JP2021112100A - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP2021112100A
JP2021112100A JP2020004785A JP2020004785A JP2021112100A JP 2021112100 A JP2021112100 A JP 2021112100A JP 2020004785 A JP2020004785 A JP 2020004785A JP 2020004785 A JP2020004785 A JP 2020004785A JP 2021112100 A JP2021112100 A JP 2021112100A
Authority
JP
Japan
Prior art keywords
battery
efficiency
battery packs
charging
packs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020004785A
Other languages
Japanese (ja)
Other versions
JP7382007B2 (en
Inventor
洋 長野
Hiroshi Nagano
洋 長野
直樹 實政
Naoki Sanemasa
直樹 實政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2020004785A priority Critical patent/JP7382007B2/en
Publication of JP2021112100A publication Critical patent/JP2021112100A/en
Application granted granted Critical
Publication of JP7382007B2 publication Critical patent/JP7382007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a power storage system that, when charging/discharging in a lump, a plurality of battery packs having use histories, enables all of the battery packs to be used effectively.SOLUTION: A power storage system comprises: a plurality of battery packs having use histories; and a calculation unit for calculating performance of each battery pack. The calculation unit includes: a preliminary calculation unit for calculating provisional battery efficiency of each of the plurality of battery packs; and a first calculation unit for calculating first battery capacity and first battery efficiency of each of the plurality of battery packs. The provisional battery efficiency is a value calculated on the basis of nominal capacity of each of the plurality of battery packs, electric energy in each of the plurality of battery packs when the plurality of battery packs are charged/discharged in a lump with predetermined electric energy, and a variation in a charged state. The first battery capacity and the first battery efficiency are values calculated on the basis of first charged electric energy and first discharged electric energy in each of the plurality of battery packs when the plurality of battery packs are charged/discharged in a lump according to a ratio of the nominal capacity to the provisional battery efficiency.SELECTED DRAWING: Figure 1

Description

本開示は、蓄電システムに関する。 The present disclosure relates to a power storage system.

特許文献1は、バッテリパックが搭載された電気自動車を開示している。 Patent Document 1 discloses an electric vehicle equipped with a battery pack.

特開2012−243449号公報Japanese Unexamined Patent Publication No. 2012-243449

複数の電池パックをまとめて充放電する際、全ての電池パックを効果的に使用できる蓄電システムについて十分に検討されていなかった。 When charging and discharging a plurality of battery packs at once, a power storage system that can effectively use all the battery packs has not been sufficiently studied.

そこで、本開示は、使用履歴のある複数の電池パックをまとめて充放電する際、全ての電池パックを効果的に使用できる蓄電システムを提供することを目的の一つとする。 Therefore, one of the purposes of the present disclosure is to provide a power storage system that can effectively use all the battery packs when charging and discharging a plurality of battery packs having a usage history at once.

本開示に係る蓄電システムは、
使用履歴のある複数の電池パックと、
前記複数の電池パックの各々における性能を求める演算部とを備え、
前記演算部は、
前記複数の電池パックの各々における暫定電池効率を求める予備演算部と、
前記複数の電池パックの各々における第一電池容量及び第一電池効率を求める第一演算部と、を有し、
前記暫定電池効率は、前記複数の電池パックの各々における公称容量、前記複数の電池パックをまとめて所定の電力量を充放電したときの前記複数の電池パックの各々における電力量、及び充電状態の変化に基づいて求められる値であり、
前記第一電池容量及び前記第一電池効率は、前記暫定電池効率に対する前記公称容量の比率に応じて前記複数の電池パックをまとめて充放電したときの前記複数の電池パックの各々における第一充電電力量及び第一放電電力量に基づいて求められる値である。
The power storage system according to the present disclosure is
Multiple battery packs with usage history and
It is provided with a calculation unit for obtaining the performance of each of the plurality of battery packs.
The calculation unit
A preliminary calculation unit for obtaining the provisional battery efficiency in each of the plurality of battery packs, and
Each of the plurality of battery packs has a first battery capacity and a first calculation unit for obtaining the first battery efficiency.
The provisional battery efficiency refers to the nominal capacity of each of the plurality of battery packs, the amount of power in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged, and the state of charge. It is a value obtained based on changes,
The first battery capacity and the first battery efficiency are the first charges in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged according to the ratio of the nominal capacity to the provisional battery efficiency. It is a value obtained based on the electric energy and the first discharge electric energy.

本開示に係る蓄電システムは、使用履歴のある複数の電池パックをまとめて充放電する際、全ての電池パックを効果的に使用できる。 The power storage system according to the present disclosure can effectively use all the battery packs when charging and discharging a plurality of battery packs having a usage history at once.

図1は、実施形態に係る蓄電システムの概略を示す構成図である。FIG. 1 is a configuration diagram showing an outline of a power storage system according to an embodiment.

《本開示の実施形態の説明》
電気自動車などの電動車両の普及に伴い、使用履歴のある電動車両の電池パックを再利用することが検討されている。複数の電池パックの各々が使用履歴のある電動車両の電池パックである場合、複数の電池パックをまとめて充放電する際、各電池パックを均等に充放電すると各電池パックの充電状態がばらつくおそれがある。各電池パックが同一車種の電池パックであっても、電池パックの使用履歴が異なり疲労具合が異なることがあるからである。また、各電池パックが異なる車種の電池パックである場合、電池パックの使用履歴や疲労具合は勿論、公称容量や効率などの仕様や性能も異なることがあるからである。そのため、全ての電池パックを効果的に使用できない。なお、複数の電池パックが同一の新品の電池パックの場合は、蓄電システムを暫く運用していると、各電池パックの劣化具合にばらつきが生じるおそれがある。その場合、各電池パックの充電状態が次第にばらつき、全ての電池パックを効果的に使用できなくなる。
<< Explanation of Embodiments of the present disclosure >>
With the widespread use of electric vehicles such as electric vehicles, it is being considered to reuse battery packs of electric vehicles that have a history of use. When each of the plurality of battery packs is a battery pack of an electric vehicle having a usage history, when charging / discharging the plurality of battery packs at once, if each battery pack is charged / discharged evenly, the charging state of each battery pack may vary. There is. This is because even if each battery pack is a battery pack of the same model, the usage history of the battery pack may be different and the degree of fatigue may be different. Further, when each battery pack is a battery pack of a different vehicle model, the specifications and performance such as nominal capacity and efficiency may differ as well as the usage history and fatigue condition of the battery pack. Therefore, not all battery packs can be used effectively. In the case of a new battery pack in which a plurality of battery packs are the same, the degree of deterioration of each battery pack may vary if the power storage system is operated for a while. In that case, the charging state of each battery pack gradually varies, and all the battery packs cannot be used effectively.

最初に本開示の実施態様を列記して説明する。 First, embodiments of the present disclosure will be listed and described.

(1)本開示の一態様に係る蓄電システムは、
使用履歴のある複数の電池パックと、
前記複数の電池パックの各々における性能を求める演算部とを備え、
前記演算部は、
前記複数の電池パックの各々における暫定電池効率を求める予備演算部と、
前記複数の電池パックの各々における第一電池容量及び第一電池効率を求める第一演算部と、を有し、
前記暫定電池効率は、前記複数の電池パックの各々における公称容量、前記複数の電池パックをまとめて所定の電力量を充放電したときの前記複数の電池パックの各々における電力量、及び充電状態の変化に基づいて求められる値であり、
前記第一電池容量及び前記第一電池効率は、前記暫定電池効率に対する前記公称容量の比率に応じて前記複数の電池パックをまとめて充放電したときの前記複数の電池パックの各々における第一充電電力量及び第一放電電力量に基づいて求められる値である。
(1) The power storage system according to one aspect of the present disclosure is
Multiple battery packs with usage history and
It is provided with a calculation unit for obtaining the performance of each of the plurality of battery packs.
The calculation unit
A preliminary calculation unit for obtaining the provisional battery efficiency in each of the plurality of battery packs, and
Each of the plurality of battery packs has a first battery capacity and a first calculation unit for obtaining the first battery efficiency.
The provisional battery efficiency refers to the nominal capacity of each of the plurality of battery packs, the amount of power in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged, and the state of charge. It is a value obtained based on changes,
The first battery capacity and the first battery efficiency are the first charges in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged according to the ratio of the nominal capacity to the provisional battery efficiency. It is a value obtained based on the electric energy and the first discharge electric energy.

上記蓄電システムは、使用履歴のある複数の電池パックをまとめて充放電する際、全ての電池パックを効果的に使用できる。第一演算部において、予備演算部で求めた暫定電池効率を用いることで比較的高精度な各電池パックの第一電池容量及び第一電池効率が求まる。そのため、各電池パックの使用履歴が異なっていたり、各電池パックの性能が異なっていたりしても、複数の電池パックをまとめて充放電する際、比較的高精度な各電池パックの第一電池容量及び第一電池効率に基づいて各電池パックを充放電できる。よって、全ての電池パックの充電状態にばらつきが生じ難く、全ての電池パックを同時にほぼ満充電にしたりほぼ完全放電にしたりし易い。即ち、特定の電池パックの過充電や過放電が抑制されるので、特定の電池パックの異常発熱が抑制されて寿命の低下が抑制される。 The power storage system can effectively use all the battery packs when charging and discharging a plurality of battery packs having a usage history at once. By using the provisional battery efficiency obtained by the preliminary calculation unit in the first calculation unit, the first battery capacity and the first battery efficiency of each battery pack with relatively high accuracy can be obtained. Therefore, even if the usage history of each battery pack is different or the performance of each battery pack is different, when charging and discharging a plurality of battery packs at once, the first battery of each battery pack with relatively high accuracy is used. Each battery pack can be charged and discharged based on capacity and first battery efficiency. Therefore, the charging states of all the battery packs are unlikely to vary, and it is easy to make all the battery packs almost fully charged or almost completely discharged at the same time. That is, since overcharging and overdischarging of the specific battery pack are suppressed, abnormal heat generation of the specific battery pack is suppressed and a decrease in life is suppressed.

また、上記蓄電システムは、各電池パックの第一電池容量及び第一電池効率をまとめて求めることができる。そのため、上記蓄電システムは、第一電池容量及び第一電池効率を各電池パックごとに個々に求めなくてもよい。よって、上記蓄電システムは、第一電池容量及び第一電池効率を求める手間がかかり難い。 Further, in the above-mentioned power storage system, the first battery capacity and the first battery efficiency of each battery pack can be collectively obtained. Therefore, in the power storage system, the first battery capacity and the first battery efficiency do not have to be obtained individually for each battery pack. Therefore, in the above-mentioned power storage system, it is difficult to take time and effort to obtain the first battery capacity and the first battery efficiency.

更に、上記蓄電システムは、全ての電池パックの充電状態がばらつき難いため、各電池パックの充電状態を合わせるように調整するバランシングが不要である。よって、バランシングのために運転停止期間を設ける必要がない。 Further, in the above-mentioned power storage system, the charging states of all the battery packs are unlikely to vary, so that balancing for adjusting the charging states of the respective battery packs is unnecessary. Therefore, it is not necessary to provide an operation stop period for balancing.

(2)上記蓄電システムの一形態として、
前記複数の電池パックの各々において、
前記第一充電電力量は、充電状態が0%の前記複数の電池パックをまとめて充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第一放電電力量は、前記いずれか一つの電池パックの充電状態が100%となった後、前記複数の電池パックをまとめて放電し、前記いずれか一つの電池パックの充電状態が0%となったときの値であり、
前記第一電池容量は、前記第一放電電力量に基づいて求められる値であり、
前記第一電池効率は、前記第一充電電力量に対する前記第一放電電力量の比率で求められる値であることが挙げられる。
(2) As a form of the above power storage system,
In each of the plurality of battery packs
The first charging electric energy is a value when the plurality of battery packs having a charging state of 0% are collectively charged and the charging state of any one of the battery packs reaches 100%.
The first discharge electric energy is such that after the charged state of any one of the battery packs reaches 100%, the plurality of battery packs are discharged together, and the charged state of any one of the battery packs is 0%. It is the value when
The first battery capacity is a value obtained based on the first discharge electric energy.
The first battery efficiency is a value obtained by the ratio of the first discharge power amount to the first charge power amount.

上記の構成は、複数の電池パックの各々において、高精度な第一充電電力量及び第一放電電力量を求めることができるため、高精度な第一電池容量及び第一電池効率が求まる。 In the above configuration, since the high-precision first charge power amount and the first discharge power amount can be obtained for each of the plurality of battery packs, the high-precision first battery capacity and the first battery efficiency can be obtained.

(3)上記(2)の上記蓄電システムの一形態として、
前記第一電池容量は、前記いずれか一つの電池パックの充電状態が100%となったときの前記複数の電池パックの各々における充電状態に対する前記第一放電電力量の比率で求められる値であることが挙げられる。
(3) As a form of the power storage system of the above (2),
The first battery capacity is a value obtained by the ratio of the first discharge power amount to the charged state in each of the plurality of battery packs when the charged state of any one of the battery packs reaches 100%. Can be mentioned.

上記の構成は、複数の電池パックの各々において、より高精度な第一電池容量を求めることができる。即ち、より高精度な第一電池効率が求まる。 With the above configuration, it is possible to obtain a more accurate first battery capacity in each of the plurality of battery packs. That is, more accurate first battery efficiency is required.

(4)上記蓄電システムの一形態として、
前記演算部は、前記複数の電池パックの各々における第二電池容量及び第二電池効率を求める第二演算部を有し、
前記第二電池容量及び前記第二電池効率は、前記暫定電池効率又は前記第一電池効率に対する前記第一電池容量の比率に応じて前記複数の電池パックをまとめて充放電したときの前記複数の電池パックの各々における第二充電電力量及び第二放電電力量に基づいて求められる値であることが挙げられる。
(4) As a form of the above power storage system,
The calculation unit has a second calculation unit for obtaining the second battery capacity and the second battery efficiency in each of the plurality of battery packs.
The second battery capacity and the second battery efficiency are the plurality of when the plurality of battery packs are collectively charged and discharged according to the provisional battery efficiency or the ratio of the first battery capacity to the first battery efficiency. It can be mentioned that it is a value obtained based on the second charge power amount and the second discharge power amount in each of the battery packs.

上記の構成は、使用履歴のある複数の電池パックをまとめて充放電する際、全ての電池パックをより効果的に使用できる。第二演算部において、第一演算部で求めた第一電池容量を用いることで、第一電池容量よりも高精度な第二電池容量が求まる。即ち、第一電池効率よりも高精度な各電池パックの第二電池効率が求まる。そのため、複数の電池パックをまとめて充放電する際、より高精度な各電池パックの第二電池容量と第二電池効率とに基づいて各電池パックを充放電できる。よって、全ての電池パックの充電状態が更にばらつき難い。 With the above configuration, when a plurality of battery packs having a usage history are collectively charged and discharged, all the battery packs can be used more effectively. By using the first battery capacity obtained by the first calculation unit in the second calculation unit, the second battery capacity with higher accuracy than the first battery capacity can be obtained. That is, the second battery efficiency of each battery pack, which is more accurate than the first battery efficiency, is required. Therefore, when charging / discharging a plurality of battery packs at once, each battery pack can be charged / discharged based on the second battery capacity and the second battery efficiency of each battery pack with higher accuracy. Therefore, the charging states of all battery packs are less likely to vary.

(5)上記(4)の上記蓄電システムの一形態として、
前記複数の電池パックの各々において、
前記第二充電電力量は、充電状態が0%の電池パックを含む前記複数の電池パックをまとめて充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第二放電電力量は、充電状態が100%の電池パックを含む前記複数の電池パックをまとめて放電し、いずれか一つの電池パックの充電状態が0%となったときの値であり、
前記第二電池容量は、前記第二放電電力量に基づいて求められる値であり、
前記第二電池効率は、前記第二充電電力量に対する前記第二放電電力量の比率で求められる値であることが挙げられる。
(5) As a form of the power storage system of the above (4),
In each of the plurality of battery packs
The second charging electric energy is a value when the plurality of battery packs including the battery pack having a charging state of 0% are collectively charged and the charging state of any one battery pack becomes 100%.
The second discharge electric energy is a value when the plurality of battery packs including the battery pack having a 100% charged state are discharged together and the charged state of any one battery pack becomes 0%.
The second battery capacity is a value obtained based on the second discharge electric energy.
The second battery efficiency is a value obtained by the ratio of the second discharge power amount to the second charge power amount.

上記の構成は、複数の電池パックの各々において、高精度な第二充電電力量及び第二放電電力量を求めることができるため、高精度な第二電池容量及び第二電池効率が求まる。 In the above configuration, the second charge power amount and the second discharge power amount can be obtained with high accuracy in each of the plurality of battery packs, so that the second battery capacity and the second battery efficiency can be obtained with high accuracy.

(6)上記(5)の上記蓄電システムの一形態として、
前記第二演算部は、前記第一電池容量と充電状態とから充電余地及び充電残量を求め、
前記第二充電電力量は、充電状態が0%の電池パックを含む前記複数の電池パックをまとめて充電する際、前記暫定電池効率又は前記第一電池効率に対する前記充電余地の比率に応じた電力量を充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第二放電電力量は、充電状態が100%の電池パックを含む前記複数の電池パックをまとめて放電する際、前記暫定電池効率又は前記第一電池効率に対する前記充電残量の比率に応じた電力量を放電し、いずれか一つの電池パックの充電状態が0%となったときの値であることが挙げられる。
(6) As one form of the power storage system of the above (5),
The second calculation unit obtains the charging room and the remaining charge from the first battery capacity and the charging state.
The second charging electric energy is the electric power according to the provisional battery efficiency or the ratio of the charging room to the first battery efficiency when the plurality of battery packs including the battery pack having a charging state of 0% are collectively charged. It is the value when the amount is charged and the charged state of any one of the battery packs reaches 100%.
The second discharge electric energy corresponds to the provisional battery efficiency or the ratio of the remaining charge to the first battery efficiency when the plurality of battery packs including the battery pack having a 100% charged state are discharged together. It is a value when the electric energy is discharged and the charged state of any one of the battery packs becomes 0%.

上記の構成は、複数の電池パックの各々においてより高精度な第二充電電力量及び第二放電電力量を求めることができるため、より高精度な第二電池容量及び第二電池効率を求めることができる。 In the above configuration, more accurate second charge power amount and second discharge power amount can be obtained for each of the plurality of battery packs, so that more accurate second battery capacity and second battery efficiency can be obtained. Can be done.

(7)上記(4)から上記(6)のいずれか1つの上記蓄電システムの一形態として、
前記演算部は、前記複数の電池パックの各々における第三充電効率及び第三放電効率を求める第三演算部を備え、
前記第三充電効率及び前記第三放電効率は、前記第二電池容量と、前記複数の電池パックをまとめて所定の電力量を充放電したときの前記複数の電池パックの各々における電力量、及び充電状態の変化とに基づいて求められる値であることが挙げられる。
(7) As one form of the power storage system according to any one of the above (4) to (6).
The calculation unit includes a third calculation unit for obtaining a third charge efficiency and a third discharge efficiency in each of the plurality of battery packs.
The third charging efficiency and the third discharging efficiency include the second battery capacity, the amount of electric power in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged, and the amount of electric power in each of the plurality of battery packs. It can be mentioned that it is a value obtained based on a change in the charging state.

上記の構成は、使用履歴のある複数の電池パックをまとめて充放電する際、全ての電池パックをより効果的に使用できる。第三演算部において、第二演算部で求めた第二電池容量を用いることで高精度な各電池パックの第三充電効率及び第三放電効率が求まる。そのため、複数の電池パックをまとめて充放電する際、充電時には高精度な各電池パックの第三充電効率に基づいて各電池パックを充電でき、放電時には高精度な第三放電効率に基づいて各電池パックを放電できる。よって、充電時と放電時とで平均電力が異なる場合であっても、充電時と放電時のいずれにおいても全ての電池パックの充電状態がばらつき難い。 With the above configuration, when a plurality of battery packs having a usage history are collectively charged and discharged, all the battery packs can be used more effectively. By using the second battery capacity obtained by the second calculation unit in the third calculation unit, the third charge efficiency and the third discharge efficiency of each battery pack with high accuracy can be obtained. Therefore, when charging and discharging a plurality of battery packs at once, each battery pack can be charged based on the highly accurate third charging efficiency of each battery pack at the time of charging, and each battery pack can be charged based on the highly accurate third discharging efficiency at the time of discharging. The battery pack can be discharged. Therefore, even if the average power differs between charging and discharging, the charging states of all battery packs are unlikely to vary between charging and discharging.

(8)上記(4)から上記(6)のいずれか1つの上記蓄電システムの一形態として、
前記第二電池効率の平方根に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて充電する充電制御部と、
前記第二電池効率の平方根に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて放電する放電制御部と、を備えることが挙げられる。
(8) As one form of the power storage system according to any one of the above (4) to (6).
A charge control unit that collectively charges the plurality of battery packs according to the ratio of the second battery capacity to the square root of the second battery efficiency.
It includes a discharge control unit that collectively discharges the plurality of battery packs according to the ratio of the second battery capacity to the square root of the second battery efficiency.

上記の構成は、充電時と放電時とで平均電力が実質的に同じである場合、全ての電池パックの充電状態がばらつき難い。 In the above configuration, when the average power is substantially the same during charging and discharging, the charging states of all battery packs are unlikely to vary.

(9)上記(7)の上記蓄電システムの一形態として、
前記第三充電効率に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて充電する充電制御部と、
前記第三放電効率に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて放電する放電制御部と、を備えることが挙げられる。
(9) As one form of the power storage system of the above (7),
A charge control unit that collectively charges the plurality of battery packs according to the ratio of the second battery capacity to the third charge efficiency.
It includes a discharge control unit that collectively discharges the plurality of battery packs according to the ratio of the second battery capacity to the third discharge efficiency.

上記の構成は、充電時と放電時とで平均電力が異なる場合であっても、充電時と放電時のいずれにおいても全ての電池パックの充電状態がばらつき難い。 In the above configuration, even when the average power differs between charging and discharging, the charging states of all battery packs are unlikely to vary during both charging and discharging.

(10)上記蓄電システムの一形態として、
前記複数の電池パックの各々は、電動車両の電池パックであることが挙げられる。
(10) As one form of the power storage system,
Each of the plurality of battery packs may be a battery pack for an electric vehicle.

上記の構成は、複数の電動車両の電池パックを再利用できる。 In the above configuration, the battery packs of a plurality of electric vehicles can be reused.

《本開示の実施形態の詳細》
本開示の実施形態の詳細を、以下に説明する。
<< Details of Embodiments of the present disclosure >>
Details of the embodiments of the present disclosure will be described below.

《実施形態》
〔蓄電システム〕
図1を参照して、実施形態に係る蓄電システム1を説明する。蓄電システム1は、使用履歴のある複数の電池パック3を備える。本形態に係る蓄電システム1の特徴の一つは、複数の電池パック3の各々における性能を演算する演算部6を有する点にある。以下、詳細に説明する。図1の黒塗り矢印は充電を示し、白塗り矢印は放電を示している。
<< Embodiment >>
[Power storage system]
The power storage system 1 according to the embodiment will be described with reference to FIG. The power storage system 1 includes a plurality of battery packs 3 having a usage history. One of the features of the power storage system 1 according to this embodiment is that it has a calculation unit 6 for calculating the performance of each of the plurality of battery packs 3. Hereinafter, a detailed description will be given. The black arrow in FIG. 1 indicates charging, and the white arrow indicates discharging.

[電池パック]
各電池パック3は、使用履歴のある電池パックである。使用履歴のある複数の電池パック3とは、中古で同じ又は異なる仕様、性能の電池パックの集合体が含まれることは勿論、新品で同じ又は異なる仕様、性能の電池パックの集合体で蓄電システム1を構築したが、蓄電システム1として使用中のものも含まれる。
[Battery pack]
Each battery pack 3 is a battery pack having a usage history. A plurality of battery packs 3 having a usage history include a collection of used battery packs having the same or different specifications and performance, as well as a new battery pack having the same or different specifications and performance. 1 is constructed, but the one in use as the power storage system 1 is also included.

各電池パック3の使用履歴は、互いに同一であってもよいし、少なくとも1つの電池パック3の使用履歴が他の電池パック3と異なっていてもよい。勿論、全ての電池パック3の使用履歴が異なっていてもよい。各電池パック3における公称容量や効率などの仕様や性能は、互いに同一であってもよいし、少なくとも一つの電池パック3の仕様や性能が他の電池パック3と異なっていてもよい。勿論、全ての電池パック3の仕様や性能が互いに異なっていてもよい。 The usage history of each battery pack 3 may be the same as each other, or the usage history of at least one battery pack 3 may be different from that of the other battery pack 3. Of course, the usage histories of all the battery packs 3 may be different. The specifications and performance of each battery pack 3 such as nominal capacity and efficiency may be the same as each other, or the specifications and performance of at least one battery pack 3 may be different from those of the other battery packs 3. Of course, the specifications and performance of all the battery packs 3 may be different from each other.

各電池パック3は、二次電池である。二次電池としては、例えば、リチウムイオン電池やニッケル水素電池などが挙げられる。 Each battery pack 3 is a secondary battery. Examples of the secondary battery include a lithium ion battery and a nickel hydrogen battery.

各電池パック3は、電動車両に搭載されていた電池パックであることが好ましい。そうすれば、複数の電動車両の電池パックを再利用できる。電動車両としては、電気自動車やハイブリッド自動車が挙げられる。各電池パック3は、例えば、車種が同一の電気自動車に搭載されていたものでもよいし、少なくとも1つ電池パック3が、他の電池パック3と車種の異なる電気自動車に搭載されていたものでもよい。勿論、全ての電池パック3が、互いに車種の異なる電気自動車に搭載されていたものでもよい。 Each battery pack 3 is preferably a battery pack mounted on an electric vehicle. That way, the battery packs of multiple electric vehicles can be reused. Examples of the electric vehicle include an electric vehicle and a hybrid vehicle. Each battery pack 3 may be, for example, one mounted on an electric vehicle having the same vehicle type, or at least one battery pack 3 may be mounted on an electric vehicle having a different vehicle type from the other battery pack 3. good. Of course, all the battery packs 3 may be mounted on electric vehicles of different vehicle types.

各電池パック3は、コンバータ40、及び電気計器41を介して電力バス2につながる。各電池パック3は、電力バス2を介して充電したり放電したりする。電力バス2は、交流バスでもよいし、直流バスでもよい。電力バス2が直流バスの場合、電力バス2の先に交直変換するインバータを介し、電力バス2が交流バスの場合、電力バス2と電池パック3との間にインバータを介することが挙げられる。インバータの図示は省略する。各コンバータ40は、充電時、電力バス2の電圧を電池パック3の電圧に降圧し、放電時、電池パック3から出力される電圧を電力バス2の電圧に昇圧する。各電気計器41は、各電池パック3の充電電力と放電電力とを測定する電力計と、各電池パック3の充電電力量の積算値と放電電力量の積算値とを測定する電力量計とを有する。各電気計器41の測定結果は、後述する電力管理装置5に送られる。各電池パック3は、電池モジュール31と電池制御装置32とを有する。 Each battery pack 3 is connected to the power bus 2 via the converter 40 and the electric meter 41. Each battery pack 3 is charged or discharged via the power bus 2. The electric power bus 2 may be an AC bus or a DC bus. When the power bus 2 is a DC bus, an inverter for AC / DC conversion is performed before the power bus 2, and when the power bus 2 is an AC bus, an inverter is used between the power bus 2 and the battery pack 3. The illustration of the inverter is omitted. Each converter 40 steps down the voltage of the power bus 2 to the voltage of the battery pack 3 during charging, and boosts the voltage output from the battery pack 3 to the voltage of the power bus 2 during discharging. Each electric meter 41 includes a watt-hour meter that measures the charge power and the discharge power of each battery pack 3, and a watt-hour meter that measures the integrated value of the charge power amount and the discharge power amount of each battery pack 3. Has. The measurement result of each electric meter 41 is sent to the power management device 5 described later. Each battery pack 3 has a battery module 31 and a battery control device 32.

電池モジュール31は、複数の電池セルを組み合わせたものである。複数の電池セルは、バスバによって並列又は直列に接続されている。電池セル及びバスバの図示は省略する。バスバには、各電池セルの電圧を検知する電圧センサが取り付けられている。図1の各電池モジュール31の網掛け箇所は、各電池モジュールの充電残量を模式的に示し、空白箇所は、各電池モジュール31の充電余地を模式的に示す。充電残量及び充電余地は後述する。 The battery module 31 is a combination of a plurality of battery cells. A plurality of battery cells are connected in parallel or in series by a bus bar. The illustration of the battery cell and the bus bar is omitted. A voltage sensor that detects the voltage of each battery cell is attached to the bus bar. The shaded areas of each battery module 31 in FIG. 1 schematically show the remaining charge of each battery module, and the blank areas schematically show the room for charging of each battery module 31. The remaining charge and room for charging will be described later.

電池制御装置32は、電力管理装置5からの指令によって、各電池パック3の充放電電力量を制御する。電力管理装置5としては、EMS(Energy Manegement System)が挙げられる。また、電池制御装置32は、電池モジュール31の電圧、電流、及び温度などを監視し、電池パック3の状態を管理する。電池制御装置32としては、BMS(Battery Management System)が挙げられる。 The battery control device 32 controls the charge / discharge electric energy of each battery pack 3 according to a command from the power management device 5. Examples of the power management device 5 include an EMS (Energy Management System). Further, the battery control device 32 monitors the voltage, current, temperature, etc. of the battery module 31 and manages the state of the battery pack 3. Examples of the battery control device 32 include a BMS (Battery Management System).

[演算部]
演算部6は、各電池パック3の性能を求める。演算部6は、電力管理装置5に備わる。演算部6は、予備演算部60と、第一演算部61とを有する。演算部6は、更に、第二演算部62を有すること、又は第二演算部62と第三演算部63とを有することが好ましい。
[Calculation unit]
The calculation unit 6 obtains the performance of each battery pack 3. The calculation unit 6 is provided in the power management device 5. The calculation unit 6 has a preliminary calculation unit 60 and a first calculation unit 61. It is preferable that the calculation unit 6 further has a second calculation unit 62, or has a second calculation unit 62 and a third calculation unit 63.

(予備演算部)
予備演算部60は、各電池パック3の暫定電池効率を求める。各電池パック3の暫定電池効率としては、暫定充電効率Eck(%)、暫定放電効率Edk(%)、及び暫定充放電効率Ek(%)が挙げられる。
(Preliminary calculation unit)
The preliminary calculation unit 60 obtains the provisional battery efficiency of each battery pack 3. Examples of the provisional battery efficiency of each battery pack 3 include provisional charge efficiency Eck (%), provisional discharge efficiency Edk (%), and provisional charge / discharge efficiency E 0 k (%).

〈暫定充電効率Eck〉
各暫定充電効率Eckは、各電池パック3の「公称容量Ck×(充電時の充電状態の変化ΔSck/所定の充電電力量ΔWck)」、によって求められる値である。公称容量Ck(Wh)は、既知である。充電時の充電状態の変化量ΔSck(%)は、複数の電池パック3をまとめて充電した際の各電池パック3における充電前後の充電状態の差である。即ち、所定の充電電力量ΔWck(Wh)を各電池パック3に充電した後の充電状態と、所定の充電電力量ΔWck(Wh)を各電池パック3に充電する前の充電状態との差である。各充電状態は、BMSによって把握できる。
<Temporary charging efficiency Eck>
Each provisional charging efficiency Eck is a value obtained by "nominal capacity Ck x (change in charging state during charging ΔSck / predetermined charging power amount ΔWck)" of each battery pack 3. Nominal capacitance Ck (Wh) is known. The amount of change ΔSck (%) in the charging state during charging is the difference in the charging state before and after charging in each battery pack 3 when a plurality of battery packs 3 are collectively charged. That is, the difference between the charging state after charging each battery pack 3 with a predetermined charging power amount ΔWck (Wh) and the charging state before charging each battery pack 3 with a predetermined charging power amount ΔWck (Wh). be. Each charge state can be grasped by BMS.

〈暫定放電効率Edk〉
各暫定放電効率Edkは、各電池パック3の「上記公称容量Ck×(放電時の充電状態の変化ΔSdk/所定の放電電力量ΔWdk)」、によって求められる値である。放電時の充電状態の変化量ΔSdk(%)は、複数の電池パック3をまとめて放電した際の各電池パック3における放電前後の充電状態の差である。即ち、各電池パック3から所定の放電電力量ΔWdk(Wh)を放電した後の充電状態と、各電池パック3から所定の放電電力量ΔWdk(Wh)を放電する前の充電状態との差である。
<Temporary discharge efficiency Edk>
Each provisional discharge efficiency Edk is a value obtained by "the above-mentioned nominal capacity Ck x (change in charging state during discharge ΔSdk / predetermined discharge power amount ΔWdk)" of each battery pack 3. The amount of change ΔSdk (%) in the charging state at the time of discharging is the difference in the charging state before and after discharging in each battery pack 3 when a plurality of battery packs 3 are discharged together. That is, the difference between the charged state after discharging the predetermined discharge power amount ΔWdk (Wh) from each battery pack 3 and the charged state before discharging the predetermined discharge power amount ΔWdk (Wh) from each battery pack 3. be.

所定の充電電力量ΔWckと所定の放電電力量ΔWdkとは、異なっていてもよいものの、同一であることが好ましい。 Although the predetermined charge power amount ΔWck and the predetermined discharge power amount ΔWdk may be different, they are preferably the same.

〈暫定充放電効率Ek〉
各暫定充放電効率Ekは、各電池パック3の「(放電電力量/充電電力量)×100」、によって求められる値である。上記充電電力量は、複数の電池パック3をまとめて充電し、各電池パック3の充電状態が第一充電状態から第二充電状態に変化するのに要した電力量である。上記放電電力量は、複数の電池パック3をまとめて放電し、各電池パック3の充電状態が上記第二充電状態から上記第一充電状態となるまで放電したときに得られる電力量である。
<Temporary charge / discharge efficiency E 0 k>
Each provisional charge / discharge efficiency E 0 k is a value obtained by "(discharge power amount / charge power amount) x 100" of each battery pack 3. The charging power amount is the amount of power required to charge a plurality of battery packs 3 together and change the charging state of each battery pack 3 from the first charging state to the second charging state. The discharge power amount is the amount of power obtained when a plurality of battery packs 3 are discharged together and each battery pack 3 is discharged from the second charge state to the first charge state.

(第一演算部)
第一演算部61は、各電池パック3の第一電池容量Wd’k(Wh)及び第一電池効率Ek(%)を求める。各電池パック3の第一電池容量Wd’k及び第一電池効率Ekは、各電池パック3の第一充電電力量Wck(Wh)及び第一放電電力量Wdk(Wh)に基づいて求められる値である。
(First calculation unit)
The first calculation unit 61 obtains the first battery capacity Wd'k (Wh) and the first battery efficiency Ek (%) of each battery pack 3. The first battery capacity Wd'k and the first battery efficiency Ek of each battery pack 3 are values obtained based on the first charge electric energy Wck (Wh) and the first discharge electric energy Wdk (Wh) of each battery pack 3. Is.

〈第一充電電力量Wck〉
各第一充電電力量Wckは、次のようにして求められる値である。まず、各電池パック3の充電状態を0%にする。次に、複数の電池パック3をまとめて充電する。その際、定格電力P(W)を各電池パック3に所定の比率で分配する。定格電力Pとは、本形態の蓄電システム1の所有者などが、蓄電システム1の用途に応じて決定する蓄電システム1全体の電力の目論見値である。蓄電システム1は、定格電力Pを満たすように複数の電池パック3を収集して構築される。各電池パック3に分配される比率は、以下の(1)又は(2)の比率が挙げられる。
(1)暫定充電効率Eckに対する公称容量Ckの比率Ck/Eck
(2)暫定充放電効率Ekに対する公称容量Ckの比率Ck/E
いずれか一つの電池パック3の充電状態が100%となるまで充電する。いずれか一つの電池パック3の充電状態が100%となったときの各電池パック3の充電電力量が、各電池パック3の第一充電電力量Wckである。複数の電池パック3の第一充電電力量Wckの合計が、蓄電システム1全体の第一充電電力量Wcs(Wh)である。
<First charge power amount Wck>
Each first charge electric energy Wck is a value obtained as follows. First, the charged state of each battery pack 3 is set to 0%. Next, the plurality of battery packs 3 are collectively charged. At that time, the rated power P (W) is distributed to each battery pack 3 at a predetermined ratio. The rated power P is a planned value of the electric power of the entire power storage system 1 determined by the owner of the power storage system 1 of the present embodiment according to the application of the power storage system 1. The power storage system 1 is constructed by collecting a plurality of battery packs 3 so as to satisfy the rated power P. The ratio distributed to each battery pack 3 includes the ratio of (1) or (2) below.
(1) Ratio of nominal capacity Ck to provisional charging efficiency Eck Ck / Eck
(2) Ratio of nominal capacity Ck to provisional charge / discharge efficiency E 0 k Ck / E 0 k
Charge until the charged state of any one of the battery packs 3 reaches 100%. The charging power amount of each battery pack 3 when the charged state of any one battery pack 3 reaches 100% is the first charging power amount Wck of each battery pack 3. The total of the first charge electric energy Wck of the plurality of battery packs 3 is the first charge electric energy Wcs (Wh) of the entire power storage system 1.

〈第一放電電力量Wdk〉
各第一放電電力量Wdkは、次のようにして求められる値である。いずれか一つの電池パック3の充電状態が100%となった複数の電池パック3をまとめて放電する。その際、複数の電池パック3の放電電力の合計が定格電力P(W)となるように、各電池パック3を所定の比率で放電する。所定の比率は、以下の(1)又は(2)の比率が挙げられる。
(1)暫定放電効率Edk対する公称容量Ckの比率Ck/Edk
(2)暫定充放電効率Ek対する公称容量Ckの比率Ck/E
いずれか一つの電池パック3の充電状態が0%となるまで放電する。いずれか一つの電池パック3の充電状態が0%となったときの各電池パック3の放電電力量が、各電池パック3の第一放電電力量Wdkである。複数の電池パック3の第一放電電力量Wdkの合計が、蓄電システム1全体の第一放電電力量Wds(Wh)である。
<First discharge power amount Wdk>
Each first discharge electric energy Wdk is a value obtained as follows. A plurality of battery packs 3 in which one of the battery packs 3 is 100% charged are collectively discharged. At that time, each battery pack 3 is discharged at a predetermined ratio so that the total discharge power of the plurality of battery packs 3 becomes the rated power P (W). Examples of the predetermined ratio include the following ratios (1) and (2).
(1) Temporary discharge efficiency Ratio of nominal capacity Ck to Edk Ck / Edk
(2) Temporary charge / discharge efficiency E 0 k to nominal capacity Ck ratio C k / E 0 k
Discharge until the charged state of any one of the battery packs 3 reaches 0%. The discharge power amount of each battery pack 3 when the charged state of any one battery pack 3 becomes 0% is the first discharge power amount Wdk of each battery pack 3. The total of the first discharge electric energy Wdk of the plurality of battery packs 3 is the first discharge electric energy Wds (Wh) of the entire power storage system 1.

〈第一電池容量Wd’k〉
各第一電池容量Wd’kは、各電池パック3の「(第一放電電力量Wdk/充電状態Sf)×100」、によって求められる値である。各電池パック3の充電状態Sfは、第一充電電力量Wckを求める際にいずれか一つの電池パック3の充電状態が100%となったときの各電池パック3の充電状態である。
<First battery capacity Wd'k>
Each first battery capacity Wd'k is a value obtained by "(first discharge electric energy Wdk / charging state Sf) x 100" of each battery pack 3. The charging state Sf of each battery pack 3 is the charging state of each battery pack 3 when the charging state of any one battery pack 3 becomes 100% when the first charging electric energy Wck is obtained.

〈第一電池効率Ek〉
各第一電池効率Ekは、各電池パック3の「第一放電電力量Wdk/第一充電電力量Wck」、によって求められる値である。
<First battery efficiency Ek>
Each first battery efficiency Ek is a value obtained by "first discharge electric energy Wdk / first charge electric energy Wck" of each battery pack 3.

〈蓄電システム全体の第一電池容量Wds〉
蓄電システム1全体の第一電池容量Wds(Wh)は、蓄電システム1全体の第一放電電力量Wds(Wh)である。
<First battery capacity Wds of the entire power storage system>
The first battery capacity Wds (Wh) of the entire power storage system 1 is the first discharge electric energy Wds (Wh) of the entire power storage system 1.

〈蓄電システム全体の第一電池効率Es〉
蓄電システム1全体の第一電池効率Es(%)は、「蓄電システム1全体の第一放電電力量Wds/蓄電システム1全体の第一充電電力量Wcs」、によって求められる値である。
<First battery efficiency Es of the entire power storage system>
The first battery efficiency Es (%) of the entire power storage system 1 is a value obtained by "the first discharge electric energy Wds of the entire power storage system 1 / the first charge electric energy Wcs of the entire power storage system 1".

(第二演算部)
第二演算部62は、各電池パック3の第二電池容量Wd”k及び第二電池効率E’kを求める。各電池パック3の第二電池容量Wd”k及び第二電池効率E’kは、各電池パック3の第二充電電力量Wc’k及び第二放電電力量Wd”kに基づいて求められる値である。
(Second calculation unit)
The second calculation unit 62 obtains the second battery capacity Wd "k" and the second battery efficiency E'k of each battery pack 3. The second battery capacity Wd "k" and the second battery efficiency E'k of each battery pack 3. Is a value obtained based on the second charge electric energy Wc'k and the second discharge electric energy Wd "k of each battery pack 3.

〈第二充電電力量Wc’k〉
各第二充電電力量Wc’kは、次のようにして求められる値である。第一放電電力量Wdkを求める際にいずれか一つの電池パック3の充電状態が0%となった複数の電池パック3をまとめて充電する。その際、定格電力P(W)を各電池パック3に所定の比率で分配する。分配する比率は、以下の(1)又は(2)の比率が挙げられる。
(1)暫定充電効率Eckに対する第一電池容量Wd’kの比率Wd’k/Eck
(2)第一電池効率Ekに対する第一電池容量Wd’kの比率Wd’k/Ek
<Second charge power amount Wc'k>
Each second charging electric energy Wc'k is a value obtained as follows. When determining the first discharge electric energy Wdk, a plurality of battery packs 3 in which the charging state of any one battery pack 3 is 0% are collectively charged. At that time, the rated power P (W) is distributed to each battery pack 3 at a predetermined ratio. Examples of the distribution ratio include the following ratios (1) and (2).
(1) Ratio of first battery capacity Wd'k to provisional charging efficiency Eck Wd'k / Eck
(2) Ratio of first battery capacity Wd'k to first battery efficiency Ek Wd'k / Ek

所定の時間充電したら、定格電力P(W)を各電池パック3に分配する比率を以下の(1)又は(2)の比率に変更する。
(1)暫定充電効率Eckに対する充電余地Cakの比率Cak/EcK
(2)第一電池効率Ekに対する充電余地Cakの比率Cak/Ek
After charging for a predetermined time, the ratio of distributing the rated power P (W) to each battery pack 3 is changed to the ratio of (1) or (2) below.
(1) Temporary charging efficiency Ratio of Charging room Cak to Eck Cak / EcK
(2) Ratio of charge room Cak to first battery efficiency Ek Cak / Ek

各充電余地Cakは、各電池パック3の充電可能な残容量である。各充電余地Cakは、各電池パック3の「第一電池容量Wd’k×(100−充電状態Sk)」、によって求められる値である。充電状態Skは、定期的に求めるとよい。 Each room for charging Cak is the remaining rechargeable capacity of each battery pack 3. Each room for charging Cak is a value obtained by "first battery capacity Wd'k x (100-charged state Sk)" of each battery pack 3. The charge state Sk may be obtained periodically.

いずれか一つの電池パック3の充電状態が100%となるまで充電する。いずれか一つの電池パック3の充電状態が100%となったときの各電池パック3の充電電力量が、第二充電電力量Wc’kである。複数の電池パック3の第二充電電力量Wc’kの合計が、蓄電システム1全体の第二充電電力量Wc’s(Wh)である。 Charge until the charged state of any one of the battery packs 3 reaches 100%. The charge power amount of each battery pack 3 when the charge state of any one battery pack 3 reaches 100% is the second charge power amount Wc'k. The total of the second charging electric energy Wc'k of the plurality of battery packs 3 is the second charging electric energy Wc's (Wh) of the entire power storage system 1.

〈第二放電電力量Wd”k〉
各第二放電電力量Wd”kは、次のようにして求められる値である。第二充電電力量Wc’kを求める際にいずれか一つの電池パック3の充電状態が100%となった複数の電池パック3をまとめて放電する。その際、複数の電池パック3の放電電力の合計が定格電力P(W)となるように、各電池パック3を所定の比率で放電する。所定の比率は、以下の(1)又は(2)の比率が挙げられる。
(1)暫定放電効率Edkに対する第一電池容量Wd’kの比率Wd’k/Eck
(2)第一電池効率Ekに対する第一電池容量Wd’kの比率Wd’k/Ek
<Second discharge power amount Wd "k>
Each second discharge electric energy Wd "k is a value obtained as follows. When the second charge electric energy Wc'k is obtained, the charged state of any one of the battery packs 3 is 100%. A plurality of battery packs 3 are discharged together. At that time, each battery pack 3 is discharged at a predetermined ratio so that the total discharge power of the plurality of battery packs 3 becomes the rated power P (W). Examples of the ratio include the following ratios (1) and (2).
(1) Ratio of first battery capacity Wd'k to provisional discharge efficiency Edk Wd'k / Eck
(2) Ratio of first battery capacity Wd'k to first battery efficiency Ek Wd'k / Ek

所定の時間充電したら、各電池パック3を放電する比率を以下の(1)又は(2)の比率に変更する。
(1)暫定放電効率Edkに対する充電残量Crkの比率Crk/Edk
(2)第一電池効率Ekに対する充電残量Crkの比率Crk/Ek
After charging for a predetermined time, the ratio of discharging each battery pack 3 is changed to the ratio of (1) or (2) below.
(1) Temporary discharge efficiency Ratio of remaining charge Crk to Edk Crk / Edk
(2) Ratio of remaining charge Crk to first battery efficiency Ek Crk / Ek

各充電残量Crkは、放電可能な残容量である。各充電残量Crkは、各電池パック3の「第一電池容量Wd’k×充電状態Sk」、によって求められる値である。充電状態Skは、定期的に求めるとよい。 Each remaining charge Crk is the remaining capacity that can be discharged. Each remaining charge Crk is a value obtained by "first battery capacity Wd'k x charge state Sk" of each battery pack 3. The charge state Sk may be obtained periodically.

いずれか一つの電池パック3の充電状態が0%となるまで放電する。いずれか一つの電池パック3の充電状態が0%となったときの各電池パック3の放電電力量が、第二放電電力量Wd”kである。複数の電池パック3の第二放電電力量Wd”kの合計が、蓄電システム1全体の第二放電電力量Wd”s(Wh)である。 Discharge until the charged state of any one of the battery packs 3 reaches 0%. The discharge power amount of each battery pack 3 when the charged state of any one battery pack 3 becomes 0% is the second discharge power amount Wd "k. The second discharge power amount of the plurality of battery packs 3 The total of Wd "k is the second discharge electric energy Wd" s (Wh) of the entire power storage system 1.

〈第二電池容量Wd”k〉
各第二電池容量Wd”k(Wh)は、各電池パック3の第二放電電力量Wd”kである。
<Second battery capacity Wd "k>
Each second battery capacity Wd "k (Wh) is the second discharge electric energy Wd" k of each battery pack 3.

〈第二電池効率E’k〉
各第二電池効率E’k(%)は、各電池パック3の「第二放電電力量Wd”k/第二充電電力量Wc’k」、によって求められる値である。
<Second battery efficiency E'k>
Each second battery efficiency E'k (%) is a value obtained by "second discharge electric energy Wd" k / second charge electric energy Wc'k "of each battery pack 3.

〈蓄電システム全体の第二電池容量Wd”s〉
蓄電システム1全体の第二電池容量Wd”s(Wh)は、蓄電システム1全体の第二放電電力量Wd”s(Wh)である。
<Second battery capacity Wd "s of the entire power storage system"
The second battery capacity Wd "s (Wh) of the entire power storage system 1 is the second discharge electric energy Wd" s (Wh) of the entire power storage system 1.

〈蓄電システム全体の第二電池効率E’s〉
蓄電システム1全体の第二電池効率E’s(%)は、「蓄電システム1全体の第二放電電力量Wd”s/蓄電システム1全体の第二充電電力量Wc’s」、によって求められる値である。
<Second battery efficiency E's of the entire power storage system>
The second battery efficiency E's (%) of the entire power storage system 1 is determined by "the second discharge power amount Wd" s of the entire power storage system 1 / the second charge power amount Wc's of the entire power storage system 1 ". The value.

(第三演算部)
第三演算部63は、各電池パック3の第三充電効率Fck及び第三放電効率Fdkを求める。
(Third calculation unit)
The third calculation unit 63 obtains the third charge efficiency Fck and the third discharge efficiency Fdk of each battery pack 3.

〈第三充電効率Fck〉
各第三充電効率Fckは、各電池パック3の「第二電池容量Wd”k×(充電時の充電状態の変化ΔSck/所定の充電電力量ΔWck)」、によって求められる値である。充電時の充電状態の変化量ΔSckは、上述の通り、複数の電池パック3をまとめて充電した際の各電池パック3における充電前後の充電状態の差である。即ち、所定の充電電力量ΔWck(Wh)を各電池パック3に充電した後の充電状態と、所定の充電電力量ΔWck(Wh)を各電池パック3に充電する前の充電状態との差である。
<Third charging efficiency Fck>
Each third charging efficiency Fck is a value obtained by "second battery capacity Wd" kx (change of charging state during charging ΔSck / predetermined charging power amount ΔWck) of each battery pack 3. As described above, the amount of change ΔSck in the charging state during charging is the difference in the charging state before and after charging in each battery pack 3 when a plurality of battery packs 3 are collectively charged. That is, the difference between the charging state after charging each battery pack 3 with a predetermined charging power amount ΔWck (Wh) and the charging state before charging each battery pack 3 with a predetermined charging power amount ΔWck (Wh). be.

〈第三放電効率Fdk〉
各第三放電効率Fdkは、各電池パック3の「第二電池容量Wd”k×(放電時の充電状態の変化ΔSdk/所定の放電電力量ΔWdk)」、によって求められる値である。放電時の充電状態の変化量ΔSdkは、上述の通り、複数の電池パック3をまとめて放電した際の各電池パック3における放電前後の充電状態の差である。即ち、各電池パック3から所定の放電電力量ΔWdk(Wh)を放電した後の充電状態と、各電池パック3から所定の放電電力量ΔWdk(Wh)を放電する前の充電状態との差である。
<Third discharge efficiency Fdk>
Each third discharge efficiency Fdk is a value obtained by "second battery capacity Wd" k x (change in charging state during discharge ΔSdk / predetermined discharge power amount ΔWdk) of each battery pack 3. As described above, the amount of change ΔSdk in the charging state at the time of discharging is the difference in the charging state before and after discharging in each battery pack 3 when a plurality of battery packs 3 are discharged together. That is, the difference between the charged state after discharging the predetermined discharge power amount ΔWdk (Wh) from each battery pack 3 and the charged state before discharging the predetermined discharge power amount ΔWdk (Wh) from each battery pack 3. be.

所定の充電電力量ΔWckと所定の放電電力量ΔWdkとは、異なっていてもよいものの、同一であることが好ましい。 Although the predetermined charge power amount ΔWck and the predetermined discharge power amount ΔWdk may be different, they are preferably the same.

(演算手順)
演算手順としては、手順Iから手順IIIの3つの手順が挙げられる。手順Iから手順IIIは、いずれも以下のA過程からC過程を順に経る。
(Calculation procedure)
As the calculation procedure, three procedures from procedure I to procedure III can be mentioned. Steps I to III all go through the following steps A to C in order.

A過程は、暫定電池効率を求める。
A過程は、暫定充電効率Eckを求めるA1過程及び暫定放電効率Edkを求めるA2過程を有する。又は、A過程は、A1過程及びA2過程を有さず、暫定充放電効率Ekを求めるA3過程を有する。
Process A finds the provisional battery efficiency.
The A process has an A1 process for obtaining the provisional charge efficiency Eck and an A2 process for obtaining the provisional discharge efficiency Edk. Alternatively, the A process does not have the A1 process and the A2 process, but has the A3 process for obtaining the provisional charge / discharge efficiency E 0 k.

B過程は、第一電池容量Wd’k及び第一電池効率Ekを求める。
B過程は、第一充電電力量Wckを求めるB1過程と、第一放電電力量Wdkを求めるB2過程とを有する。
In step B, the first battery capacity Wd'k and the first battery efficiency Ek are obtained.
The B process includes a B1 process for obtaining the first charge electric energy Wck and a B2 process for obtaining the first discharge electric energy Wdk.

C過程は、第二電池容量Wd”k及び第二電池効率E’kを求める。
C過程は、第二充電電力量Wc’kを求めるC1過程と、第二放電電力量Wd”kを求めるC2過程とを有する。
In step C, the second battery capacity Wd "k and the second battery efficiency E'k are obtained.
The C process has a C1 process for obtaining the second charge electric energy Wc'k and a C2 process for obtaining the second discharge electric energy Wd "k.

手順Iと手順IIとの相違点は、詳細は後述するものの、C過程で用いるパラメータにある。手順Iは、C過程において、暫定充電効率Eck及び暫定放電効率Edkを用いる。一方、手順IIは、C過程において、第一電池効率Ekを用いる。 The difference between procedure I and procedure II lies in the parameters used in process C, although details will be described later. In step I, the provisional charge efficiency Eck and the provisional discharge efficiency Edk are used in the C process. On the other hand, in procedure II, the first battery efficiency Ek is used in the C process.

手順IIと手順IIIとの相違点は、詳細は後述するものの、A過程で経る過程と、B過程で用いるパラメータとにある。手順IIは、A過程において、A1過程及びA2過程を経て、B過程において、暫定充電効率Eck及び暫定放電効率Edkを用いる。一方、手順IIIは、A過程において、A3過程を経て、B過程において、暫定充放電効率Ekを用いる。 The difference between procedure II and procedure III lies in the process that goes through process A and the parameters used in process B, although the details will be described later. In procedure II, the provisional charge efficiency Eck and the provisional discharge efficiency Edk are used in the A process, the A1 process and the A2 process, and in the B process. On the other hand, in procedure III, the provisional charge / discharge efficiency E 0 k is used in the A process, the A3 process, and the B process.

〈手順I〉
手順Iは、A1過程、A2過程、B1過程、B2過程、C1過程、及びC2過程を順に経る。
<Procedure I>
Procedure I goes through the A1 process, the A2 process, the B1 process, the B2 process, the C1 process, and the C2 process in order.

A1過程は、暫定充電効率Eckを求める。
A2過程は、A1過程の後、暫定放電効率Edkを求める。
所定の充電電力量ΔWck及び放電電力量ΔWdkが小さければ、暫定充電効率Eck及び暫定放電効率Edkを求める時間が短くなり、延いては手順Iに要する時間が短くなる。所定の充電電力量ΔWck及び放電電力量ΔWdkが大きければ、比較的高精度な暫定充電効率Eck及び暫定放電効率Edkが求まる。
In the A1 process, the provisional charging efficiency Eck is obtained.
In the A2 process, the provisional discharge efficiency Edk is obtained after the A1 process.
If the predetermined charge power amount ΔWck and the discharge power amount ΔWdk are small, the time required for obtaining the provisional charge efficiency Eck and the provisional discharge efficiency Edk is shortened, and the time required for the procedure I is shortened. If the predetermined charge power amount ΔWck and discharge power amount ΔWdk are large, relatively high-precision provisional charge efficiency Eck and provisional discharge efficiency Edk can be obtained.

B1過程は、A2過程の後、各電池パック3の充電状態が0%の状態からいずれか一つの電池パック3の充電状態が100%となるまで、複数の電池パック3をまとめて充電する。その際、定格電力P(W)を各電池パック3に暫定充電効率Eckに対する公称容量Ckの比率Ck/Eckで分配する。 In the B1 process, after the A2 process, a plurality of battery packs 3 are collectively charged from the state in which each battery pack 3 is charged to 0% until the state in which any one of the battery packs 3 is charged becomes 100%. At that time, the rated power P (W) is distributed to each battery pack 3 at a ratio Ck / Eck of the nominal capacity Ck to the provisional charging efficiency Eck.

B2過程は、B1過程によっていずれか一つの電池パック3の充電状態が100%となった複数の電池パック3のうちいずれか一つの電池パック3の充電状態が0%となるまで、複数の電池パック3をまとめて放電する。その際、複数の電池パック3の放電電力の合計が定格電力P(W)となるように、暫定放電効率Edk対する公称容量Ckの比率Ck/Edkで放電する。 In the B2 process, a plurality of batteries are used until the charge state of any one of the battery packs 3 becomes 0% among the plurality of battery packs 3 in which the charge state of any one battery pack 3 becomes 100% by the B1 process. Pack 3 is discharged together. At that time, the batteries are discharged at a ratio of Ck / Edk of the nominal capacity Ck to the provisional discharge efficiency Edk so that the total discharge power of the plurality of battery packs 3 becomes the rated power P (W).

C1過程は、B2過程によって、いずれか一つの電池パック3の充電状態が0%となった複数の電池パック3をまとめて充電する。その際、定格電力P(W)を各電池パック3に暫定充電効率Eckに対する第一電池容量Wd’kの比率Wd’k/Eckで分配する。所定の時間充電したら、定期的に充電状態をモニタしつつ定格電力P(W)を各電池パック3に分配する比率を暫定充電効率Eckに対する充電余地Cakの比率Cak/Eckに変更して、いずれか一つの電池パック3の充電状態が100%となるまで、複数の電池パック3をまとめて充電する。 In the C1 process, a plurality of battery packs 3 in which the charging state of any one battery pack 3 is 0% are collectively charged by the B2 process. At that time, the rated power P (W) is distributed to each battery pack 3 at the ratio of the first battery capacity Wd'k to the provisional charging efficiency Eck Wd'k / Eck. After charging for a predetermined time, change the ratio of the rated power P (W) to each battery pack 3 while periodically monitoring the charging state to the ratio of Cac that has room for charging to the provisional charging efficiency Eck, and eventually Cak / Eck. A plurality of battery packs 3 are collectively charged until the state of charge of one battery pack 3 reaches 100%.

C2過程は、C1過程によっていずれか一つの電池パック3の充電状態が100%となった複数の電池パック3をまとめて放電する。その際、複数の電池パック3の放電電力の合計が定格電力P(W)となるように、暫定放電効率Edkに対する第一電池容量Wd’kの比率Wd’k/Eckで放電する。所定の時間放電したら、定期的に充電状態をモニタしつつ各電池パック3を放電する比率を暫定放電効率Edkに対する充電残量Crkの比率Crk/Edkに変更して、いずれか一つの電池パック3の充電状態が0%となるまで、複数の電池パック3をまとめて放電する。 In the C2 process, a plurality of battery packs 3 in which one of the battery packs 3 is 100% charged by the C1 process are collectively discharged. At that time, the batteries are discharged at a ratio of Wd'k / Eck of the first battery capacity Wd'k to the provisional discharge efficiency Edk so that the total discharge power of the plurality of battery packs 3 becomes the rated power P (W). After discharging for a predetermined time, the ratio of discharging each battery pack 3 to the provisional discharge efficiency Edk is changed to Crk / Edk, which is the ratio of the remaining charge amount Crk to the provisional discharge efficiency Edk, while monitoring the charging state periodically, and any one battery pack 3 is discharged. The plurality of battery packs 3 are discharged together until the charged state of the battery pack becomes 0%.

〈手順II〉
手順IIは、手順Iと同様、A1過程、A2過程、B1過程、B2過程、C1過程、及びC2過程を順に経る。
<Procedure II>
Procedure II, like procedure I, goes through the A1 process, the A2 process, the B1 process, the B2 process, the C1 process, and the C2 process in order.

A1過程とA2過程とB1過程とB2過程とは、手順Iと同様である。B2過程後、B1過程で求めた各第一充電電力量WckとB2過程で求めた各第一放電電力量Wdkとの比率Wdk/Wckから、各第一電池効率Ekを求める。そして、C1過程では、定格電力P(W)を各電池パック3に各第一電池効率Ekに対する各第一電池容量Wd’kの比率Wd’k/Ekで分配する。所定の時間充電したら、定格電力P(W)を各電池パック3に分配する比率を各第一電池効率Ekに対する各充電余地Cakの比率Cak/Ekに変更する。 The A1 process, the A2 process, the B1 process, and the B2 process are the same as in the procedure I. After the B2 process, each first battery efficiency Ek is obtained from the ratio Wdk / Wck of each first charge electric energy Wck obtained in the B1 process and each first discharge electric energy Wdk obtained in the B2 process. Then, in the C1 process, the rated power P (W) is distributed to each battery pack 3 at a ratio of each first battery capacity Wd'k to each first battery efficiency Ek Wd'k / Ek. After charging for a predetermined time, the ratio of the rated power P (W) distributed to each battery pack 3 is changed to the ratio Cak / Ek of each room for charge Cak to each first battery efficiency Ek.

〈手順III〉
手順IIIは、A3過程、B1過程、B2過程、C1過程、及びC2過程を順に経る。
<Procedure III>
Step III goes through the A3 process, the B1 process, the B2 process, the C1 process, and the C2 process in order.

A3過程は、暫定充放電効率Ekを求める。B1過程では、定格電力P(W)を各電池パック3に暫定充放電効率Ekに対する公称容量Ckの比率Ck/Ekで分配する。B2過程では、複数の電池パック3の放電電力の合計が定格電力P(W)となるように、暫定充放電効率Ek対する公称容量Ckの比率Ck/Ekで放電する。C1過程とC2過程とは、手順IIと同じである。 In the A3 process, the provisional charge / discharge efficiency E 0 k is obtained. In the B1 process, the rated power P (W) is distributed to each battery pack 3 at a ratio Ck / E 0 k of the nominal capacity Ck to the provisional charge / discharge efficiency E 0 k. In the B2 process, discharge is performed at a ratio of Ck / E 0 k of the nominal capacity Ck to the provisional charge / discharge efficiency E 0 k so that the total discharge power of the plurality of battery packs 3 becomes the rated power P (W). The C1 process and the C2 process are the same as in procedure II.

手順Iから手順IIIはいずれも、更に、D過程を経てもよい。D過程は、C過程後、第三充電効率Fck及び第三放電効率Fdkを求める。 Each of steps I to III may further go through step D. In the D process, after the C process, the third charge efficiency Fck and the third discharge efficiency Fdk are obtained.

手順Iから手順IIIのいずれかの手順を経るタイミングは、蓄電システム1の運用前、又は蓄電システム1の運用後の定期検査時などが挙げられる。 The timing of going through any of the procedures from step I to step III may be at the time of periodic inspection before the operation of the power storage system 1 or after the operation of the power storage system 1.

各電池パック3が中古の電池パックである場合、上記タイミングは、蓄電システム1の運用前であるとよい。そうすれば、蓄電システム1の運用前に各電池パック3の性能を高精度に把握できるため、蓄電システム1の運用時に、全ての電池パック3をまとめて充放電する際、全ての電池パックを効果的に使用できる。 When each battery pack 3 is a used battery pack, the timing may be before the operation of the power storage system 1. By doing so, the performance of each battery pack 3 can be grasped with high accuracy before the operation of the power storage system 1. Therefore, when all the battery packs 3 are charged and discharged together during the operation of the power storage system 1, all the battery packs are charged. Can be used effectively.

各電池パック3が新品の電池パックである場合、上記タイミングは、蓄電システム1の運用後の定期検査時であるとよい。新品の電池パックの場合、基本的には、各電池パック3の性能は公称値通りとなる。そのため、運用前に上記手順を経なくても、蓄電システム1の運用時に、全ての電池パック3をまとめて充放電する際、全ての電池パックを効果的に使用できる。蓄電システム1を暫く運用すると、各電池パック3の劣化具合に差が生じるおそれがある。そのため、定期検査時などに上記手順を経ると、劣化具合に差が生じても、各電池パック3の性能を高精度に把握できる。よって、再運用時に全ての電池パック3をまとめて充放電する際、全ての電池パックを効果的に使用できる。勿論、上記タイミングは、蓄電システム1の運用前と、運用後の定期検査時の両方であってもよい。 When each battery pack 3 is a new battery pack, the above timing is preferably at the time of periodic inspection after the operation of the power storage system 1. In the case of a new battery pack, the performance of each battery pack 3 is basically the same as the nominal value. Therefore, all the battery packs can be effectively used when charging and discharging all the battery packs 3 at the time of operating the power storage system 1 without going through the above procedure before the operation. If the power storage system 1 is operated for a while, there is a possibility that the degree of deterioration of each battery pack 3 may differ. Therefore, if the above procedure is performed during a periodic inspection or the like, the performance of each battery pack 3 can be grasped with high accuracy even if there is a difference in the degree of deterioration. Therefore, all the battery packs can be effectively used when charging and discharging all the battery packs 3 at the time of re-operation. Of course, the above timing may be both before the operation of the power storage system 1 and at the time of the periodic inspection after the operation.

[制御部]
蓄電システム1は、制御部7を有することが挙げられる。制御部7は、電力管理装置5に備わる。制御部7は、充電制御部71と放電制御部72とを有する。
[Control unit]
The power storage system 1 may include a control unit 7. The control unit 7 is provided in the power management device 5. The control unit 7 has a charge control unit 71 and a discharge control unit 72.

(充電制御部)
充電制御部71は、複数の電池パック3をまとめて充電する。その際、各電池パック3を以下の(1)又は(2)の比率で充電する。
(1)第二電池効率E’kの平方根に対する第二電池容量Wd”kの比率Wd”k/(E’k)1/2
(2)第三充電効率Fckに対する第二電池容量Wd”kの比率Wd”k/Fck
(Charge control unit)
The charge control unit 71 charges a plurality of battery packs 3 together. At that time, each battery pack 3 is charged at the ratio of (1) or (2) below.
(1) Ratio of second battery capacity Wd "k" to square root of second battery efficiency E'k Wd "k / (E'k) 1/2
(2) Ratio of second battery capacity Wd "k" to third charging efficiency Fck Wd "k / Fck

特に、以下の(1)又は(2)の比率で充電することが好ましい。
(1)第二電池効率E’kの平方根に対する充電余地Cakの比率Cak/(E’k)1/2
(2)第三充電効率Fckに対する充電余地Cakの比率Cak/Fck
In particular, it is preferable to charge at the ratio of (1) or (2) below.
(1) Ratio of charge room Cak to the square root of the second battery efficiency E'k Cak / (E'k) 1/2
(2) Third charging efficiency Ratio of Cak with room for charging to Fck Cak / Fck

各充電余地Cakは、各電池パック3の充電可能な残容量である。各充電余地Cakは、各電池パック3の「第二電池容量Wd”k×(100−充電状態Sk)」、によって求められる値である。 Each room for charging Cak is the remaining rechargeable capacity of each battery pack 3. Each room for charging Cak is a value determined by the "second battery capacity Wd" kx (100-charged state Sk) "of each battery pack 3.

(放電制御部)
放電制御部72は、複数の電池パック3をまとめて放電する。その際、各電池パック3を以下の(1)又は(2)の比率で放電する。
(1)第二電池効率E’kの平方根に対する第二電池容量Wd”kの比率Wd”k/(E’k)1/2
(2)第三放電効率Fdkに対する第二電池容量Wd”kの比率Wd”k/Fdk
(Discharge control unit)
The discharge control unit 72 discharges the plurality of battery packs 3 together. At that time, each battery pack 3 is discharged at the ratio of (1) or (2) below.
(1) Ratio of second battery capacity Wd "k" to square root of second battery efficiency E'k Wd "k / (E'k) 1/2
(2) Ratio of second battery capacity Wd "k" to third discharge efficiency Fdk Wd "k / Fdk

特に、以下の(1)又は(2)の比率で放電することが好ましい。
(1)第二電池効率E’kの平方根に対する充電残量Crkの比率Crk/(E’k)1/2
(2)第三放電効率Fdkに対する充電残量Crkの比率Crk/Fdk
In particular, it is preferable to discharge at the ratio of (1) or (2) below.
(1) Ratio of remaining charge Crk to the square root of the second battery efficiency E'k Crk / (E'k) 1/2
(2) Ratio of remaining charge Crk to third discharge efficiency Fdk Crk / Fdk

各充電残量Crkは、放電可能な残容量である。各充電残量Crkは、各電池パック3の「第二電池容量Wd”k×充電状態Sk」、によって求められる値である。 Each remaining charge Crk is the remaining capacity that can be discharged. Each remaining charge Crk is a value obtained by "second battery capacity Wd" k x charge state Sk "of each battery pack 3.

充電時と放電時とで平均電力が実質的に同一な場合、充電制御部71及び放電制御部72はそれぞれ、上記(1)の比率で充電及び放電するとよい。その場合、全ての電池パック3の充電状態がばらつき難い。一方、上記平均電力が異なる場合、充電制御部71及び放電制御部72はそれぞれ上記(2)の比率で充電及び放電するとよい。その場合であっても、充電時と放電時のいずれにおいても全ての電池パック3の充電状態がばらつき難い。 When the average power during charging and discharging is substantially the same, the charging control unit 71 and the discharge control unit 72 may be charged and discharged at the ratio of (1) above, respectively. In that case, the charging states of all the battery packs 3 are unlikely to vary. On the other hand, when the average power is different, the charge control unit 71 and the discharge control unit 72 may be charged and discharged at the ratio of (2), respectively. Even in that case, the charging states of all the battery packs 3 are unlikely to vary during both charging and discharging.

〔作用効果〕
本形態の蓄電システム1は、使用履歴のある複数の電池パック3をまとめて充放電する際、全ての電池パック3を効果的に使用できる。
[Action effect]
The power storage system 1 of the present embodiment can effectively use all the battery packs 3 when charging and discharging a plurality of battery packs 3 having a usage history at once.

第一演算部61において、予備演算部60で求めた暫定電池効率を用いることで高精度な第一電池容量Wd’k及び第一電池効率Ekが求まる。そして、第二演算部62において、第一演算部61で求めた第一電池容量Wd’kを用いることで、第一電池容量Wd’kよりも高精度な第二電池容量Wd”kが求まる。即ち、第一電池効率Ekよりも高精度な第二電池効率E’kが求まる。そのため、複数の電池パック3をまとめて充放電する際、より高精度な各電池パック3の第二電池容量Wd”kと第二電池効率E’kとに基づいて各電池パック3を充放電できる。よって、全ての電池パック3の充電状態が更にばらつき難い。 By using the provisional battery efficiency obtained by the preliminary calculation unit 60 in the first calculation unit 61, the first battery capacity Wd'k and the first battery efficiency Ek with high accuracy can be obtained. Then, by using the first battery capacity Wd'k obtained by the first calculation unit 61 in the second calculation unit 62, a second battery capacity Wd "k having a higher accuracy than the first battery capacity Wd'k can be obtained. That is, a second battery efficiency E'k that is more accurate than the first battery efficiency Ek can be obtained. Therefore, when charging and discharging a plurality of battery packs 3 together, the second battery of each battery pack 3 with higher accuracy can be obtained. Each battery pack 3 can be charged and discharged based on the capacity Wd "k" and the second battery efficiency E'k. Therefore, the charging states of all the battery packs 3 are less likely to vary.

第三演算部63において、第二演算部62で求めた第二電池容量Wd”kを用いることで高精度な第三充電効率Fck及び第三放電効率Fdkが求まる。そのため、複数の電池パック3をまとめて充放電する際、充電時には高精度な第三充電効率Fckに基づいて各電池パック3を充電でき、放電時には高精度な第三放電効率Fdkに基づいて各電池パック3を放電できる。よって、充電時と放電時とで平均電力が異なる場合であっても、充電時と放電時のいずれにおいても全ての電池パック3の充電状態がばらつき難い。 By using the second battery capacity Wd "k obtained by the second calculation unit 62 in the third calculation unit 63, a highly accurate third charge efficiency Fck and a third discharge efficiency Fdk can be obtained. Therefore, a plurality of battery packs 3 When charging and discharging all together, each battery pack 3 can be charged based on the highly accurate third charging efficiency Fck at the time of charging, and each battery pack 3 can be discharged based on the highly accurate third discharging efficiency Fdk at the time of discharging. Therefore, even if the average power is different between charging and discharging, the charging states of all the battery packs 3 are unlikely to vary between charging and discharging.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 蓄電システム
2 電力バス
3 電池パック
31 電池モジュール
32 電池制御装置
40 コンバータ
41 電気計器
5 電力管理装置
6 演算部
60 予備演算部
61 第一演算部
62 第二演算部
63 第三演算部
7 制御部
71 充電制御部
72 放電制御部
1 Power storage system 2 Power bus 3 Battery pack 31 Battery module 32 Battery control device 40 Converter 41 Electric meter 5 Power management device 6 Calculation unit 60 Spare calculation unit 61 First calculation unit 62 Second calculation unit 63 Third calculation unit 7 Control unit 71 Charge control unit 72 Discharge control unit

Claims (10)

使用履歴のある複数の電池パックと、
前記複数の電池パックの各々における性能を求める演算部とを備え、
前記演算部は、
前記複数の電池パックの各々における暫定電池効率を求める予備演算部と、
前記複数の電池パックの各々における第一電池容量及び第一電池効率を求める第一演算部と、を有し、
前記暫定電池効率は、前記複数の電池パックの各々における公称容量、前記複数の電池パックをまとめて所定の電力量を充放電したときの前記複数の電池パックの各々における電力量、及び充電状態の変化に基づいて求められる値であり、
前記第一電池容量及び前記第一電池効率は、前記暫定電池効率に対する前記公称容量の比率に応じて前記複数の電池パックをまとめて充放電したときの前記複数の電池パックの各々における第一充電電力量及び第一放電電力量に基づいて求められる値である、
蓄電システム。
Multiple battery packs with usage history and
It is provided with a calculation unit for obtaining the performance of each of the plurality of battery packs.
The calculation unit
A preliminary calculation unit for obtaining the provisional battery efficiency in each of the plurality of battery packs, and
Each of the plurality of battery packs has a first battery capacity and a first calculation unit for obtaining the first battery efficiency.
The provisional battery efficiency refers to the nominal capacity of each of the plurality of battery packs, the amount of power in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged, and the state of charge. It is a value obtained based on changes,
The first battery capacity and the first battery efficiency are the first charges in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged according to the ratio of the nominal capacity to the provisional battery efficiency. It is a value obtained based on the electric energy and the first discharge electric energy.
Power storage system.
前記複数の電池パックの各々において、
前記第一充電電力量は、充電状態が0%の前記複数の電池パックをまとめて充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第一放電電力量は、前記いずれか一つの電池パックの充電状態が100%となった後、前記複数の電池パックをまとめて放電し、前記いずれか一つの電池パックの充電状態が0%となったときの値であり、
前記第一電池容量は、前記第一放電電力量に基づいて求められる値であり、
前記第一電池効率は、前記第一充電電力量に対する前記第一放電電力量の比率で求められる値である請求項1に記載の蓄電システム。
In each of the plurality of battery packs
The first charging electric energy is a value when the plurality of battery packs having a charging state of 0% are collectively charged and the charging state of any one of the battery packs reaches 100%.
The first discharge electric energy is such that after the charged state of any one of the battery packs reaches 100%, the plurality of battery packs are discharged together, and the charged state of any one of the battery packs is 0%. It is the value when
The first battery capacity is a value obtained based on the first discharge electric energy.
The power storage system according to claim 1, wherein the first battery efficiency is a value obtained by the ratio of the first discharge power amount to the first charge power amount.
前記第一電池容量は、前記いずれか一つの電池パックの充電状態が100%となったときの前記複数の電池パックの各々における充電状態に対する前記第一放電電力量の比率で求められる値である請求項2に記載の蓄電システム。 The first battery capacity is a value obtained by the ratio of the first discharge power amount to the charged state in each of the plurality of battery packs when the charged state of any one of the battery packs reaches 100%. The power storage system according to claim 2. 前記演算部は、前記複数の電池パックの各々における第二電池容量及び第二電池効率を求める第二演算部を有し、
前記第二電池容量及び前記第二電池効率は、前記暫定電池効率又は前記第一電池効率に対する前記第一電池容量の比率に応じて前記複数の電池パックをまとめて充放電したときの前記複数の電池パックの各々における第二充電電力量及び第二放電電力量に基づいて求められる値である請求項1から請求項3のいずれか1項に記載の蓄電システム。
The calculation unit has a second calculation unit for obtaining the second battery capacity and the second battery efficiency in each of the plurality of battery packs.
The second battery capacity and the second battery efficiency are the plurality of when the plurality of battery packs are collectively charged and discharged according to the provisional battery efficiency or the ratio of the first battery capacity to the first battery efficiency. The power storage system according to any one of claims 1 to 3, which is a value obtained based on the second charge power amount and the second discharge power amount in each of the battery packs.
前記複数の電池パックの各々において、
前記第二充電電力量は、充電状態が0%の電池パックを含む前記複数の電池パックをまとめて充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第二放電電力量は、充電状態が100%の電池パックを含む前記複数の電池パックをまとめて放電し、いずれか一つの電池パックの充電状態が0%となったときの値であり、
前記第二電池容量は、前記第二放電電力量に基づいて求められる値であり、
前記第二電池効率は、前記第二充電電力量に対する前記第二放電電力量の比率で求められる値である請求項4に記載の蓄電システム。
In each of the plurality of battery packs
The second charging electric energy is a value when the plurality of battery packs including the battery pack having a charging state of 0% are collectively charged and the charging state of any one battery pack becomes 100%.
The second discharge electric energy is a value when the plurality of battery packs including the battery pack having a 100% charged state are discharged together and the charged state of any one battery pack becomes 0%.
The second battery capacity is a value obtained based on the second discharge electric energy.
The power storage system according to claim 4, wherein the second battery efficiency is a value obtained by the ratio of the second discharge power amount to the second charge power amount.
前記第二演算部は、前記第一電池容量と充電状態とから充電余地及び充電残量を求め、
前記第二充電電力量は、充電状態が0%の電池パックを含む前記複数の電池パックをまとめて充電する際、前記暫定電池効率又は前記第一電池効率に対する前記充電余地の比率に応じた電力量を充電し、いずれか一つの電池パックの充電状態が100%となったときの値であり、
前記第二放電電力量は、充電状態が100%の電池パックを含む前記複数の電池パックをまとめて放電する際、前記暫定電池効率又は前記第一電池効率に対する前記充電残量の比率に応じた電力量を放電し、いずれか一つの電池パックの充電状態が0%となったときの値である請求項5に記載の蓄電システム。
The second calculation unit obtains the charging room and the remaining charge from the first battery capacity and the charging state.
The second charging electric energy is the electric power according to the provisional battery efficiency or the ratio of the charging room to the first battery efficiency when the plurality of battery packs including the battery pack having a charging state of 0% are collectively charged. It is the value when the amount is charged and the charged state of any one of the battery packs reaches 100%.
The second discharge electric energy corresponds to the provisional battery efficiency or the ratio of the remaining charge to the first battery efficiency when the plurality of battery packs including the battery pack having a 100% charged state are discharged together. The power storage system according to claim 5, which is a value when the amount of electric power is discharged and the state of charge of any one of the battery packs becomes 0%.
前記演算部は、前記複数の電池パックの各々における第三充電効率及び第三放電効率を求める第三演算部を備え、
前記第三充電効率及び前記第三放電効率は、前記第二電池容量と、前記複数の電池パックをまとめて所定の電力量を充放電したときの前記複数の電池パックの各々における電力量、及び充電状態の変化とに基づいて求められる値である請求項4から請求項6のいずれか1項に記載の蓄電システム。
The calculation unit includes a third calculation unit for obtaining a third charge efficiency and a third discharge efficiency in each of the plurality of battery packs.
The third charging efficiency and the third discharging efficiency include the second battery capacity, the amount of power in each of the plurality of battery packs when the plurality of battery packs are collectively charged and discharged, and the amount of power in each of the plurality of battery packs. The power storage system according to any one of claims 4 to 6, which is a value obtained based on a change in the charging state.
前記第二電池効率の平方根に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて充電する充電制御部と、
前記第二電池効率の平方根に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて放電する放電制御部と、を備える請求項4から請求項6のいずれか1項に記載の蓄電システム。
A charge control unit that collectively charges the plurality of battery packs according to the ratio of the second battery capacity to the square root of the second battery efficiency.
The invention according to any one of claims 4 to 6, further comprising a discharge control unit that collectively discharges the plurality of battery packs according to the ratio of the second battery capacity to the square root of the second battery efficiency. Power storage system.
前記第三充電効率に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて充電する充電制御部と、
前記第三放電効率に対する前記第二電池容量の比率に応じて前記複数の電池パックをまとめて放電する放電制御部と、を備える請求項7に記載の蓄電システム。
A charge control unit that collectively charges the plurality of battery packs according to the ratio of the second battery capacity to the third charge efficiency.
The power storage system according to claim 7, further comprising a discharge control unit that collectively discharges the plurality of battery packs according to the ratio of the second battery capacity to the third discharge efficiency.
前記複数の電池パックの各々は、電動車両の電池パックである請求項1から請求項9のいずれか1項に記載の蓄電システム。 The power storage system according to any one of claims 1 to 9, wherein each of the plurality of battery packs is a battery pack for an electric vehicle.
JP2020004785A 2020-01-15 2020-01-15 Energy storage system Active JP7382007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004785A JP7382007B2 (en) 2020-01-15 2020-01-15 Energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004785A JP7382007B2 (en) 2020-01-15 2020-01-15 Energy storage system

Publications (2)

Publication Number Publication Date
JP2021112100A true JP2021112100A (en) 2021-08-02
JP7382007B2 JP7382007B2 (en) 2023-11-16

Family

ID=77060426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004785A Active JP7382007B2 (en) 2020-01-15 2020-01-15 Energy storage system

Country Status (1)

Country Link
JP (1) JP7382007B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567109B2 (en) 1998-11-24 2010-10-20 パナソニック株式会社 Secondary battery charge / discharge control method
JP2006036003A (en) 2004-07-27 2006-02-09 Mazda Motor Corp Charging efficiency sensing device for battery
JP2015012711A (en) 2013-06-28 2015-01-19 株式会社豊田自動織機 Battery system and current regulation method of battery module

Also Published As

Publication number Publication date
JP7382007B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6329755B2 (en) Battery management device and energy storage system
JP4001708B2 (en) Replacing the secondary battery
JP3964635B2 (en) Memory effect detection method and solution
WO2010047046A1 (en) Failure diagnosis circuit, power supply device, and failure diagnosis method
JP5408410B2 (en) How to determine the aging status of a battery
EP2587621B1 (en) Power storage unit control circuit and power storage apparatus
EP2846395A2 (en) Battery pack, apparatus including battery pack, and method of managing battery pack
US20170003353A1 (en) Method of measuring battery pack current
EP2894760B1 (en) Method for refresh charging of a lead battery, and corresponding charging device
JP5621818B2 (en) Power storage system and equalization method
JP5623629B2 (en) Remaining life judgment method
JP6555212B2 (en) Battery pack manufacturing method
KR101463394B1 (en) Battery management system, and method of estimating battery&#39;s state of charge using the same
Kubiak et al. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application
JP7131290B2 (en) DISPLAY DEVICE AND VEHICLE INCLUDING THE SAME
US9024589B2 (en) Charge/discharge control method for alkaline storage battery, and power supply system
CN110154822A (en) A kind of charge/discharge control method applied to electric car Intelligent battery management system
JP2019169473A (en) Method for manufacturing battery pack
Schaltz et al. Partial charging method for lithium-ion battery state-of-health estimation
JP6184815B2 (en) Secondary battery system, control method thereof, and program
JP2021112100A (en) Power storage system
CN116134694B (en) Method for charging power battery and battery management system
US20160190801A1 (en) Scalable energy storage system
JP3304883B2 (en) Secondary battery system
Theron et al. The integration of second life EV battery and vehicle-to-grid charging into a micro-grid environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7382007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150