JP2021113879A - Sound absorbing material - Google Patents

Sound absorbing material Download PDF

Info

Publication number
JP2021113879A
JP2021113879A JP2020006023A JP2020006023A JP2021113879A JP 2021113879 A JP2021113879 A JP 2021113879A JP 2020006023 A JP2020006023 A JP 2020006023A JP 2020006023 A JP2020006023 A JP 2020006023A JP 2021113879 A JP2021113879 A JP 2021113879A
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
layer
sound
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020006023A
Other languages
Japanese (ja)
Inventor
良一 田垣内
Ryoichi Tagaito
良一 田垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2020006023A priority Critical patent/JP2021113879A/en
Publication of JP2021113879A publication Critical patent/JP2021113879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a sound absorbing material having excellent sound absorbing properties from a low frequency region to a high frequency region and also having excellent morphological retention.SOLUTION: In a sound absorbing material having a multilayer structure, a layer A containing short fibers a having a single fiber diameter of 10.0 μm or less and a layer B containing short fibers b having a single fiber diameter larger than the short fibers a are included.SELECTED DRAWING: None

Description

本発明は、低周波数領域から高周波数領域まで優れた吸音性を有し、形態保持性にも優れた吸音材に関する。 The present invention relates to a sound absorbing material having excellent sound absorbing properties from a low frequency region to a high frequency region and also having excellent morphological retention.

吸音材とは音を吸収する機能を有する製品であって、自動車、住宅、電気製品などの分野において多用されているが、近年製品の高機能化に伴い騒音環境も複雑化し、吸音のニーズも高度化している。例えば自動車業界では、電気自動車の普及により車内やエンジン音が静かになった一方で従来気にならなかった風切り音などの低周波数域の吸音が必要とされ、また、高断熱化した住宅では、残響過多対策が求められるなど、騒音源や使用環境に柔軟に対応できる様な吸音材が求められている。 Sound absorbing materials are products that have the function of absorbing sound, and are widely used in fields such as automobiles, housing, and electrical products. It is becoming more sophisticated. For example, in the automobile industry, the spread of electric vehicles has made the interior and engine noise quieter, but on the other hand, it is necessary to absorb low-frequency sounds such as wind noise, which was not noticeable in the past. Sound absorbing materials that can flexibly respond to noise sources and usage environments are required, such as measures against excessive reverberation.

吸音特性に優れる吸音材としては、グラスウール、ロックウール、アルミ繊維、発泡フォーム、多孔性セラミック等が従来から使用されてきた。これらの吸音材は人体への健康影響、リサイクルおよび環境適合性の点で問題があり、こうした材料を代替する吸音材として合成繊維を絡合または接着して形成される不織布が、安価かつ成形加工性が良好であるため近年多々使用されている。特に合成繊維を用いた不織布の吸音性能は、高周波数帯での吸音性能が比較的良好である。そして、さらにその性能を向上させるために積層構造にしたり、フイルム等の異素材との組合せなど様々な改良がなされている(例えば、特許文献1〜3)。 As the sound absorbing material having excellent sound absorbing characteristics, glass wool, rock wool, aluminum fiber, foam foam, porous ceramic and the like have been conventionally used. These sound absorbing materials have problems in terms of health effects on the human body, recycling and environmental compatibility, and non-woven fabrics formed by entwining or adhering synthetic fibers as sound absorbing materials to replace these materials are inexpensive and molded. It has been widely used in recent years due to its good properties. In particular, the sound absorption performance of the non-woven fabric using synthetic fibers is relatively good in the high frequency band. Then, in order to further improve its performance, various improvements have been made such as a laminated structure and a combination with different materials such as a film (for example, Patent Documents 1 to 3).

しかしながら、低周波数領域から高周波数領域までの吸音性や形態保持性の点でまだ検討の余地が残されていた。 However, there is still room for study in terms of sound absorption and morphological retention from the low frequency region to the high frequency region.

特開2001−205725号公報Japanese Unexamined Patent Publication No. 2001-205725 特開2006−285086号公報Japanese Unexamined Patent Publication No. 2006-285086 特開2016−121426号公報Japanese Unexamined Patent Publication No. 2016-1214226

本発明は上記の背景に鑑みなされたものであり、その目的は、低周波数領域から高周波数領域まで優れた吸音性を有し、形態保持性にも優れた吸音材を提供することにある。 The present invention has been made in view of the above background, and an object of the present invention is to provide a sound absorbing material having excellent sound absorbing properties from a low frequency region to a high frequency region and also having excellent morphological retention.

本発明者は上記の課題を達成するため鋭意検討した結果、本発明を完成するに至った。
かくして、本発明によれば「多層構造を有する吸音材であって、単繊維径が10.0μm以下の短繊維aを含む層Aと、単繊維繊度が前記短繊維aよりも大きい短繊維bを含む層Bとを含むことを特徴とする吸音材。」が提供される。
As a result of diligent studies to achieve the above problems, the present inventor has completed the present invention.
Thus, according to the present invention, "a sound absorbing material having a multi-layer structure, layer A containing short fibers a having a single fiber diameter of 10.0 μm or less, and short fibers b having a single fiber fineness larger than that of the short fibers a. A sound absorbing material comprising a layer B containing the above-mentioned material.

その際、前記短繊維aの単繊維径が0.1〜5.0μmの範囲内であることが好ましい。また、前記短繊維bの単繊維径が11.0〜60.0μmの範囲内であることが好ましい。また、層Aと層Bとの厚さ比が15:1〜1:15の範囲内であることが好ましい。 At that time, it is preferable that the single fiber diameter of the short fiber a is in the range of 0.1 to 5.0 μm. Further, it is preferable that the single fiber diameter of the short fiber b is in the range of 11.0 to 60.0 μm. Further, it is preferable that the thickness ratio of the layer A and the layer B is in the range of 15: 1 to 1:15.

本発明の吸音材において、吸音材の厚さが0.5〜100mmの範囲内であることが好ましい。また、吸音材の目付けが、100〜1000g/mの範囲内であることが好ましい。また、前記層Aが音源側に配されていることが好ましい。また、吸音材が自動車用であることが好ましい。また、JIS A 1405−1(2007)「管内法による建築材料の垂直入射吸音率測定法」において、1/3オクターブ周波数間隔で測定した吸音率値の積分値が下記条件(1)〜(4)全てを満たすことが好ましい。
(1)200〜1000Hzの吸音率の積分値が1.5以上である。
(2)1000〜2500Hzの吸音率の積分値が3.0以上である。
(3)2500〜5000Hzの吸音率の積分値が3.0以上である。
(4)200〜5000Hzの吸音率の積分値が6.0以上である。
In the sound absorbing material of the present invention, the thickness of the sound absorbing material is preferably in the range of 0.5 to 100 mm. Further, it is preferable that the basis weight of the sound absorbing material is in the range of 100 to 1000 g / m 2. Further, it is preferable that the layer A is arranged on the sound source side. Further, it is preferable that the sound absorbing material is for automobiles. In addition, in JIS A 1405-1 (2007) "Measuring method of vertically incident sound absorption coefficient of building materials by the in-pipe method", the integrated value of the sound absorption coefficient values measured at 1/3 octave frequency intervals is the following conditions (1) to (4). ) It is preferable to satisfy all.
(1) The integrated value of the sound absorption coefficient of 200 to 1000 Hz is 1.5 or more.
(2) The integrated value of the sound absorption coefficient of 1000 to 2500 Hz is 3.0 or more.
(3) The integrated value of the sound absorption coefficient of 2500 to 5000 Hz is 3.0 or more.
(4) The integrated value of the sound absorption coefficient of 200 to 5000 Hz is 6.0 or more.

また、前記短繊維aが、短繊維30gを内径29cmのシリンダーに入れ、その上から荷重用円盤94.2gを掛けた時の2分後のふくらみ度合いが500(2.54cm)以上であることが好ましい。 Further, the degree of swelling of the short fiber a after 2 minutes when 30 g of the short fiber is placed in a cylinder having an inner diameter of 29 cm and 94.2 g of a load disk is hung on the cylinder is 500 (2.54 cm) 3 or more. Is preferable.

本発明によれば、低周波数領域から高周波数領域まで優れた吸音性を有し、形態保持性にも優れた吸音材が得られる。 According to the present invention, it is possible to obtain a sound absorbing material having excellent sound absorbing properties from a low frequency region to a high frequency region and also having excellent morphological retention.

以下、本発明を好ましい実施形態とともに詳述する。まず、本発明の吸音材は多層構造(好ましい層数は2〜5層、特に好ましくは2層または3層)を有し、単繊維径が10.0μm以下(好ましくは0.1〜5.0μm)の短繊維a(「極細繊維」ということもある。)を含む層Aと、単繊維径が前記短繊維aよりも大きい短繊維b(好ましくは11.0〜60.0μm)を含む層Bとを含む。 Hereinafter, the present invention will be described in detail together with preferred embodiments. First, the sound absorbing material of the present invention has a multi-layer structure (preferably the number of layers is 2 to 5, particularly preferably 2 or 3 layers), and the single fiber diameter is 10.0 μm or less (preferably 0.1 to 5. It contains a layer A containing 0 μm) short fibers a (sometimes referred to as “ultrafine fibers”) and short fibers b (preferably 11.0 to 60.0 μm) having a single fiber diameter larger than that of the short fibers a. Includes layer B.

ここで、前記短繊維aにおいて、単繊維径が前記範囲よりも大きいと、吸音性が低下するおそれがある。また、短繊維bの単繊維径が小さいと、吸音材の形態保持性が低下するおそれがある。なお、単繊維径は不織布Aに含まれる繊維を電子顕微鏡により撮影した画像から任意の単繊維10本の繊維幅を測定し、その平均を求めた値のことである。また、前記短繊維aおよび/または短繊維bの繊維長としては3〜100mmの範囲内であることが好ましい。 Here, in the short fiber a, if the single fiber diameter is larger than the above range, the sound absorption property may decrease. Further, if the single fiber diameter of the short fiber b is small, the shape retention of the sound absorbing material may decrease. The single fiber diameter is a value obtained by measuring the fiber widths of 10 arbitrary single fibers from an image of the fibers contained in the non-woven fabric A taken with an electron microscope and obtaining the average thereof. The fiber length of the short fibers a and / or the short fibers b is preferably in the range of 3 to 100 mm.

前記短繊維aおよび/または短繊維bの繊維種類は特に限定されない。合成繊維であってもよいし、天然繊維または無機繊維であってもよい。合成繊維としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリ−1,4−ジメチルシクロヘキサンテレフタレート、ポリエチレンナフタレート、ポリピバロラクトン、またはこれらの共重合体からなる短繊維ないしそれら短繊維の混綿体などが例示される。天然繊維としては、セルロース繊維、タンパク質繊維など、無機繊維としては、ガラス繊維、炭素繊維、スチール繊維などが挙げられる。 The fiber type of the short fiber a and / or the short fiber b is not particularly limited. It may be a synthetic fiber, a natural fiber or an inorganic fiber. Synthetic fibers include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polytetramethylene terephthalate, poly-1,4-dimethylcyclohexane terephthalate, polyethylene naphthalate, polypivalolactone, or a combination thereof. Examples thereof include short fibers made of polymers and cotton blends of these short fibers. Examples of natural fibers include cellulose fibers and protein fibers, and examples of inorganic fibers include glass fibers, carbon fibers and steel fibers.

また、前記短繊維aおよび/または短繊維bには捲縮が付与されていることが好ましい。捲縮付与方法としては、異方冷却によりスパイラル状捲縮を付与、捲縮数が3〜40個/2.54cm(好ましくは7〜15個/2.54cm)となるように通常の押し込みクリンパー方式による機械捲縮を付与など、種々の方法を用いればよい。 Further, it is preferable that the short fibers a and / or the short fibers b are crimped. As a method for imparting crimps, a spiral crimp is imparted by anisotropic cooling, and a normal push-in crimper is used so that the number of crimps is 3 to 40 pieces / 2.54 cm (preferably 7 to 15 pieces / 2.54 cm). Various methods may be used, such as imparting mechanical crimping by the method.

前記短繊維aおよび/または短繊維bの単繊維横断面形状は、通常の丸断面でもよいし、三角、四角、扁平などの異型断面であってもよい。なお、単繊維横断面形状が異型の場合、前記単繊維径は丸断面に換算した値を使用するものとする。さらに、丸中空断面の場合は外径寸法を測定するものとする。 The single fiber cross-sectional shape of the short fibers a and / or the short fibers b may be a normal round cross section or a deformed cross section such as a triangle, a square, or a flat cross section. When the cross-sectional shape of the single fiber is atypical, the single fiber diameter shall be a value converted to a round cross section. Further, in the case of a round hollow cross section, the outer diameter dimension shall be measured.

ここで、前記短繊維aが、短繊維30gを内径29cmのシリンダーに入れ、その上から荷重用円盤94.2gを掛けた時の2分後のふくらみ度合いが500(2.54cm)以上であることが好ましい。なお、1gは0.98cNであり、2.54cmは1インチである。このふくらみ度合いが該範囲未満の場合、短繊維aを含む層Aの厚みが小さくなりすぎ層Aの密度が高くなり、単繊維径が10μm以下の吸音性に優位な短繊維aを用いても高周波数領域の吸音性が低下し、低周波域から高周波域の幅広い周波数帯で優れた吸音性を得ることが困難となるおそれがある。当該ふくらみ度合いが該範囲内であれば後述する熱接着性複合短繊維を含んだ嵩高い不織布ウエブを得ることができ、その状態で加熱処理することで低密度の短繊維aを含む層Aを得ることができ、本願目的の低周波域から高周波域の幅広い周波数帯で優れた吸音性を得ることが可能となる。 Here, the degree of swelling of the short fiber a after 2 minutes when 30 g of the short fiber is placed in a cylinder having an inner diameter of 29 cm and 94.2 g of a load disk is hung on the cylinder is 500 (2.54 cm) 3 or more. It is preferable to have. In addition, 1 g is 0.98 cN, and 2.54 cm is 1 inch. When the degree of swelling is less than this range, the thickness of the layer A containing the short fibers a becomes too small and the density of the layer A becomes high, and even if the short fibers a having a single fiber diameter of 10 μm or less and having excellent sound absorption are used. The sound absorption in the high frequency region is lowered, and it may be difficult to obtain excellent sound absorption in a wide frequency band from the low frequency region to the high frequency region. If the degree of swelling is within the range, a bulky non-woven fabric web containing the heat-adhesive composite short fibers described later can be obtained, and by heat-treating in that state, the layer A containing the low-density short fibers a can be obtained. It can be obtained, and excellent sound absorption can be obtained in a wide frequency band from the low frequency range to the high frequency range, which is the object of the present application.

本発明の吸音材において、層Aおよび/または層Bには熱接着性複合短繊維(バインダー繊維)が含まれていることが好ましい。 In the sound absorbing material of the present invention, it is preferable that the layer A and / or the layer B contains heat-adhesive composite short fibers (binder fibers).

かかる熱接着性複合短繊維の熱融着成分は、上記の短繊維a(または短繊維b)を構成するポリマー成分より、40℃以上低い融点を有することが好ましい。 The heat-sealing component of the heat-adhesive composite short fiber preferably has a melting point lower than that of the polymer component constituting the short fiber a (or short fiber b) by 40 ° C. or more.

ここで、熱融着成分として配されるポリマーとしては、ポリウレタン系エラストマー、ポリエステル系エラストマー、非弾性ポリエステル系ポリマー及びその共重合物、ポリオレフィン系ポリマー及びその共重合物、ポリビニルアルコ−ル系ポリマー等を挙げることができ、ポリウレタン系エラストマーとしては、分子量が500〜6000程度の低融点ポリオール、例えばジヒドロキシポリエーテル、ジヒドロキシポリエステル、ジヒドロキシポリカーボネート、ジヒドロキシポリエステルアミド等と、分子量500以下の有機ジイソシアネート、例えばp,p’−ジフェニールメタンジイソシアネート、トリレンジイソシアネート、イソホロンジイソシアネート水素化ジフェニールメタンイソシアネート、キシリレンイソシアネート、2,6−ジイソシアネートメチルカプロエート、ヘキサメチレンジイソシアネート等と、分子量500以下の鎖伸長剤、例えばグリコールアミノアルコールあるいはトリオールとの反応により得られるポリマーである。 Here, examples of the polymer arranged as the heat-sealing component include polyurethane-based elastomers, polyester-based elastomers, inelastic polyester-based polymers and their copolymers, polyolefin-based polymers and their copolymers, polyvinyl alcohol-based polymers, and the like. Examples of the polyurethane-based elastomer include low melting point polyols having a molecular weight of about 500 to 6000, such as dihydroxypolyether, dihydroxypolyester, dihydroxypolycarbonate, and dihydroxypolyesteramide, and organic diisocyanates having a molecular weight of 500 or less, such as p. P'-diphenylmethane diisocyanate, tolylene diisocyanate, isophorone diisocyanate hydrogenated diphenylmethane isocyanate, xylylene isocyanate, 2,6-diisocyanate methylcaproate, hexamethylene diisocyanate and the like, and chain extenders having a molecular weight of 500 or less, for example. It is a polymer obtained by reacting with glycolaminoalcohol or triol.

これらのポリマーのうちで、特に好ましいのはポリオールとしてはポリテトラメチレングリコール、またはポリ−ε−カプロラクタムあるいはポリブチレンアジペートを用いたポリウレタンである。この場合の有機ジイソシアネートとしてはp,p’−ビスヒドロキシエトキシベンゼンおよび1,4−ブタンジオールを挙げることができる。 Among these polymers, particularly preferable is a polyurethane using polytetramethylene glycol or poly-ε-caprolactam or polybutylene adipate as the polyol. Examples of the organic diisocyanate in this case include p, p'-bishydroxyethoxybenzene and 1,4-butanediol.

また、ポリエステル系エラストマーとしては熱可塑性ポリエステルをハードセグメントとし、ポリ(アルキレンオキシド)グリコールをソフトセグメントとして共重合してなるポリエーテルエステル共重合体、より具体的にはテレフタル酸、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、コハク酸、シュウ酸、アジピン酸、セバシン酸、ドデカンジ酸、ダイマー酸等の脂肪族ジカルボン酸またはこれらのエステル形成性誘導体などから選ばれたジカルボン酸の少なくとも1種と、1,4−ブタンジオール、エチレングリコールトリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコールネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオールあるいは1,1−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンメタノール等の脂環式ジオール、またはこれらのエステル形成性誘導体などから選ばれたジオール成分の少なくとも1種、および平均分子量が約400〜5000程度のポリエチレングリコール、ポリ(1,2−および1,3−ポリプロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、エチレンオキシドとテトラヒドロフランとの共重合体等のポリ(アルキレンオキサイド)クリコールのうち少なくとも1種から構成される三元共重合体を挙げることができる。 As the polyester-based elastomer, a polyether ester copolymer obtained by copolymerizing thermoplastic polyester as a hard segment and poly (alkylene oxide) glycol as a soft segment, more specifically, terephthalic acid, isophthalic acid, and phthalic acid. , Naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, succinic acid, oxalic acid, At least one of dicarboxylic acids selected from aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dodecanoic acid, and dimer acid or ester-forming derivatives thereof, and 1,4-butanediol, ethylene glycol trimethylene glycol, An aliphatic diol such as tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, or decamethylene glycol, or an alicyclic diol such as 1,1-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, or tricyclodecanemethanol. , Or at least one of the diol components selected from these ester-forming derivatives, and polyethylene glycol, poly (1,2- and 1,3-polypropylene oxide) glycol, poly having an average molecular weight of about 400 to 5000. A ternary copolymer composed of at least one of poly (alkylene oxide) cricols such as (tetramethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and a copolymer of ethylene oxide and tetrahydrofuran is mentioned. Can be done.

特に、接着性や温度特性、強度の面からすればポリブチレン系テレフタレートをハード成分とし、ポリオキシブチレングリコールをソフトセグメントとするブロック共重合ポリエーテルエステルが好ましい。この場合、ハードセグメントを構成するポリエステル部分は、主たる酸成分がテレフタル酸、主たるジオール成分がブチレングリコール成分であるポリブチレンテレフタレートである。むろん、この酸成分の一部(通常30モル%以下)は他のジカルボン酸成分やオキシカルボン酸成分で置換されていても良く、同様にグリコール成分の一部(通常30モル%以下)はブチレングリコール成分以外のジオキシ成分で置換されていても良い。また、ソフトセグメントを構成するポリエーテル部分はブチレングリコール以外のジオキシ成分で置換されたポリエーテルであってよい。 In particular, from the viewpoint of adhesiveness, temperature characteristics, and strength, a block copolymerized polyether ester containing polybutylene terephthalate as a hard component and polyoxybutylene glycol as a soft segment is preferable. In this case, the polyester portion constituting the hard segment is polybutylene terephthalate in which the main acid component is terephthalic acid and the main diol component is a butylene glycol component. Of course, a part of this acid component (usually 30 mol% or less) may be replaced with another dicarboxylic acid component or an oxycarboxylic acid component, and similarly, a part of the glycol component (usually 30 mol% or less) is butylene. It may be replaced with a dioxy component other than the glycol component. Further, the polyether portion constituting the soft segment may be a polyether substituted with a dioxy component other than butylene glycol.

共重合ポリエステル系ポリマーとしては、アジピン酸、セバシン酸などの脂肪族ジカルボン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸類および/またはヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂環式ジカルボン酸類と、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、パラキシレングリコールなどの脂肪族や脂環式ジオール類とを所定数含有し、所望に応じてパラヒドロキシ安息香酸などのオキシ酸類を添加した共重合エステル等を挙げることができ、例えばテレフタル酸とエチレングリコールとにおいてイソフタル酸および1,6−ヘキサンジオールを添加共重合させたポリエステル等が使用できる。 Examples of the copolymerized polyester polymer include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and naphthalenedicarboxylic acid, and / or fats such as hexahydroterephthalic acid and hexahydroisophthalic acid. A predetermined number of cyclic dicarboxylic acids and aliphatic or alicyclic diols such as diethylene glycol, polyethylene glycol, propylene glycol, and paraxylene glycol are contained, and oxyacids such as parahydroxybenzoic acid are added as desired. Examples thereof include polymerized esters, and for example, polyester obtained by adding isophthalic acid and 1,6-hexanediol to terephthalic acid and ethylene glycol and copolymerizing them can be used.

また、ポリオレフィンポリマーとしては、例えば低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等を挙げることができる。 Examples of the polyolefin polymer include low-density polyethylene, high-density polyethylene, polypropylene and the like.

上記の熱融着成分の中でも、共重合ポリエステル系ポリマーが特に好ましい。なお、上述のポリマー中には、各種安定剤、紫外線吸収剤、増粘分岐剤、艶消し剤、着色剤、その他各種の改良剤等も必要に応じて配合されていてもよい。 Among the above heat-sealing components, a copolymerized polyester polymer is particularly preferable. In addition, various stabilizers, ultraviolet absorbers, thickening branching agents, matting agents, colorants, and various other improving agents may be blended in the above-mentioned polymers, if necessary.

熱接着性複合短繊維において、熱融着成分の相手側成分としては前記のようなポリエステルが好まして例示される。その際、熱融着成分が、少なくとも1/2の表面積を占めるものが好ましい。重量割合は、熱融着成分とポリエステルが、複合比率で30/70〜70/30の範囲にあるのが適当である。熱接着性複合短繊維の形態としては、特に限定されないが、熱融着成分とポリエステルとが、サイドバイサイド、芯鞘型であるのが好ましく、より好ましくは芯鞘型である。この芯部は同心円状、または偏心状にあってもよい。 In the heat-adhesive composite short fiber, the polyester as described above is preferably exemplified as the counterpart component of the heat-sealing component. At that time, it is preferable that the heat-sealing component occupies at least 1/2 the surface area. It is appropriate that the weight ratio of the heat-sealing component and the polyester is in the range of 30/70 to 70/30 in a composite ratio. The form of the heat-adhesive composite short fiber is not particularly limited, but the heat-sealing component and the polyester are preferably side-by-side and core-sheath type, and more preferably core-sheath type. The core may be concentric or eccentric.

かかる熱接着性複合短繊維において、単繊維径としては20〜50μmの範囲内であることが好ましい。かかる熱接着性複合短繊維Aは、繊維長が3〜100mm(より好ましくは30〜100mm)に裁断されていることが好ましい。また、かかる熱接着性複合短繊維に前記のような捲縮が付与されていてもよい。 In such a heat-adhesive composite short fiber, the single fiber diameter is preferably in the range of 20 to 50 μm. The heat-adhesive composite short fiber A is preferably cut to a fiber length of 3 to 100 mm (more preferably 30 to 100 mm). Further, the heat-adhesive composite short fibers may be subjected to the above-mentioned crimping.

前記層Aおよび/または層Bにおいて、短繊維a(または短繊維b)と熱接着性複合短繊維との重量比としては80:20〜20:80の範囲内であることが好ましい。前記層Aおよび/または層Bにさらに他の繊維が含まれていてもよい。 In the layers A and / or layer B, the weight ratio of the short fibers a (or short fibers b) to the heat-adhesive composite short fibers is preferably in the range of 80:20 to 20:80. The layers A and / or layer B may further contain other fibers.

本発明の吸音材を製造する方法は特に限定されず、従来公知の方法を任意に採用すればよい。例えば、ローラーカードにより均一なウエブとして紡出した後、繊維を繊維構造体の厚さ方向に配列させる方法としては、繊維(例えば、前記極細繊維などの主体繊維と低融点繊維)を混綿し、ローラーカードにより均一なウエブとして紡出した後、特開2008−68799号公報の図1に示すような熱処理機を用いて、ウエブをアコーデオン状に折りたたみながら加熱処理し、熱融着による固着点を形成させる方法などが好ましく例示される。例えば特表2002−516932号公報に示された装置(市販のものでは、例えばStruto社製Struto設備など)などを使用するとよい。繊維を繊維構造体の厚さ方向に配列させない場合は、繊維を含むウエブを常法により積層した後、加熱処理するとよい。 The method for producing the sound absorbing material of the present invention is not particularly limited, and a conventionally known method may be arbitrarily adopted. For example, as a method of arranging the fibers in the thickness direction of the fiber structure after spinning as a uniform web with a roller card, fibers (for example, main fibers such as the ultrafine fibers and low melting point fibers) are mixed and cotton is mixed. After spinning as a uniform web with a roller card, the web is heat-treated while being folded into an accordion shape using a heat treatment machine as shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2008-68799 to obtain a fixing point by heat fusion. A method for forming the fiber is preferably exemplified. For example, an apparatus shown in Japanese Patent Application Laid-Open No. 2002-516932 (commercially available, for example, ostrich equipment manufactured by Ostrich) or the like may be used. When the fibers are not arranged in the thickness direction of the fiber structure, the web containing the fibers may be laminated by a conventional method and then heat-treated.

かくして得られた吸音材において、不織布A層と不織布B層との厚さ比が15:1〜1:15の範囲内であることが好ましい。吸音のメカニズムは、吸音材に入射した音波により振動した空気が衝突や摩擦によって熱エネルギーに変換されることにより、その音響エネルギーが減衰することとされている。このため、吸音材の構造としては、音波が入射して通過できる貫通構造をもつことが吸音に優れる特性を発揮する目安となる。また、吸音作用を生じさせるためには、入射した音波が吸音材の構成繊維に衝突および摩擦することによって、熱エネルギーに変換されることがそのメカニズムの一つであり、干渉範囲すなわち厚みを増やす方法や音波と接触できる比表面積を増大させる方法が効果的である。この内、比表面積の増大を行う上で極細繊維である短繊維aを含む不織布A層は重要で、この不織布A層が吸音材全体を構成することが最適であるが、一方で単繊維径が小さい短繊維aを含む不織布は、単繊維径が大きい短繊維bを含む不織布に比べて繊維の開繊が困難で繊維凝集(ネップ)が生じやすく、また回転体などの巻付きも生じやすいといった操業性に課題があり、また単繊維径が小さい短繊維aは耐加重が弱く梱包や物流時に不織布の厚み低下を招き、設計通りの吸音性やコストが実現し難いといった問題がある。 In the sound absorbing material thus obtained, the thickness ratio of the non-woven fabric A layer to the non-woven fabric B layer is preferably in the range of 15: 1 to 1:15. The sound absorbing mechanism is that the sound energy is attenuated by converting the air vibrated by the sound waves incident on the sound absorbing material into thermal energy by collision or friction. Therefore, as the structure of the sound absorbing material, having a penetrating structure through which sound waves can enter and pass through is a guideline for exhibiting excellent sound absorbing characteristics. Further, in order to generate a sound absorbing action, one of the mechanisms is that the incident sound waves collide with and rub against the constituent fibers of the sound absorbing material and are converted into thermal energy, which increases the interference range, that is, the thickness. A method or a method of increasing the specific surface area that can be contacted with sound waves is effective. Of these, the non-woven fabric A layer containing short fibers a, which are ultrafine fibers, is important for increasing the specific surface area, and it is optimal that the non-woven fabric A layer constitutes the entire sound absorbing material, but on the other hand, the single fiber diameter. A non-woven fabric containing short fibers a having a small size is more difficult to open fibers than a non-woven fabric containing short fibers b having a large single fiber diameter, and fiber agglomeration (nep) is likely to occur, and wrapping of a rotating body or the like is also likely to occur. In addition, there is a problem in operability such as short fiber a having a small single fiber diameter, which has a weak load resistance and causes a decrease in the thickness of the non-woven fiber during packaging and distribution, which makes it difficult to realize sound absorption and cost as designed.

単繊維径が小さい短繊維aを含む不織布A層と単繊維径が大きい短繊維bを含む不織布B層を一定の厚さ比で積層することで、加圧時の厚みの低下を抑制し、さらには単繊維径が小さい短繊維aを含む不織布A層単体とほぼ同等の優れた吸音性を保持することが可能となる。 By laminating the non-woven fabric A layer containing short fibers a having a small single fiber diameter and the non-woven fabric B layer containing short fibers b having a large single fiber diameter at a constant thickness ratio, it is possible to suppress a decrease in thickness during pressurization. Furthermore, it is possible to maintain excellent sound absorption properties that are almost the same as those of the non-woven fabric A layer alone containing the short fibers a having a small single fiber diameter.

不織布A層(層A)の厚さ比が1:15の範囲未満の場合、低周波数帯の吸音性に効果的な単繊維径が小さい短繊維aの繊維量が小さくなるため吸音性能が低下する。一方で低厚みで繊維量をキープするために高密度化を行うと低周波数帯の吸音性が向上するが例えば4000Hz等の高周波数帯の吸音性が低下し、本発明が目指す幅広い周波数帯で効果的な吸音性が得られないおそれがある。 When the thickness ratio of the non-woven fabric A layer (layer A) is less than the range of 1:15, the amount of short fibers a having a small single fiber diameter, which is effective for sound absorption in the low frequency band, becomes small, so that the sound absorption performance deteriorates. do. On the other hand, if the density is increased in order to keep the fiber amount at a low thickness, the sound absorption in the low frequency band is improved, but the sound absorption in the high frequency band such as 4000 Hz is lowered, and in a wide frequency band aimed at by the present invention. Effective sound absorption may not be obtained.

また、吸音材の厚さが0.5〜100mmの範囲内であることが好ましい。また、吸音材の目付けが、100〜1000g/mの範囲内であることが好ましい。 Further, the thickness of the sound absorbing material is preferably in the range of 0.5 to 100 mm. Further, it is preferable that the basis weight of the sound absorbing material is in the range of 100 to 1000 g / m 2.

ここで、層Aにおいて、厚さ1〜20mm、目付け40〜400g/m、密度0.008〜0.10g/cmであることが好ましい。また、層Bにおいて、厚さ10〜80mm、目付け100〜900g/m、密度0.010〜0.10g/cmであることが好ましい。 Here, in the layer A, it is preferable that the thickness is 1 to 20 mm, the basis weight is 40 to 400 g / m 2 , and the density is 0.008 to 0.10 g / cm 3. Further, in the layer B, it is preferable that the thickness is 10 to 80 mm, the basis weight is 100 to 900 g / m 2 , and the density is 0.010 to 0.10 g / cm 3.

層Aの密度が0.10g/cmより大きい高密度(例えばスパンボンド不織布やメルトブロー不織布などが該当する)になると、単繊維径が小さい短繊維aを用いた場合比表面積を増大する一方で通気性が損なわれ、低周波域の限られた周波数範囲で吸音性が高くなる一方で他の中〜高周波域(例えば2500〜5000Hz)の吸音性が損なわれ、本発明が目指す幅広い周波数帯で効果的な吸音性が得られないおそれがある。この理由は、高密度の層Aとその背面になる層Bを含む空気層の間で共振系を形成、高密度の層Aが振動することにより低周波の一定周波数のみで吸音性能が向上するのではないかと推定しており、単繊維径が小さい短繊維aを含む層Aは比較的低密度でかつ繊維量を多くさせることが好ましい。また密度が0.008g/cm未満の場合、耐加重が弱くなりすぎ梱包や物流時に不織布の厚み低下を招き、設計通りの吸音性が実現し難くなるおそれがある。 When the density of layer A becomes higher than 0.10 g / cm 3 (for example, spunbonded non-woven fabric or melt-blown non-woven fabric corresponds to this), the specific surface area increases when short fibers a having a small single fiber diameter are used. Breathability is impaired and sound absorption is increased in a limited frequency range in the low frequency range, while sound absorption in other medium to high frequency ranges (for example, 2500 to 5000 Hz) is impaired, and in a wide frequency band aimed at by the present invention. Effective sound absorption may not be obtained. The reason for this is that a resonance system is formed between the high-density layer A and the air layer including the layer B behind the high-density layer A, and the high-density layer A vibrates to improve the sound absorption performance only at a constant low frequency. It is presumed that the layer A containing the short fibers a having a small single fiber diameter preferably has a relatively low density and a large amount of fibers. If the density is less than 0.008 g / cm 3 , the load resistance becomes too weak, which may reduce the thickness of the non-woven fabric during packaging and distribution, making it difficult to achieve the sound absorption as designed.

一方、層Bの密度は、層中の繊維の比表面積を増大させるという観点では高密度である方が有利であるが、単繊維径が大きい短繊維bを含む層Bは、層Aに比べて吸音性への寄与率が低いことから、厚みを保持できる範囲でできるだけ低密度にし、吸音材全体の軽量化と耐久性に寄与させることが好ましい。 On the other hand, the density of the layer B is preferably high from the viewpoint of increasing the specific surface area of the fibers in the layer, but the layer B containing the short fibers b having a large single fiber diameter has a higher density than the layer A. Since the contribution rate to sound absorption is low, it is preferable to make the density as low as possible within the range where the thickness can be maintained, and to contribute to the weight reduction and durability of the entire sound absorption material.

本発明の吸音材において不織布A層(層A)に繊維を層の厚さ方向に配列させた縦型不織布を使用すると、繊維を層方向に配列させた不織布に比べて同重量対比で耐加重が強くなり、梱包や物流時に不織布の厚み低下を抑制するため好ましく、床面等に設置する吸音材の場合には好適である。更に、不織布B層(層B)に繊維を層の厚さ方向に配列させた縦型不織布を使用すると、繊維を層方向に配列させた不織布に比べて同重量対比で厚みを厚く嵩密度を低くすることができ、吸音材の軽量化の観点でも有用である。その他、凹凸を有した壁などに吸音材を使用する場合など、不織布B層(層B)に繊維を層の厚さ方向に配列させた縦型不織布を使用するとしわになり易く加工し易い点でも有用である。 When a vertical non-woven fabric in which fibers are arranged in the thickness direction of the layer is used in the non-woven fabric A layer (layer A) in the sound absorbing material of the present invention, the load resistance is the same as that of the non-woven fabric in which the fibers are arranged in the layer direction. It is preferable because it suppresses a decrease in the thickness of the non-woven fabric during packaging and distribution, and it is suitable for a sound absorbing material installed on a floor surface or the like. Further, when a vertical non-woven fabric in which fibers are arranged in the layer thickness direction is used in the non-woven fabric B layer (layer B), the thickness is thicker and the bulk density is increased in comparison with the non-woven fabric in which the fibers are arranged in the layer direction. It can be lowered and is also useful from the viewpoint of reducing the weight of the sound absorbing material. In addition, when a sound absorbing material is used for a wall having irregularities, it is easy to wrinkle and process if a vertical non-woven fabric in which fibers are arranged in the thickness direction of the non-woven fabric B layer (layer B) is used. But it is useful.

本発明の吸音材は、用途に応じて機能付与することも可能であり、各種機能剤を添加してもよい。添加する機能剤としては、例えば、顔料、撥水剤、吸水剤、難燃剤、安定剤、酸化防止剤、紫外線吸収剤、金属粒子、無機化合物粒子、香料、脱臭剤、抗菌剤、ガス吸着剤等が挙げられる。また、撥水加工、防炎加工、難燃加工、抗菌加工などの機能加工を施してもよい。 The sound absorbing material of the present invention can be provided with a function depending on the intended use, and various functional agents may be added. Examples of the functional agent to be added include pigments, water repellents, water absorbents, flame retardants, stabilizers, antioxidants, ultraviolet absorbers, metal particles, inorganic compound particles, fragrances, deodorants, antibacterial agents, and gas adsorbents. And so on. In addition, functional processing such as water-repellent processing, flameproof processing, flame-retardant processing, and antibacterial processing may be performed.

なお、本発明の吸音材は異素材との組合せにより特定の周波数領域の吸音性を高めることを目標とした吸音材ではなく、低周波数領域から高周波数領域まで幅広い周波数帯によって、優れた吸音性を保持することを目標としており、JIS A 1405−1(2007)「管内法による建築材料の垂直入射吸音率測定法」において、1/3オクターブ周波数間隔(200〜1000)で測定した吸音率値の積分値が1.5以上(より好ましくは1.7〜3.5)であることが好ましい。また、1/3オクターブ周波数間隔(1000〜2500Hz)で測定した吸音率値の積分値が3.0以上(より好ましくは3.2〜5.0)であることが好ましい。また、1/3オクターブ周波数間隔(2500〜5000Hz)で測定した吸音率値の積分値が3.0以上(より好ましくは3.2〜5.0)であることが好ましい。また、1/3オクターブ周波数間隔(200〜5000Hz)で測定した吸音率値の積分値が6.0以上(より好ましくは6.5〜10.0)であることが好ましい。これら吸音率値の積分値を何れも満たすことにより、従来の吸音率では吸収しきれなかった幅広い周波数帯の騒音が低減できることになる。 The sound absorbing material of the present invention is not a sound absorbing material whose purpose is to improve the sound absorbing property in a specific frequency region by combining with a different material, but has excellent sound absorbing property due to a wide frequency band from a low frequency region to a high frequency region. The sound absorption coefficient value measured at a 1/3 octave frequency interval (200 to 1000) in JIS A 1405-1 (2007) "Vertical incident sound absorption coefficient measurement method for building materials by the in-pipe method". It is preferable that the integrated value of is 1.5 or more (more preferably 1.7 to 3.5). Further, it is preferable that the integrated value of the sound absorption coefficient values measured at the 1/3 octave frequency interval (1000 to 2500 Hz) is 3.0 or more (more preferably 3.2 to 5.0). Further, it is preferable that the integrated value of the sound absorption coefficient values measured at the 1/3 octave frequency interval (2,500 to 5000 Hz) is 3.0 or more (more preferably 3.2 to 5.0). Further, it is preferable that the integrated value of the sound absorption coefficient values measured at the 1/3 octave frequency interval (200 to 5000 Hz) is 6.0 or more (more preferably 6.5 to 10.0). By satisfying all of these integrated values of the sound absorption coefficient values, it is possible to reduce noise in a wide frequency band that cannot be completely absorbed by the conventional sound absorption coefficient.

本発明の吸音材は、前記のような構成を有し、低周波数領域から高周波数領域まで優れた吸音性を有し、形態保持性にも優れ、さらには安価に製造可能なので、自動車、電子機器、建築物、住宅用などの様々な用途の吸音材として好適に用いることができる。その際、前記層Aが音源側に配されていると、低周波数領域から高周波数領域まで特に優れた吸音性を有する。 The sound absorbing material of the present invention has the above-mentioned structure, has excellent sound absorbing properties from a low frequency region to a high frequency region, has excellent morphological retention, and can be manufactured at low cost. It can be suitably used as a sound absorbing material for various purposes such as equipment, buildings, and houses. At that time, if the layer A is arranged on the sound source side, it has particularly excellent sound absorption from the low frequency region to the high frequency region.

以下実施例を挙げて、本発明の繊維系吸音材について具体的に説明する。実施例および比較例で、下記の評価を行った。
1)単繊維径
吸音材中の繊維を電子顕微鏡(SEM)により撮影した画像から任意の単繊維10本の繊維幅を測定し、その平均を求めた。
2)目付け
450mm×450mm角に切り出したフェルトの重量を秤量し、単位面積(1m)当たりの重量に換算した。この換算値の小数点以下1桁目を四捨五入して整数値としたものを繊維シートの目付けとした。
3)厚さ
JIS L 1913により厚さ(mm)を測定した
4)吸音率
JIS A 1405−1(2007)「管内法による建築材料の垂直入射吸音率測定法」により測定した。
5)形態保持性
100mm×100mm角に切り出した吸音材の初期厚み測定(T1) 。その後、吸音対の上に1100g/100mm角の荷重をのせ、6時間放置。放置後荷重を除き、1分後の厚みを測定(T2)し、下記式にて歪率を算出し、形態保持性を評価した。9以下を合格、9超を不合格とする。
歪率=(T1−T2)/T1×100
Hereinafter, the fiber-based sound absorbing material of the present invention will be specifically described with reference to Examples. The following evaluations were made in Examples and Comparative Examples.
1) Single fiber diameter The fiber widths of 10 arbitrary single fibers were measured from images taken by an electron microscope (SEM) of the fibers in the sound absorbing material, and the average thereof was calculated.
2) The weight of the felt cut into 450 mm × 450 mm squares was weighed and converted into the weight per unit area (1 m 2). The first digit after the decimal point of this converted value was rounded off to obtain an integer value, which was used as the basis weight of the fiber sheet.
3) Thickness The thickness (mm) was measured by JIS L 1913. 4) Sound absorption coefficient
It was measured by JIS A 1405-1 (2007) "Measurement of vertical incident sound absorption coefficient of building materials by the in-pipe method".
5) Morphological retention
Initial thickness measurement (T1) of the sound absorbing material cut into 100 mm × 100 mm square. After that, a load of 1100 g / 100 mm square was placed on the sound absorbing pair and left for 6 hours. After leaving the product, the load was removed, the thickness after 1 minute was measured (T2), the distortion factor was calculated by the following formula, and the morphological retention was evaluated. Pass 9 or less and fail more than 9.
Distortion rate = (T1-T2) / T1 × 100

[実施例1]
極細繊維として、ポリエチレンテレフタレート(PET)からなる捲縮短繊維(繊度0.1dtex、単繊維径3μm、繊維長32mm、ふくらみ度合い904(2.54cm)/30g)を、また熱接着性複合短繊維(バインダー繊維)として芯鞘複合型熱接着性短繊維(繊度2.2dtex、単繊維径14μm、繊維長51mm、芯/鞘=50/50、芯:融点256℃のポリエチレンテレフタレート、鞘:テレフタル酸、イソフタル酸、エチレングリコールおよびジエチレングリコールを主成分とする軟化点110℃の共重合ポリエステル)を用い、極細繊維と熱接着性複合短繊維を混率80/20(重量%)で混綿し、カード機に通して、目付け65g/mの不織布ウエブA層を形成した。得られた不織布ウエブA層を厚さ5mmのスペーサーと共に金網の間に挟み、140℃の熱風乾燥機中で10分間加熱処理を行い、厚さ5mm、見掛け密度0.013g/cmの不織布A(層A)を得た。
[Example 1]
As microfine fibers, crimped made of polyethylene terephthalate (PET) staple fibers (fineness 0.1 dtex, the single fiber diameter 3 [mu] m, fiber length 32 mm, bulge degree 904 (2.54cm) 3 / 30g) and also thermally adhesive composite short fibers As (binder fiber), core-sheath composite type heat-adhesive short fiber (fineness 2.2 dtex, single fiber diameter 14 μm, fiber length 51 mm, core / sheath = 50/50, core: polyethylene terephthalate having a melting point of 256 ° C., sheath: terephthalic acid , Isophthalic acid, ethylene glycol and diethylene glycol as the main components, and a copolymerized polyester with a softening point of 110 ° C.) Through this process, a non-woven web A layer having a texture of 65 g / m 2 was formed. The resulting sandwiched between a wire mesh with a spacer having a thickness of 5mm nonwoven web layer A, a heat treatment is performed for 10 minutes in 140 ° C. hot air drier, 5mm thick, nonwoven fabric A of the apparent density 0.013 g / cm 3 (Layer A) was obtained.

次に、ポリエチレンテレフタレート(PET)からなる捲縮短繊維(繊度2.2dtex、単繊維径14μm、繊維長51mm)と芯鞘複合型熱接着性短繊維を混率80/20(重量%)で混綿しカード機に通して、目付335g/mの不織布ウエブB層を形成し、その後、厚さ25mmのスペーサーと共に金網の間に挟み、140℃の熱風循環乾燥機中で10分加熱処理を行い、厚さ25mm、見掛け密度0.013g/cmの不織布B(層B)を得た。得られた不織布Aと不織布Bはスプレー糊で貼り合わせて、厚さ30mm、見掛け密度0.013g/cmの吸音材を得た。得られた吸音材は音源側が不織布Aになる様に配置し吸音性能を評価した。評価結果を表1に示す。また、形態保持性に優れていた。 Next, crimped short fibers made of polyethylene terephthalate (PET) (fineness 2.2 dtex, single fiber diameter 14 μm, fiber length 51 mm) and core-sheath composite heat-adhesive short fibers were mixed at a mixing ratio of 80/20 (% by weight). The non-woven fabric web B layer having a grain size of 335 g / m 2 is formed by passing it through a card machine, then sandwiched between wire meshes together with a spacer having a thickness of 25 mm, and heat-treated in a hot air circulation dryer at 140 ° C. for 10 minutes. A non-woven fabric B (layer B) having a thickness of 25 mm and an apparent density of 0.013 g / cm 3 was obtained. The obtained non-woven fabric A and non-woven fabric B were bonded together with a spray glue to obtain a sound absorbing material having a thickness of 30 mm and an apparent density of 0.013 g / cm 3. The obtained sound absorbing material was arranged so that the sound source side became the non-woven fabric A, and the sound absorbing performance was evaluated. The evaluation results are shown in Table 1. In addition, it was excellent in morphological retention.

[実施例2]
実施例1において不織布Aの目付けを130g/m、厚さを10mm、不織布ウエブB層の目付を270g/m、厚さを20mmとした以外は実施例1と同様にして吸音材を得た。評価結果を表1に示す。
[Example 2]
A sound absorbing material was obtained in the same manner as in Example 1 except that the basis weight of the non-woven fabric A was 130 g / m 2 , the thickness was 10 mm, the basis weight of the non-woven fabric web B layer was 270 g / m 2, and the thickness was 20 mm in Example 1. rice field. The evaluation results are shown in Table 1.

[実施例3]
実施例1において不織布Aの目付けを200g/m、厚さを15mm、不織布Bの目付けを200g/m、厚さを15mmとした以外は実施例1と同様にして吸音材を得た。評価結果を表1に示す。
[Example 3]
A sound absorbing material was obtained in the same manner as in Example 1 except that the basis weight of the nonwoven fabric A was 200 g / m 2 , the thickness was 15 mm, the basis weight of the nonwoven fabric B was 200 g / m 2, and the thickness was 15 mm. The evaluation results are shown in Table 1.

[実施例4]
実施例1において不織布Aの目付けを270g/m、厚さを20mm、不織布Bの目付を130g/m、厚さを10mmとした以外は実施例1と同様にして吸音材を得た。評価結果を表1に示す。
[Example 4]
A sound absorbing material was obtained in the same manner as in Example 1 except that the basis weight of the nonwoven fabric A was 270 g / m 2 , the thickness was 20 mm, the basis weight of the nonwoven fabric B was 130 g / m 2, and the thickness was 10 mm. The evaluation results are shown in Table 1.

[実施例5]
実施例1において不織布Aの厚さを3mmにし、不織布Bの厚さを27mmにした以外は実施例1と同様にして吸音材を得た。評価結果を表1に示す。
[Example 5]
A sound absorbing material was obtained in the same manner as in Example 1 except that the thickness of the nonwoven fabric A was 3 mm and the thickness of the nonwoven fabric B was 27 mm in Example 1. The evaluation results are shown in Table 1.

[実施例6]
実施例1において不織布Aの厚さを2mmにし、不織布Bの厚さを28mmにした以外は実施例1と同様にして吸音材を得た。評価結果を表1に示す。
[Example 6]
A sound absorbing material was obtained in the same manner as in Example 1 except that the thickness of the nonwoven fabric A was 2 mm and the thickness of the nonwoven fabric B was 28 mm in Example 1. The evaluation results are shown in Table 1.

[比較例1]
実施例1において不織布Aの目付けを400g/m、厚さを30mmとし単層の吸音材を得た。評価結果を表1に示す。形態保持性に劣るものであった。
[Comparative Example 1]
In Example 1, the non-woven fabric A had a basis weight of 400 g / m 2 and a thickness of 30 mm to obtain a single-layer sound absorbing material. The evaluation results are shown in Table 1. It was inferior in morphological retention.

[実施例7]
実施例1において構成される不織布のB層を音源側に配置し、A層を音源とは反対側に配置し吸音性能を測定した。評価結果を表1に示す。
[Example 7]
The B layer of the non-woven fabric constructed in Example 1 was arranged on the sound source side, and the A layer was arranged on the side opposite to the sound source, and the sound absorption performance was measured. The evaluation results are shown in Table 1.

[実施例8]
実施例2において構成される不織布のB層を音源側に配置し、A層を音源とは反対側に配置し吸音性能を測定した。評価結果を表1に示す。
[Example 8]
The B layer of the non-woven fabric constructed in Example 2 was arranged on the sound source side, and the A layer was arranged on the side opposite to the sound source, and the sound absorption performance was measured. The evaluation results are shown in Table 1.

[実施例9]
実施例3において構成される不織布のB層を音源側に配置し、A層を音源とは反対側に配置し吸音性能を測定した。評価結果を表1に示す。
[Example 9]
The B layer of the non-woven fabric constructed in Example 3 was arranged on the sound source side, and the A layer was arranged on the side opposite to the sound source, and the sound absorption performance was measured. The evaluation results are shown in Table 1.

[比較例2]
実施例1において不織布Bの目付けを400g/m、厚さを30mmとし単層の吸音材を得た。評価結果を表1に示す。
[Comparative Example 2]
In Example 1, the non-woven fabric B had a basis weight of 400 g / m 2 and a thickness of 30 mm to obtain a single-layer sound absorbing material. The evaluation results are shown in Table 1.

[実施例10]
実施例1において不織布A層のウエブを140℃の熱風循環乾燥機中で10分加熱処理を行った後、140℃1分間5Mpaの圧力で加圧し、0.5mm厚さの不織布Aを得た以外は実施例1と同様にして吸音材を得た。低周波域の吸音性に優れるが、高周波域の吸音性が低下し、本発明の幅広い周波数帯で効果的な吸音性を見出すことができなかった。評価結果を表1に示す。
[Example 10]
In Example 1, the web of the non-woven fabric A layer was heat-treated in a hot air circulation dryer at 140 ° C. for 10 minutes and then pressed at 140 ° C. for 1 minute at a pressure of 5 MPa to obtain a non-woven fabric A having a thickness of 0.5 mm. A sound absorbing material was obtained in the same manner as in Example 1 except for the above. Although it is excellent in sound absorption in the low frequency range, the sound absorption in the high frequency range is lowered, and effective sound absorption in the wide frequency band of the present invention could not be found. The evaluation results are shown in Table 1.

[実施例11]
実施例1において不織布A層を、ポリエチレンテレフタレート繊維(単繊維径700nm、繊維長0.5mm)50%、ポリエチレンテレフタレート繊維(単繊維繊度、0.2dtex、繊維長3mm)50%の紙を4枚積層させた、目付け80g/m、厚さ0.3mmの積層紙とした以外は実施例1と同様にして吸音材を得た。低周波域の吸音性に優れるが、高周波域の吸音性が低下し、本発明の幅広い周波数帯で効果的な吸音性を見出すことができなかった。評価結果を表1に示す。
[Example 11]
In Example 1, four sheets of paper containing 50% polyethylene terephthalate fiber (single fiber diameter 700 nm, fiber length 0.5 mm) and 50% polyethylene terephthalate fiber (single fiber fineness, 0.2 dtex, fiber length 3 mm) were used for the non-woven fabric A layer. A sound absorbing material was obtained in the same manner as in Example 1 except that the laminated paper had a texture of 80 g / m 2 and a thickness of 0.3 mm. Although it is excellent in sound absorption in the low frequency range, the sound absorption in the high frequency range is lowered, and effective sound absorption in the wide frequency band of the present invention could not be found. The evaluation results are shown in Table 1.

[実施例12]
極細繊維として、ポリエチレンテレフタレートからなる捲縮短繊維、繊度0.11dtex、単繊維径3μm、繊維長32mmと0.5tex、単繊維径7μm、繊維長52mmを、その他主体繊維として芯鞘異方冷却により立体捲縮を有する単繊維繊度13.2dtex、繊維長64mmの中空ポリエチレンテレフタレート繊維を、また熱接着性複合短繊維(バインダー繊維)として芯鞘複合型熱接着性短繊維(繊度2.2dtex、単繊維径14μm、繊維長51mm、芯/鞘=50/50、芯:融点256℃のポリエチレンテレフタレート、鞘:テレフタル酸、イソフタル酸、エチレングリコールおよびジエチレングリコールを主成分とする軟化点110℃の共重合ポリエステル)を用い、それぞれの構成比を20/30/20/30(重量%)で混綿し、カード機に通して、目付け300g/mの不織布ウエブA層を形成した。得られた不織布ウエブA層は層の厚さ方向に配列させた縦型不織布になる様にした後、140℃の熱風乾燥機中で10分間加熱処理を行い、厚さ10mm、見掛け密度0.030g/cmの不織布A(層A)を得た。さらに不織布B層も、実施例1と同構成のウエブB層を、繊維を層の厚さ方向に配列させ加熱処理して得た縦型不織布を使用した。評価結果を表1に示す。
[Example 12]
As ultrafine fibers, crimped short fibers made of polyethylene terephthalate, fineness 0.11 dtex, single fiber diameter 3 μm, fiber lengths 32 mm and 0.5 tex, single fiber diameter 7 μm, fiber length 52 mm, etc. A hollow polyethylene terephthalate fiber having a three-dimensional crimp and a single fiber fineness of 13.2 dtex and a fiber length of 64 mm is used as a heat-adhesive composite short fiber (binder fiber), and a core-sheath composite type heat-adhesive short fiber (fineness 2.2 dtex, single). Fiber diameter 14 μm, fiber length 51 mm, core / sheath = 50/50, core: polyethylene terephthalate having a melting point of 256 ° C, sheath: copolymerized polyester containing terephthalic acid, isophthalic acid, ethylene glycol and diethylene glycol as main components and having a softening point of 110 ° C. ), Each composition ratio was mixed at 20/30/20/30 (% by weight) and passed through a card machine to form a non-woven web A layer having a grain size of 300 g / m 2. The obtained non-woven fabric web A layer was formed into a vertical non-woven fabric arranged in the thickness direction of the layers, and then heat-treated in a hot air dryer at 140 ° C. for 10 minutes to have a thickness of 10 mm and an apparent density of 0. Nonwoven fabric A (layer A) of 030 g / cm 3 was obtained. Further, as the non-woven fabric B layer, a vertical non-woven fabric obtained by heat-treating the web B layer having the same configuration as that of Example 1 by arranging the fibers in the thickness direction of the layer was used. The evaluation results are shown in Table 1.

[実施例13]
実施例12において構成される不織布のB層を音源側に配置し、A層を音源とは反対側に配置し吸音性能を測定した。評価結果を表1に示す。
[Example 13]
The B layer of the non-woven fabric constructed in Example 12 was arranged on the sound source side, and the A layer was arranged on the side opposite to the sound source, and the sound absorption performance was measured. The evaluation results are shown in Table 1.

[比較例3]
実施例1において不織布Aの目付けを400g/m、厚さを30mmとし単層の吸音材を得た。評価結果を表1に示す。形態保持性はやや劣るものであった。
[Comparative Example 3]
In Example 1, the non-woven fabric A had a basis weight of 400 g / m 2 and a thickness of 30 mm to obtain a single-layer sound absorbing material. The evaluation results are shown in Table 1. The morphology retention was slightly inferior.

Figure 2021113879
Figure 2021113879

本発明によれば、低周波数領域から高周波数領域まで優れた吸音性を有し、形態保持性にも優れた吸音材が提供され、その工業的価値は極めて大である。 According to the present invention, a sound absorbing material having excellent sound absorbing properties from a low frequency region to a high frequency region and also having excellent morphological retention is provided, and its industrial value is extremely large.

Claims (10)

多層構造を有する吸音材であって、単繊維径が10.0μm以下の短繊維aを含む層Aと、単繊維径が前記短繊維aよりも大きい短繊維bを含む層Bとを含むことを特徴とする吸音材。 A sound absorbing material having a multi-layer structure, comprising a layer A containing short fibers a having a single fiber diameter of 10.0 μm or less and a layer B containing short fibers b having a single fiber diameter larger than the short fibers a. A sound absorbing material characterized by. 前記短繊維aの単繊維径が0.1〜5.0μmの範囲内である、請求項1に記載の吸音材。 The sound absorbing material according to claim 1, wherein the single fiber diameter of the short fiber a is in the range of 0.1 to 5.0 μm. 前記短繊維bの単繊維径が11.0〜60.0μmの範囲内である、請求項1または請求項2に記載の吸音材。 The sound absorbing material according to claim 1 or 2, wherein the single fiber diameter of the short fiber b is in the range of 11.0 to 60.0 μm. 層Aと層Bとの厚さ比が15:1〜1:15の範囲内である、請求項1〜3のいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 3, wherein the thickness ratio of the layer A to the layer B is in the range of 15: 1 to 1:15. 吸音材の厚さが0.5〜100mmの範囲内である、請求項1〜4のいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 4, wherein the thickness of the sound absorbing material is in the range of 0.5 to 100 mm. 吸音材の目付けが、100〜1000g/mの範囲内である、請求項1〜5のいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 5, wherein the basis weight of the sound absorbing material is in the range of 100 to 1000 g / m 2. 前記層Aが音源側に配されてなる、請求項1〜6のいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 6, wherein the layer A is arranged on the sound source side. 吸音材が自動車用である、請求項1〜7のいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 7, wherein the sound absorbing material is for an automobile. JIS A 1405−1(2007)「管内法による建築材料の垂直入射吸音率測定法」において、1/3オクターブ周波数間隔で測定した吸音率値の積分値が下記条件(1)〜(4)全てを満たす、請求項1〜8のいずれかに記載の吸音材。
(1)200〜1000Hzの吸音率の積分値が1.5以上である。
(2)1000〜2500Hzの吸音率の積分値が3.0以上である。
(3)2500〜5000Hzの吸音率の積分値が3.0以上である。
(4)200〜5000Hzの吸音率の積分値が6.0以上である。
In JIS A 1405-1 (2007) "Measurement of vertical incident sound absorption coefficient of building materials by the in-pipe method", the integrated value of the sound absorption coefficient values measured at 1/3 octave frequency intervals is all of the following conditions (1) to (4). The sound absorbing material according to any one of claims 1 to 8, which satisfies the above conditions.
(1) The integrated value of the sound absorption coefficient of 200 to 1000 Hz is 1.5 or more.
(2) The integrated value of the sound absorption coefficient of 1000 to 2500 Hz is 3.0 or more.
(3) The integrated value of the sound absorption coefficient of 2500 to 5000 Hz is 3.0 or more.
(4) The integrated value of the sound absorption coefficient of 200 to 5000 Hz is 6.0 or more.
前記短繊維aが、短繊維30gを内径29cmのシリンダーに入れ、その上から荷重用円盤94.2gを掛けた時の2分後のふくらみ度合いが500(2.54cm)以上である、請求項1〜9のいずれかに記載の吸音材。 Claimed that the degree of swelling of the short fiber a after 2 minutes when 30 g of the short fiber is placed in a cylinder having an inner diameter of 29 cm and 94.2 g of a loading disk is hung on the cylinder is 500 (2.54 cm) 3 or more. Item 2. The sound absorbing material according to any one of Items 1 to 9.
JP2020006023A 2020-01-17 2020-01-17 Sound absorbing material Pending JP2021113879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006023A JP2021113879A (en) 2020-01-17 2020-01-17 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006023A JP2021113879A (en) 2020-01-17 2020-01-17 Sound absorbing material

Publications (1)

Publication Number Publication Date
JP2021113879A true JP2021113879A (en) 2021-08-05

Family

ID=77076964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006023A Pending JP2021113879A (en) 2020-01-17 2020-01-17 Sound absorbing material

Country Status (1)

Country Link
JP (1) JP2021113879A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158571A (en) * 1997-08-18 1999-03-02 Unitika Ltd Sound absorbing material
WO2016143857A1 (en) * 2015-03-12 2016-09-15 東レ株式会社 Laminated nonwoven fabric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158571A (en) * 1997-08-18 1999-03-02 Unitika Ltd Sound absorbing material
WO2016143857A1 (en) * 2015-03-12 2016-09-15 東レ株式会社 Laminated nonwoven fabric

Similar Documents

Publication Publication Date Title
JP2008068799A (en) Sound absorber and vehicular floor sheet
JP2008089620A (en) Sound absorbing material and attaching method therefor and fiber product
JP2005335279A (en) Easy-to-mold sound-absorbing material
JP2007025044A (en) Sound absorbing material
JP4043343B2 (en) Sound absorbing structure
JP5155016B2 (en) Manufacturing method of fiber structure for sound absorbing material and manufacturing method of sound absorbing material
JP5886063B2 (en) Production method of sound absorbing material
JP4439064B2 (en) Method for producing sound absorbing fiber structure
JP5684754B2 (en) Composite fiber structure
JP2009186825A (en) Sound absorbing structure
JP5676226B2 (en) Vehicle cushioning material
JP3152598U (en) Insulation
JP3166607U (en) Coating material
JP2021113879A (en) Sound absorbing material
JP5591612B2 (en) Vacuum insulation core material and vacuum insulation material using the core material
JP5468817B2 (en) Multilayer fiber structure, moisture-absorbing / releasing agent and method of using the same
JP4187541B2 (en) Multi-layer sound absorbing structure
JP4018836B2 (en) Polyester-based heat-adhesive conjugate fiber and fiber structure comprising the same
JP3151737U (en) bedding
JP4856403B2 (en) Vehicle interior material and method for manufacturing the same
JP5638784B2 (en) Duct material and duct
JP4212755B2 (en) Sound absorbing fiber structure
JP3172502U (en) Mattress fiber structure and mattress
JP5284660B2 (en) Packing method and packing body for fiber structure
JP5607494B2 (en) Wet nonwovens and textile products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926