量Qmiが求められる。 Similarly, the predicted rolling power amount Qmi is obtained for the second (i = 2) and subsequent coils to be rolled after the current time T1.

そして、複数の圧延対象コイルのそれぞれに関する圧延処理での予測圧延電力量Qmi(i=1,...,n)の合計値Qmが求められ、上記の式(2)を用いてデマンド予測値Rbが求められる。 Then, the total value Qm of the predicted rolling electric energy Qmi (i = 1, ..., N) in the rolling process for each of the plurality of rolling target coils is obtained, and the demand predicted value is obtained using the above equation (2). Rb is required.

これにより、デマンド予測値R(=Ra+Rb)を求めることができる。 As a result, the demand prediction value R (= Ra + Rb) can be obtained.

以上のように、圧延処理で圧延される鋼板の圧下体積流量Fに比例する予測圧延電力量Qmに基づいて、圧延設備12のデマンド予測値Rbが求められる。詳細には、圧下体積流量Fは、圧延処理にて圧延される鋼板の圧下量ΔHと幅Bと圧延速度Vとの積であり、圧延対象のコイル(コイルの鋼種等)によって変動する。このような圧下体積流量Fが、現在時刻T1以降に圧延される複数の圧延対象コイルのそれぞれに関して求められ、各圧下体積流量Fに応じた予測圧延電力量Qmiが求められる。そして、その合計値Qmに基づいて圧延設備12のデマンド予測値Rbが求められる。したがって、デマンド予測値Rの予測精度の向上を図ることが可能である。 As described above, the demand predicted value Rb of the rolling equipment 12 is obtained based on the predicted rolling electric energy Qm proportional to the rolling volume flow rate F of the steel sheet rolled in the rolling process. Specifically, the rolling volume flow rate F is the product of the rolling amount ΔH of the steel sheet rolled in the rolling process, the width B, and the rolling speed V, and varies depending on the coil to be rolled (the steel type of the coil, etc.). Such a reduced volume flow rate F is obtained for each of the plurality of rolling target coils to be rolled after the current time T1, and the predicted rolling electric energy Qmi corresponding to each reduced volume flow rate F is obtained. Then, the demand predicted value Rb of the rolling equipment 12 is obtained based on the total value Qm. Therefore, it is possible to improve the prediction accuracy of the demand prediction value R.

以上説明した実施形態によれば、以下のような発明を提供することができる。 According to the embodiments described above, the following inventions can be provided.

本発明の電力デマンド制御方法は、
使用電力量が時間経過に略比例して増加する第1電力消費設備(例えば、小電力消費設備11)と、
圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備(例えば、圧延設備12)と、
を含む複数の電力消費設備への供給電力を制御する電力デマンド制御方法であって、
所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量(例えば、実績使用電力量Pa)に基づいて、前記第1電力消費設備の第1デマンド予測値(例えば、デマンド予測値Ra)を求め、
所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量(例えば、実績使用電力量Pb)と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量(例えば、圧下体積流量F)に比例する予測圧延電力量(例えば、予測圧延電力量Qm)とに基づいて、前記第2電力消費設備の第2デマンド予測値(例えば、デマンド予測値Rb)を求め、
前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御する
ことを特徴とするものである。
The power demand control method of the present invention
A first power consumption facility (for example, a small power consumption facility 11) whose power consumption increases substantially in proportion to the passage of time, and
A second power consumption facility (for example, rolling facility 12) in which the rolling process is performed and the rolling power amount, which is the amount of power used in the rolling process, fluctuates depending on the load according to the rolling conditions.
It is a power demand control method that controls the power supply to a plurality of power consumption facilities including.
Based on the first actual power consumption (for example, the actual power consumption Pa) used by the first power consumption equipment within a predetermined demand cycle, the first demand predicted value (for example, for example) of the first power consumption equipment. Demand predicted value Ra) is calculated,
The second actual power consumption (for example, the actual power consumption Pb) used by the second power consumption facility within a predetermined demand cycle, the rolling amount of the steel sheet rolled in the rolling process, and the width of the steel plate. The second power consumption facility is based on a predicted rolling electric energy (for example, a predicted rolling electric energy Qm) proportional to a reduced volume flow rate (for example, a reduced volume flow rate F), which is the product of the rolling speed of the steel plate. 2 Demand predicted value (for example, demand predicted value Rb) is obtained,
A predetermined power consumption facility among the plurality of power consumption facilities so that the sum of the first demand predicted value and the second demand predicted value is less than the contract power and is as close as possible to the contract power. It is characterized by controlling the power supply to.

なお、本発明は、上記の好ましい実施形態に記載されているが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が可能である。 Although the present invention is described in the above preferred embodiment, the present invention is not limited thereto. Various embodiments are possible that do not deviate from the spirit and scope of the invention.

1 デマンド制御装置
10 デマンド制御手段
11 小電力消費設備
12 圧延設備
Pa 時刻T1の時点で小電力消費設備によって使用された実績使用電力量
Pb 時刻T1の時点で圧延設備によって使用された実績使用電力量
Pk デマンド周期に対応する契約電力量
Qa 時刻T2の時点で小電力消費設備によって使用される予測使用電力量
Qb 時刻T2の時点で圧延設備によって使用される予測使用電力量
Qm1 時刻T1から時刻T2までの期間ΔT内に圧延設備にて使用される予測圧延電力量
1 Demand control device 10 Demand control means 11 Low power consumption equipment 12 Rolling equipment Pa Actual power consumption used by the low power consumption equipment at time T1 Pb Actual power consumption used by the rolling equipment at time T1 Contracted electric energy corresponding to the Pk demand cycle Qa Estimated electric energy used by the low power consumption equipment at time T2 Qb Estimated electric energy used by the rolling equipment at time T2 Qm1 From time T1 to time T2 Estimated rolling power used in the rolling equipment within the period ΔT of

Claims (3)

使用電力量が時間経過に略比例して増加する第1電力消費設備と、
圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、
を含む複数の電力消費設備への供給電力を制御する電力デマンド制御方法であって、
所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求め、
所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求め、
前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御する
ことを特徴とする電力デマンド制御方法。
The first power consumption facility, whose power consumption increases approximately in proportion to the passage of time,
A second power consumption facility in which the rolling process is performed and the rolling power amount, which is the amount of power used in the rolling process, fluctuates depending on the load according to the rolling conditions.
It is a power demand control method that controls the power supply to a plurality of power consumption facilities including.
Based on the first actual electric energy used by the first power consuming equipment within a predetermined demand cycle, the first demand predicted value of the first power consuming equipment is obtained.
The product of the second actual power consumption used by the second power consumption facility within a predetermined demand cycle, the rolling amount of the steel sheet rolled in the rolling process, the width of the steel sheet, and the rolling speed of the steel sheet. The second demand predicted value of the second power consuming equipment is obtained based on the predicted rolling electric energy proportional to a certain rolling volume flow rate.
A predetermined power consumption facility among the plurality of power consumption facilities so that the sum of the first demand predicted value and the second demand predicted value is less than the contract power and is as close as possible to the contract power. A power demand control method characterized by controlling the power supplied to the power supply.
使用電力量が時間経過に略比例して増加する第1電力消費設備と、
圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、
を含む複数の電力消費設備への供給電力を制御する電力デマンド制御装置であって、
所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求める第1算出手段と、
所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求める第2算出手段と、
前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御可能なデマンド制御手段と、
を含むことを特徴とする電力デマンド制御装置。
The first power consumption facility, whose power consumption increases approximately in proportion to the passage of time,
A second power consumption facility in which the rolling process is performed and the rolling power amount, which is the amount of power used in the rolling process, fluctuates depending on the load according to the rolling conditions.
It is a power demand control device that controls the power supply to a plurality of power consumption facilities including
A first calculation means for obtaining a first demand predicted value of the first power consuming equipment based on the first actual electric energy used by the first power consuming equipment within a predetermined demand cycle.
The product of the second actual power consumption used by the second power consumption facility within a predetermined demand cycle, the rolling amount of the steel sheet rolled in the rolling process, the width of the steel sheet, and the rolling speed of the steel sheet. A second calculation means for obtaining a second demand predicted value of the second power consuming equipment based on a predicted rolling electric energy proportional to a certain rolling volume flow rate.
A predetermined power consumption facility among the plurality of power consumption facilities so that the sum of the first demand predicted value and the second demand predicted value is less than the contract power and is as close as possible to the contract power. Demand control means that can control the power supplied to
A power demand control device characterized by including.
使用電力量が時間経過に略比例して増加する第1電力消費設備と、
圧延処理を行うとともに、前記圧延処理に使用される電力量である圧延電力量が圧延条件に応じた負荷によって変動する第2電力消費設備と、
を含む複数の電力消費設備への供給電力を制御する電力デマンド制御装置に内蔵されたコンピュータに、
a)所定のデマンド周期内に前記第1電力消費設備によって使用された第1実績使用電力量に基づいて、前記第1電力消費設備の第1デマンド予測値を求めるステップと、
b)所定のデマンド周期内に前記第2電力消費設備によって使用された第2実績使用電力量と、前記圧延処理で圧延される鋼板の圧下量と前記鋼板の幅と前記鋼板の圧延速度との積である圧下体積流量に比例する予測圧延電力量とに基づいて、前記第2電力消費設備の第2デマンド予測値を求めるステップと、
c)前記第1デマンド予測値と前記第2デマンド予測値との和が契約電力未満で且つ前記契約電力に可及的に近似するように、前記複数の電力消費設備のうち予め定められた電力消費設備への供給電力を制御するステップと、
を実行させるためのプログラム。
The first power consumption facility, whose power consumption increases approximately in proportion to the passage of time,
A second power consumption facility in which the rolling process is performed and the rolling power amount, which is the amount of power used in the rolling process, fluctuates depending on the load according to the rolling conditions.
In a computer built into a power demand controller that controls the power supply to multiple power consuming equipment, including
a) A step of obtaining a first demand predicted value of the first power consuming equipment based on the first actual electric energy used by the first power consuming equipment within a predetermined demand cycle.
b) The second actual power consumption used by the second power consumption facility within a predetermined demand cycle, the rolling amount of the steel sheet rolled in the rolling process, the width of the steel sheet, and the rolling speed of the steel sheet. The step of obtaining the second demand predicted value of the second power consuming equipment based on the predicted rolling electric energy proportional to the rolling reduction volume flow rate, which is the product, and
c) Predetermined power among the plurality of power consuming facilities so that the sum of the first demand predicted value and the second demand predicted value is less than the contract power and is as close as possible to the contract power. Steps to control the power supply to the consumption equipment,
A program to execute.
JP2020005144A 2020-01-16 2020-01-16 Power demand control method, power demand control device and program Active JP7381874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020005144A JP7381874B2 (en) 2020-01-16 2020-01-16 Power demand control method, power demand control device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020005144A JP7381874B2 (en) 2020-01-16 2020-01-16 Power demand control method, power demand control device and program

Publications (2)

Publication Number Publication Date
JP2021114809A true JP2021114809A (en) 2021-08-05
JP7381874B2 JP7381874B2 (en) 2023-11-16

Family

ID=77077711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005144A Active JP7381874B2 (en) 2020-01-16 2020-01-16 Power demand control method, power demand control device and program

Country Status (1)

Country Link
JP (1) JP7381874B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284572A (en) * 1993-03-31 1994-10-07 Nisshin Steel Co Ltd Controlling method for power demand
JP2002165362A (en) * 2000-11-24 2002-06-07 Sumitomo Metal Ind Ltd Forecasting method of electric energy consumption and control method
JP2004129322A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Predictive control system for power demand
JP2017073935A (en) * 2015-10-09 2017-04-13 新日鐵住金株式会社 Power consumption prediction method, device, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284572A (en) * 1993-03-31 1994-10-07 Nisshin Steel Co Ltd Controlling method for power demand
JP2002165362A (en) * 2000-11-24 2002-06-07 Sumitomo Metal Ind Ltd Forecasting method of electric energy consumption and control method
JP2004129322A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Predictive control system for power demand
JP2017073935A (en) * 2015-10-09 2017-04-13 新日鐵住金株式会社 Power consumption prediction method, device, and program

Also Published As

Publication number Publication date
JP7381874B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5069608B2 (en) Sheet width control device and control method for hot rolling mill
US9180505B2 (en) Water injection controller, water injection control method, and water injection control program for rolling lines
US20120004757A1 (en) Optimization device
JP6499534B2 (en) Demand controller
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
KR101782281B1 (en) Energy consumption predicting device for rolling line
JP6641867B2 (en) Power consumption prediction method, apparatus and program
JP2021114809A (en) Power demand control method, power demand control device, and program
KR101733366B1 (en) Energy-saving-operation recommending system
JPH06284572A (en) Controlling method for power demand
US20210394244A1 (en) Method for producing a metal workpiece
JP2001197662A (en) Power-calculating apparatus, power-calculating method and power information processing system
KR101819385B1 (en) Apparatus and method for controlling tandem mill
JP2011143447A (en) Method of determining control gain in rolling mill and rolling mill
CN114472549B (en) System and method for controlling edge heating temperature of hot-rolled intermediate blank
JP2006231387A (en) Device and method for controlling crown in hot- rolling mill
KR101322120B1 (en) Method and apparatus for controlling wedge and camber of steel plate
JP5908039B2 (en) Rolling control device and rolling control method
JP3756443B2 (en) Power generation control device for power consignment
JP7201930B2 (en) generator, system and program
JP2006281280A (en) Method for operating slab heating furnace
CN111495982B (en) Automatic rolling control method for variable thickness of cold continuous rolling mill
JP2002282922A (en) Extension ratio control method for continuous temper rolling mill
JP2011041362A (en) Motor cooling control system
Sivyakova et al. Development of simulation model of electric drive of decoiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7381874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151