JP2021110914A - Cardiopulmonary resuscitation mannequin with hardness and property of thorax similar to human - Google Patents

Cardiopulmonary resuscitation mannequin with hardness and property of thorax similar to human Download PDF

Info

Publication number
JP2021110914A
JP2021110914A JP2020013005A JP2020013005A JP2021110914A JP 2021110914 A JP2021110914 A JP 2021110914A JP 2020013005 A JP2020013005 A JP 2020013005A JP 2020013005 A JP2020013005 A JP 2020013005A JP 2021110914 A JP2021110914 A JP 2021110914A
Authority
JP
Japan
Prior art keywords
cardiopulmonary resuscitation
depth
compression
mannequin
chest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020013005A
Other languages
Japanese (ja)
Other versions
JP7008242B2 (en
Inventor
弘也 若松
Hiroya Wakamatsu
弘也 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakamatsu Hiroya
Original Assignee
Wakamatsu Hiroya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakamatsu Hiroya filed Critical Wakamatsu Hiroya
Priority to JP2020013005A priority Critical patent/JP7008242B2/en
Publication of JP2021110914A publication Critical patent/JP2021110914A/en
Application granted granted Critical
Publication of JP7008242B2 publication Critical patent/JP7008242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a realistic cardiopulmonary resuscitation mannequin in which the relationship between the depth of chest compression and the force required for it is close to that of a human, in which training with such a cardiopulmonary resuscitation manikin helps learn how much pressure one should use to provide adequate depth of chest compression.SOLUTION: Inside the cardiopulmonary resuscitation manikin, a plurality of springs with appropriate spring constants and different lengths are placed concentrically. All the springs are fixed in contact with the bottom of the cardiopulmonary resuscitation manikin, and the longest spring is placed in contact with the chest of the cardiopulmonary resuscitation manikin via its chest plate. A commercially available compression depth measuring device that can accurately measure the depth of chest compression is placed on the compression site of the anterior chest of the mannequin to perform training of chest compression.SELECTED DRAWING: Figure 1

Description

心肺蘇生では適切な深さで胸骨圧迫を行うことが重要である。本発明は、適切な深さの胸骨圧迫を行うためにどれくらいの力加減で圧迫すればよいのかを身につけるのに有用な心肺蘇生マネキンと、それを用いた心肺蘇生トレーニング方法に関する。In cardiopulmonary resuscitation, it is important to perform chest compressions at an appropriate depth. The present invention relates to a cardiopulmonary resuscitation mannequin useful for learning how much force should be applied to perform chest compressions of an appropriate depth, and a cardiopulmonary resuscitation training method using the same.

心肺蘇生時には、5cmの深さで胸骨圧迫することで傷病者の予後が改善することが科学的に証明されており、非特許文献1の通り心肺蘇生のガイドラインでも5cmの深さで胸骨圧迫をすることが推奨されている。It has been scientifically proven that chest compressions at a depth of 5 cm improve the prognosis of the victim during cardiopulmonary resuscitation. It is recommended to do.

そのため、加速度センサーを用いて心肺蘇生中に胸骨圧迫の深さを正確に測る圧迫深度測定装置も臨床応用されてはいるが、使用場所は救急車内などに限られており、一般的に蘇生現場で使用されることはない。多くの救助者は自分の胸骨圧迫の深さを正確に知るのは困難であり、自分が加える力の感覚を頼りに胸骨圧迫を行う。Therefore, a compression depth measuring device that accurately measures the depth of sternum compression during cardiopulmonary resuscitation using an accelerometer has also been clinically applied, but its use is limited to ambulances, etc., and is generally used at resuscitation sites. Never used in. Many rescuers have difficulty knowing exactly how deep their chest compressions are, and rely on their sense of force to perform chest compressions.

心肺蘇生のスキルを身につけるためには、胸骨圧迫の深さを測定できる心肺蘇生マネキンを用い、5cmの深さで胸骨を圧迫する訓練を通じて、胸骨圧迫に必要な力加減を学んでいる。しかし、心肺蘇生マネキンの胸郭の硬さは製造会社によってばらつきがあることが非特許文献2の通り報告されている。また、多くの心肺蘇生マネキンはスプリングを用いており、胸骨圧迫に要する力と胸骨圧迫の深さは線形的である。しかし、非特許文献3の遺体による報告によると、ヒトの胸骨圧迫に要する力と胸骨圧迫の深さは線形的ではない。実際の傷病者とは違う硬さや性質を持つ心肺蘇生マネキンで5cmの深さで圧迫する訓練を積んでスキルを身につけても、実際の傷病者を対象に適切な心肺蘇生ができるとは限らないという問題があった。In order to acquire cardiopulmonary resuscitation skills, a cardiopulmonary resuscitation mannequin that can measure the depth of chest compressions is used, and through training to compress the sternum at a depth of 5 cm, the force required for chest compressions is learned. However, it has been reported as described in Non-Patent Document 2 that the hardness of the thorax of a cardiopulmonary resuscitation mannequin varies depending on the manufacturer. Also, many CPR mannequins use springs, and the force required for chest compressions and the depth of chest compressions are linear. However, according to the report by the body of Non-Patent Document 3, the force required for sternum compression and the depth of sternum compression in humans are not linear. Even if you acquire the skills by training to press at a depth of 5 cm with a cardiopulmonary resuscitation mannequin that has different hardness and properties from the actual victim, it is not always possible to perform appropriate cardiopulmonary resuscitation for the actual victim. There was a problem that there was no.

Travers AH.Part 3:Adult Basic Life Support and Automated External Defibrillation 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.Circulation.2015;132:S51−S83Travelers AH. Part 3: Adult Basic Life Support and External Defibrillation 2015 International Consensus on Cardiopulmonary Resuscitation Science Engineering and Technology. Circulation. 2015; 132: S51-S83

若松弘也,松本聡,坂部武史.心肺蘇生用マネキンの胸部圧迫に必要な力の検討.日本救急医学会雑誌 2008;19:616.Hiroya Wakamatsu, Satoshi Matsumoto, Takefumi Sakabe. Examination of the force required for chest compression of a cardiopulmonary resuscitation mannequin. Journal of the Japanese Society of Emergency Medicine 2008; 19: 616.

Tomlinson AE.Compression force−depth relationship during out−of−hospital cardiopulmonary resuscitation.Resuscitation 2007;72:364−70Tomlinson AE. Compression force-dept resuscitation shipping out-of-hospital cardioplemonary resuscitation. Resuscitation 2007; 72: 364-70

本発明は、従来における前記問題を解決するため、実際の傷病者と同様の硬さや性質を持つ心肺蘇生マネキンを作成し、それと胸骨圧迫の深さを正確に測る圧迫深度測定装置を併用して、5cmの深さで胸骨圧迫するトレーニングを提供することを目的とする。In the present invention, in order to solve the above-mentioned problems in the past, a cardiopulmonary resuscitation mannequin having the same hardness and properties as an actual victim is prepared, and the cardiopulmonary resuscitation mannequin is used in combination with a compression depth measuring device for accurately measuring the depth of chest compressions. It is intended to provide chest compression training at a depth of 5 cm.

前記課題を解決するための心肺蘇生マネキンは、胸骨圧迫の深さとそれに要する力の関係が、非特許文献3の遺体による報告のとおり、ヒトと同じような非線形の関係になるようにする。 The cardiopulmonary resuscitation mannequin for solving the above-mentioned problems makes the relationship between the depth of chest compressions and the force required for the chest compressions a non-linear relationship similar to that of humans, as reported by the corpse of Non-Patent Document 3.

そのために、心肺蘇生マネキン内部にはバネ係数と長さの異なる複数のスプリングを同心円状に配置する。すべてのスプリングは心肺蘇生マネキンの底面と接するように固定し、一番長いスプリングは胸板を介して心肺蘇生マネキンの胸部と接するように配置する。Therefore, a plurality of springs having different spring coefficients and lengths are concentrically arranged inside the cardiopulmonary resuscitation mannequin. All springs should be fixed in contact with the bottom of the CPR mannequin, and the longest spring should be placed in contact with the chest of the CPR mannequin via the chest plate.

心肺蘇生マネキンの胸骨圧迫を行うと、まず1番長いスプリングが圧縮され、圧迫長に比例して弾性力が生じる。そして2番目に長いスプリングと同じ長さになった段階から、圧迫には2つのバネの弾性力に抗する力が必要になってくる。このように、適切なバネ係数と長さの異なる複数のスプリング組み合わせることにより、胸骨圧迫に要する力と胸骨圧迫の深さの関係を、非線形のヒトに近づけることが可能となる。When chest compressions are performed on a cardiopulmonary resuscitation mannequin, the longest spring is first compressed, and an elastic force is generated in proportion to the compression length. Then, from the stage when the length becomes the same as that of the second longest spring, the compression requires a force that opposes the elastic force of the two springs. In this way, by combining a plurality of springs having appropriate spring constants and different lengths, it is possible to bring the relationship between the force required for chest compressions and the depth of chest compressions closer to that of a non-linear human.

前記心肺蘇生マネキンに、市販されている胸骨圧迫の深さを正確に測る圧迫深度測定装置を併用して、5cmの深さで胸骨圧迫するトレーニングをおこなう。The cardiopulmonary resuscitation mannequin is used in combination with a commercially available compression depth measuring device that accurately measures the depth of chest compressions, and training is performed to compress the sternum at a depth of 5 cm.

胸骨圧迫の深さを正確に測る圧迫深度測定装置を用いながら、本発明によるリアリティーの高い心肺蘇生マネキンでトレーニングを行うことにより、実際の臨床で傷病者の予後を改善する5cmの深さの胸骨圧迫に、どれくらいの力加減が必要かを身につけることができる。A 5 cm deep sternum that improves the prognosis of the victim by training with the highly realistic cardiopulmonary resuscitation mannequin according to the present invention while using a compression depth measuring device that accurately measures the depth of chest compressions. You can learn how much force is required for compression.

図1は、本発明の心肺蘇生マネキンの一例を示す概略図である。FIG. 1 is a schematic view showing an example of the cardiopulmonary resuscitation mannequin of the present invention. 図2は、本発明の心肺蘇生マネキンに組み込むスプリングの組み合わせの一例である。FIG. 2 is an example of a combination of springs incorporated into the cardiopulmonary resuscitation mannequin of the present invention. 図3は、図2のようにスプリングを組み合わせた場合の、胸骨圧迫の深さとそれに要した力の関係をグラフにしたものである。非特許文献3の遺体によるヒトでのデータと重ね合わせて示している。FIG. 3 is a graph showing the relationship between the depth of sternum compression and the force required for the combination of springs as shown in FIG. It is shown superimposed on the human data from the body of Non-Patent Document 3.

本発明の心肺蘇生マネキンの一例を示す図1を参照する。心肺蘇生心肺蘇生マネキン内部にはバネ係数と長さの異なる複数のスプリングを同心円状に配置する。すべてのスプリングは心肺蘇生マネキンの底面と接するように固定し、一番長いスプリングは胸板を介して心肺蘇生マネキンの胸部と接するように配置する。市販されている胸骨圧迫の深さを正確に測る圧迫深度測定装置をマネキン前胸部の圧迫部位に配置して胸骨圧迫を行う。心肺蘇生マネキンの胸骨圧迫を行うと、まず1番長いスプリングが圧縮され、圧迫長に比例して弾性力が生じる。そして1番目のスプリングが2番目に長いスプリングと同じ長さになった段階から、圧迫には2つのスプリングの弾性力に抗する力が必要になってくる。このように、適切なバネ係数と長さの異なる複数のスプリング組み合わせることにより、胸骨圧迫に要する力と胸骨圧迫の深さの関係を、非線形のヒトに近づけることが可能となる。See FIG. 1, which shows an example of a cardiopulmonary resuscitation mannequin of the present invention. Cardiopulmonary resuscitation Inside the cardiopulmonary resuscitation mannequin, multiple springs with different spring coefficients and lengths are arranged concentrically. All springs should be fixed in contact with the bottom of the CPR mannequin, and the longest spring should be placed in contact with the chest of the CPR mannequin via the chest plate. A commercially available compression depth measuring device that accurately measures the depth of chest compressions is placed at the compression site on the anterior chest of the mannequin to perform chest compressions. When chest compressions are performed on a cardiopulmonary resuscitation mannequin, the longest spring is first compressed, and an elastic force is generated in proportion to the compression length. Then, from the stage when the first spring has the same length as the second longest spring, the compression requires a force that opposes the elastic force of the two springs. In this way, by combining a plurality of springs having appropriate spring constants and different lengths, it is possible to bring the relationship between the force required for chest compressions and the depth of chest compressions closer to that of a non-linear human.

本発明の心肺蘇生マネキンに配置するスプリングの組み合わせの一例を示す図2を参照する。一番長いスプリング(スプリング1)の長さをLmmとする。次に長いスプリング(スプリング2)を(L−20)mm、その次に長いスプリング(スプリング3)を(L−40)mmとし、それぞれのバネ係数を500gf/mmm、500gf/mmm、1000gf/mmとする。図2では3個のスプリングの組み合わせを例示したが、スプリングの数を増やすこともできる。See FIG. 2, which shows an example of a combination of springs placed on the cardiopulmonary resuscitation mannequin of the present invention. The length of the longest spring (spring 1) is L mm. The next longest spring (spring 2) is (L-20) mm, the next longest spring (spring 3) is (L-40) mm, and the spring constants are 500 gf / mmm, 500 gf / mmm, and 1000 gf / mm, respectively. And. Although the combination of three springs is illustrated in FIG. 2, the number of springs can be increased.

図3は、スプリングを図2のように組み合わせた場合の、胸骨圧迫の深さとそれに要した力の関係をグラフに示したものである。グラフは非特許文献3のヒトのデータと重ね合わせて示している。ヒトでの胸骨圧迫の深さとそれに要した力の関係は非線形であるが、3個のスプリングを組み合わせることにより、ヒトの胸骨圧迫の深さとそれに要した力との関係に近づくことがわかる。スプリングの数を増やしてその長さやバネ係数を適切に設定することで、胸骨圧迫の深さとそれに要した力の関係はより滑らかになり、更にヒトのデータに近づけることができる。 FIG. 3 is a graph showing the relationship between the depth of sternum compression and the force required for the combination of the springs as shown in FIG. The graph is shown superimposed on the human data of Non-Patent Document 3. The relationship between the depth of sternum compression in humans and the force required for it is non-linear, but it can be seen that the combination of the three springs brings the relationship between the depth of sternum compression in humans and the force required for it closer. By increasing the number of springs and setting their lengths and spring constants appropriately, the relationship between the depth of sternum compression and the force required for it becomes smoother and can be closer to human data.

本発明の心肺蘇生マネキンは、心肺蘇生法のトレーニングに利用できる。本発明の心肺蘇生マネキンはヒトと同様の胸郭の硬さや性質を備えているため、このマネキンを用いたトレーニングで習得したスキルは、実際の傷病者を対象とした心肺蘇生現場でもそのまま役に立つ。The cardiopulmonary resuscitation mannequin of the present invention can be used for training in CPR. Since the cardiopulmonary resuscitation mannequin of the present invention has the same hardness and properties of the thorax as humans, the skills acquired by training using this mannequin are directly useful in the field of cardiopulmonary resuscitation for actual victims.

Claims (3)

胸骨圧迫の深さとそれに要した力の関係がヒトと近くなるようなリアルな心肺蘇生マネキン。 A realistic cardiopulmonary resuscitation mannequin that makes the relationship between the depth of chest compressions and the force required for it similar to that of humans. 前記の胸骨圧迫の深さとそれに要した力の関係がヒトと近くなるための手段として、内部に適切なバネ係数と長さの異なる複数のスプリングを同心円状に配置する心肺蘇生マネキン。 A cardiopulmonary resuscitation mannequin in which a plurality of springs having appropriate spring constants and different lengths are concentrically arranged inside as a means for the relationship between the depth of sternum compression and the force required for the sternum compression to be close to that of a human. 前記のマネキンと、市販されている胸骨圧迫の深さを正確に測る圧迫深度測定装置を併用して行う心肺蘇生のトレーニング。 Cardiopulmonary resuscitation training performed in combination with the above-mentioned mannequin and a commercially available compression depth measuring device that accurately measures the depth of sternum compression.
JP2020013005A 2020-01-10 2020-01-10 Cardiopulmonary resuscitation mannequin with rib cage hardness and properties similar to humans Active JP7008242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013005A JP7008242B2 (en) 2020-01-10 2020-01-10 Cardiopulmonary resuscitation mannequin with rib cage hardness and properties similar to humans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013005A JP7008242B2 (en) 2020-01-10 2020-01-10 Cardiopulmonary resuscitation mannequin with rib cage hardness and properties similar to humans

Publications (2)

Publication Number Publication Date
JP2021110914A true JP2021110914A (en) 2021-08-02
JP7008242B2 JP7008242B2 (en) 2022-01-25

Family

ID=77060505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013005A Active JP7008242B2 (en) 2020-01-10 2020-01-10 Cardiopulmonary resuscitation mannequin with rib cage hardness and properties similar to humans

Country Status (1)

Country Link
JP (1) JP7008242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496642A (en) * 2021-08-10 2021-10-12 叶建蓉 Cardio-pulmonary resuscitation pressing deep training model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612013A (en) * 1992-03-12 1994-01-21 Ambu Internatl As Training mannequin for practicing external heart massage
JPH11249546A (en) * 1998-03-06 1999-09-17 Yagami Inc Human body model device for emergency revival exercise
JP2012527004A (en) * 2009-05-11 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CPR dummy with active mechanical load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612013A (en) * 1992-03-12 1994-01-21 Ambu Internatl As Training mannequin for practicing external heart massage
JPH11249546A (en) * 1998-03-06 1999-09-17 Yagami Inc Human body model device for emergency revival exercise
JP2012527004A (en) * 2009-05-11 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CPR dummy with active mechanical load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496642A (en) * 2021-08-10 2021-10-12 叶建蓉 Cardio-pulmonary resuscitation pressing deep training model
CN113496642B (en) * 2021-08-10 2022-09-09 泰兴市唯艺传媒广告有限公司 Cardio-pulmonary resuscitation pressing deep training model

Also Published As

Publication number Publication date
JP7008242B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
Niles et al. “Rolling Refreshers”: a novel approach to maintain CPR psychomotor skill competence
Nishisaki et al. Backboards are important when chest compressions are provided on a soft mattress
Beesems et al. Accurate feedback of chest compression depth on a manikin on a soft surface with correction for total body displacement
Aufderheide et al. Incomplete chest wall decompression: a clinical evaluation of CPR performance by trained laypersons and an assessment of alternative manual chest compression–decompression techniques
Szarpak et al. Does the use of a chest compression system in children improve the effectiveness of chest compressions? A randomised crossover simulation pilot study
Roh et al. Factors influencing quality of chest compression depth in nursing students
Cloete et al. The impact of backboard size and orientation on sternum-to-spine compression depth and compression stiffness in a manikin study of CPR using two mattress types
Sato et al. Backboard insertion in the operating table increases chest compression depth: a manikin study
JP2021110914A (en) Cardiopulmonary resuscitation mannequin with hardness and property of thorax similar to human
Sanri et al. The impact of backboard placement on chest compression quality: a mannequin study
Elding et al. The study of the effectiveness of chest compressions using the CPR-plus
Segal et al. Chest compliance is altered by static compression and decompression as revealed by changes in anteroposterior chest height during CPR using the ResQPUMP in a human cadaver model
Young Evaluation of publicly available documents to trace chiropractic technique systems that advocate radiography for subluxation analysis: a proposed genealogy
Kozamani et al. Factors that influence nursing staff attitudes towards initiating CPR and in using an automatic external defibrillator when outside of a hospital
Na et al. A vertical two‐thumb technique is superior to the two‐thumb encircling technique for infant cardiopulmonary resuscitation
Melissopoulou et al. Comparison of blind intubation through the I-gel and ILMA Fastrach by nurses during cardiopulmonary resuscitation: a manikin study
Eichhorn et al. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model
Dellimore et al. A modeling approach to the effects of force guided versus depth guided compression during cardiopulmonary resuscitation on different chests and back support surfaces
van Berkom et al. Does use of the CPREzy™ involve more work than CPR without feedback?
Oh et al. The effect of a CPR training for non-healthcare providers
Wirawan et al. Development of Guide Basic Life Support (BLS) Application based on android to increase accuracy compression ritme and ventilation to handling of out hospital cardiac arrest
Frangež Medical students perform basic life support skills in a simulated scenario better using a 4-stage teaching approach compared to conventional training
Kornegay et al. Does accelerometer use lead to higher quality cpr for advanced cardiac life support providers? a prospective randomized study
Mt et al. Evaluation of the effectiveness of basic life support training on the knowledge and skills
Oh et al. Training a chest compression of 6–7 cm depth for high quality cardiopulmonary resuscitation in hospital setting: a randomised controlled trial

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7008242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150