JP2021113738A - Temperature-sensing sensor pin and temperature-sensing sensor having the same - Google Patents

Temperature-sensing sensor pin and temperature-sensing sensor having the same Download PDF

Info

Publication number
JP2021113738A
JP2021113738A JP2020006492A JP2020006492A JP2021113738A JP 2021113738 A JP2021113738 A JP 2021113738A JP 2020006492 A JP2020006492 A JP 2020006492A JP 2020006492 A JP2020006492 A JP 2020006492A JP 2021113738 A JP2021113738 A JP 2021113738A
Authority
JP
Japan
Prior art keywords
annular flange
temperature
sensor pin
temperature measuring
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020006492A
Other languages
Japanese (ja)
Other versions
JP7138868B2 (en
Inventor
好幸 波多野
Yoshiyuki Hatano
好幸 波多野
亮輔 藤本
Ryosuke Fujimoto
亮輔 藤本
豪志 横山
Takeshi Yokoyama
豪志 横山
朗 寺山
Akira Terayama
朗 寺山
伸行 府山
Nobuyuki Fuyama
伸行 府山
郁 大石
Ikumi Oishi
郁 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Shibaura Machine Co Ltd
Original Assignee
Hiroshima Prefecture
Shibaura Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture, Shibaura Machine Co Ltd filed Critical Hiroshima Prefecture
Priority to JP2020006492A priority Critical patent/JP7138868B2/en
Publication of JP2021113738A publication Critical patent/JP2021113738A/en
Application granted granted Critical
Publication of JP7138868B2 publication Critical patent/JP7138868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

To provide a temperature-sensing sensor pin capable of continuously measuring a temperature change in a coagulation process of a body for which temperature is sensed with an improved response, and to provide a temperature-sensing sensor having the temperature-sensing sensor pin.SOLUTION: In a temperature-sensing sensor pin fixed in a through hole bored on a wall part of a cavity into which a melted body for which temperature is sensed is allowed to flow or is filled, the temperature-sensing sensor pin includes a cylindrical body having an annular flange that has the annular flange extended from one cylindrical tip end to the inside in a radial direction, a columnar light transmission body that is pressed against a flange surface in an outer side of the wall part of the annular flange in a face contact state and forms a hole part and a recess of the annular flange, and has an outer shape width less than the inner diameter of a cylindrical part of the cylindrical body having the annular flange and can transmit light, and a press body for pressing a surface in the outer side of the light transmission body in the annular flange direction.SELECTED DRAWING: Figure 2

Description

本発明は、例えばダイカスト金型、鋳造金型、プラスチック金型等の空洞内に充填される被測温体に対して、高温時から凝固するまでの凝固過程における温度変化をレスポンスよく連続的に測定ができるようにする測温センサピン及びそれを備える測温センサに関する。 The present invention continuously responds to a temperature change in the solidification process from a high temperature to solidification with respect to a temperature-measured object to be filled in a cavity such as a die casting mold, a casting mold, or a plastic mold. The present invention relates to a temperature measuring sensor pin that enables measurement and a temperature measuring sensor provided with the pin.

例えば、アルミニウム、亜鉛又はマグネシウム等の非鉄金属とその合金で高寸法精度の製品を短時間に大量生産するダイカスト法をはじめとする鋳造においては、溶湯金属の凝固過程における温度変化をレスポンスよく連続的に把握することが鋳造製品の品質にとって重要である。 For example, in casting such as the die casting method in which non-ferrous metals such as aluminum, zinc or magnesium and their alloys are mass-produced with high dimensional accuracy in a short time, the temperature change in the solidification process of the molten metal is responsive and continuous. It is important to understand the quality of casting products.

溶湯金属の凝固過程における温度測定手段として一般的に熱電対がある。熱電対の場合、測温接点を直接溶湯金属に浸漬させることで生じる金属導体の固有の熱起電力から温度変換する。 A thermocouple is generally used as a temperature measuring means in the solidification process of molten metal. In the case of a thermocouple, the temperature is converted from the inherent thermoelectromotive force of the metal conductor generated by immersing the temperature measuring contact directly in the molten metal.

また、応答速度の速い温度計として、光ファイバーを用いた放射温度計がある。光ファイバー放射温度計の光ファイバー先端を溶湯金属に浸漬させ、光ファイバー先端から取り込んだ放射光を温度に変換し温度表示する。放射光を取り込むため応答速度は熱電対に比較し速い。 Further, as a thermometer having a fast response speed, there is a radiation thermometer using an optical fiber. The tip of the optical fiber of the optical fiber radiation thermometer is immersed in molten metal, and the synchrotron radiation captured from the tip of the optical fiber is converted into temperature and displayed as a temperature. The response speed is faster than that of a thermocouple because it takes in synchrotron radiation.

また、特許文献1には、ボルト端が圧力容器壁の内壁面と、同一面をなすように圧力容器壁内の孔に嵌着可能な中空ボルトと、一つの面が前記ボルト端に隣接するように前記中空ボルトの前記ボルト端に固定された赤外線通過ウインドと、前記中空ボルトの他端内に固定された光ファイバー束と、前記ウインド及び前記光ファイバー束と共働し赤外輻射線を前記ウインドから前記光ファイバー束へ通過するよう前記中空ボルト内に配されたガラスロッドとから成る赤外線温度プローブが開示されている。 Further, in Patent Document 1, a hollow bolt that can be fitted into a hole in the pressure vessel wall so that the bolt end is flush with the inner wall surface of the pressure vessel wall, and one surface is adjacent to the bolt end. As described above, the infrared ray passing window fixed to the bolt end of the hollow bolt, the optical fiber bundle fixed in the other end of the hollow bolt, and the window and the optical fiber bundle cooperate with each other to emit infrared radiation to the window. An infrared temperature probe comprising a glass rod arranged in the hollow bolt so as to pass through the optical fiber bundle is disclosed.

特許文献2には、円筒状の中空軸部と、前記中空軸部に内接して固着される管状スペーサと、前記管状スペーサの内壁面に第1の耐熱性接着材層で固着される円柱状の導光体を有し、前記管状スペーサの内壁面とそれに対面する前記導光体の表面には前記導光体の先端から所定長の非接着部を設けた導光体付ピンが開示されている。 Patent Document 2 describes a cylindrical hollow shaft portion, a tubular spacer inscribed and fixed to the hollow shaft portion, and a columnar shape fixed to the inner wall surface of the tubular spacer by a first heat-resistant adhesive layer. A pin with a light guide body is disclosed, which has a light guide body of the above, and is provided with a non-adhesive portion having a predetermined length from the tip of the light guide body on the inner wall surface of the tubular spacer and the surface of the light guide body facing the inner wall surface. ing.

特許文献3には、連続鋳造機の鋳型側壁に螺旋状に複数個の透孔を設け、各透孔にそれぞれ耐熱性、集光性に富む温度検知素子をそれ等の端面が前記鋳型内周面より後退した位置にあるように挿入し、これ等の温度検知素子の出力をそれぞれ光ファイバーによって熱線温度計に導いた鋳型内温度の監視測定装置が開示されている。 In Patent Document 3, a plurality of through holes are spirally provided on the side wall of the mold of a continuous casting machine, and each through hole is provided with a temperature detection element having excellent heat resistance and light collection property, and the end faces thereof are the inner circumference of the mold. A monitoring and measuring device for the temperature inside a mold, which is inserted so as to be recessed from the surface and the outputs of these temperature detecting elements are guided to a heat ray thermometer by an optical fiber, is disclosed.

特開昭58−137721号公報Japanese Unexamined Patent Publication No. 58-137721 特許第4874444号公報Japanese Patent No. 4874444 特許第3121672号公報Japanese Patent No. 3121672

前記熱電対を使用した場合は、熱電対は測温接点が昇温するまでに時間を要するため、数十msで充填されるダイカスト法の金型内の溶湯金属の凝固過程の温度を遅延なく測定できないという問題があった。また、ダイカスト法では、金型内部で溶湯金属が凝固していくため、熱電対の測温接点を金型内の溶湯金属に浸漬させると溶湯金属が凝固した時に測温接点が埋め込まれ、鋳造製品取出し等のときに測温接点が破損し、連続使用ができないという問題があった。 When the thermocouple is used, it takes time for the temperature measuring contact to rise in temperature, so the temperature of the solidification process of the molten metal in the die casting mold filled in several tens of ms is not delayed. There was a problem that it could not be measured. In the die casting method, the molten metal solidifies inside the mold. Therefore, when the thermocouple temperature measuring contact is immersed in the molten metal in the mold, the temperature measuring contact is embedded when the molten metal solidifies and casting. There was a problem that the temperature measuring contact was damaged when the product was taken out, and continuous use was not possible.

前記光ファイバーを使用した場合は、一般的に単色の波長の放射光を用いて非接触で測温するために被測温対象物の放射率を正確に把握して調整しなければ正確な温度を把握できないという問題があった。また、光ファイバーの測温接点を溶湯金属に浸漬すると正確な測温ができるが、浸漬した光ファイバーの測温接点が凝固により破損するという問題があった。破損するので連続使用ができないという問題があった。 When the optical fiber is used, the emissivity of the object to be measured must be accurately grasped and adjusted in order to measure the temperature in a non-contact manner using synchrotron radiation of a single color wavelength. There was a problem that it could not be grasped. Further, although accurate temperature measurement can be performed by immersing the temperature measuring contact of the optical fiber in the molten metal, there is a problem that the temperature measuring contact of the immersed optical fiber is damaged by solidification. There was a problem that it could not be used continuously because it was damaged.

特許文献1の発明は、ウインドを切頭円錐形状にしてテーパー面を最初の圧力が加えられるウインド外面よりも大きな支持面とし、中空ボルトのテーパー面によってウインドのテーパー面をその略全長にわたって支持させる構造であり、係止リングの一端側をウインド外面に当接させながら係止リングの雌螺子を中空ボルトの雄螺子に螺入させていって中空ボルトのテーパー面にウインドのテーパー面を押し付ける構造で、かつ、螺入した係止リングの他端面を中空ボルトの段付きに当接させてその当接した位置が軸芯になるように両部品に亘ってタップを立てて固定ボルトを螺入する構造である。このため、中空ボルトのテーパー面にウインドのテーパー面を押し付けるより前のタイミングで係止リングの他端面が中空ボルトの段付きに当接すると、中空ボルトのテーパー面とウインドのテーパー面との間に隙間が生ずるので、これを防ぐためにウインドのテーパー面寸法精度、中空ボルトのテーパー面及び段付きの位置寸法精度、並びに係止リングの他端面及び環状フランジのウインド当接面の位置寸法精度の誤差を極めて極小にした加工をしなければならず、そのような加工自体の難しさ及び加工コストの増大化という問題があった。 In the invention of Patent Document 1, the window is formed into a truncated conical shape so that the tapered surface is a support surface larger than the outer surface of the window to which the initial pressure is applied, and the tapered surface of the hollow bolt supports the tapered surface of the window over its substantially entire length. It is a structure in which the female screw of the locking ring is screwed into the male screw of the hollow bolt while the one end side of the locking ring is in contact with the outer surface of the window, and the tapered surface of the window is pressed against the tapered surface of the hollow bolt. Then, the other end surface of the screwed locking ring is brought into contact with the stepped hollow bolt, and a tap is set up over both parts so that the contacted position becomes the axis, and the fixing bolt is screwed in. It is a structure to be used. Therefore, when the other end surface of the locking ring comes into contact with the stepped surface of the hollow bolt at a timing before pressing the tapered surface of the window against the tapered surface of the hollow bolt, between the tapered surface of the hollow bolt and the tapered surface of the window. To prevent this, the taper surface dimensional accuracy of the window, the tapered surface of the hollow bolt and the stepped position dimensional accuracy, and the position dimensional accuracy of the other end surface of the locking ring and the window contact surface of the annular flange Processing must be performed with extremely minimal error, and there are problems such as difficulty in processing itself and an increase in processing cost.

特許文献1の発明は、赤外線温度計を使用しているが2波長により温度測定するとの記載が見当たらないので、被測温対象物の放射率を正確に把握して調整しなければ正確な温度を把握できないという問題があった。また、特許文献1の図5に示すように環状フランジの孔が光ファイバー束の外径より小さい。一般的に光ファイバーの集光角度は測定距離が長くなるほど測定径が大きくなるように製作されていることから、測定径の範囲に、ウインドに接する中空ボルトの側面及び環状フランジも入るという視野欠けの状態となり、集光部である光ファイバー束はウインドに接する中空ボルトの側面からの赤外線、環状フランジからの赤外線及び被測温対象物からの赤外線をとらえて温度測定することとなり、被測温対象物の正確な温度測定ができないという問題があった。 Although the invention of Patent Document 1 uses an infrared thermometer, there is no description that the temperature is measured by two wavelengths. Therefore, the exact temperature must be accurately grasped and adjusted to the emissivity of the object to be measured. There was a problem that I could not grasp. Further, as shown in FIG. 5 of Patent Document 1, the hole of the annular flange is smaller than the outer diameter of the optical fiber bundle. Generally, the focusing angle of an optical fiber is manufactured so that the measurement diameter becomes larger as the measurement distance becomes longer. Therefore, the side surface of the hollow bolt in contact with the window and the annular flange are included in the measurement diameter range. The optical fiber bundle, which is the condensing part, captures the infrared rays from the side surface of the hollow bolt in contact with the window, the infrared rays from the annular flange, and the infrared rays from the object to be measured, and the temperature is measured. There was a problem that accurate temperature measurement was not possible.

また、切頭円錐形状のウインドを交換する場合に、前記ウインドを押さえつけている係止リングを回して外さなければならないが、圧力容器の壁部に嵌設した状態ではできないので、圧力容器から赤外線温度測定器を外して、その後に係止リングを回して外し、そしてウインドを交換し再び係止リングを螺入させてから赤外線温度測定器を圧力容器の壁部に嵌設しなければならないという煩わしさがあるという問題があった。 In addition, when replacing a window with a truncated cone shape, the locking ring holding the window must be turned to remove it, but this cannot be done when it is fitted to the wall of the pressure vessel, so infrared rays are emitted from the pressure vessel. The temperature measuring instrument must be removed, then the locking ring must be turned off, the window replaced, the locking ring screwed in again, and then the infrared temperature measuring instrument must be fitted to the wall of the pressure vessel. There was a problem that it was bothersome.

特許文献2の発明は、樹脂の成形時の温度測定に関する発明であるが、特許文献2の段落[0032]に「成形時に樹脂と接するエジェクタピンの先端面は中空軸部と管状スペーサと光ファイバーの端面で構成され」との記載があり、特許文献2の発明をダイカスト法に使用すると金型内部で溶湯金属が凝固していくため、光ファイバーの先端面が、溶湯金属が凝固した時に埋め込まれ、鋳造製品取出し等のときに光ファイバーの先端面が破損するという問題があった。破損するので連続使用ができないという問題があった。 The invention of Patent Document 2 is an invention relating to temperature measurement during molding of a resin. In paragraph [0032] of Patent Document 2, "The tip surface of the ejector pin in contact with the resin during molding is a hollow shaft portion, a tubular spacer, and an optical fiber. When the invention of Patent Document 2 is used in the die casting method, the molten metal solidifies inside the mold, so that the tip surface of the optical fiber is embedded when the molten metal solidifies. There is a problem that the tip surface of the optical fiber is damaged when the cast product is taken out. There was a problem that it could not be used continuously because it was damaged.

特許文献3の発明は、貫通孔に嵌入された、透明石英からなる棒状の温度検知器は、溶湯に接する側の面が垂直面であり、その垂直面が周縁も含めて全面が溶湯に接する構造になっているので、溶湯が凝固する過程で収縮するときの影響により前記垂直面の周縁から前記透明石英からなる温度検知器にひび割れなどの破損が生ずるという問題があった。破損するので連続使用ができないという問題があった。 According to the invention of Patent Document 3, in the rod-shaped temperature detector made of transparent quartz fitted in the through hole, the surface on the side in contact with the molten metal is a vertical surface, and the vertical surface is in contact with the molten metal on the entire surface including the peripheral edge. Since it has a structure, there is a problem that the temperature detector made of transparent quartz is damaged such as cracks from the peripheral edge of the vertical surface due to the influence of shrinkage in the process of solidifying the molten metal. There was a problem that it could not be used continuously because it was damaged.

本発明はこうした問題に鑑み創案されたもので、測温接点の破損を生じさせず連続使用ができ、視野欠けを生じさせず、被測温体の温度変化をレスポンスよく連続的に測定ができ、放射線を透過させる光透過体を容易に交換できる測温センサピン及びそれを備える測温センサを提供することを課題とする。 The present invention was devised in view of these problems, and can be used continuously without causing damage to the temperature measuring contacts, without causing a field loss, and can continuously measure the temperature change of the temperature-measured object with good response. It is an object of the present invention to provide a temperature measurement sensor pin capable of easily exchanging a light transmitter that transmits radiation and a temperature measurement sensor including the pin.

本発明において、内方向又は外方向とは、空洞を形成する壁部の厚み方向の中央部からみた内外方向を意味し、例えば内方向とは金型のキャビティや湯道等の空洞を形成する壁部の厚み方向の中央部からみて内壁面側方向を意味し、外方向とは前記壁部の厚み方向の中央部からみて外壁面側方向を意味する。 In the present invention, the inward direction or the outward direction means the inside / outside direction seen from the central portion in the thickness direction of the wall portion forming the cavity, and for example, the inward direction forms a cavity such as a mold cavity or a runner. It means the inner wall surface side direction when viewed from the central portion in the thickness direction of the wall portion, and the outer direction means the outer wall surface side direction when viewed from the central portion in the thickness direction of the wall portion.

請求項1に記載の測温センサピンは、溶解された被測温体を流動又は充填可能な空洞の壁部に穿設された貫通孔に嵌設する測温センサピンであって、前記測温センサピンは、筒状の一方の先端縁から径方向内側に延在する環状フランジを有する環状フランジ付き円筒体と、前記環状フランジの前記壁部の外方向側のフランジ面に面接触状態で押し当てられて前記環状フランジの穴部と凹部を形成し、かつ前記環状フランジ付き円筒体の筒状の部位の内径未満の外形幅を有し光を透過可能な柱形状の光透過体と、前記光透過体の前記外方向側の面を前記環状フランジ方向に向けて押し付ける押え体と、を備えることを特徴とする。 The temperature measuring sensor pin according to claim 1 is a temperature measuring sensor pin that fits a melted material to be measured into a through hole formed in a wall portion of a cavity capable of flowing or filling, and is the temperature measuring sensor pin. Is pressed against a cylindrical body with an annular flange having an annular flange extending radially inward from one end edge of the tubular shape and a flange surface on the outward side of the wall portion of the annular flange in a surface contact state. A column-shaped light transmitter having an outer diameter smaller than the inner diameter of the cylindrical portion of the cylindrical portion of the cylindrical body with an annular flange and capable of transmitting light, and the light transmitting body having a hole and a recess of the annular flange. It is characterized by including a pressing body that presses the outer side surface of the body toward the annular flange direction.

請求項2に記載の測温センサピンは、請求項1において、前記光透過体の前記壁部の内方向側及び外方向側の両端面が平行な平面を有することを特徴とする。 The temperature measuring sensor pin according to claim 2 is characterized in that, in claim 1, both end faces on the inner side and the outer direction side of the wall portion of the light transmitter have parallel planes.

請求項3に記載の測温センサピンは、請求項1又は2において、前記押え体の前記内方向側の外周面に螺刻した雄螺子と前記環状フランジ付き円筒体の内周面に螺刻した雌螺子とを螺合させて、前記押え体を螺入させることにより、前記光透過体を前記環状フランジの前記外方向側のフランジ面に押し当てることを特徴とする。 The temperature measuring sensor pin according to claim 3 is screwed on the inner peripheral surface of the male screw screwed on the outer peripheral surface of the presser body on the inner direction side and the inner peripheral surface of the cylindrical body with an annular flange in claim 1 or 2. It is characterized in that the light transmitting body is pressed against the outer flange surface of the annular flange by screwing the holding body into the female screw.

請求項4に記載の測温センサピンは、請求項1〜3のいずれかにおいて、前記測温センサピンは、先端側を前記内方向に向け他端側を前記外方向に向けて、キャビティを形成する金型の壁部に、湯道を形成する管の壁部に、又は、押出手段を有する湯溜りを形成するスリーブの壁部に穿設された貫通孔部に嵌設可能で、先端部を前記内方向に向けた前記環状フランジ付き円筒体と、柱形状の前記光透過体と、軸心部に長尺状の導光体を挿入可能なかつ前記導光体の外径と略同じ大きさの内径の貫通孔を有し、前記環状フランジ付き円筒体の内径と略同じ外径を有する略円柱状の押え体と、を備え、前記環状フランジの前記内方向側の先端面が前記壁部の内壁面に面一となるように嵌設可能で、前記導光体の先端部を前記光透過体の前記外方向側の面に当接可能であることを特徴とする。 The temperature measuring sensor pin according to claim 4 forms a cavity in any one of claims 1 to 3, with the tip end side facing inward and the other end side facing outward. It can be fitted into the wall of the mold, the wall of the pipe forming the runner, or the through hole formed in the wall of the sleeve forming the hot water pool having an extrusion means, and the tip can be fitted. The cylindrical body with an annular flange facing inward, the column-shaped light transmitting body, and a long light guide body that can be inserted into the axial center portion and have substantially the same size as the outer diameter of the light guide body. A substantially columnar holding body having a through hole with an inner diameter of the annular flange and having an outer diameter substantially the same as the inner diameter of the cylindrical body with an annular flange, and the tip surface of the annular flange on the inward side is the wall portion. It is characterized in that it can be fitted so as to be flush with the inner wall surface of the light-transmitting body, and the tip end portion of the light guide body can be brought into contact with the outer surface of the light-transmitting body.

請求項5に記載の測温センサピンは、請求項1〜4のいずれかにおいて、前記環状フランジの内径を、前記押え体の軸心部に挿入された長尺状の導光体の予め設定された集光角度を基にした光路内に、前記光透過体及び前記被測温体のみが存する大きさにすることを特徴とする。 In any one of claims 1 to 4, the temperature measuring sensor pin according to claim 5 has an inner diameter of the annular flange set in advance of a long light guide body inserted into an axial center portion of the holding body. It is characterized in that the size is such that only the light transmitting body and the temperature-measured body are present in the optical path based on the light condensing angle.

請求項6に記載の測温センサピンは、請求項1〜5のいずれかにおいて、前記環状フランジの内径を式(1)で求めることを特徴とする。
d≧2(L+T)tan(θ/2)+D・・・・(1)
環状フランジの内径:d
環状フランジの厚み:L
光透過体の厚み:T
導光体の集光角度:θ
導光体の外径:D
The temperature measurement sensor pin according to claim 6 is characterized in that, in any one of claims 1 to 5, the inner diameter of the annular flange is obtained by the formula (1).
d ≧ 2 (L + T) tan (θ / 2) + D ... (1)
Inner diameter of annular flange: d
Annular flange thickness: L
Thickness of light transmitter: T
Focusing angle of light guide: θ
Outer diameter of light guide: D

請求項7に記載の測温センサピンは、請求項1〜6のいずれかにおいて、前記環状フランジ付き円筒体の前記内方向側の先端面に、前記環状フランジ付き円筒体の螺入出用工具の突起嵌入用の孔を少なくとも2か所以上設けることを特徴とする。 The temperature measuring sensor pin according to claim 7, in any one of claims 1 to 6, is a protrusion of a tool for screwing in and out of the cylindrical body with an annular flange on the tip surface on the inward side of the cylindrical body with an annular flange. It is characterized in that at least two holes for fitting are provided.

請求項8に記載の測温センサは、請求項1〜7のいずれかに記載の前記測温センサピンを備えていることを特徴とする。 The temperature measuring sensor according to claim 8 is characterized by including the temperature measuring sensor pin according to any one of claims 1 to 7.

請求項1〜4に記載の測温センサピンは、例えば溶湯等の高温で溶解された後に冷却により凝固する被測温体とは非接触であるので前記測温センサピンの先端部の測温接点の破損を生じさせず、環状フランジ付き円筒体と光透過体とをしっかりと面接触状態で密着させているので、溶湯等の高温の溶解した被測温体が光透過体の周縁に接する状況にはならないことから前記光透過体に被測温体の凝固過程における収縮によるひび割れを生じさせない。これにより、前記測温センサピンで温度変化をレスポンスよく連続的に測定させることができ、連続使用させることができる。 Since the temperature measurement sensor pin according to claims 1 to 4 is in non-contact with a temperature-measured body that solidifies by cooling after being melted at a high temperature such as a molten metal, the temperature measurement contact at the tip of the temperature measurement sensor pin Since the cylindrical body with an annular flange and the light transmitting body are firmly adhered to each other in a surface contact state without causing damage, the temperature-measured body to be measured at a high temperature such as a molten metal is in contact with the peripheral edge of the light transmitting body. Therefore, the light transmitting body does not crack due to shrinkage in the solidification process of the temperature-measured body. As a result, the temperature measurement sensor pin can continuously measure the temperature change with good response, and can be used continuously.

前記光透過体の、溶湯等の溶解した被測温体と接する面は、測温センサピンの先端面より前記環状フランジの厚み分だけ前記外方向側に窪ませているので、わずかに窪ませた凹部に流入してきた溶湯等の溶解した被測温体の流動は沈静化しているので、測温の確実性を高めることができる。 The surface of the light transmitter that comes into contact with the melted hot water such as the molten metal is slightly recessed from the tip surface of the resistance temperature sensor pin to the outward side by the thickness of the annular flange. Since the flow of the melted object to be measured, such as the molten metal, that has flowed into the recess has calmed down, the certainty of temperature measurement can be improved.

また、前記光透過体を接着剤で固定することなく、螺入による押し付けのみによる固定であるので、前記光透過体を交換するときに容易に煩わしさがなく交換することができる。 Further, since the light transmitting body is fixed only by pressing by screwing without fixing with an adhesive, the light transmitting body can be easily replaced without any trouble.

請求項2に記載の測温センサは、前記光透過体の前記壁部の内方向側及び外方向側の両端面を平行な平面にしているので、溶湯等の高温の溶解した被測温体が冷却により収縮するときに前記光透過体の表面に収縮力なる圧力を加えることはないので、前記光透過体の表面に収縮によるひび割れを生じさせない。これにより、前記測温センサピンを、温度変化をレスポンスよく連続的に測定させることができ、連続使用させることができる。 In the temperature measuring sensor according to claim 2, since both end faces of the inner and outer sides of the wall portion of the light transmitting body are made parallel planes, a hot metal to be measured such as a molten metal is melted. Does not apply a contractile pressure to the surface of the light transmitting body when the light transmitting body shrinks due to cooling, so that the surface of the light transmitting body does not crack due to shrinkage. As a result, the temperature measurement sensor pin can be continuously measured for temperature change with good response, and can be continuously used.

請求項5又は6に記載の測温センサピンは、光ファイバーで定められた集光角度に基づく光路内に被測温体以外の赤外線は集光されないし、かつ前記光路内には遮蔽物もないので視野欠けがなく、被測温体の正確な温度測定がリアルタイムでできるという効果を奏する。 The temperature measurement sensor pin according to claim 5 or 6 does not collect infrared rays other than the temperature-measured object in the optical path based on the focusing angle determined by the optical fiber, and there is no shield in the optical path. There is no lack of visual field, and the effect is that accurate temperature measurement of the temperature to be measured can be performed in real time.

請求項7に記載の測温センサピンは、測温センサピンを例えば金型の壁面に穿設した貫通孔に嵌設した状態で、前記環状フランジ付き円筒体を例えば金型のキャビティ側に外すことができるので、極めて容易に光透過体を交換することができる。 The temperature measuring sensor pin according to claim 7 may be such that the cylindrical body with an annular flange is removed to, for example, the cavity side of the mold in a state where the temperature measuring sensor pin is fitted in a through hole formed in the wall surface of the mold. Therefore, the light transmitter can be replaced very easily.

請求項8に記載の測温センサは、請求項1〜7のいずれかに記載された発明と同じ効果を奏する。 The temperature measuring sensor according to claim 8 has the same effect as that of the invention according to any one of claims 1 to 7.

本発明の測温センサをダイカスト金型に組み込んだ状態における測温センサの軸心における平面視断面説明図である。It is a plan view cross-sectional explanatory view at the axis of the temperature measuring sensor in the state which incorporated the temperature measuring sensor of this invention into a die-casting die. 本発明の測温センサの軸心における平面視断面説明図である。It is a plan view cross-sectional explanatory view at the axis of the temperature measuring sensor of this invention. 導光体を挿入していない状態でキャップネジ式の測温センサピンの軸心における側面視断面説明図である。It is a side view cross-sectional explanatory view at the axis of a cap screw type temperature measuring sensor pin in a state where a light guide body is not inserted. 導光体を挿入している状態でキャップネジ式の測温センサピンの説明図で、(a)は軸心における側面視断面説明図で、(b)は軸心における平面視断面説明図である。An explanatory view of a cap screw type temperature measuring sensor pin with a light guide inserted, (a) is a side view cross-sectional explanatory view at the axial center, and (b) is a plan view cross-sectional explanatory view at the axial center. .. 図4(b)のB部の拡大図である。It is an enlarged view of the part B of FIG. 4 (b). 測温センサピンのA矢視の説明図で、(a)は環状フランジ付き円筒体の環状フランジの内方向側の面にネジ回し工具用孔を設けた形態の説明図で、(b)は環状フランジ付き円筒体の環状フランジの内方向側の面にネジ回し工具用孔を設けない形態の説明図である。It is an explanatory view of the temperature measuring sensor pin seen by arrow A, (a) is an explanatory view of a form in which a screwdriver hole is provided on the inner surface of the annular flange of a cylindrical body with an annular flange, and (b) is an annular shape. It is explanatory drawing of the form in which the hole for a screwdriver tool is not provided on the inner side surface of the annular flange of a cylindrical body with a flange. 導光体を挿入していない状態で内部ネジ式の測温センサピンの軸心における側面視断面説明図である。It is a side view cross-sectional explanatory view at the axis of the internal screw type temperature measuring sensor pin in a state where a light guide body is not inserted. 導光体を挿入している状態で内部ネジ式の測温センサピンの説明図で、(a)は軸心における平面視断面説明図で、(b)は軸心における側面視断面説明図である。It is an explanatory view of an internal screw type temperature measuring sensor pin with a light guide inserted, (a) is a plan view cross-sectional explanatory view at the axial center, and (b) is a side view cross-sectional explanatory view at the axial center. .. 図8(b)のC部の拡大図である。It is an enlarged view of the part C of FIG. 8 (b). 測温センサピンの先端部の軸心における断面説明図である。It is sectional drawing at the axis of the tip of the temperature measuring sensor pin. 図10の測温センサピンの先端部の軸心における断面で、斜線を消去して前記先端部の寸法構成を説明する説明図である。FIG. 5 is an explanatory view for explaining the dimensional configuration of the tip portion by eliminating diagonal lines in a cross section of the tip portion of the temperature measurement sensor pin of FIG. 10 at the axial center. 図10の測温センサピンの先端部の寸法関係の説明図である。It is explanatory drawing of the dimensional relation of the tip part of the temperature measurement sensor pin of FIG. 熱電対によるダイキャスト金型内部温度測定結果を示す図で、(a)は1回目の温度測定結果の説明図で、(b)は2回目の温度測定結果の説明図で、(c)は3回目の温度測定結果の説明図である。It is a figure which shows the temperature measurement result inside the die cast mold by a thermocouple, (a) is the explanatory view of the first temperature measurement result, (b) is the explanatory view of the second temperature measurement result, (c) is. It is explanatory drawing of the 3rd temperature measurement result. 浸漬型光ファイバー温度計によるダイキャスト金型内部温度測定結果を示す図で、(a)は1回目の温度測定結果の説明図で、(b)は2回目の温度測定結果の説明図で、(c)は3回目の温度測定結果の説明図である。It is a figure which shows the temperature measurement result inside the die-cast mold by the immersion type optical fiber thermometer, (a) is the explanatory view of the first temperature measurement result, (b) is the explanatory view of the second temperature measurement result, ( c) is an explanatory diagram of the result of the third temperature measurement. 本発明の測温センサによるダイキャスト金型内部温度測定結果を示す図で、(a)は1回目の温度測定結果の説明図で、(b)は2回目の温度測定結果の説明図で、(c)は3回目の温度測定結果の説明図である。It is a figure which shows the temperature measurement result inside the die cast mold by the temperature measurement sensor of this invention, (a) is the explanatory view of the first temperature measurement result, (b) is the explanatory view of the second temperature measurement result. (C) is an explanatory diagram of the result of the third temperature measurement. 本発明の測温センサによるダイキャスト金型内部温度測定結果を示す図で、(a)は98回目の温度測定結果の説明図で、(b)は99回目の温度測定結果の説明図で、(c)は100回目の温度測定結果の説明図である。It is a figure which shows the temperature measurement result inside the die cast mold by the temperature measurement sensor of this invention, (a) is the explanatory view of the 98th temperature measurement result, (b) is the explanatory view of the 99th temperature measurement result. (C) is an explanatory diagram of the result of the 100th temperature measurement. 光透過体の形状及び固定方法の説明図で、(a)は光透過体の比較例で、端面が平面状の光透過体を接着剤で固定した説明図で、(b)は光透過体の比較例で、集光角度を小さくするための光透過体を凸形状にし環状フランジ及び押付手段で固定した説明図で、(c)は本発明に使用する光透過体で、端面が平面状の光透過体を環状フランジ及び押付手段で固定した説明図である。An explanatory view of the shape and fixing method of the light transmitting body, (a) is a comparative example of the light transmitting body, an explanatory view in which a light transmitting body having a flat end face is fixed with an adhesive, and (b) is a light transmitting body. In the comparative example of the above, the light transmitting body for reducing the focusing angle is formed into a convex shape and fixed by an annular flange and a pressing means. FIG. It is explanatory drawing which fixed the light transmission body of the above with an annular flange and a pressing means. 本発明の測温センサを、金型のキャビティの壁部に、及び、押出手段を有する湯溜りを形成する筒状部の壁部に穿設した貫通孔に嵌入した形態の説明図である。It is explanatory drawing of the form in which the temperature measuring sensor of this invention is fitted in the through hole formed in the wall part of the cavity of a mold, and in the wall part of a tubular part which forms a hot water pool having an extrusion means.

本発明の測温センサピン1及びそれを備える測温センサ2は、図1又は図18に示すように、被測温体70の温度を非接触で高温から低温まで測定可能な赤外線放射温度計であり、例えばダイカスト金型、鋳造金型、プラスチック金型等のキャビティや湯溜り等の空洞33内に流動又は充填される被測温体70に対して、高温時から凝固するまでの凝固過程における温度変化をレスポンスよく連続的に測定ができる。 As shown in FIG. 1 or FIG. 18, the temperature measurement sensor pin 1 of the present invention and the temperature measurement sensor 2 provided with the pin 1 are infrared radiation thermometers capable of measuring the temperature of the temperature-measured object 70 from high temperature to low temperature in a non-contact manner. Yes, for example, in the solidification process from high temperature to solidification of the temperature-measured object 70 that flows or fills in the cavity 33 such as a die cast mold, a casting mold, a plastic mold, or a cavity 33 such as a hot water pool. Temperature changes can be measured continuously with good response.

本発明の実施例1を図2、図7〜図9に示し、実施例2を図3〜図6に示し、実施例1と実施例2に共通する構成部分を図1、図6(b)、図10〜図12、図18に示している。 Example 1 of the present invention is shown in FIGS. 2, 7 to 9, FIG. 2 is shown in FIGS. 3 to 6, and components common to Examples 1 and 2 are shown in FIGS. 1 and 6 (b). ), FIGS. 10 to 12 and 18.

本発明の測温センサ2は、図2に示すように、赤外線なる光を集光する測温センサピン1、集光した赤外線なる光を電気信号に変換し、変換された電気信号を温度の単位で表示する計測本体部3を備えている。そして、例えば固定金型31と可動金型32を備えるダイカスト金型30に設置する場合は、図1又は図18に示すように、固定金型31の壁部に測温センサピン1を嵌設し、湯溜り33bに貯留された被測温体70である溶湯金属が、例えばピストン71で高圧で押し出されて湯道33cを流動してキャビティ33aの空洞33内に流入し充満し凝固する過程の温度を出力する。 As shown in FIG. 2, the temperature measuring sensor 2 of the present invention has a temperature measuring sensor pin 1 that collects infrared light, converts the collected infrared light into an electric signal, and converts the converted electric signal into a unit of temperature. It is provided with a measurement main unit 3 displayed by. Then, for example, when the die casting mold 30 including the fixed mold 31 and the movable mold 32 is installed, the temperature measuring sensor pin 1 is fitted in the wall portion of the fixed mold 31 as shown in FIG. 1 or FIG. In the process of the molten metal, which is the resistance temperature detector 70 stored in the hot water pool 33b, is pushed out at a high pressure by, for example, the piston 71, flows through the runner 33c, flows into the cavity 33 of the cavity 33a, fills and solidifies. Output the temperature.

また、前記測温センサピン1は可動金型32に嵌設することもできるが、ダイカスト金型30の場合、可動金型32の開閉、射出シリンダーの移動などにより、衝撃や振動が発生するので、これらの衝撃や振動が測温センサピン1に伝わることで生じる測定への影響を抑制するために、測温センサピン1は固定金型31に設置するのが好ましい。 Further, the temperature measurement sensor pin 1 can be fitted in the movable mold 32, but in the case of the die casting mold 30, impact and vibration are generated by opening and closing the movable mold 32, moving the injection cylinder, and the like. In order to suppress the influence on the measurement caused by the transmission of these shocks and vibrations to the temperature measuring sensor pin 1, it is preferable to install the temperature measuring sensor pin 1 on the fixed mold 31.

また、前記測温センサピン1は、例えばダイカスト金型30に設置する場合は、図18に示すように固定金型31の壁部、湯道33cを形成する管の壁部、及び/又は、押出手段を有する湯溜り33bを形成する筒状部(スリーブ72)の壁部に穿設した貫通孔に嵌設する形態もある。 Further, when the temperature measuring sensor pin 1 is installed in the die casting mold 30, for example, as shown in FIG. 18, the wall portion of the fixed mold 31, the wall portion of the pipe forming the runner 33c, and / or extrusion. There is also a form of fitting into a through hole formed in the wall portion of the tubular portion (sleeve 72) forming the hot water pool 33b having the means.

本発明の測温センサピン1は、図1〜図3、図10、図11に示すように、溶解された被測温体70を流動又は充填可能な空洞33の壁部に穿設された貫通孔に嵌設する測温センサピン1であって、前記測温センサピン1は、筒状の一方の先端縁から径方向内側に延在する環状フランジ4aを有する環状フランジ付き円筒体4と、前記環状フランジ4aの前記壁部の外方向側のフランジ面に面接触状態で押し当てられて前記環状フランジ4aの穴部と凹部10を形成し、かつ前記環状フランジ付き円筒体4の筒状の部位の内径未満の外形幅を有し光を透過可能な柱形状の光透過体5と、前記光透過体5の前記外方向側の面を前記環状フランジ4a方向に向けて押し付ける押え体6と、光ファイバーである導光体7を備える。 As shown in FIGS. A temperature measuring sensor pin 1 fitted in a hole, wherein the temperature measuring sensor pin 1 is a cylindrical body 4 with an annular flange having an annular flange 4a extending radially inward from one end edge of a tubular shape, and the annular body. A tubular portion of the annular flange 4a cylindrical body 4 having a hole and a recess 10 pressed against the outer side flange surface of the flange 4a in a surface contact state. A pillar-shaped light transmitting body 5 having an outer width smaller than the inner diameter and capable of transmitting light, a pressing body 6 for pressing the outer side surface of the light transmitting body 5 toward the annular flange 4a, and an optical fiber. The light guide body 7 is provided.

前記被測温体70としては、ダイカスト用金型の場合は例えばアルミ合金や亜鉛合金が該当し、プラスチック用金型の場合は例えばポリエチレン等の熱可塑性樹脂やフェノール等の熱硬化性樹脂が該当し、鋳造用金型の場合は例えばアルミ合金が該当する。 The temperature to be measured 70 corresponds to, for example, an aluminum alloy or a zinc alloy in the case of a die casting mold, and corresponds to, for example, a thermoplastic resin such as polyethylene or a thermosetting resin such as phenol in the case of a plastic mold. However, in the case of casting dies, for example, aluminum alloy is applicable.

前記空洞33としては、図1又は図18に示すように、キャビティ33a、湯溜り33b、湯道33c等が該当し、被測温体70の溶湯が流動又は充填される部位をいう。 As shown in FIG. 1 or 18, the cavity 33 corresponds to the cavity 33a, the pool 33b, the runner 33c, and the like, and refers to a portion where the molten metal of the resistance temperature detector 70 flows or is filled.

前記壁部としては、空洞33がキャビティ33aの場合は金型の固定型31又は可動型32、空洞33が湯道33cの場合は管を形成する周壁(固定金型31又は可動金型32の場合もある。)、または、空洞33が湯溜り33bの場合は金型の押出手段を有する湯溜り33bを形成する筒状部であるスリーブ72の周壁が該当する。 As the wall portion, when the cavity 33 is the cavity 33a, the fixed mold 31 or the movable mold 32 of the mold is used, and when the cavity 33 is the runner 33c, the peripheral wall (fixed mold 31 or the movable mold 32) forming a pipe is formed. In some cases), or when the cavity 33 is a hot water pool 33b, the peripheral wall of the sleeve 72, which is a tubular portion forming the hot water pool 33b having a mold extrusion means, corresponds to this.

よって、測温センサピン1は、図1や図18に示すように、例えば金型の固定型31に穿設された貫通孔に、湯道33cの管を形成する周壁(固定型31)に穿設された貫通孔に、または、スリーブ72の周壁に穿設された貫通孔に嵌設される。 Therefore, as shown in FIGS. 1 and 18, the temperature measuring sensor pin 1 is formed in the peripheral wall (fixed mold 31) forming the pipe of the runner 33c, for example, in the through hole formed in the fixed mold 31 of the mold. It is fitted in the through hole provided or in the through hole formed in the peripheral wall of the sleeve 72.

前記環状フランジ付き円筒体4は、図5、図6、図9又は図10に示すように、円筒状の一方の先端縁から径方向内側に延在する環状フランジ4aを有する略円筒状の形態をしている。前記測温センサピン1をキャビティ33a、湯溜り33b又は湯道33cの空洞33の壁部に設置するときは、前記環状フランジ4aの空洞33側である内方向側の先端面4bが、図1又は図18に示すように例えば固定金型31の内壁面35と同一面、すなわち空洞33であるキャビティ33a、湯溜り33b又は湯道33cを形成する内壁面と同一面になるように嵌設する。 As shown in FIGS. 5, 6, 9 or 10, the cylindrical body 4 with an annular flange has a substantially cylindrical shape having an annular flange 4a extending radially inward from one end edge of the cylinder. I am doing. When the temperature measuring sensor pin 1 is installed on the wall of the cavity 33a, the pool 33b, or the cavity 33 of the runner 33c, the tip surface 4b on the inward side, which is the cavity 33 side of the annular flange 4a, is shown in FIG. 1 or As shown in FIG. 18, for example, the fixing mold 31 is fitted so as to be flush with the inner wall surface 35, that is, with the inner wall surface forming the cavity 33a, the basin 33b, or the runner 33c, which is the cavity 33.

前記環状フランジ付き円筒体4の前記環状フランジ4aのフランジ部の形態は、図6(a)及び(b)に示すように空洞33側からのA矢視で円状の中央部に貫通孔を設け、前記貫通孔を通して光透過体5が見える形態である。前記貫通孔と光透過体5で凹部10が形成される。また、図6(a)に示すように、前記環状フランジ付き円筒体4の前記内方向側の先端面に、前記環状フランジ付き円筒体4の螺入出用工具の突起嵌入用の孔11を少なくとも2か所以上設け、この場合は専用工具の突起を前記孔11に嵌入させて前記環状フランジ付き円筒体4を回転させることにより容易に螺入出ができる。よって、前記壁部に前記測温センサピン1を嵌設した状態で前記環状フランジ付き円筒体4を螺入出でき前記光透過体5を容易に取り換えることができる。 As shown in FIGS. 6A and 6B, the form of the flange portion of the annular flange 4a of the cylindrical body 4 with an annular flange is such that a through hole is formed in a circular central portion in view of arrow A from the cavity 33 side. It is provided so that the light transmitting body 5 can be seen through the through hole. A recess 10 is formed by the through hole and the light transmitting body 5. Further, as shown in FIG. 6A, at least a hole 11 for fitting a protrusion of the screwing / exiting tool of the annular flanged cylinder 4 is provided on the inwardly-oriented tip surface of the annular flanged cylinder 4. Two or more places are provided, and in this case, the protrusion of the special tool is fitted into the hole 11 and the cylindrical body 4 with the annular flange is rotated so that the cylinder can be easily screwed in and out. Therefore, the cylindrical body 4 with an annular flange can be screwed in and out with the temperature measuring sensor pin 1 fitted in the wall portion, and the light transmitting body 5 can be easily replaced.

また、前記環状フランジ付き円筒体4の内周面には雌螺子4dが螺刻されている。前記雌螺子4dは押え体6の雄螺子6aと螺合される。 Further, a female screw 4d is engraved on the inner peripheral surface of the cylindrical body 4 with an annular flange. The female screw 4d is screwed with the male screw 6a of the presser body 6.

前記光透過体5は、図5、図9又は図10に示すように、前記環状フランジ4aの前記壁部の外方向側のフランジ面に面接触状態で押し当てられて前記環状フランジ4aの穴部と凹部10を形成し、かつ前記環状フランジ付き円筒体4A、4Bの筒状の部位の内径未満の外形幅を有し光を透過可能な柱形状である。前記柱形状の形態としては、前記内方向と前記外方向とを結ぶ方向の断面形状が四角形の円柱体又は角柱体、あるいは前記内方向と前記外方向とを結ぶ方向の断面形状が台形状の切頭円錐体又は四角錐体などがある。 As shown in FIGS. 5, 9 or 10, the light transmitting body 5 is pressed against the flange surface on the outer side of the wall portion of the annular flange 4a in a surface contact state to form a hole in the annular flange 4a. It has a columnar shape that forms a portion and a recess 10 and has an outer width smaller than the inner diameter of the cylindrical portion of the cylindrical portions 4A and 4B with an annular flange and is capable of transmitting light. As the form of the pillar shape, the cross-sectional shape in the direction connecting the inner direction and the outer direction is a quadrangular cylinder or a prism, or the cross-sectional shape in the direction connecting the inner direction and the outer direction is trapezoidal. There are truncated cones or quadrangular pyramids.

また、前記光透過体5の前記壁部の内方向側の端面及び外方向側の端面の両端面が平行な平面を有している。 Further, both end faces of the wall portion of the light transmitter 5 on the inner direction side and the end faces on the outer direction side have parallel planes.

前記光透過体5の材質は、数十回程度の金型使用での温度測定では石英ガラスでもよいが、1日当たり数百回の金型使用の場合は耐熱性が石英ガラスより優れたサファイヤガラスや窒化性珪素透明セラミックス等が好ましい。 The material of the light transmitter 5 may be quartz glass for temperature measurement using a mold several tens of times, but sapphire glass having better heat resistance than quartz glass when the mold is used several hundred times a day. And nitrided silicon transparent ceramics and the like are preferable.

前記凹部10は、前記空洞33を形成する壁部の内壁面35と同一面とする前記環状フランジ4aの内方向側の先端面4bより、わずかに窪ませている部分であり、前記環状フランジ4aの穴の周壁と前記光透過体5の表面とで形成されている。この凹部10に被測温体70の溶湯金属をわずかに貯めて逃がさないことにより、高速で乱流しながら通過する溶湯の温度測定精度を安定化させることができる。 The recess 10 is a portion that is slightly recessed from the tip surface 4b on the inner direction side of the annular flange 4a that is flush with the inner wall surface 35 of the wall portion forming the cavity 33, and is a portion that is slightly recessed. It is formed by the peripheral wall of the hole and the surface of the light transmitting body 5. By slightly storing the molten metal of the resistance thermometer 70 in the recess 10 and not letting it escape, it is possible to stabilize the temperature measurement accuracy of the molten metal passing through while turbulently flowing at high speed.

前記押え体6は、前記光透過体5の前記外方向側の面を前記環状フランジ4a方向に向けて押し付ける。そして、軸心部に長尺状の導光体7を挿入可能なかつ前記導光体7の外径と略同じ大きさの内径の貫通孔12を有し、前記環状フランジ付き円筒体4の内径と略同じ外径を有する略円柱状の形状をしており、前記内方向側の外周面に雄螺子6aが螺刻されている。前記雄螺子6aは前記環状フランジ付き円筒体4の内周面に螺刻された雌螺子4dと螺合される。そして、挿入させた前記導光体7の先端部を前記光透過体5の前記外方向側の面に当接可能としている。 The pressing body 6 presses the surface of the light transmitting body 5 on the outer side toward the annular flange 4a. The inner diameter of the cylindrical body 4 with an annular flange is provided with a through hole 12 into which a long light guide body 7 can be inserted and has an inner diameter substantially the same as the outer diameter of the light guide body 7. It has a substantially cylindrical shape having substantially the same outer diameter as the above, and a male screw 6a is engraved on the outer peripheral surface on the inner side. The male screw 6a is screwed with a female screw 4d screwed on the inner peripheral surface of the cylindrical body 4 with an annular flange. Then, the tip end portion of the inserted light guide body 7 can be brought into contact with the surface of the light transmitting body 5 on the outward direction side.

そして、前記押え体6の外周面に螺刻した雄螺子6aと前記環状フランジ付き円筒体4の内周面に螺刻した雌螺子4dとを螺合させて、前記押え体6を螺入させることにより、前記光透過体5を前記環状フランジ4aの前記外方向側のフランジ面に押し当てる。これにより、前記光透過体5を前記環状フランジ4aと前記押え体6とで挟んで固定化させることができ、前記測温センサピン1の主要な構成要素である前記環状フランジ付き円筒体4、前記光透過体5及び前記押え体6を一体化することができる。 Then, the male screw 6a screwed on the outer peripheral surface of the presser body 6 and the female screw 4d screwed on the inner peripheral surface of the cylindrical body 4 with the annular flange are screwed together to screw the presser body 6. Thereby, the light transmitting body 5 is pressed against the flange surface on the outward side of the annular flange 4a. Thereby, the light transmitting body 5 can be sandwiched and fixed between the annular flange 4a and the holding body 6, and the cylindrical body 4 with an annular flange, which is a main component of the temperature measuring sensor pin 1, said. The light transmitting body 5 and the holding body 6 can be integrated.

ここで、光透過体5の形状及び固定化方法について比較する。比較例1として図17(a)に示すように円柱状の光透過体5Aを接着剤50で円筒体51の凹部に嵌入させた場合、比較例2として図17(b)に示すように凸レンズの光透過体5Bを環状フランジ付き円筒体52に押え体61で押し付けた場合、本発明として図17(c)に示すように円柱状の光透過体5Cを環状フランジ付き円筒体53に押え体62で押し付けた場合について使用して比較し表1にまとめた。 Here, the shape of the light transmitting body 5 and the immobilization method will be compared. When a cylindrical light transmitting body 5A is fitted into a concave portion of a cylindrical body 51 with an adhesive 50 as shown in FIG. 17 (a) as Comparative Example 1, a convex lens as shown in FIG. 17 (b) as Comparative Example 2. When the light transmitting body 5B of No. 5 is pressed against the cylindrical body 52 with an annular flange by the pressing body 61, the cylindrical light transmitting body 5C is pressed against the cylindrical body 53 with an annular flange as shown in FIG. 17C as the present invention. Table 1 summarizes the comparison using the case of pressing at 62.

Figure 2021113738
Figure 2021113738

表1から、100ショット以上の連続使用ができるのは本発明のみであった。よって、100ショット以上の連続使用を可能とするには、光透明体5は、前記内方向の端面及び前記外方向の端面がともに平面であり両端面が平行であることが必要で、かつ、円柱状の光透過体5Cを環状フランジ付き円筒体53に面接触状態で押し当てることが必要である。 From Table 1, only the present invention can be used continuously for 100 shots or more. Therefore, in order to enable continuous use of 100 shots or more, the light transparent body 5 needs to have both the inner end face and the outer end face flat and both end faces parallel to each other. It is necessary to press the cylindrical light transmitting body 5C against the cylindrical body 53 with an annular flange in a surface contact state.

また、前記環状フランジ4aに前記光透過体5を前記押え体6の螺入によって螺子の締付力で固定化することができたので、耐熱の接着剤を使用する必要がなくなり、前記光透過体5と前記環状フランジ付き円筒体4との間への溶湯金属の差し込みを防止できた。そして、図5又は図9に示すように、前記光透過体5の周縁部5aを前記環状フランジ4aで覆うことができるので、被測温体70の溶湯金属による層間剥離を防止できた。 Further, since the light transmitting body 5 can be fixed to the annular flange 4a by the tightening force of the screw by screwing the pressing body 6, it is not necessary to use a heat-resistant adhesive, and the light transmitting body is eliminated. It was possible to prevent the molten metal from being inserted between the body 5 and the cylindrical body 4 with an annular flange. Then, as shown in FIG. 5 or 9, the peripheral edge portion 5a of the light transmitting body 5 can be covered with the annular flange 4a, so that delamination of the temperature-measured body 70 by the molten metal can be prevented.

また、前記導光体7を図3や図7に示すように前記貫通孔12に挿入し、図4や図8に示すように前記導光体7の先端部を前記光透過体5の前記外方向側の面に当接させる。前記導光体7が光ファイバーの場合には予め集光角度が決められているので、前記環状フランジ4aの内径を、前記押え体5の軸心部に挿入された長尺状の導光体7の予め設定された集光角度を基にした光路内に、前記光透過体5及び前記被測温体70のみが存する大きさにする。 Further, the light guide body 7 is inserted into the through hole 12 as shown in FIGS. 3 and 7, and the tip end portion of the light guide body 7 is inserted into the through hole 12 as shown in FIGS. It is brought into contact with the surface on the outward side. When the light guide body 7 is an optical fiber, the light collection angle is determined in advance, so that the inner diameter of the annular flange 4a is inserted into the axial center portion of the holding body 5 to be a long light guide body 7. The size is such that only the light transmitting body 5 and the temperature-measured body 70 exist in the optical path based on the preset focusing angle of the above.

また、前記測温センサピン1は、先端側を前記内方向に向け他端側を前記外方向に向けて、キャビティ33aを形成する金型の壁部に、湯道33cを形成する管の壁部に、又は、押出手段を有する湯溜り33bを形成するスリーブ72の壁部に穿設された貫通孔部に嵌設可能で、先端部4bを前記内方向に向けた前記環状フランジ付き円筒体4と、柱形状の前記光透過体5と、軸心部に長尺状の導光体7を挿入可能なかつ前記導光体7の外径と略同じ大きさの内径の貫通孔を有し、前記環状フランジ付き円筒体4の内径と略同じ外径を有する略円柱状の押え体6と、を備え、前記環状フランジ4aの前記内方向側の先端面4bが前記壁部の内壁面に面一となるように嵌設可能で、前記導光体7の先端部を前記光透過体5の前記外方向側の面に当接可能である。 Further, the temperature measurement sensor pin 1 has a pipe wall portion forming a runner 33c on a mold wall portion forming the cavity 33a with the tip end side facing inward and the other end side facing outward. Or, the cylindrical body 4 with an annular flange, which can be fitted into a through hole formed in the wall of a sleeve 72 forming a hot water pool 33b having an extrusion means, and whose tip portion 4b is directed inward. The light transmitting body 5 having a column shape and a through hole having an inner diameter that is substantially the same as the outer diameter of the light guide body 7 and capable of inserting a long light guide body 7 into the axial center portion. A substantially columnar holding body 6 having an outer diameter substantially the same as the inner diameter of the cylindrical body 4 with an annular flange is provided, and the tip surface 4b on the inward side of the annular flange 4a faces the inner wall surface of the wall portion. It can be fitted so as to be one, and the tip end portion of the light guide body 7 can be brought into contact with the surface of the light transmitting body 5 on the outward side.

前記測温センサピン1は、非接触で種々の被測温体70の温度を測定可能であるが、特に高温の溶湯の空洞33内を流動時の、又は冷却が始まって凝固過程に入って空洞33内に充填状態の被測温体70の温度変化をレスポンスよく連続的に測定可能にすることができる。 The temperature measuring sensor pin 1 can measure the temperature of various objects to be measured 70 in a non-contact manner, but the cavity 33 is particularly hot when flowing in the molten metal cavity 33 or when cooling starts and enters the solidification process. It is possible to continuously measure the temperature change of the temperature-measured body 70 in the state of being filled in 33 with good response.

前記測温センサピン1は、図1に示すように、先端側を例えばダイカスト金型30の固定金型31の空洞33側となる内方向に向け、他端側を前記外方向に向けて、前記壁部に穿設した貫通穴部に嵌設する。前記嵌設形態は、例えば前記貫通穴部に螺刻した雌螺子に、前記測温センサピン1の外周面に螺刻した雄螺子を螺入して嵌設する形態(図示なし)、又は、図1又は図18に示すように前記貫通穴部に形成した段付部と前記測温センサピン1の外周面に形成した段付部13a、13b、13cと同士を当接させるまで嵌入する形態があるが、前記壁部に前記測温センサピン1が嵌設可能な形態であればいずれでもよい。 As shown in FIG. 1, the temperature measuring sensor pin 1 has its tip end facing inward, which is, for example, the cavity 33 side of the fixed mold 31 of the die casting mold 30, and the other end facing outward. It is fitted into the through hole formed in the wall. The fitting form is, for example, a form in which a male screw screwed into the outer peripheral surface of the temperature measuring sensor pin 1 is screwed into a female screw screwed into the through hole portion (not shown), or the figure. 1 or as shown in FIG. 18, there is a form in which the stepped portion formed in the through hole portion and the stepped portion 13a, 13b, 13c formed on the outer peripheral surface of the temperature measuring sensor pin 1 are fitted until they come into contact with each other. However, any form may be used as long as the temperature measuring sensor pin 1 can be fitted in the wall portion.

測温センサ2は前記測温センサピン1と前記計測本体部3を備えている。そして、図1又は図2に示すように、前記測温センサピン1と、集光した赤外線なる光を電気信号に変換し、変換された電気信号を温度の単位で表示する計測本体部3とは、前記導光体7である光ファイバーによりつながっている。 The temperature measurement sensor 2 includes the temperature measurement sensor pin 1 and the measurement main body 3. Then, as shown in FIG. 1 or 2, the temperature measurement sensor pin 1 and the measurement main body 3 that converts the focused infrared light into an electric signal and displays the converted electric signal in units of temperature. , The light guide body 7 is connected by an optical fiber.

次に、測温センサピン1の実施例1を説明する。実施例1は図7〜図9に示す。実施例1の測温センサピン1は、環状フランジ付き円筒体4B、光透過体5、押え体6B、導光体7、押え板41、固定ネジ(図示なし)を備える。前記押え板41には固定ネジ螺入用雌ネジ42bが螺刻してある。 Next, the first embodiment of the temperature measurement sensor pin 1 will be described. Example 1 is shown in FIGS. 7 to 9. The temperature measurement sensor pin 1 of the first embodiment includes a cylindrical body 4B with an annular flange, a light transmitting body 5, a holding body 6B, a light guide body 7, a holding plate 41, and a fixing screw (not shown). A female screw 42b for screwing a fixing screw is engraved on the holding plate 41.

まず、光透過体5を環状フランジ付き円筒体4B内に挿入し、さらに押え体6Bを螺入させて締結することにより、光透過体5を環状フランジ付き円筒体4Bの環状フランジ4aに対して押し付け固定する。その後、導光体7である光ファイバーを押え体6Bの軸心に設けた貫通孔12に挿入し光透過体5に当接させる。この状態で、光ファイバーを環状フランジ付き円筒体4Bに固定するため、押え板41の2枚で光ファイバーを挟む形で環状フランジ付き円筒体4B内に挿入し、押え板41を固定ネジ計4本で環状フランジ付き円筒体4Bに固定する。 First, the light transmitting body 5 is inserted into the annular flanged cylindrical body 4B, and then the pressing body 6B is screwed in and fastened to attach the light transmitting body 5 to the annular flange 4a of the annular flanged cylindrical body 4B. Press and fix. After that, the optical fiber which is the light guide body 7 is inserted into the through hole 12 provided in the axial center of the pressing body 6B and brought into contact with the light transmitting body 5. In this state, in order to fix the optical fiber to the cylindrical body 4B with an annular flange, insert the optical fiber into the cylindrical body 4B with an annular flange by sandwiching the optical fiber between two pressing plates 41, and insert the pressing plate 41 into the cylindrical body 4B with an annular flange with a total of four fixing screws. It is fixed to the cylindrical body 4B with an annular flange.

図8(a)、(b)に示す測温センサピン1を、図1に示すように先端面4bが金型などの内壁面35に一致するように設置する。そして、金型内等の空洞33内に注入された被測温体70の溶湯金属からの赤外線を光透過体5から導光体7の光ファイバーに導き、計測本体部3で温度に変換する。 The temperature measurement sensor pins 1 shown in FIGS. 8A and 8B are installed so that the tip surface 4b coincides with the inner wall surface 35 of the mold or the like as shown in FIG. Then, the infrared rays from the molten metal of the temperature-measured body 70 injected into the cavity 33 such as in the mold are guided from the light transmitter 5 to the optical fiber of the light guide body 7, and converted into temperature by the measurement main body 3.

次に、測温センサピン1の実施例2を説明する。実施例2は図3〜図5に示す。実施例2の測温センサピン1は、環状フランジ付き円筒体4A、光透過体5、押え体6A、導光体7、固定ネジ(図示なし)を備える。前記押え体6Aには固定ネジ螺入用雌ネジ42aが螺刻してある。 Next, the second embodiment of the temperature measurement sensor pin 1 will be described. Example 2 is shown in FIGS. 3 to 5. The temperature measuring sensor pin 1 of the second embodiment includes a cylindrical body 4A with an annular flange, a light transmitting body 5, a holding body 6A, a light guide body 7, and a fixing screw (not shown). A female screw 42a for screwing a fixing screw is engraved on the presser body 6A.

環状フランジ付き円筒体4Aは外方向側の内周面に雌螺子4dを螺刻しており、キャップ型の形態をしている。環状フランジ付き円筒体4Aの環状フランジ4aの内方向側の面には専用工具の突起を嵌入可能な穴11が2つ以上設けてある。この穴11に専用工具の突起を嵌入し回転させるとキャップ型の環状フランジ付き円筒体4Aは容易に押え体6Aから分離させることができるので、容易に光透過体5を交換することができる。金型を製造ラインから一旦降して移動させることなく製造ラインに設置した状態で交換できるので、大幅な交換時間短縮ができ、段取り時間というロス時間の削減を実現できる。 The cylindrical body 4A with an annular flange has a female screw 4d engraved on the inner peripheral surface on the outer side, and has a cap shape. Two or more holes 11 into which the protrusions of the special tool can be inserted are provided on the inner surface of the annular flange 4a of the cylindrical body 4A with an annular flange. When the protrusion of the special tool is inserted into the hole 11 and rotated, the cap-shaped cylindrical body 4A with an annular flange can be easily separated from the pressing body 6A, so that the light transmitting body 5 can be easily replaced. Since the mold can be replaced while it is installed on the production line without being removed from the production line and moved, the replacement time can be significantly shortened, and the loss time of setup time can be reduced.

押え体6Aは、内方向側の端面を光透過体5に当接させ、外方向側の端面を壁部の外面と略同じ位置までの長さを有し、軸心部に導光体7の外径と略同じ長さの内径の貫通孔12を形成し、内方向側の環状フランジ付き円筒体4Aと螺合する範囲には雄螺子6aが螺刻されている。そして、押え体6Aの外方向側の外周面には段付部13aを形成し内方向側の外周寸法より大きい外周寸法の段付き状の拡張部分を形成している。この段付き部分で壁部にも段付き穴(図示なし)を形成させて、段付部の面同士を当接させて、前記壁部の内壁面35と前記環状フランジ付き円筒体4Aの先端面4bを同一面となるように設計する。また、前記段付き状の拡張部分には、2つの固定ネジ螺入用雌ネジ42aが螺刻してあり、この固定ネジ螺入用雌ネジ42aに固定ネジを螺入して導光体7を固定させる。なお、押え体6Aの長さは、内方向側の端面を光透過体5に当接させた状態で、外方向側の端面を壁部の外面と略同じ位置までの長さに限定しなくてもよい。 The presser body 6A has an end surface on the inner side abutting on the light transmitting body 5, an end surface on the outer side having a length up to substantially the same position as the outer surface of the wall portion, and a light guide body 7 at the axial center portion. A through hole 12 having an inner diameter substantially the same length as the outer diameter of the above is formed, and a male screw 6a is screwed in a range to be screwed with the cylindrical body 4A with an annular flange on the inward side. Then, a stepped portion 13a is formed on the outer peripheral surface of the pressing body 6A on the outer side, and a stepped expansion portion having an outer peripheral dimension larger than the outer peripheral dimension on the inward side is formed. A stepped hole (not shown) is also formed in the wall portion at this stepped portion, and the surfaces of the stepped portion are brought into contact with each other so that the inner wall surface 35 of the wall portion and the tip of the cylindrical body 4A with an annular flange are brought into contact with each other. The surface 4b is designed to be the same surface. Further, two female screws 42a for screwing the fixing screws are engraved in the stepped expansion portion, and the fixing screws are screwed into the female screws 42a for screwing the fixing screws to guide the light guide body 7. To fix. The length of the presser body 6A is not limited to the length of the end face on the outer direction side to substantially the same position as the outer surface of the wall portion in a state where the end face on the inner direction side is in contact with the light transmitting body 5. You may.

組立方法は、まず、光透過体5を環状フランジ付き円筒体4A内に挿入し、さらに押え体6Aを螺入させて締結することにより、光透過体5を環状フランジ付き円筒体4Aの環状フランジ4aに対して押し付け固定する。その後、導光体7である光ファイバーを押え体6Aの軸心に設けた貫通孔12に挿入し光透過体5に当接させる。この状態で、導光体7の光ファイバーを押え体6Aに固定するため、固定ネジ螺入用雌ネジ42aに固定ネジを螺入して導光体7を固定させる。 As an assembly method, first, the light transmitting body 5 is inserted into the cylindrical body 4A with an annular flange, and then the pressing body 6A is screwed in and fastened to fasten the light transmitting body 5 to the annular flange of the cylindrical body 4A with an annular flange. Press and fix against 4a. After that, the optical fiber which is the light guide body 7 is inserted into the through hole 12 provided in the axial center of the pressing body 6A and brought into contact with the light transmitting body 5. In this state, in order to fix the optical fiber of the light guide body 7 to the pressing body 6A, the fixing screw is screwed into the female screw 42a for screwing the fixing screw to fix the light guide body 7.

次に、測温センサ2は、前記測温センサピン1を備えて、前記導光体7を光ファイバーとしかつ計測本体部3によって予め定めた2つの赤外線の波長から被測温体の温度を測定することができる2色対比温度計であることが好ましい。前記2色対比温度計を使用して補正が不要であることを確認した。これにより、単色温度計の場合は被測温体の放射率による修正を実施しなければならない煩わしさを解消し、正確な温度を得ることができる。 Next, the temperature measuring sensor 2 is provided with the temperature measuring sensor pin 1, and the light guide body 7 is used as an optical fiber, and the temperature of the temperatureed body to be measured is measured from two infrared wavelengths predetermined by the measuring main body 3. It is preferable that the thermometer is a two-color contrast thermometer that can be used. Using the two-color contrast thermometer, it was confirmed that correction was unnecessary. As a result, in the case of a monochromatic thermometer, it is possible to eliminate the troublesomeness of having to make corrections based on the emissivity of the temperature to be measured, and to obtain an accurate temperature.

次に、正確な溶湯温度を測定するためには、成形を繰り返すことにより温度上昇した測温センサピン1の先端の環状フランジ付き円筒体4の温度を検知させないことが必要である。環状フランジ付き円筒体4の温度を検知させないための方法について説明する。 Next, in order to accurately measure the molten metal temperature, it is necessary not to detect the temperature of the cylindrical body 4 with an annular flange at the tip of the temperature measuring sensor pin 1 whose temperature has risen due to repeated molding. A method for not detecting the temperature of the cylindrical body 4 with an annular flange will be described.

まず、測温センサピン1の環状フランジ付き円筒体4、光透過体5、押し体6の寸法構成を説明する説明図として、図10に示す図を用いるが断面を示す斜線のためわかりにくいので、図10における斜線を消去した図11で説明する。図11において、環状フランジの内径:d、環状フランジの厚み:L、光透過体の厚み:T、導光体の集光角度:θ、導光体の外径:Dとすると、下記式(1)が成り立つ。下記式(1)で視野欠けしない環状フランジ4aの孔径の寸法を得ることができる。
d≧2(L+T)tan(θ/2)+D・・・・(1)
First, as an explanatory diagram for explaining the dimensional configurations of the cylindrical body 4 with an annular flange, the light transmitting body 5, and the pushing body 6 of the temperature measuring sensor pin 1, the figure shown in FIG. 10 is used, but it is difficult to understand because it is a diagonal line showing a cross section. This will be described with reference to FIG. 11 in which the diagonal lines in FIG. 10 are eliminated. In FIG. 11, assuming that the inner diameter of the annular flange: d, the thickness of the annular flange: L, the thickness of the light transmitting body: T, the focusing angle of the light guide body: θ, and the outer diameter of the light guide body: D, the following equation ( 1) holds. The size of the hole diameter of the annular flange 4a that does not lack the field of view can be obtained by the following formula (1).
d ≧ 2 (L + T) tan (θ / 2) + D ... (1)

次に、光ファイバー直径0.4mm、集光角度45°の場合、環状フランジの内径:d、環状フランジの厚み:L、光透過体の厚み:Tを変えて、測温精度を確認した。その結果を表2に示す。 Next, when the optical fiber diameter was 0.4 mm and the condensing angle was 45 °, the temperature measurement accuracy was confirmed by changing the inner diameter of the annular flange: d, the thickness of the annular flange: L, and the thickness of the light transmitter: T. The results are shown in Table 2.

Figure 2021113738
Figure 2021113738

表2から、実験番号イは視野欠けなく、環状フランジ4aと光透過体5のガラス窓の破損は見られず、温度精度は良好であり、実験番号ロは環状フランジ内径dが小さいため環状フランジ4aの温度も測定したので正確な温度測定は無理であり、実験番号ハは視野欠けはないが環状フランジ4aの強度不足により溶湯金属が環状フランジ付き円筒体4と光透過体5の間に差し込むというトラブルが発生し、実験番号ニは視野欠けはないが光透過体5のガラスが薄いため耐久性が低いという問題があり、実験番号ホは視野欠けがなく温度精度及び耐久性とも良好であり、実験番号ヘは凹部10の鋳抜けが悪く、湯だまりとなって測定温度が不正確になるという問題があり、実験番号トは視野欠けがなく、温度精度及び耐久性ともに良好であり、実験番号チは環状フランジ内径dが大きく被測温体70の鋳物の冷却速度が遅く測定されるという問題があった。 From Table 2, Experiment No. A has no lack of field of view, no damage to the glass windows of the annular flange 4a and the light transmitter 5 is observed, the temperature accuracy is good, and Experiment No. B has an annular flange because the inner diameter d of the annular flange is small. Since the temperature of 4a was also measured, accurate temperature measurement is impossible. Experiment No. C has no lack of field of view, but due to insufficient strength of the annular flange 4a, molten metal is inserted between the cylindrical body 4 with the annular flange and the light transmitter 5. Experiment No. D has no field loss, but there is a problem that the durability is low because the glass of the light transmitter 5 is thin, and Experiment No. E has no field loss and has good temperature accuracy and durability. , Experiment No. 10 has a problem that the recess 10 is poorly cast and the measurement temperature becomes inaccurate due to a pool of hot water. The numbering chi has a problem that the inner diameter d of the annular flange is large and the cooling rate of the casting of the object to be measured 70 is slow and measured.

表2の結果から、式(1)で得られる視野欠けしない要件以外にも、環状フランジ4aや光透過体5の耐久強度、被測温体70の溶湯金属との接触面積の大きさも測温精度に影響することから、前記実験番号ホを参考にして最大値を設定し、前記実験番号トを参考にして最小値を設定し、図12に示すように、測温センサピン1の構成要素の寸法の範囲を設定した。 From the results in Table 2, in addition to the requirement that the visual field is not lost obtained by the formula (1), the durability strength of the annular flange 4a and the light transmitter 5 and the size of the contact area of the temperature-measured body 70 with the molten metal are also measured. Since it affects the accuracy, the maximum value is set with reference to the experiment number (e), the minimum value is set with reference to the experiment number (e), and as shown in FIG. 12, the component of the temperature measuring sensor pin 1 The range of dimensions was set.

例えば、導光体7の光ファイバー直径0.4mm、集光角度45°の場合、環状フランジ4aの厚さは領域N1の1.0mm以下では強度不足で領域N2の5mm以上では鋳抜けが悪い。光透過体5のガラスの厚みは領域N3の3mm以下ではガラスの強度不足で領域N4の10mm以上では式(1)で環状フランジ内径dが10mm以上になる範囲となり光透過体5のガラスとの接触面積が大きくなり鋳物の冷却が遅くなる。また、式(1)で光透過体5のガラス厚みTと環状フランジ4aの厚みLを参入して孔径dが10mm以上になる範囲を外す。 For example, when the optical fiber diameter of the light guide body 7 is 0.4 mm and the condensing angle is 45 °, the thickness of the annular flange 4a is insufficient in the region N1 of 1.0 mm or less, and the casting is poor in the region N2 of 5 mm or more. The thickness of the glass of the light transmitter 5 is insufficient in the strength of the glass when the region N3 is 3 mm or less, and when the region N4 is 10 mm or more, the inner diameter d of the annular flange is in the range of 10 mm or more according to the formula (1). The contact area becomes large and the cooling of the casting becomes slow. Further, in the formula (1), the glass thickness T of the light transmitting body 5 and the thickness L of the annular flange 4a are entered to remove the range in which the hole diameter d is 10 mm or more.

その結果から、図12に示すように、式(1)の制約と、ダイキャスト金型30の空洞33への充填性等を考え、実用上の測温センサピン1の各寸法を、導光体7の光ファイバー直径0.4mm、集光角度45°の場合、望ましい領域Mは、環状フランジ4aの内径dは4mm超〜10mm未満、環状フランジ4aの厚みLは1mm超〜5mm未満、光透過体5の厚みTは3mm超〜10mm未満と設定した。なお、光ファイバー直径及び集光角度により望ましい領域Mは変わるので、種々の組み合わせでそれぞれ設定する。 From the results, as shown in FIG. 12, considering the limitation of the equation (1), the filling property of the die-cast mold 30 into the cavity 33, and the like, each dimension of the practical temperature measurement sensor pin 1 is set to the light guide body. When the optical fiber diameter of No. 7 is 0.4 mm and the condensing angle is 45 °, the desirable region M is that the inner diameter d of the annular flange 4a is more than 4 mm and less than 10 mm, the thickness L of the annular flange 4a is more than 1 mm and less than 5 mm, and the light transmitter. The thickness T of 5 was set to be more than 3 mm and less than 10 mm. Since the desired region M changes depending on the optical fiber diameter and the focusing angle, it is set in various combinations.

次に、保持炉にて680℃に溶解したアルミニウム合金の溶湯をセラミック製のラドル75で掬い、スリーブ72に出湯後、約80MPaで押し出し、0.3mm/sから3.0mm/sの速度でダイカスト金型30内で成形し、そのときの凝固過程の温度を測定した。温度測定計として、熱電対の場合を図13に示し、浸漬型の光ファイバーの場合を図14に示し、本発明の測温センサピン1を装着した測温センサ2の場合を図15と図16に示す。 Next, the molten aluminum alloy melted at 680 ° C. in a holding furnace is scooped up with a ceramic radle 75, discharged into the sleeve 72, extruded at about 80 MPa, and at a speed of 0.3 mm / s to 3.0 mm / s. It was molded in a die casting die 30 and the temperature of the solidification process at that time was measured. As a temperature measuring meter, the case of a thermocouple is shown in FIG. 13, the case of an immersion type optical fiber is shown in FIG. 14, and the case of a temperature measuring sensor 2 equipped with the temperature measuring sensor pin 1 of the present invention is shown in FIGS. 15 and 16. show.

まず、熱電対を用いたダイカスト金型30のキャビティ33a内の温度測定結果である。熱電対の測温接点をダイカスト金型30内に設置した場合、図13(a)に示す1回目の測定では凝固曲線P1に示すように測温接点における溶湯金属の接触を感知している。約1秒後に溶湯が流入されて急こう配の傾斜で温度が400℃まで上昇し山なりの緩いカーブを描いて約1.8秒後から温度が徐々に低下し5秒後には約280℃を示しているのがわかる。しかし、熱電対の応答速度が遅いため、例えば図16に示すように同じ溶湯の場合に最高温度を約620℃まで検知したのにかかわらず、最高温度を400℃までしか検知できていない。さらに、1回目の成形で熱電対の測温接点が破損したため、2回目を示す図13(b)の凝固曲線P2及び3回目を示す図13(c)の凝固曲線P3に示すように、2回目以降は温度を検知できていない。 First, it is a temperature measurement result in the cavity 33a of the die casting mold 30 using a thermocouple. When the temperature measuring contact of the thermocouple is installed in the die casting die 30, the contact of the molten metal at the temperature measuring contact is detected in the first measurement shown in FIG. 13 (a) as shown in the solidification curve P1. After about 1 second, the molten metal flows in and the temperature rises to 400 ° C due to the steep slope, and the temperature gradually decreases from about 1.8 seconds after drawing a gentle curve with a mountain, and after about 5 seconds it reaches about 280 ° C. You can see that it is showing. However, since the response speed of the thermocouple is slow, for example, in the case of the same molten metal, even though the maximum temperature was detected up to about 620 ° C., the maximum temperature could only be detected up to 400 ° C. Further, since the temperature measuring contact of the thermocouple was damaged in the first molding, as shown in the solidification curve P2 of FIG. 13 (b) showing the second time and the solidification curve P3 of FIG. 13 (c) showing the third time, 2 The temperature has not been detected since the first time.

次に、温度測定範囲が300℃〜800℃の浸漬型の光ファイバーを用いたダイカスト金型30内の温度測定結果である。浸漬型の光ファイバーの測温接点をダイカスト金型30内に設置した場合、光ファイバーの測温接点が直接に溶湯に接して、図14(a)に示す1回目の測定では凝固曲線P4に示すように約1秒後に略垂直に一気に530℃付近まで温度が上昇していることが確認でき、かつレスポンスよく測定ができている。この略垂直の立ち上がりは赤外線放射温度計の光ファイバーが熱電対よりレスポンスが優れていることを示している。最高温度に達してからすぐに温度が徐々に低下して5秒後には約300℃まで低下したのがわかる。しかし、1回目の成形で測温接点を破損したため、図14(b)に示す2回目以降は凝固曲線P5に示すように正しい測定ができておらず、図14(c)に示す3回目の成形では凝固曲線P6に示すように全く溶湯金属を検知していない。 Next, it is a temperature measurement result in the die casting mold 30 using the immersion type optical fiber having a temperature measurement range of 300 ° C. to 800 ° C. When the temperature measuring contact of the immersion type optical fiber is installed in the die casting mold 30, the temperature measuring contact of the optical fiber comes into direct contact with the molten metal, and as shown in the solidification curve P4 in the first measurement shown in FIG. 14 (a). After about 1 second, it was confirmed that the temperature had risen to around 530 ° C almost vertically at once, and the measurement was possible with good response. This substantially vertical rise indicates that the optical fiber of the infrared thermometer is more responsive than the thermocouple. It can be seen that the temperature gradually decreased immediately after reaching the maximum temperature, and decreased to about 300 ° C. 5 seconds later. However, since the temperature measuring contact was damaged in the first molding, the correct measurement could not be performed as shown in the solidification curve P5 after the second time shown in FIG. 14 (b), and the third time shown in FIG. 14 (c). In the molding, no molten metal was detected as shown in the solidification curve P6.

次に、温度測定範囲が300℃〜1000℃の本発明の測温センサピン1を装着した測温センサ2を用いたダイカスト金型30内の温度測定結果である。この温度測定は、図7〜図9に示す測温センサ2で実施した。本発明の測温センサピン1を装着した測温センサ2による温度測定では、図15(a)に示す1回目の凝固曲線P7をみると約1秒後に垂直的に一気に温度が急上昇し約630℃を測定し、すぐに緩やかな傾斜で温度が1.3秒後まで低下し、その後急な曲線を描いて温度が低下し、約3秒後に300℃まで低下したのがわかる。この垂直的に一気に温度が急上昇していることは赤外線放射温度計の光ファイバーが熱電対よりレスポンスが優れていることを示している。 Next, it is a temperature measurement result in the die cast mold 30 using the temperature measurement sensor 2 equipped with the temperature measurement sensor pin 1 of the present invention having a temperature measurement range of 300 ° C. to 1000 ° C. This temperature measurement was carried out by the temperature measurement sensor 2 shown in FIGS. 7 to 9. In the temperature measurement by the temperature measuring sensor 2 equipped with the temperature measuring sensor pin 1 of the present invention, when the first solidification curve P7 shown in FIG. It can be seen that the temperature dropped to 1.3 seconds after 1.3 seconds with a gentle slope, then dropped to 300 ° C after about 3 seconds in a steep curve. This vertical sudden rise in temperature indicates that the optical fiber of the infrared thermometer is more responsive than the thermocouple.

そして、図15(b)に示す2回目の凝固曲線P8、図15(c)に示す3回目の凝固曲線P9、図16(a)に示す98回目の凝固曲線P10、図16(b)に示す99回目の凝固曲線P11及び図16(c)に示す100回目の凝固曲線P12は、図15(a)に示す1回目の凝固曲線P7といずれもほぼ同じ凝固曲線を示しており、各成形で安定して温度が測定できていることがわかる。なお、図示していないが、100回目以降も安定して温度測定が実施されたことも確認した。 Then, the second solidification curve P8 shown in FIG. 15 (b), the third solidification curve P9 shown in FIG. 15 (c), the 98th solidification curve P10 shown in FIG. 16 (a), and FIG. 16 (b). The 99th solidification curve P11 and the 100th solidification curve P12 shown in FIG. 16 (c) show substantially the same solidification curve as the first solidification curve P7 shown in FIG. 15 (a), and each molding shows. It can be seen that the temperature can be measured stably with. Although not shown, it was also confirmed that the temperature measurement was stably performed after the 100th time.

1 測温センサピン
2 測温センサ
3 計測本体部
4 環状フランジ付き円筒体
4A 環状フランジ付き円筒体
4B 環状フランジ付き円筒体
4a 環状フランジ
4b 先端面
4d 雌螺子
5 光透過体
5a 周縁部
6 押え体
6A 押え体
6B 押え体
6a 雄螺子
7 導光体
10 凹部
11 孔
12 貫通孔
13 段付部
30 ダイカスト金型
31 固定金型
32 可動金型
33 空洞
33a キャビティ
33b 湯溜り
33c 湯道
35 内壁面
41 押え板
42 固定ネジ螺入用雌ネジ
50 接着剤
51 円筒体
52 環状フランジ付き円筒体
53 環状フランジ付き円筒体
61 押え体
62 押え体
70 被測温体
71 ピストン
72 スリーブ
75 ラドル
P 凝固曲線

1 Temperature measurement sensor pin 2 Temperature measurement sensor 3 Measurement body 4 Cylindrical body with annular flange 4A Cylindrical body with annular flange 4B Cylindrical body with annular flange 4a Circular flange 4b Tip surface 4d Female screw 5 Light transmitter 5a Peripheral part 6 Presser body 6A Presser body 6B Presser body 6a Male screw 7 Light guide body 10 Recession 11 Hole 12 Through hole 13 Stepped part 30 Die cast mold 31 Fixed mold 32 Movable mold 33 Cavity 33a Cavity 33b Hot water pool 33c Hot water passage 35 Inner wall surface 41 Presser Plate 42 Fixing screw Female screw for screwing 50 Adhesive 51 Cylindrical body 52 Cylindrical body with annular flange 53 Cylindrical body with annular flange 61 Presser body 62 Presser body 70 Heated body 71 Piston 72 Sleeve 75 Ladle P Solidification curve

Claims (8)

溶解された被測温体を流動又は充填可能な空洞の壁部に穿設された貫通孔に嵌設する測温センサピンであって、
前記測温センサピンは、筒状の一方の先端縁から径方向内側に延在する環状フランジを有する環状フランジ付き円筒体と、
前記環状フランジの前記壁部の外方向側のフランジ面に面接触状態で押し当てられて前記環状フランジの穴部と凹部を形成し、かつ前記環状フランジ付き円筒体の筒状の部位の内径未満の外形幅を有し光を透過可能な柱形状の光透過体と、
前記光透過体の前記外方向側の面を前記環状フランジ方向に向けて押し付ける押え体と、を備えることを特徴とする測温センサピン。
A temperature measurement sensor pin that fits a melted resistance temperature detector into a through hole drilled in the wall of a cavity that can flow or fill.
The temperature measurement sensor pin includes a cylindrical body with an annular flange having an annular flange extending radially inward from one end edge of the cylinder.
It is pressed against the outer side flange surface of the wall portion of the annular flange in a surface contact state to form a hole and a recess of the annular flange, and is less than the inner diameter of the tubular portion of the cylindrical body with the annular flange. A pillar-shaped light transmitter that has the outer width of and is capable of transmitting light,
A temperature measuring sensor pin comprising: a presser body for pressing the outer side surface of the light transmitting body toward the annular flange direction.
前記光透過体の前記壁部の内方向側及び外方向側の両端面が平行な平面を有することを特徴とする請求項1に記載の測温センサピン。 The temperature measurement sensor pin according to claim 1, wherein both end surfaces on the inner side and the outer side of the wall portion of the light transmitter have parallel planes. 前記押え体の前記内方向側の外周面に螺刻した雄螺子と前記環状フランジ付き円筒体の内周面に螺刻した雌螺子とを螺合させて、前記押え体を螺入させることにより、前記光透過体を前記環状フランジの前記外方向側のフランジ面に押し当てることを特徴とする請求項1又は2に記載の測温センサピン。 By screwing a male screw screwed on the outer peripheral surface of the presser foot on the inner side and a female screw screwed on the inner peripheral surface of the cylindrical body with an annular flange, the presser foot is screwed. The temperature measuring sensor pin according to claim 1 or 2, wherein the light transmitting body is pressed against the flange surface on the outward side of the annular flange. 前記測温センサピンは、先端側を前記内方向に向け他端側を前記外方向に向けて、キャビティを形成する金型の壁部に、湯道を形成する管の壁部に、又は、押出手段を有する湯溜りを形成するスリーブの壁部に穿設された貫通孔部に嵌設可能で、
先端部を前記内方向に向けた前記環状フランジ付き円筒体と、柱形状の前記光透過体と、
軸心部に長尺状の導光体を挿入可能なかつ前記導光体の外径と略同じ大きさの内径の貫通孔を有し、前記環状フランジ付き円筒体の内径と略同じ外径を有する略円柱状の押え体と、を備え、
前記環状フランジの前記内方向側の先端面が前記壁部の内壁面に面一となるように嵌設可能で、前記導光体の先端部を前記光透過体の前記外方向側の面に当接可能であることを特徴とする請求項1〜3のいずれかに記載の測温センサピン。
The temperature measurement sensor pin is extruded on the wall of the mold forming the cavity, on the wall of the pipe forming the runner, or extruded with the tip end facing inward and the other end facing outward. It can be fitted into a through hole formed in the wall of a sleeve that forms a puddle having means.
The cylindrical body with an annular flange whose tip is directed inward, and the column-shaped light transmitting body.
A long light guide body can be inserted into the axial center portion, and the light guide body has a through hole having an inner diameter substantially the same as the outer diameter of the light guide body, and has an outer diameter substantially the same as the inner diameter of the cylindrical body with an annular flange. With a substantially columnar holding body,
The tip surface of the annular flange on the inner direction side can be fitted so as to be flush with the inner wall surface of the wall portion, and the tip end portion of the light guide body is placed on the outer surface side of the light transmitter. The temperature measuring sensor pin according to any one of claims 1 to 3, wherein a contact is possible.
前記環状フランジの内径を、前記押え体の軸心部に挿入された長尺状の導光体の予め設定された集光角度を基にした光路内に、前記光透過体及び前記被測温体のみが存する大きさにすることを特徴とする請求項1〜4のいずれかに記載の測温センサピン。 The inner diameter of the annular flange is placed in an optical path based on a preset focusing angle of a long light guide inserted into the axial center of the presser body, and the light transmitting body and the temperature to be measured are measured. The temperature measuring sensor pin according to any one of claims 1 to 4, wherein the size is such that only the body exists. 前記環状フランジの内径を式(1)で求めることを特徴とする請求項1〜5のいずれかに記載の測温センサピン。
d≧2(L+T)tan(θ/2)+D・・・・(1)
環状フランジの内径:d
環状フランジの厚み:L
光透過体の厚み:T
導光体の集光角度:θ
導光体の外径:D
The temperature measurement sensor pin according to any one of claims 1 to 5, wherein the inner diameter of the annular flange is obtained by the formula (1).
d ≧ 2 (L + T) tan (θ / 2) + D ... (1)
Inner diameter of annular flange: d
Annular flange thickness: L
Thickness of light transmitter: T
Focusing angle of light guide: θ
Outer diameter of light guide: D
前記環状フランジ付き円筒体の前記内方向側の先端面に、前記環状フランジ付き円筒体の螺入出用工具の突起嵌入用の孔を少なくとも2か所以上設けることを特徴とする請求項1〜6のいずれかに記載の測温センサピン。 Claims 1 to 6 are characterized in that at least two holes for fitting a protrusion of a screwing / exiting tool of the cylindrical body with an annular flange are provided on the tip surface of the cylindrical body with an annular flange on the inward direction side. The temperature measurement sensor pin described in any of. 請求項1〜7のいずれかに記載の前記測温センサピンを備えていることを特徴とする測温センサ。 A temperature measuring sensor comprising the temperature measuring sensor pin according to any one of claims 1 to 7.
JP2020006492A 2020-01-20 2020-01-20 Temperature sensor pin and temperature sensor with the same Active JP7138868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006492A JP7138868B2 (en) 2020-01-20 2020-01-20 Temperature sensor pin and temperature sensor with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006492A JP7138868B2 (en) 2020-01-20 2020-01-20 Temperature sensor pin and temperature sensor with the same

Publications (2)

Publication Number Publication Date
JP2021113738A true JP2021113738A (en) 2021-08-05
JP7138868B2 JP7138868B2 (en) 2022-09-20

Family

ID=77076863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006492A Active JP7138868B2 (en) 2020-01-20 2020-01-20 Temperature sensor pin and temperature sensor with the same

Country Status (1)

Country Link
JP (1) JP7138868B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062891A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor
WO2024062890A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137721A (en) * 1982-02-02 1983-08-16 ヴアンゼツテイ・インフラレツド・アンド・コンピユ−タ・システムズ・インコ−ポレ−テツド Measuring instrument for temperature of infrared ray
JPS61182537A (en) * 1985-02-08 1986-08-15 Nireko:Kk Probe for radiation thermometer
US20150377710A1 (en) * 2013-02-08 2015-12-31 Jyoti Goda Apparatus and methods for continuous temperature measurement of molten metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137721A (en) * 1982-02-02 1983-08-16 ヴアンゼツテイ・インフラレツド・アンド・コンピユ−タ・システムズ・インコ−ポレ−テツド Measuring instrument for temperature of infrared ray
JPS61182537A (en) * 1985-02-08 1986-08-15 Nireko:Kk Probe for radiation thermometer
US20150377710A1 (en) * 2013-02-08 2015-12-31 Jyoti Goda Apparatus and methods for continuous temperature measurement of molten metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062891A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor
WO2024062890A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor

Also Published As

Publication number Publication date
JP7138868B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP2021113738A (en) Temperature-sensing sensor pin and temperature-sensing sensor having the same
US4444516A (en) Infrared temperature probe for high pressure use
US9546909B2 (en) Apparatus and methods for continuous temperature measurement of molten metals
CN101797634A (en) Die-casting mold multi-point precise temperature control system and method
KR101757073B1 (en) Temperature measuring device of die casting
CA2670785A1 (en) Hot-runner nozzle with temperature sensor
CN114236711B (en) Manufacturing method of laser transceiver module and laser transceiver module
US7430923B2 (en) Method for operating a tool shaft
CN111693564B (en) Method for evaluating tightening force and method for evaluating shrinkage
US20150117489A1 (en) Temperature probe
CN105216190A (en) A kind of visual ultrasonic plasticizing forming device with temperature measurement module and forming method
JP6184452B2 (en) Pin with pressure sensor and molding device
JP2006289783A (en) Resin molding die and resin molding apparatus
JP4629017B2 (en) Optical element molding method and molding apparatus therefor
JP5103029B2 (en) Light guide pin, temperature sensor having light guide pin, and injection mold
JPH07100895A (en) Temperature sensor and temperature measurement structure
CN211504432U (en) Temperature measuring device of precision molding press
JP2008232753A (en) Pin with light guide, temperature sensor having pin with light guide, and die for injection molding
JP2020051990A (en) Casting mold device
JP2008105295A (en) Mold for molding resin
RU2150091C1 (en) Process measuring temperature of melt and gear for its implementation
JP2859157B2 (en) In-mold pressure measuring device of injection molding machine
JP5359468B2 (en) Lens molding die, lens molding apparatus, and lens
JPS6372469A (en) Method for controlling die casting
JP2023094715A (en) Sensor and mold device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R150 Certificate of patent or registration of utility model

Ref document number: 7138868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150