JP2021110665A - Water content measuring device - Google Patents

Water content measuring device Download PDF

Info

Publication number
JP2021110665A
JP2021110665A JP2020003409A JP2020003409A JP2021110665A JP 2021110665 A JP2021110665 A JP 2021110665A JP 2020003409 A JP2020003409 A JP 2020003409A JP 2020003409 A JP2020003409 A JP 2020003409A JP 2021110665 A JP2021110665 A JP 2021110665A
Authority
JP
Japan
Prior art keywords
water content
electrode
measuring device
sensitivity
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020003409A
Other languages
Japanese (ja)
Inventor
琢哉 廣瀬
Takuya Hirose
琢哉 廣瀬
大輔 植松
daisuke Uematsu
大輔 植松
由莉 小谷
Yuri Kotani
由莉 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020003409A priority Critical patent/JP2021110665A/en
Publication of JP2021110665A publication Critical patent/JP2021110665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide a water content measuring device in which an electrode is used and measurement accuracy of water content of a portion to be measured is improved.SOLUTION: Disclosed is a water content measuring device 1 which includes: one or more electrodes 2, 4 extending in the longitudinal direction L and embedded in a matric M; electric signal applying means 12 for applying an electric signal to the electrode; measuring means R, 12 for measuring the electric response generated by the electric signal via the electrode; and water content determining means 12 for determining the water content in the matrix based on the measurement result of the measuring means. Sensitivity of a high sensitivity part A1 on the tip side facing the matrix among the electrodes is higher than that of the rear end part A2 from the rear end of the high sensitivity part to the rear end of the electrode.SELECTED DRAWING: Figure 6

Description

本発明は、土壌等のマトリクス中の水分量を測定する水分量測定装置に関する。 The present invention relates to a water content measuring device for measuring the water content in a matrix such as soil.

農業、園芸、家庭菜園等の土壌の水分量を測定する装置として、土壌に差し込んだ電極に電気信号を加え、その電気的応答から電極周囲の土壌の水分量を測定する各種の技術が知られている。ここで、電気的応答と水分量との関係を予め求めておく。
これらの技術として、静電容量法、誘電率法、電気抵抗法がある。
As a device for measuring the water content of soil in agriculture, gardening, kitchen gardens, etc., various techniques are known in which an electric signal is applied to an electrode inserted into the soil and the water content of the soil around the electrode is measured from the electrical response. ing. Here, the relationship between the electrical response and the amount of water is obtained in advance.
These techniques include a capacitance method, a dielectric constant method, and an electric resistance method.

静電容量法(キャパシタンス型)は、水の比誘電率が土の比誘電率の数十倍であり、比誘電率と静電容量が比例することから、水分量と静電容量に関係があることを利用する。そして、水分を含む土壌を誘電体(コンデンサ)の等価回路とみなして静電容量を測定して水分量を求める。具体的には例えば、2〜3本の電極間に電圧を印加し、電極間の土壌をコンデンサとみなし、装置内の抵抗と並列又は直列のRC等価回路を形成させ、インピーダンスの計測やコンデンサへの充電時間から静電容量を測定する。
又、電極間に交流電流を流し、電極の静電容量が検出回路の一部となるような発振回路を形成し、土壌の水分量の変化に起因する電極の静電容量変化により発振周波数が変化することで静電容量を測定する技術も存在する。
In the capacitance method (capacitance type), the relative permittivity of water is several tens of times the relative permittivity of soil, and the relative permittivity is proportional to the capacitance, so there is a relationship between the amount of water and the capacitance. Take advantage of being. Then, the soil containing water is regarded as an equivalent circuit of a dielectric (capacitor), and the capacitance is measured to obtain the amount of water. Specifically, for example, a voltage is applied between two or three electrodes, the soil between the electrodes is regarded as a capacitor, an RC equivalent circuit in parallel or in series with a resistor in the device is formed, and impedance measurement or a capacitor is used. Measure the capacitance from the charging time of.
In addition, an alternating current is passed between the electrodes to form an oscillation circuit in which the capacitance of the electrodes becomes part of the detection circuit, and the oscillation frequency changes due to changes in the capacitance of the electrodes due to changes in the amount of water in the soil. There is also a technique for measuring capacitance by changing.

誘電率法も、水と土の比誘電率が異なることを利用し、FDR(Frequency Domain Reflectometry)法、ADR (Amplitude-Domain Reflectometry)法、TDR(Time Domain Reflectometry)法がある。
FDR法は、センサとなる電極(プローブ)が1本であり、発振器から広範囲の周波数の電磁波を、電極を介して流し、電極の上端と下端の反射波を測ることで誘電率を測定する。
ADR法は、通常2〜4本の平行電極を用い、発振器から一定周波数の電磁波を電極を介して流し、電磁波が土壌中の電極を通過して往復する際のインピーダンスを測定する。
TDR法は、通常2〜3本の平行電極を用い、発振器から一定周波数の電磁波を電極を介して流し、電磁波が土壌中の電極を往復する伝播時間(速度)を測ることで誘電率を測定する。
The permittivity method also utilizes the fact that the relative permittivity of water and soil is different, and there are FDR (Frequency Domain Reflectometry) method, ADR (Amplitude-Domain Reflectometry) method, and TDR (Time Domain Reflectometry) method.
In the FDR method, there is one electrode (probe) that serves as a sensor, and electromagnetic waves of a wide range of frequencies are passed from the oscillator through the electrodes, and the dielectric constant is measured by measuring the reflected waves at the upper and lower ends of the electrodes.
In the ADR method, usually 2 to 4 parallel electrodes are used, and an electromagnetic wave having a constant frequency is passed through the electrodes from an oscillator, and the impedance when the electromagnetic wave passes through the electrodes in the soil and reciprocates is measured.
The TDR method usually uses two or three parallel electrodes, electromagnetic waves of a constant frequency are passed through the electrodes from the oscillator, and the dielectric constant is measured by measuring the propagation time (velocity) of the electromagnetic waves reciprocating between the electrodes in the soil. do.

一方、電気抵抗法は、水と土の電気抵抗が異なることを利用し、土壌中の2又は4本の電極間の抵抗を測定する。具体的には、例えば電極間の土壌の電気抵抗を抵抗ブリッジ回路の一辺とし、その電気抵抗に応じて流れる電流を測定して、電気抵抗を求める。
この中で、電気抵抗法、静電容量法及びADR法が装置として簡便であり、FDR法やTDR法は測定精度が高い。
On the other hand, the electric resistance method utilizes the fact that the electric resistances of water and soil are different, and measures the resistance between two or four electrodes in the soil. Specifically, for example, the electric resistance of the soil between the electrodes is set as one side of the resistance bridge circuit, and the current flowing according to the electric resistance is measured to obtain the electric resistance.
Among these, the electric resistance method, the capacitance method and the ADR method are simple as devices, and the FDR method and the TDR method have high measurement accuracy.

そして、静電容量法の簡便な装置として、土壌に差し込んだ複数の電極間にパルス電圧を印加し、土壌で構成されるコンデンサと、装置内の抵抗とのRC等価回路を形成させ、抵抗部分の電圧から電極間の土壌の静電容量を測定する技術が提案されている(特許文献1)。 Then, as a simple device of the capacitance method, a pulse voltage is applied between a plurality of electrodes inserted into the soil to form an RC equivalent circuit between a capacitor composed of the soil and a resistor in the device, and a resistance portion is formed. A technique for measuring the capacitance of the soil between the electrodes from the voltage of the above has been proposed (Patent Document 1).

特開2014-059176号公報Japanese Unexamined Patent Publication No. 2014-059176

ところで、土壌に差し込んだ電極に電気信号を加え、その電気的応答から水分量を測定する方法として、静電容量法を例にすると、図12に示すように、一対の電極100,102をマトリクス(土壌)Mに差し込み、一対の電極100,102間の静電容量に応じた電気的応答を測定することになる。そして、土壌Mの水分量としては、水がすぐに浸み込む表面Sよりも、植物の根が張っていて成育に影響が大きい内部Fの値を測定したいという要望がある。
しかしながら、実際の測定では、電極100,102の長手方向に先端から後端までの全長D2の静電容量の平均値に応じた電気的応答を測定してしまい、内部Fに相当する長さD1の部位の静電容量に応じた電気的応答(ひいては水分量)を精度よく測定することが困難である。
By the way, as a method of applying an electric signal to an electrode inserted into the soil and measuring the amount of water from the electric response, taking the capacitance method as an example, as shown in FIG. 12, a pair of electrodes 100 and 102 are matrixed. It is inserted into (soil) M, and the electrical response according to the capacitance between the pair of electrodes 100 and 102 is measured. Then, as the water content of the soil M, there is a desire to measure the value of the internal F, which has a large effect on the growth of the roots of the plant, rather than the surface S, which is immediately infiltrated with water.
However, in the actual measurement, the electrical response corresponding to the average value of the capacitance of the total length D2 from the front end to the rear end in the longitudinal direction of the electrodes 100 and 102 is measured, and the length D1 corresponding to the internal F is measured. It is difficult to accurately measure the electrical response (and thus the amount of water) according to the capacitance of the part.

本発明は、上記の課題を解決するためになされたものであって、電極を用いたものにおいて、測定対象となる部位の水分量の測定精度を向上させた水分量測定装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a water content measuring device having improved measurement accuracy of the water content of a portion to be measured in a device using an electrode. The purpose.

上記課題を解決するため、本発明の水分量測定装置は、長手方向に延び、マトリクス中に埋設される1以上の電極と、前記電極に電気信号を加える電気信号印加手段と、前記電気信号により生じる電気的応答を前記電極を介して測定する測定手段と、前記測定手段の測定結果に基づいて前記マトリクス中の水分量を判定する水分量判定手段と、を備える水分量測定装置であって、前記電極のうち、前記マトリクスに向く先端側の高感度部の感度が、前記高感度部の後端から該電極の後端までの後端部の感度よりも高い In order to solve the above problems, the water content measuring device of the present invention comprises one or more electrodes extending in the longitudinal direction and embedded in a matrix, an electric signal applying means for applying an electric signal to the electrodes, and the electric signal. A water content measuring device comprising a measuring means for measuring the generated electrical response via the electrode and a water content determining means for determining the water content in the matrix based on the measurement result of the measuring means. Of the electrodes, the sensitivity of the high-sensitivity portion on the tip side facing the matrix is higher than the sensitivity of the rear end portion from the rear end of the high-sensitivity portion to the rear end of the electrode.

この水分量測定装置によれば、マトリクスのうち、電極の長手方向において、電極全長の範囲における土壌等のマトリクスの物性の平均値でなく、特定範囲におけるマトリクスの物性の平均値に応じた電気的応答を測定することができる。つまり、測定対象以外の部位を含む電極全長の範囲における土壌等のマトリクスの物性の平均値に応じた電気的応答を測定してしまうことを回避でき、測定対象となる部位の水分量をより良く反映させて測定精度を向上させることができる。 According to this water content measuring device, in the longitudinal direction of the electrode, not the average value of the physical characteristics of the matrix such as soil in the range of the total length of the electrode, but the electrical electrical according to the average value of the physical properties of the matrix in a specific range. The response can be measured. That is, it is possible to avoid measuring the electrical response according to the average value of the physical properties of the matrix such as soil in the range of the total length of the electrode including the part other than the measurement target, and to improve the water content of the measurement target part. It can be reflected to improve the measurement accuracy.

本発明の水分量測定装置において、前記電気信号はマイクロ波、電圧、又は電流であり、前記電気的応答は、電流又は電圧であってもよい。
この水分量測定装置によれば、現在開発されている種々の測定手法に従って、容易に測定を行える。
In the water content measuring device of the present invention, the electric signal may be a microwave, a voltage, or a current, and the electric response may be a current or a voltage.
According to this water content measuring device, measurement can be easily performed according to various measuring methods currently being developed.

本発明の水分量測定装置において、前記電極は、導電性の本体部と、該本体部を被覆する絶縁部とを有し、前記高感度部と前記後端部における前記絶縁部の厚み又は材質が異なり、前記高感度部の静電容量が前記後端部の静電容量より低くてもよい。
この水分量測定装置によれば、電極の本体部の寸法や材質を一定としつつ、絶縁部の厚み又は材質を変えることで電極の感度を容易に調整できる。
In the water content measuring device of the present invention, the electrode has a conductive main body portion and an insulating portion that covers the main body portion, and the thickness or material of the insulating portion at the high sensitivity portion and the rear end portion. However, the capacitance of the high-sensitivity portion may be lower than the capacitance of the rear end portion.
According to this water content measuring device, the sensitivity of the electrode can be easily adjusted by changing the thickness or material of the insulating portion while keeping the size and material of the main body of the electrode constant.

本発明の水分量測定装置において、前記高感度部は前記電極の最先端まで延びてもよい。
この水分量測定装置によれば、電極の最先端を測定対象となる部位に設置することで、水分量の測定精度をさらに向上させることができる。
In the water content measuring device of the present invention, the high-sensitivity portion may extend to the leading edge of the electrode.
According to this water content measuring device, the accuracy of measuring the water content can be further improved by installing the cutting edge of the electrode at a portion to be measured.

本発明の水分量測定装置において、前記高感度部よりも先端側に、前記高感度部より感度が低い低感度部が介在してもよい。
この水分量測定装置によれば、測定対象となる部位の先端側に測定しなくない部位が配置されている場合に、測定しなくない部位に低感度部を設置することで、測定しなくない部位を測定することを回避でき、測定対象となる部位の水分量をより良く反映させて測定精度を向上させることができる。
In the water content measuring device of the present invention, a low-sensitivity portion having a lower sensitivity than the high-sensitivity portion may be interposed on the tip side of the high-sensitivity portion.
According to this water content measuring device, when a part that is not to be measured is arranged on the tip side of the part to be measured, it is not necessary to measure by installing a low-sensitivity part in the part that is not to be measured. It is possible to avoid measuring the part, and it is possible to improve the measurement accuracy by better reflecting the water content of the part to be measured.

本発明の水分量測定装置において、前記電極は2本以上あり、前記電極間の間隔を一定に保つ保持部材をさらに有し、該保持部材は前記2本以の電極の後端部にそれぞれ固定されていてもよい。
この水分量測定装置によれば、感度が高い高感度部に保持部材を固定する場合に比べ、保持部材による測定への影響を低減でき、測定精度を向上させることができる。
In the water content measuring device of the present invention, there are two or more electrodes, and a holding member for keeping the distance between the electrodes constant is further provided, and the holding members are fixed to the rear ends of the two or more electrodes. It may have been done.
According to this water content measuring device, the influence of the holding member on the measurement can be reduced and the measurement accuracy can be improved as compared with the case where the holding member is fixed to the highly sensitive portion.

本発明の水分量測定装置において、前記電極は2本以上あり、前記電気信号は直流の電圧又は電流であり、前記電気的応答は、前記電極間の前記マトリクスで形成されるコンデンサの静電容量に起因して生じ、前記水分量判定手段は、前記電気的応答に基づいて、静電容量法により前記マトリクス中の水分量を判定してもよい。
この水分量測定装置によれば、装置が簡便な静電容量法に本発明を適用できる。
In the water content measuring device of the present invention, there are two or more electrodes, the electric signal is a DC voltage or current, and the electrical response is the capacitance of a capacitor formed by the matrix between the electrodes. The water content determining means may determine the water content in the matrix by the capacitance method based on the electrical response.
According to this water content measuring device, the present invention can be applied to a capacitance method in which the device is simple.

本発明の水分量測定装置において、前記電気信号印加手段は、所定のパルスを前記電極に印加し、前記測定手段は、前記パルスにより生ずる所定の場所の抵抗に対して発生する電圧を検出し、前記水分量判定手段は、前記測定手段により検出された電圧に基づいて、前記マトリクス中の水分量を判定してもよい。
この水分量測定装置によれば、装置がより簡便になる。
In the water content measuring device of the present invention, the electric signal applying means applies a predetermined pulse to the electrode, and the measuring means detects a voltage generated by a resistance at a predetermined place generated by the pulse. The water content determining means may determine the water content in the matrix based on the voltage detected by the measuring means.
According to this water content measuring device, the device becomes simpler.

この発明によれば、電極を用いたものにおいて、測定対象となる部位の水分量の測定精度を向上させた水分量測定装置が得られる。 According to the present invention, it is possible to obtain a water content measuring device using an electrode and having improved measurement accuracy of the water content of a portion to be measured.

本発明の実施形態に係る水分量測定装置の模式図である。It is a schematic diagram of the water content measuring apparatus which concerns on embodiment of this invention. 水分量測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the water content measuring apparatus. 水分量測定装置の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the water content measuring apparatus. 水分量を判定する方法を示す図である。It is a figure which shows the method of determining the water content. 土壌の水分量と、土壌で構成されるコンデンサの静電容量及び電流の関係を示す図である。It is a figure which shows the relationship between the water content of the soil, the capacitance and the electric current of the capacitor composed of soil. 電極の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of an electrode. 電極の変形例を示す断面図である。It is sectional drawing which shows the deformation example of an electrode. 水分量の測定方法として静電容量法を用いた場合の、別の測定回路を示す回路図である。It is a circuit diagram which shows another measuring circuit when the capacitance method is used as the measuring method of the water content. 図8の回路によって水分量を判定する方法を示す図である。It is a figure which shows the method of determining the water content by the circuit of FIG. 土壌と絶縁部を含む等価回路を示す図である。It is a figure which shows the equivalent circuit including the soil and the insulation part. 図10の等価回路において、測定される静電容量と、土壌及び絶縁部の静電容量との関係を表す式を示す図である。It is a figure which shows the formula which expresses the relationship between the measured capacitance and the capacitance of the soil and the insulating part in the equivalent circuit of FIG. 従来の電極を用いて水分量を測定する方法を示す図である。It is a figure which shows the method of measuring the water content using the conventional electrode.

以下、図1〜図6を参照し、本発明の実施形態に係る水分量測定装置について説明する。
図1は本発明の実施形態に係る水分量測定装置1の模式図、図2は水分量測定装置1の構成を示すブロック図、図3は水分量測定装置1の等価回路を示す回路図、図4は水分量を判定する方法を示す図、図5は土壌Mの水分量と、土壌Mで構成されるコンデンサCの静電容量及び電流iの関係を示す図、図6は電極2、4の詳細な構成を示す断面図である。
Hereinafter, the water content measuring device according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6.
FIG. 1 is a schematic diagram of a water content measuring device 1 according to an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the water content measuring device 1, and FIG. 3 is a circuit diagram showing an equivalent circuit of the water content measuring device 1. FIG. 4 is a diagram showing a method for determining the water content, FIG. 5 is a diagram showing the relationship between the water content of the soil M and the capacitance and the current i of the capacitor C composed of the soil M, and FIG. 6 is a diagram showing the relationship between the electrode 2 and the current i. It is sectional drawing which shows the detailed structure of 4.

図1に示すように、水分量測定装置1は、長手方向Lに延びてセンサとなる1以上(本例では2本)の電極2,4と、電極2,4の後端に接続された樹脂製の筐体10と、筐体10内に配置された抵抗R及びCPU(Central Processing Unit)12と、抵抗Rと、電極2,4の間隔を一定に保つ絶縁性(例えば樹脂製)の保持部材6と、を有している。
この水分量測定装置1は、ハンディタイプであり、筐体10を持って下面側の各電極2,4を土壌Mに突き刺すことで、水分測定を行える。
各電極2,4は、それぞれ例えば真鍮製の丸棒からなる導電性の本体部2a、4aと、各本体部2a、4aをそれぞれ被覆する絶縁部2b、4bと、を有する。絶縁部2b、4bは例えばポリオレフィンの熱収縮チューブを用いることができる。
As shown in FIG. 1, the water content measuring device 1 is connected to one or more (two in this example) electrodes 2 and 4 extending in the longitudinal direction L to serve as sensors, and to the rear ends of the electrodes 2 and 4. Insulation (for example, made of resin) that keeps the distance between the resin housing 10, the resistors R and the CPU (Central Processing Unit) 12 arranged in the housing 10, the resistors R, and the electrodes 2 and 4 constant. It has a holding member 6.
The water content measuring device 1 is a handy type, and the water content can be measured by holding the housing 10 and piercing the electrodes 2 and 4 on the lower surface side into the soil M.
Each of the electrodes 2 and 4 has a conductive main body 2a and 4a made of, for example, a brass round bar, and insulating portions 2b and 4b that cover the main bodies 2a and 4a, respectively. For the insulating portions 2b and 4b, for example, a heat-shrinkable polyolefin tube can be used.

ここで、各絶縁部2b、4bは、それぞれ最先端から長手方向Lの略中央部までの領域(高感度部)A1の厚みが、領域A1の後端から各電極2,4の後端(筐体10との接続部位)までの領域(後端部)A2の厚みよりも薄い。
このため、各電極2,4において、高感度部A1の感度が後端部A2の感度よりも高くなっている。この理由については後述する。
Here, in each of the insulating portions 2b and 4b, the thickness of the region (high-sensitivity portion) A1 from the most advanced end to the substantially central portion in the longitudinal direction L is different from the rear end of the region A1 to the rear ends of the electrodes 2 and 4 ( It is thinner than the thickness of the region (rear end portion) A2 up to the connection portion with the housing 10.
Therefore, in each of the electrodes 2 and 4, the sensitivity of the high-sensitivity portion A1 is higher than that of the rear end portion A2. The reason for this will be described later.

次に、図2を参照して水分量測定装置1の内部構成について説明する。
なお、本発明においては、上記したように、各電極2,4の高感度部A1の感度が後端部A2の感度よりも高いことが特徴部分であり、水分量測定装置1自体の構成は特に限定されないが、構成の一例として、特許文献1と同様な装置とした。図2の装置内の名称等も特許文献1の記載に一部従っている。
Next, the internal configuration of the water content measuring device 1 will be described with reference to FIG.
As described above, the present invention is characterized in that the sensitivity of the high-sensitivity portion A1 of each of the electrodes 2 and 4 is higher than the sensitivity of the rear end portion A2, and the configuration of the water content measuring device 1 itself is Although not particularly limited, as an example of the configuration, an apparatus similar to that of Patent Document 1 is used. The names and the like in the apparatus of FIG. 2 also partially follow the description of Patent Document 1.

図2に示すように、CPU12は、入出力端子として、端子GPIO、端子ADC、端子Vcc、及び端子GNDを有する。そして、CPU12は、所定のパルス幅を有するパルス(電気信号)を発生させるパルス発生機能と、当該パルスにより生じる抵抗Rの電圧を検出する電圧検出機能と、検出された電圧の最大値に基づいて土壌の水分量を判定する水分量判定機能を有する。
端子GPIOは、上記パルスを出力する。端子ADCは、抵抗Rの電圧を示すアナログ信号が入力され、CPU12内部でA/D変換される。端子Vccは、電源電圧が入力され、電源電圧の値(Vcc)がパルスの高さとなる。端子GNDは、グランドに接地される。
As shown in FIG. 2, the CPU 12 has a terminal GPIO, a terminal ADC, a terminal Vcc, and a terminal GND as input / output terminals. Then, the CPU 12 is based on a pulse generation function for generating a pulse (electric signal) having a predetermined pulse width, a voltage detection function for detecting the voltage of the resistor R generated by the pulse, and a maximum value of the detected voltage. It has a water content determination function to determine the water content of the soil.
The terminal GPIO outputs the above pulse. An analog signal indicating the voltage of the resistor R is input to the terminal ADC, and A / D conversion is performed inside the CPU 12. A power supply voltage is input to the terminal Vcc, and the value of the power supply voltage (Vcc) is the pulse height. The terminal GND is grounded to ground.

そして、一方の電極2がキャパシタンスCxを介して端子GPIOに接続され、他の電極4がキャパシタンスCyを介して抵抗Rの一端に接続され、抵抗Rの他端が接地されている。
抵抗Rの上記一端に端子ADCが接続され、抵抗Rの電圧が端子ADCに入力されるようになっている。
又、電極2、4の先端側が土壌(マトリクス)Mに埋設されている。
Then, one electrode 2 is connected to the terminal GPIO via the capacitance Cx, the other electrode 4 is connected to one end of the resistor R via the capacitance Cy, and the other end of the resistor R is grounded.
A terminal ADC is connected to the one end of the resistor R so that the voltage of the resistor R is input to the terminal ADC.
Further, the tip sides of the electrodes 2 and 4 are embedded in the soil (matrix) M.

図2の回路構成により、端子GPIOからキャパシタンスCxを介して電極2にパルスPが出力され、電極2、4の間の土壌Mが誘電体(コンデンサ)Cとして作用しつつ電極2、4間に電流iが流れ、この電流iはキャパシタンスCy、抵抗Rを流れてGNDに至る。
そして、抵抗Rを電流iが流れるときの電圧E(=i×R)を端子ADCにてモニタする。
According to the circuit configuration of FIG. 2, a pulse P is output from the terminal GPIO to the electrode 2 via the capacitance Cx, and the soil M between the electrodes 2 and 4 acts as a dielectric (capacitor) C between the electrodes 2 and 4. A current i flows, and this current i flows through the capacitance Cy and the resistor R to reach GND.
Then, the voltage E (= i × R) when the current i flows through the resistor R is monitored by the terminal ADC.

なお、特許文献1におけると同様、キャパシタンスCx、Cpは、水分量の測定には必須ではないが、土壌内で発生する直流の静電気等の直流電流をカットする。キャパシタンスCx、Cpの静電容量は、土壌MのコンデンサCの静電容量に比較して相対的に十分に大きな値(例えば10倍以上)の値とすることで、土壌Mの水分量が変化したときの静電容量の変化が明確に現れ、測定精度の低下を抑制する。 As in Patent Document 1, the capacitances Cx and Cp are not essential for measuring the amount of water, but cut a direct current such as a direct current static electricity generated in the soil. By setting the capacitances of the capacitances Cx and Cp to a value relatively sufficiently large (for example, 10 times or more) as compared with the capacitance of the capacitor C of the soil M, the water content of the soil M changes. The change in capacitance at the time of this is clearly shown, and the decrease in measurement accuracy is suppressed.

CPU12が特許請求の範囲の「電気信号印加手段、測定手段、水分量判定手段」に相当する。又、抵抗Rが特許請求の範囲の「測定手段」に相当する。 The CPU 12 corresponds to the "electric signal applying means, measuring means, and water content determining means" in the claims. Further, the resistor R corresponds to the "measuring means" in the claims.

次に、図3を参照して水分量測定装置1の内部構成について説明する。
2本の電極2,4の間に上述のパルス電圧を印加すると、土壌MがコンデンサCとして作用する。このとき、図3に示すように、水分量測定装置1の等価回路はRC直列等価回路となる。
ここで、式1:
コンデンサCの静電容量(同じCで表す)=Q/V∝ε(但し、Qは電荷、Vは電位、εは誘電率)
であることが知られており、静電容量は、土壌Mの誘電率εに比例する。つまり、図5に示すように、土壌Mの水分量が変化すると誘電率εが変化し、静電容量も変化する。
Next, the internal configuration of the water content measuring device 1 will be described with reference to FIG.
When the above-mentioned pulse voltage is applied between the two electrodes 2 and 4, the soil M acts as a capacitor C. At this time, as shown in FIG. 3, the equivalent circuit of the water content measuring device 1 is an RC series equivalent circuit.
Here, Equation 1:
Capacitance of capacitor C (represented by the same C) = Q / V ∝ε (where Q is electric charge, V is electric potential, ε is permittivity)
The capacitance is proportional to the permittivity ε of soil M. That is, as shown in FIG. 5, when the water content of the soil M changes, the permittivity ε changes and the capacitance also changes.

又、コンデンサに直流電圧が印加されるとき、コンデンサに流れこむ電流iは、式2
:i=C(dV/dt)(但し、tは時間)
であることが知られており、直流電圧Vが時間変化しない状態では電流i=0である。
Further, when a DC voltage is applied to the capacitor, the current i flowing into the capacitor is given by Equation 2.
: I = C (dV / dt) (where t is time)
It is known that the current i = 0 when the DC voltage V does not change with time.

一方、本実施形態では、一定の大きさの直流電圧でなく、パルス(電圧)Pを供給する。このため、図4のように、パルスPが印加された直後の短期間では、電圧Vが徐々に上昇し、dV/dtも0を超えた値を持つので、電流i>0となる。そこで、パルス幅Wを電圧Vが上昇する短期間程度とすることで、土壌のコンデンサCに電流iが流れるようになる。
そして、式2に示すように、この短期間では電流iが静電容量に応じて変化するから、土壌Mの水分量が変化すると、図5に示すように電流iも変化する。
On the other hand, in the present embodiment, a pulse (voltage) P is supplied instead of a DC voltage having a constant magnitude. Therefore, as shown in FIG. 4, in a short period immediately after the pulse P is applied, the voltage V gradually rises and dV / dt also has a value exceeding 0, so that the current i> 0. Therefore, by setting the pulse width W to a short period in which the voltage V rises, the current i flows through the capacitor C in the soil.
Then, as shown in Equation 2, since the current i changes according to the capacitance in this short period, when the water content of the soil M changes, the current i also changes as shown in FIG.

従って、CPU12は、パルスPを発生させたときの土壌MのコンデンサCにおける電流iの大きさに基づいて、土壌の水分量を判定することができる。
ここで、電流iを簡便に検出する手法として、コンデンサCに直列接続された抵抗Rにも同じ電流iが流れるから、抵抗Rの両端の電圧Eを測定することで、i=E/Rによって電流iを求めることができる。
又、電流iは一定ではなく、パルスPを印加中も時間とともに変化し、抵抗Rの電圧の値Eも同様に時間とともに変化する。そこで、本実施形態では、図4に示すように、パルスPを発生させたときの抵抗Rの両端の電圧Eの値のうち最大値E-Maxに基づいて土壌の水分量を判定する。
なお、予め土壌の既知の水分量と、電圧Eの最大値E-Maxとの対応関係を測定しておき、両者の関係式やマップを作成し、これらを参照して実際の測定対象の土壌の水分量をCPU12にて求めればよい。
Therefore, the CPU 12 can determine the water content of the soil based on the magnitude of the current i in the capacitor C of the soil M when the pulse P is generated.
Here, as a method for easily detecting the current i, the same current i also flows through the resistor R connected in series with the capacitor C. Therefore, by measuring the voltage E across the resistor R, i = E / R. The current i can be obtained.
Further, the current i is not constant and changes with time even while the pulse P is applied, and the voltage value E of the resistor R also changes with time. Therefore, in the present embodiment, as shown in FIG. 4, the water content of the soil is determined based on the maximum value E-Max of the values of the voltages E across the resistor R when the pulse P is generated.
In addition, the correspondence relationship between the known water content of the soil and the maximum value E-Max of the voltage E is measured in advance, a relational expression and a map of both are created, and the soil to be actually measured is referred to by reference to these. The water content of the above may be obtained by the CPU 12.

次に、図6を参照して本発明の特徴部分である電極2,4について説明する。
上述のように、本実施形態では、各電極2,4において、高感度部A1の感度が後端部A2の感度よりも高くなっている。
これにより、図6に示すように、土壌Mの水分量として、水がすぐに浸み込む表面Sよりも、植物の根が張っていて成育に影響が大きい内部Fの値を測定したい場合に、より感度の高い各電極2,4の高感度部A1を長さ方向Lに内部Fに相当する長さD1に重なるように配置することができる。
その結果、土壌Mのうち、電極2,4の長手方向Lにおいて、電極全長の範囲における土壌Mの静電容量の平均値でなく、特定範囲である内部Fにおける土壌Mの静電容量の平均値に応じた電圧を測定することができる。つまり、測定対象である内部F以外の部位を含む電極全長の範囲における静電容量の平均値に応じた電圧を測定してしまうことを回避でき、測定対象となる内部Fの水分量をより良く反映させて測定精度を向上させることができる。
Next, electrodes 2 and 4, which are characteristic portions of the present invention, will be described with reference to FIG.
As described above, in the present embodiment, the sensitivity of the high-sensitivity portion A1 is higher than that of the rear end portion A2 in each of the electrodes 2 and 4.
As a result, as shown in FIG. 6, when it is desired to measure the value of the internal F, which has more roots of the plant and has a greater influence on the growth, than the surface S, which is immediately infiltrated with water, as the water content of the soil M. , The high-sensitivity portions A1 of each of the electrodes 2 and 4 having higher sensitivity can be arranged so as to overlap the length D1 corresponding to the internal F in the length direction L.
As a result, among the soil M, in the longitudinal direction L of the electrodes 2 and 4, the average value of the capacitance of the soil M in the range of the total length of the electrodes is not, but the average value of the capacitance of the soil M in the inner F which is a specific range. The voltage can be measured according to the value. That is, it is possible to avoid measuring the voltage corresponding to the average value of the capacitance in the range of the total length of the electrode including the portion other than the internal F to be measured, and to improve the water content of the internal F to be measured. It can be reflected to improve the measurement accuracy.

ここで、感度は、図10、図11に示すようにして求めることができる。
つまり、図10の等価回路に示すように、水分量測定装置1で測定される静電容量Cが、静電容量Cwatである土壌Mからなるコンデンサと、静電容量Cである絶縁部2b、4bからなるコンデンサと、を直列に接続したコンデンサの合成静電容量であると考える。
そうすると、図11の式で表されるように、静電容量Cの逆数は、静電容量Cwatの逆数と、静電容量Cの逆数と、の和から算出され、感度=Cwat/Cとなる。
Here, the sensitivity can be obtained as shown in FIGS. 10 and 11.
That is, as shown in the equivalent circuit of FIG. 10, the electrostatic capacitance C T, which is measured by the water content measurement apparatus 1, a capacitor consisting of soil M is the capacitance C wat, the capacitance C a dielectric It is considered to be the combined capacitance of a capacitor in which a capacitor composed of parts 2b and 4b is connected in series.
Then, as represented by the equation in Figure 11, the reciprocal of the electrostatic capacitance C T is the reciprocal of the capacitance C wat, is calculated from the sum of the reciprocal of the capacitance C a,, sensitivity = C wat / the C T.

そして、図11から、絶縁部2b、4bの静電容量Cが大きいほど、測定値である静電容量Cに対して、求めたい土壌Mの静電容量Cwatの占める割合が大きくなり、上述の感度も高くなる。
ここで、絶縁部2b、4bの厚みが薄いほど、静電容量Cが大きくなる。又、絶縁部2b、4bが同じ厚みでも、その誘電率が大きいほど、静電容量Cが大きくなる。又、絶縁部2b、4bが同じ材質・厚みであって、その内側の本体部2a、4aの外表面積(=半径)を大きくするほど、静電容量Cが大きくなる。
従って、これらの方法により、感度を高めることができる。
Then, from FIG. 11, the insulating portion 2b, as the capacitance C a and 4b is large, relative to a measurement capacitance C T, the ratio of the capacitance C wat soil M to be obtained becomes large , The above-mentioned sensitivity is also increased.
Here, the insulating portion 2b, the thinner the thickness of 4b, the capacitance C a is increased. Further, the insulating portion 2b, 4b are at the same thickness, the higher the dielectric constant is large, the capacitance C a is increased. Further, the insulating portion 2b, 4b is the same material and thickness, the larger the body portion 2a of the inner, outer surface area of 4a (= the radius), the capacitance C a is increased.
Therefore, the sensitivity can be increased by these methods.

なお、図10の静電容量Cは、土壌Mの表面に水分層が存在する場合に生じる静電容量であり、これによるコンデンサも図11の式に直列に接続されることになる。但し、図11ではCを無視している。
又、図10の土壌Mの静電容量Cwatは、土壌Mの砂利特性に起因する静電容量Cw1と、土壌Mのイオン性導電体の特性に起因する静電容量Cw2とを並列接続したものとみなしている。
Incidentally, the capacitance C S in FIG. 10 is a capacitance generated when the moisture layer is present on the surface of the soil M, which due to the capacitor also be connected in series to the equation of FIG. 11. However, in FIG. 11, CS is ignored.
Further, in the capacitance C wat of the soil M in FIG. 10, the capacitance C w1 due to the gravel characteristics of the soil M and the capacitance C w2 due to the characteristics of the ionic conductor of the soil M are arranged in parallel. It is considered to be connected.

なお、土壌Mの水分の検知(センシング)を行う電極として、後端部A2を無くし、高感度部A1のみを電極とすればよいと考えるかもしれない。
しかしながら、仮に高感度部A1のみを電極とし、その後端を測定回路にセンサ信号を伝送する導線としたとしても、その導線も土壌Mの水分を検知する電極(センサ)となってしまう。
従って、土壌Mの水分を検知する部位であれば「電極」とみなす。
As an electrode for detecting (sensing) the moisture content of the soil M, it may be considered that the rear end portion A2 should be eliminated and only the high-sensitivity portion A1 should be used as the electrode.
However, even if only the high-sensitivity portion A1 is used as an electrode and the rear end thereof is used as a conducting wire for transmitting a sensor signal to the measurement circuit, the conducting wire also becomes an electrode (sensor) for detecting the moisture content of the soil M.
Therefore, if it is a part that detects the water content of the soil M, it is regarded as an "electrode".

又、本実施形態では、2本(以上)の電極2,4の間隔を一定に保って測定精度を維持する保持部材6を、後端部A2に固定させている。
これにより、感度が高い高感度部A1に保持部材6を固定する場合に比べ、保持部材6による測定への影響を低減でき、測定精度を向上させることができる。
Further, in the present embodiment, the holding member 6 for maintaining the measurement accuracy by keeping the distance between the two (or more) electrodes 2 and 4 constant is fixed to the rear end portion A2.
As a result, the influence of the holding member 6 on the measurement can be reduced and the measurement accuracy can be improved as compared with the case where the holding member 6 is fixed to the highly sensitive portion A1.

図7は、本発明の実施形態に係る水分量測定装置における電極20、40の変形例を示す。
電極20、40の最先端に、高感度部A1より感度が低い低感度部A3が介在する。
このようにすると、例えば鉢植えの栽培において、測定したい内部Fより下方に水はけのための砂利層Tが配置されている場合に、砂利層Tに低感度部A3を設置することで、砂利層Tを測定することを回避でき、測定対象となる内部Fの水分量をより良く反映させて測定精度を向上させることができる。
FIG. 7 shows a modified example of the electrodes 20 and 40 in the water content measuring device according to the embodiment of the present invention.
A low-sensitivity portion A3 having a lower sensitivity than the high-sensitivity portion A1 is interposed at the cutting edge of the electrodes 20 and 40.
In this way, for example, in the cultivation of potted plants, when the gravel layer T for drainage is arranged below the inner F to be measured, the low-sensitivity portion A3 is provided on the gravel layer T to obtain the gravel layer T. Can be avoided, and the water content of the internal F to be measured can be better reflected to improve the measurement accuracy.

図8、図9は、水分量の測定方法として静電容量法を用いた場合の、別の測定回路を示す。この例は、特許第5688731号に記載されているので、その記載に従って説明する。
図8に示すように、本例でも水分量測定装置の等価回路はRC直列等価回路であるが、土壌MのコンデンサCの一端がGNDに接地され、コンデンサCの他端が抵抗Rに接続されている。コンデンサCの両端に一対の電極2,4(図示せず)が配置されていることはいうまでもない。
そして、抵抗Rの他端から、図3の場合と同様にパルスP(パルス電圧又はパルス電流)が供給される。このとき、コンデンサCに電荷が蓄えられてコンデンサCの両端子間に電位差が生じる。これにより、図9に示すように、コンデンサCと抵抗Rとの接続端子の電圧Eが時間とともに上昇し、最終的に電圧Vccとなる。
8 and 9 show another measurement circuit when the capacitance method is used as the method for measuring the amount of water. This example is described in Japanese Patent No. 5688731 and will be described according to the description.
As shown in FIG. 8, in this example as well, the equivalent circuit of the water content measuring device is an RC series equivalent circuit, but one end of the capacitor C of the soil M is grounded to GND and the other end of the capacitor C is connected to the resistor R. ing. Needless to say, a pair of electrodes 2 and 4 (not shown) are arranged at both ends of the capacitor C.
Then, a pulse P (pulse voltage or pulse current) is supplied from the other end of the resistor R as in the case of FIG. At this time, electric charge is stored in the capacitor C, and a potential difference is generated between both terminals of the capacitor C. As a result, as shown in FIG. 9, the voltage E of the connection terminal between the capacitor C and the resistor R rises with time, and finally becomes the voltage Vcc.

電圧Eが所定の電圧Erefとなるまでの時間をtとすると、時間tとコンデンサC(静電容量C)との間には、式3:
t=C×R×ln{Vcc/(Vcc−Eref)}
及び、式4:
C=t/[R×ln{Vcc/(Vcc−Eref)}]
の関係が成立する。
従って、(Vcc−Eref)及びRを一定とすれば、tからコンデンサCの静電容量Cを求めることができる。
Assuming that the time until the voltage E becomes the predetermined voltage Elef is t, there is an equation 3: between the time t and the capacitor C (capacitance C).
t = C × R × ln {Vcc / (Vcc-Eref)}
And Equation 4:
C = t / [R × ln {Vcc / (Vcc-Eref)}]
Relationship is established.
Therefore, if (Vcc-Eref) and R are constant, the capacitance C of the capacitor C can be obtained from t.

本発明は上記した実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
水分量の測定原理や測定回路は上記に限定されない。静電容量法の場合、一対の電極間の土壌Mで形成されるコンデンサの静電容量に起因した何らかの電気的応答を電極で検知するものであればよい。又、上述のように、誘電率法(例えば、FDR法、ADR)法、TDR法)や、電気抵抗法にも本発明を適用できる。
さらに、長手方向に延びる電極を用い、電極に電気信号を加えて生じる電気的応答を電極を介して測定する限り、本明細書に記載がない測定法や、将来開発される測定法にも本発明を適用できる。
It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents included in the idea and scope of the present invention.
The principle of measuring the amount of water and the measuring circuit are not limited to the above. In the case of the capacitance method, any electrical response due to the capacitance of the capacitor formed by the soil M between the pair of electrodes may be detected by the electrodes. Further, as described above, the present invention can also be applied to the dielectric constant method (for example, FDR method, ADR) method, TDR method) and the electrical resistance method.
Furthermore, as long as an electrode extending in the longitudinal direction is used and the electrical response generated by applying an electric signal to the electrode is measured through the electrode, the measurement method not described in the present specification and the measurement method developed in the future are also applicable. The invention can be applied.

水分量測定装置の構成や、電極も限定されない。例えば、電極は、良好な導電性を有する素材であれば、金属、導電性カーボンなどが例示されるが、特に限定されない。電極の形状も、例えば丸棒、角柱、平板、筒状などが例示されるが、特に限定されない。 The configuration of the water content measuring device and the electrodes are not limited. For example, as long as the electrode is a material having good conductivity, metal, conductive carbon and the like are exemplified, but the electrode is not particularly limited. The shape of the electrode is also exemplified by, for example, a round bar, a prism, a flat plate, a tubular shape, or the like, but is not particularly limited.

電極が埋設されて水分量の測定対象となるマトリクスは、水を含むことができるものであればよく、土壌に限らず、スポンジや吸水性樹脂などが例示されるが、特に限定されない。
本発明が適用できる分野も、農業、園芸、家庭菜園などの栽培だけでなく、米などの食品、木材の含水量、砂防、止水等の防災分野などが例示されるが、特に限定されない。
The matrix in which the electrodes are embedded and the water content is to be measured may be any one that can contain water, and is not limited to soil, and examples thereof include sponges and water-absorbent resins, but the matrix is not particularly limited.
The fields to which the present invention can be applied include, but are not limited to, not only cultivation in agriculture, horticulture, and vegetable gardens, but also foods such as rice, water content of wood, sabo, and disaster prevention fields such as water stoppage.

1 水分量測定装置
2,4、20、40 電極
2a、4a 本体部
2b、4b 絶縁部
6 保持部材
12 CPU(電気信号印加手段、測定手段、水分量判定手段)
C コンデンサ
L 長手方向
M マトリクス(土壌)
R 抵抗(測定手段)
A1 高感度部
A2 後端部
A3 低感度部
1 Moisture content measuring device 2, 4, 20, 40 Electrodes 2a, 4a Main body 2b, 4b Insulation 6 Holding member 12 CPU (electric signal applying means, measuring means, water content determining means)
C Capacitor L Longitudinal M Matrix (soil)
R resistance (measuring means)
A1 High-sensitivity part A2 Rear end part A3 Low-sensitivity part

Claims (8)

長手方向に延び、マトリクス中に埋設される1以上の電極と、
前記電極に電気信号を加える電気信号印加手段と、
前記電気信号により生じる電気的応答を前記電極を介して測定する測定手段と、
前記測定手段の測定結果に基づいて前記マトリクス中の水分量を判定する水分量判定手段と、
を備える水分量測定装置であって、
前記電極のうち、前記マトリクスに向く先端側の高感度部の感度が、前記高感度部の後端から該電極の後端までの後端部の感度よりも高い水分量測定装置。
With one or more electrodes extending longitudinally and embedded in the matrix,
An electric signal applying means for applying an electric signal to the electrode, and
A measuring means for measuring the electrical response generated by the electrical signal via the electrode, and a measuring means.
A water content determining means for determining the water content in the matrix based on the measurement result of the measuring means, and
It is a water content measuring device equipped with
A water content measuring device in which the sensitivity of the high-sensitivity portion of the electrode on the distal end side facing the matrix is higher than the sensitivity of the rear end portion from the rear end of the high-sensitivity portion to the rear end of the electrode.
前記電気信号はマイクロ波、電圧、又は電流であり、
前記電気的応答は、電流又は電圧である請求項1記載の水分量測定装置。
The electrical signal is a microwave, voltage, or current.
The water content measuring device according to claim 1, wherein the electrical response is an electric current or a voltage.
前記電極は、導電性の本体部と、該本体部を被覆する絶縁部とを有し、
前記高感度部と前記後端部における前記絶縁部の厚み又は材質が異なり、前記高感度部の静電容量が前記後端部の静電容量より低い請求項1又は2記載の水分量測定装置。
The electrode has a conductive main body portion and an insulating portion that covers the main body portion.
The water content measuring device according to claim 1 or 2, wherein the thickness or material of the insulating portion between the high-sensitivity portion and the rear end portion is different, and the capacitance of the high-sensitivity portion is lower than the capacitance of the rear end portion. ..
前記高感度部は前記電極の最先端まで延びる請求項1〜3のいずれか一項に記載の水分量測定装置。 The water content measuring device according to any one of claims 1 to 3, wherein the high-sensitivity unit extends to the most advanced end of the electrode. 前記高感度部よりも先端側に、前記高感度部より感度が低い低感度部が介在する請求項1〜3のいずれか一項に記載の水分量測定装置。 The water content measuring device according to any one of claims 1 to 3, wherein a low-sensitivity portion having a lower sensitivity than the high-sensitivity portion is interposed on the tip side of the high-sensitivity portion. 前記電極は2本以上あり、
前記電極間の間隔を一定に保つ保持部材をさらに有し、
該保持部材は前記2本以の電極の後端部にそれぞれ固定されている請求項1〜5のいずれか一項に記載の水分量測定装置。
There are two or more electrodes.
Further having a holding member for keeping the distance between the electrodes constant,
The water content measuring device according to any one of claims 1 to 5, wherein the holding member is fixed to each of the rear ends of the two or more electrodes.
前記電極は2本以上あり、
前記電気信号は直流の電圧又は電流であり、
前記電気的応答は、前記電極間の前記マトリクスで形成されるコンデンサの静電容量に起因して生じ、
前記水分量判定手段は、前記電気的応答に基づいて、静電容量法により前記マトリクス中の水分量を判定する、請求項1〜6のいずれか一項に記載の水分量測定装置。
There are two or more electrodes.
The electrical signal is a DC voltage or current
The electrical response is caused by the capacitance of the capacitor formed by the matrix between the electrodes.
The water content measuring device according to any one of claims 1 to 6, wherein the water content determining means determines the water content in the matrix by the capacitance method based on the electrical response.
前記電気信号印加手段は、所定のパルスを前記電極に印加し、
前記測定手段は、前記パルスにより生ずる所定の場所の抵抗に対して発生する電圧を検出し、
前記水分量判定手段は、前記測定手段により検出された電圧に基づいて、前記マトリクス中の水分量を判定する、請求項7に記載の水分量測定装置。
The electric signal applying means applies a predetermined pulse to the electrode, and the electric signal applying means applies a predetermined pulse to the electrode.
The measuring means detects a voltage generated with respect to a resistance at a predetermined location generated by the pulse.
The water content measuring device according to claim 7, wherein the water content determining means determines the water content in the matrix based on the voltage detected by the measuring means.
JP2020003409A 2020-01-14 2020-01-14 Water content measuring device Pending JP2021110665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003409A JP2021110665A (en) 2020-01-14 2020-01-14 Water content measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003409A JP2021110665A (en) 2020-01-14 2020-01-14 Water content measuring device

Publications (1)

Publication Number Publication Date
JP2021110665A true JP2021110665A (en) 2021-08-02

Family

ID=77059674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003409A Pending JP2021110665A (en) 2020-01-14 2020-01-14 Water content measuring device

Country Status (1)

Country Link
JP (1) JP2021110665A (en)

Similar Documents

Publication Publication Date Title
US5546005A (en) Guarded capacitance probe and related measurement circuit
US4389900A (en) Capacitance probe sensor device
US6060889A (en) Sensing water and moisture using a delay line
US7944220B2 (en) Moisture content sensor and related methods
RU2104478C1 (en) Method of contactless dynamic measurement of displacement of grounded conductive body
JP5688731B2 (en) Capacitive moisture meter and water level meter
IL106829A (en) Soil moisture sensor
JP4445754B2 (en) Method and apparatus for detecting the position of a confined object
JP2004514876A (en) Fluid level measuring device and method
JP2007064933A (en) Correction method for liquid level detection device, and the liquid level detection device
JP4555574B2 (en) Method and apparatus for determining the position of a confined object
US7777504B2 (en) Sensor for determining the electric properties of a sample
JP2005518548A (en) Method and apparatus for determining the position of a confined object
US11598743B2 (en) Soil monitoring sensor including single probe and temperature compensation and method of operating the same
JP2021110665A (en) Water content measuring device
CN205506739U (en) Humidity sensor
JPH11304764A (en) Moisture sensor
US7260987B2 (en) Method for capacitive measurement of fill level
JP2003524784A (en) Device for detecting the filling level of the medium in a container
JPH0786482B2 (en) Water content measuring device
Kuklin Prototype of a measurement device for frequency dependent soil electrical properties
CN2396397Y (en) Capacitive type soil humidity meter
WO2005008188A2 (en) Water measurement apparatus and methods
Golnabi et al. Simultaneous measurements of the resistance and capacitance using a cylindrical sensor system
Kuklin Measurements of frequency dependent soil properties with an improved measurement device