JP2021110279A - EGR valve device - Google Patents

EGR valve device Download PDF

Info

Publication number
JP2021110279A
JP2021110279A JP2020002036A JP2020002036A JP2021110279A JP 2021110279 A JP2021110279 A JP 2021110279A JP 2020002036 A JP2020002036 A JP 2020002036A JP 2020002036 A JP2020002036 A JP 2020002036A JP 2021110279 A JP2021110279 A JP 2021110279A
Authority
JP
Japan
Prior art keywords
bearing
valve shaft
valve
seal member
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020002036A
Other languages
Japanese (ja)
Inventor
啓佑 松田
Keisuke Matsuda
啓佑 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2020002036A priority Critical patent/JP2021110279A/en
Publication of JP2021110279A publication Critical patent/JP2021110279A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an EGR valve device which enables improvement of sealability of an elastic seal member while achieving reduction of costs.SOLUTION: An EGR valve device 1 includes: a housing 3 including a passage 2 of an EGR gas; a valve body 5 which opens or closes the passage 2; a valve stem 6 provided with the valve body 5; a bearing 8 provided between the housing 3 and the valve stem 6 and supporting the valve stem 6; an elastic seal member 9 provided between the housing 3 and the valve stem 6 and sealing a gap between the housing 3 and the valve stem 6; and a drive part 7 which drives the valve stem 6 in an axial direction of the valve stem 6. In one embodiment of the disclosure, the elastic seal member 9 is integrated with the bearing 8 by burning.SELECTED DRAWING: Figure 1

Description

本開示は、EGR通路におけるEGRガスの流量を調節するEGRバルブ装置に関する。 The present disclosure relates to an EGR valve device that regulates the flow rate of EGR gas in an EGR passage.

EGRバルブ装置に関する従来技術として、特許文献1には、弁軸を支持する軸受と、弁軸と軸受の隙間から排気ガス等がアクチュエータ等に漏洩するのを抑制するシール部材とを一体化した排気ガス循環バルブ装置が開示されている。 As a conventional technique relating to an EGR valve device, Patent Document 1 describes an exhaust in which a bearing that supports a valve shaft and a seal member that suppresses exhaust gas or the like from leaking from a gap between the valve shaft and the bearing to an actuator or the like are integrated. A gas circulation valve device is disclosed.

国際公開第2010/018650号International Publication No. 2010/018650

特許文献1に開示される排気ガス循環バルブ装置は、軸受がプラグの機能を兼用しており、軸受でシール部材を保持しているが、装置の組み立てにおいて軸受にシール部材を保持させる工程が別途必要になり、コストがかかってしまう。また、シール部材は、金属製のバネ材に弾性樹脂を被覆したものであるが、弁軸に対して十分に密着させることができるか否かの懸念がある。そのため、シール部材のシール性が十分でないおそれがある。 In the exhaust gas circulation valve device disclosed in Patent Document 1, the bearing also functions as a plug, and the seal member is held by the bearing. However, a step of causing the bearing to hold the seal member is separately required when assembling the device. It will be necessary and costly. Further, although the seal member is a metal spring material coated with an elastic resin, there is a concern as to whether or not the seal member can be sufficiently brought into close contact with the valve shaft. Therefore, the sealing property of the sealing member may not be sufficient.

そこで、本開示は上記した問題点を解決するためになされたものであり、コスト低減を図りながら、弾性シール部材のシール性を向上できるEGRバルブ装置を提供することを目的とする。 Therefore, the present disclosure has been made in order to solve the above-mentioned problems, and an object of the present disclosure is to provide an EGR valve device capable of improving the sealing property of the elastic sealing member while reducing the cost.

上記課題を解決するためになされた本開示の一形態は、EGRガスの流路を備えるハウジングと、前記流路を開閉する弁体と、前記弁体が設けられた弁軸と、前記ハウジングと前記弁軸との間に設けられ、前記弁軸を支持する軸受と、前記ハウジングと前記弁軸との間に設けられ、前記ハウジングと前記弁軸との間を封止する弾性シール部材と、前記弁軸を当該弁軸の軸方向に駆動させる駆動部と、を有するEGRバルブ装置において、前記軸受に前記弾性シール部材が焼き付けにより一体化されていること、を特徴とする。 One embodiment of the present disclosure made to solve the above problems is a housing provided with an EGR gas flow path, a valve body for opening and closing the flow path, a valve shaft provided with the valve body, and the housing. A bearing provided between the valve shaft and supporting the valve shaft, an elastic sealing member provided between the housing and the valve shaft and sealing between the housing and the valve shaft, and In an EGR valve device having a drive unit for driving the valve shaft in the axial direction of the valve shaft, the elastic seal member is integrated with the bearing by baking.

この態様によれば、EGRバルブ装置について、部品点数の削減及び組付け工程の削減によって、コスト低減を図ることができる。また、弾性シール部材の形状の自由度が上がり、弁軸により密着するような形状とすることができる。したがって、コスト低減を図りながら、弾性シール部材のシール性を向上できる。 According to this aspect, the cost of the EGR valve device can be reduced by reducing the number of parts and the assembling process. In addition, the degree of freedom in the shape of the elastic seal member is increased, and the shape can be formed so as to be in close contact with the valve shaft. Therefore, the sealing property of the elastic sealing member can be improved while reducing the cost.

上記の態様においては、前記軸受における前記弾性シール部材の焼き付け部は、前記軸受の軸方向に延びる管状部を備えた管構造に形成されていること、が好ましい。 In the above aspect, it is preferable that the baked portion of the elastic sealing member in the bearing is formed in a pipe structure including a tubular portion extending in the axial direction of the bearing.

この態様によれば、管状部の剛性により、弾性シール部材において緊迫力を確保できる。そのため、弾性シール部材によるシール性が向上する。 According to this aspect, the rigidity of the tubular portion makes it possible to secure a tense force in the elastic sealing member. Therefore, the sealing property of the elastic sealing member is improved.

上記の態様においては、前記管構造は、複数の前記管状部が前記軸受の中心軸を中心に同心円状に設けられる複数管構造であること、が好ましい。 In the above aspect, it is preferable that the tube structure is a plurality of tube structures in which the plurality of tubular portions are provided concentrically around the central axis of the bearing.

この態様によれば、弾性シール部材の径方向の内側と外側の両方に緊迫力を確保できる。そのため、より効果的に、弾性シール部材によるシール性が向上する。また、弾性シール部材が焼き付け時に複数管構造の内空間にも充填されるので、軸受に対して弾性シール部材の高い保持性を得ることができる。 According to this aspect, a tense force can be secured both inside and outside in the radial direction of the elastic sealing member. Therefore, the sealing property of the elastic sealing member is improved more effectively. Further, since the elastic seal member is filled in the inner space of the plurality of pipe structures at the time of baking, high holding property of the elastic seal member with respect to the bearing can be obtained.

上記の態様においては、前記弾性シール部材は、前記弁軸が挿入される穴部を備え、前記弁軸の軸方向について前記穴部の前記弁体側の端部にて前記弁軸と接触し、前記弁軸の軸方向について前記穴部における前記軸受側の端部と前記弁体側の端部との間の長さは、前記弁軸が当該弁軸の軸方向に駆動する長さよりも大きいこと、が好ましい。 In the above aspect, the elastic sealing member includes a hole into which the valve shaft is inserted, and comes into contact with the valve shaft at the end of the hole on the valve body side in the axial direction of the valve shaft. Regarding the axial direction of the valve shaft, the length between the end on the bearing side and the end on the valve body side in the hole is larger than the length that the valve shaft drives in the axial direction of the valve shaft. , Are preferred.

この態様によれば、弾性シール部材のシール性や耐久性を維持できる。 According to this aspect, the sealing property and durability of the elastic sealing member can be maintained.

本開示のEGRバルブ装置によれば、コスト低減を図りながら、弾性シール部材のシール性を向上できる。 According to the EGR valve device of the present disclosure, the sealing property of the elastic sealing member can be improved while reducing the cost.

本実施形態のEGRバルブ装置を一部切断して示す正面図である。It is a front view which shows by cutting a part of the EGR valve device of this embodiment. 弁軸と軸受と弾性シール部材の外観図である。It is an external view of a valve shaft, a bearing, and an elastic seal member. 弁軸と軸受と弾性シール部材の断面図である。It is sectional drawing of a valve shaft, a bearing, and an elastic seal member. 軸受と弾性シール部材の断面図である。It is sectional drawing of a bearing and an elastic seal member. 弁軸を挿入する穴の形状を変更した軸受と弾性シール部材の断面図である。It is sectional drawing of the bearing which changed the shape of the hole which inserts a valve shaft, and the elastic seal member. 第1変形例の軸受と弾性シール部材の断面図である。It is sectional drawing of the bearing and elastic seal member of the 1st modification. 第2変形例の軸受と弾性シール部材の断面図である。It is sectional drawing of the bearing and elastic seal member of the 2nd modification. 第3変形例の軸受と弾性シール部材の断面図である。It is sectional drawing of the bearing and elastic seal member of the 3rd modification. 第4変形例の軸受と弾性シール部材の断面図である。It is sectional drawing of the bearing and elastic seal member of the 4th modification.

以下、本開示のEGRバルブ装置の実施形態について説明する。 Hereinafter, embodiments of the EGR valve device of the present disclosure will be described.

<EGRバルブ装置の全体の概要>
まず、本実施形態のEGRバルブ装置1の全体の概要について説明する。EGRバルブ装置1は、エンジン(不図示)から排気通路(不図示)へ排出される排気の一部をEGRガスとしてエンジンへ還元するために吸気通路(不図示)へ流すEGR通路(不図示)に設けられる。EGRバルブ装置1は、EGR通路におけるEGRガスの流量を調節するために使用される。
<Overview of EGR valve device>
First, the overall outline of the EGR valve device 1 of the present embodiment will be described. The EGR valve device 1 flows an EGR passage (not shown) to an intake passage (not shown) in order to return a part of the exhaust gas discharged from the engine (not shown) to the exhaust passage (not shown) as EGR gas to the engine. It is provided in. The EGR valve device 1 is used to regulate the flow rate of EGR gas in the EGR passage.

図1に示すように、EGRバルブ装置1は、ポペット式のバルブ構造を有し、EGRガスの流路2を備えるハウジング3と、流路2の中間に設けられた環状の弁座4と、弁座4に着座可能に設けられた略傘形状の弁体5と、弁体5が一端部に設けられた弁軸6と、弁軸6を当該弁軸6の軸方向(図1の上下方向)に弁体5と共に往復駆動するための駆動部7とを備える。駆動部7は、例えば、DCモータにより構成することができる。図1では、駆動部7以外を断面図により示す。弁座4は、ハウジング3とは別に形成され、流路2の途中に組み付けられる。ハウジング3は、例えばアルミ材や樹脂材により構成され、弁座4と弁体5は、例えば樹脂材や金属材により構成される。弁座4と弁体5の形状は一例である。この実施形態では、駆動部7の詳しい説明は省略する。 As shown in FIG. 1, the EGR valve device 1 has a poppet-type valve structure, a housing 3 having an EGR gas flow path 2, an annular valve seat 4 provided in the middle of the flow path 2, and an annular valve seat 4. A substantially umbrella-shaped valve body 5 provided so as to be seated on the valve seat 4, a valve shaft 6 provided with the valve body 5 at one end, and a valve shaft 6 in the axial direction of the valve shaft 6 (upper and lower in FIG. 1). A drive unit 7 for reciprocating with the valve body 5 is provided in the direction). The drive unit 7 can be configured by, for example, a DC motor. In FIG. 1, a cross-sectional view is shown except for the drive unit 7. The valve seat 4 is formed separately from the housing 3 and is assembled in the middle of the flow path 2. The housing 3 is made of, for example, an aluminum material or a resin material, and the valve seat 4 and the valve body 5 are made of, for example, a resin material or a metal material. The shapes of the valve seat 4 and the valve body 5 are examples. In this embodiment, detailed description of the drive unit 7 will be omitted.

図1に示すように、弁軸6は、駆動部7から下方へ伸び、ハウジング3に嵌め入れられる。弁軸6は弁座4の軸線と平行に配置される。弁体5は、弁軸6が往復駆動することにより、弁座4に対して着座(当接)及び離間して、流路2を開閉する。ハウジング3と弁軸6との間には、弁軸6を往復動可能に支持するための軸受8が設けられる。なお、軸受8の材質は、例えば樹脂や焼結金属である。ハウジング3と弁軸6との間には、両者3,6の間を封止(シール)するための弾性シール部材9が、軸受8の下端に設けられる。弾性シール部材9は、ゴムにより形成され、弁軸6に接触するリップ部10を備えている。この実施形態で、弁体5は弁座4の下側にて、弁座4に着座可能に配置される。なお、弾性シール部材9は、本開示の「弾性シール部材」の一例である。 As shown in FIG. 1, the valve shaft 6 extends downward from the drive unit 7 and is fitted into the housing 3. The valve shaft 6 is arranged parallel to the axis of the valve seat 4. The valve body 5 is seated (contacted) and separated from the valve seat 4 by the reciprocating drive of the valve shaft 6, and opens and closes the flow path 2. A bearing 8 for reciprocally supporting the valve shaft 6 is provided between the housing 3 and the valve shaft 6. The material of the bearing 8 is, for example, resin or sintered metal. An elastic sealing member 9 for sealing between the housing 3 and the valve shaft 6 is provided at the lower end of the bearing 8. The elastic sealing member 9 is made of rubber and includes a lip portion 10 that comes into contact with the valve shaft 6. In this embodiment, the valve body 5 is arranged so as to be seatable on the valve seat 4 under the valve seat 4. The elastic seal member 9 is an example of the "elastic seal member" of the present disclosure.

このような構成のEGRバルブ装置1は、駆動部7により弁軸6を弁体5と共に駆動させ、弁体5を弁座4に対し移動させる。これにより、弁座4と弁体5との間の開口面積(開度)が変化し、流路2におけるEGRガスの流量が調節される。 In the EGR valve device 1 having such a configuration, the valve shaft 6 is driven together with the valve body 5 by the drive unit 7, and the valve body 5 is moved with respect to the valve seat 4. As a result, the opening area (opening) between the valve seat 4 and the valve body 5 changes, and the flow rate of the EGR gas in the flow path 2 is adjusted.

<軸受と弾性シール部材について>
次に、本実施形態における軸受8と弾性シール部材9について説明する。
<Bearings and elastic seal members>
Next, the bearing 8 and the elastic seal member 9 in this embodiment will be described.

軸受8と弾性シール部材9が別体で設けられている場合、EGRバルブ装置1について、部品点数が多くなり、また、その体格が大きくなってしまう。 When the bearing 8 and the elastic sealing member 9 are provided separately, the number of parts of the EGR valve device 1 increases, and the body size of the EGR valve device 1 becomes large.

そこで、本実施形態のEGRバルブ装置1では、図2〜図4に示すように、軸受8と弾性シール部材9が一体に設けられる構造としている。具体的には、軸受8に弾性シール部材9が焼き付けにより一体化されている。これにより、EGRバルブ装置1について、部品点数の削減と、その体格の縮小化を図ることができる。また、軸受8に弾性シール部材9が一体化されているので、EGRバルブ装置1の組み立て時において、軸受8に弾性シール部材9を保持させる工程が不要になるので、組立工数に応じて発生するコストを低減できる。さらに、弾性シール部材9が軸受8に焼き付けにより組み付けられているので、弾性シール部材9を軸受8に密着させることができ、軸受8への弾性シール部材9の組み付け状態が安定する。なお、軸受8は、回転規制(弁軸6の回転の規制)の役割と、軸規制(弁軸6の径方向のガタの規制)の役割とが集約される構造になっている。 Therefore, as shown in FIGS. 2 to 4, the EGR valve device 1 of the present embodiment has a structure in which the bearing 8 and the elastic seal member 9 are integrally provided. Specifically, the elastic seal member 9 is integrated with the bearing 8 by baking. As a result, the number of parts of the EGR valve device 1 can be reduced and the physique of the EGR valve device 1 can be reduced. Further, since the elastic seal member 9 is integrated with the bearing 8, when assembling the EGR valve device 1, the step of holding the elastic seal member 9 on the bearing 8 becomes unnecessary, which occurs according to the assembly man-hours. The cost can be reduced. Further, since the elastic seal member 9 is assembled to the bearing 8 by baking, the elastic seal member 9 can be brought into close contact with the bearing 8, and the assembled state of the elastic seal member 9 to the bearing 8 is stable. The bearing 8 has a structure in which the role of rotation regulation (regulation of rotation of the valve shaft 6) and the role of shaft regulation (regulation of play in the radial direction of the valve shaft 6) are integrated.

本実施形態では、図4に示すように、軸受8の弁体5側(図4の下側)の端部であって、軸受8における弾性シール部材9が焼き付けにより取り付けられている焼き付け部11は、軸受8の軸方向(すなわち、中心軸CAの方向、図4の上下方向)に延びる管状部12を備えた管構造に形成されている。管状部12は、軸受8の中心軸CAを中心とする円筒状に形成されている。そして、弾性シール部材9は、管状部12の全体に密着するようにして、軸受8に焼き付けにより一体化されている。 In the present embodiment, as shown in FIG. 4, a baked portion 11 which is an end portion of the bearing 8 on the valve body 5 side (lower side of FIG. 4) and to which the elastic sealing member 9 of the bearing 8 is attached by baking. Is formed in a tubular structure including a tubular portion 12 extending in the axial direction of the bearing 8 (that is, the direction of the central axis CA, the vertical direction in FIG. 4). The tubular portion 12 is formed in a cylindrical shape centered on the central axis CA of the bearing 8. Then, the elastic sealing member 9 is integrated with the bearing 8 by baking so as to be in close contact with the entire tubular portion 12.

図4に示す例において、軸受8の焼き付け部11に形成される管構造は、2つの管状部12である外側管状部12Aと内側管状部12Bが、軸受8の中心軸CAを中心に同心円状に設けられる二重管構造である。そして、軸受8の径方向(図4の左右方向)について、外側に外側管状部12Aが設けられ、内側に内側管状部12Bが設けられている。また、軸受8の軸方向について、外側管状部12Aは、内側管状部12Bよりも長く形成されている。言い換えると、軸受8の軸方向について、外側管状部12Aの弁体5側(図4の下側)の端部が、内側管状部12Bの弁体5側の端部よりも、さらに弁体5側に突出している。 In the example shown in FIG. 4, in the pipe structure formed in the baked portion 11 of the bearing 8, the outer tubular portion 12A and the inner tubular portion 12B, which are two tubular portions 12, are concentric with respect to the central axis CA of the bearing 8. It is a double pipe structure provided in. Then, in the radial direction of the bearing 8 (left-right direction in FIG. 4), the outer tubular portion 12A is provided on the outer side, and the inner tubular portion 12B is provided on the inner side. Further, in the axial direction of the bearing 8, the outer tubular portion 12A is formed longer than the inner tubular portion 12B. In other words, in the axial direction of the bearing 8, the end of the outer tubular portion 12A on the valve body 5 side (lower side of FIG. 4) is further than the end of the inner tubular portion 12B on the valve body 5 side. It protrudes to the side.

このように、弾性シール部材9を焼き付ける箇所の軸受8の形状を二重管構造にして、この二重管構造の外側管状部12Aの剛性により、弾性シール部材9の外径側に緊迫力(すなわち、ハウジング3との密着力及び保持力)を確保できる。そして、そのうえで、リップ部10の弾性により、弁軸6との密着性と封止性を確保できる。そのため、弾性シール部材9(のリップ部10)によるハウジング3と弁軸6との間の封止性、すなわち、弾性シール部材9のシール性が向上する。 In this way, the shape of the bearing 8 where the elastic seal member 9 is baked is made into a double pipe structure, and due to the rigidity of the outer tubular portion 12A of this double pipe structure, a tense force (tension force) is applied to the outer diameter side of the elastic seal member 9. That is, the adhesion and holding force with the housing 3) can be secured. On top of that, the elasticity of the lip portion 10 can ensure the adhesion and sealing property with the valve shaft 6. Therefore, the sealing property between the housing 3 and the valve shaft 6 by the elastic sealing member 9 (lip portion 10), that is, the sealing property of the elastic sealing member 9 is improved.

また、二重管構造として外側管状部12Aと内側管状部12Bを設けることにより、弾性シール部材9の径方向の内側と外側の両方に緊迫力を確保できる。また、外側管状部12Aの全周と内側管状部12Bの全周に弾性シール部材9を密着させることができるので、軸受8と弾性シール部材9の接着面積を大きくできる。また、弾性シール部材9が焼き付け時に二重管構造の内空間(すなわち、外側管状部12Aと内側管状部12Bの間の空間)にも充填されるので、軸受8に対して弾性シール部材9の高い保持性を得ることができる。 Further, by providing the outer tubular portion 12A and the inner tubular portion 12B as the double pipe structure, it is possible to secure a tense force on both the inner and outer sides of the elastic sealing member 9 in the radial direction. Further, since the elastic seal member 9 can be brought into close contact with the entire circumference of the outer tubular portion 12A and the entire circumference of the inner tubular portion 12B, the adhesive area between the bearing 8 and the elastic seal member 9 can be increased. Further, since the elastic seal member 9 is also filled in the inner space of the double pipe structure (that is, the space between the outer tubular portion 12A and the inner tubular portion 12B) at the time of baking, the elastic seal member 9 of the elastic seal member 9 with respect to the bearing 8. High retention can be obtained.

また、弾性シール部材9は、弁軸6が挿入される弁軸挿入穴13(図4参照)を備えている。ここで、図2と図3に示すように、弁軸6における軸受8に挿入される第1部位6aは二面幅形状(すなわち、周方向について2つの異なる径の部分が存在する形状)に形成され、円柱形状の第2部位6bよりも径が大きく形成されている。なお、第1部位6aは、第2部位6bよりも駆動部7側(図2や図3の上側)に形成されている。また、軸受8の弁軸挿入穴14(図4参照)は弁軸6の第1部位6aに対応する形状に形成され、図2と図3に示すように、弁軸6の第1部位6aは軸受8の弁軸挿入穴14の弾性シール部材9側の端部まで達している。さらに、弁軸挿入穴13は、本開示の「穴部」の一例である。 Further, the elastic seal member 9 includes a valve shaft insertion hole 13 (see FIG. 4) into which the valve shaft 6 is inserted. Here, as shown in FIGS. 2 and 3, the first portion 6a inserted into the bearing 8 in the valve shaft 6 has a width across flats (that is, a shape in which two different diameter portions exist in the circumferential direction). It is formed and has a diameter larger than that of the cylindrical second portion 6b. The first portion 6a is formed on the drive unit 7 side (upper side of FIGS. 2 and 3) with respect to the second portion 6b. Further, the valve shaft insertion hole 14 (see FIG. 4) of the bearing 8 is formed in a shape corresponding to the first portion 6a of the valve shaft 6, and as shown in FIGS. 2 and 3, the first portion 6a of the valve shaft 6 is formed. Reached to the end of the valve shaft insertion hole 14 of the bearing 8 on the elastic seal member 9 side. Further, the valve shaft insertion hole 13 is an example of the "hole portion" of the present disclosure.

そこで、図2や図3に示す状態から駆動部7により弁軸6が当該弁軸6の軸方向について弁体5側(図4の下側)に駆動すると、弁軸6の第1部位6aが弾性シール部材9の弁軸挿入穴13の内部に入り込んで、弁軸挿入穴13の弁体5側(図4の下側)の端部13bにあるリップ部10の先端10aまで達するおそれがある。そうすると、円周状に形成される弾性シール部材9のリップ部10の先端10aが、弁軸6の二面幅形状に形成される第1部位6aに接触することになり、弾性シール部材9のシール性や耐久性が低下するおそれがある。 Therefore, when the valve shaft 6 is driven toward the valve body 5 side (lower side in FIG. 4) by the drive unit 7 from the state shown in FIGS. 2 and 3 in the axial direction of the valve shaft 6, the first portion 6a of the valve shaft 6 is driven. May enter the inside of the valve shaft insertion hole 13 of the elastic seal member 9 and reach the tip 10a of the lip portion 10 at the end 13b of the valve shaft insertion hole 13 on the valve body 5 side (lower side of FIG. 4). be. Then, the tip 10a of the lip portion 10 of the elastic seal member 9 formed in a circumferential shape comes into contact with the first portion 6a formed in the width across flats of the valve shaft 6, and the elastic seal member 9 Sealability and durability may decrease.

そこで、本実施形態では、弁軸6のストローク分(すなわち、駆動長さ分)を、弾性シール部材9側で逃がすようにしている。具体的には、弁軸6の軸方向について、弁軸挿入穴13における軸受8側の端部13aと弁体5側の端部13bの間の長さLa(図4参照)は、弁軸6のストロークの長さLs(すなわち、弁軸6が当該弁軸6の軸方向に駆動する長さ)(図3参照)よりも大きい。 Therefore, in the present embodiment, the stroke portion of the valve shaft 6 (that is, the drive length portion) is released on the elastic seal member 9 side. Specifically, in the axial direction of the valve shaft 6, the length La (see FIG. 4) between the end portion 13a on the bearing 8 side and the end portion 13b on the valve body 5 side in the valve shaft insertion hole 13 is the valve shaft. It is larger than the stroke length Ls of 6 (that is, the length that the valve shaft 6 drives in the axial direction of the valve shaft 6) (see FIG. 3).

これにより、弁軸6が当該弁軸6の軸方向に駆動しても、弁軸6の第1部位6aが弁軸挿入穴13の弁体5側(図4の下側)の端部13bにあるリップ部10の先端10aに達しないようにすることができる。そのため、弾性シール部材9のリップ部10の先端10aが弁軸6の第1部位6aに接触しないようにして第2部位6bに接触するように維持できるので、弾性シール部材9のシール性や耐久性が維持される。 As a result, even if the valve shaft 6 is driven in the axial direction of the valve shaft 6, the first portion 6a of the valve shaft 6 is the end portion 13b of the valve shaft insertion hole 13 on the valve body 5 side (lower side in FIG. 4). It is possible to prevent the tip 10a of the lip portion 10 from reaching the tip 10a. Therefore, the tip 10a of the lip portion 10 of the elastic sealing member 9 can be maintained so as not to come into contact with the first portion 6a of the valve shaft 6 and to come into contact with the second portion 6b, so that the sealing property and durability of the elastic sealing member 9 can be maintained. Sex is maintained.

なお、軸受8の弁軸挿入穴14の形状は図5に示すようであってもよい。図5に示すように、軸受8の弁軸挿入穴14は、弁軸6の第1部位6aが挿入される二面幅形状の第1部位14aと、弁軸6における第2部位6bが挿入される円筒状の第2部位14bとを備えている。この例においては、弁軸6が当該弁軸6の軸方向に駆動しても、弁軸6の第1部位6aが弾性シール部材9のリップ部10の先端10aに達し難くなるので、長さLaを図4よりもさらに短くすることが可能である。 The shape of the valve shaft insertion hole 14 of the bearing 8 may be as shown in FIG. As shown in FIG. 5, in the valve shaft insertion hole 14 of the bearing 8, the first portion 14a having a width across flats into which the first portion 6a of the valve shaft 6 is inserted and the second portion 6b in the valve shaft 6 are inserted. It is provided with a cylindrical second portion 14b to be formed. In this example, even if the valve shaft 6 is driven in the axial direction of the valve shaft 6, it is difficult for the first portion 6a of the valve shaft 6 to reach the tip 10a of the lip portion 10 of the elastic sealing member 9, so that the length is long. It is possible to make La even shorter than in FIG.

<本実施形態の作用効果>
以上のように本実施形態のEGRバルブ装置1は、軸受8に弾性シール部材9が焼き付けにより一体化されている。
<Action and effect of this embodiment>
As described above, in the EGR valve device 1 of the present embodiment, the elastic seal member 9 is integrated with the bearing 8 by baking.

これにより、EGRバルブ装置1について、EGRバルブ装置1の部品点数の削減、及び組付け工程の削減によって、コスト低減を図ることができる。また、弾性シール部材9の形状の自由度が上がり、弁軸6に対してより密着するような形状とすることができる。したがって、コスト低減を図りながら、弾性シール部材9のシール性を向上できる。 As a result, the cost of the EGR valve device 1 can be reduced by reducing the number of parts of the EGR valve device 1 and the assembly process. Further, the degree of freedom in the shape of the elastic seal member 9 is increased, and the shape can be made so as to be in close contact with the valve shaft 6. Therefore, the sealing property of the elastic sealing member 9 can be improved while reducing the cost.

また、軸受8における弾性シール部材9の焼き付け部11は、軸受8の軸方向に延びる管状部12を備えた管構造に形成されている。 Further, the baked portion 11 of the elastic sealing member 9 in the bearing 8 is formed in a pipe structure including a tubular portion 12 extending in the axial direction of the bearing 8.

これにより、管状部12の外側管状部12Aの剛性により、弾性シール部材9の外径側に緊迫力(すなわち、ハウジング3との密着力及び保持力)を確保できる。そして、そのうえで、リップ部10の弾性により、弁軸6との密着性と封止性を確保できる。そのため、弾性シール部材9のシール性が向上する。 As a result, due to the rigidity of the outer tubular portion 12A of the tubular portion 12, a tense force (that is, an adhesion force and a holding force with the housing 3) can be secured on the outer diameter side of the elastic sealing member 9. On top of that, the elasticity of the lip portion 10 can ensure the adhesion and sealing property with the valve shaft 6. Therefore, the sealing property of the elastic sealing member 9 is improved.

また、管構造は、2つの管状部12である外側管状部12Aと内側管状部12Bが軸受8の中心軸CAを中心に同心円状に設けられる2重管構造である。 Further, the pipe structure is a double pipe structure in which the outer tubular portion 12A and the inner tubular portion 12B, which are the two tubular portions 12, are provided concentrically around the central axis CA of the bearing 8.

このようにして、弾性シール部材9の径方向の内側と外側の両方に緊迫力を確保できる。そのため、より効果的に、弾性シール部材9のシール性が向上する。また、弾性シール部材9が焼き付け時に二重管構造の内空間(すなわち、外側管状部12Aと内側管状部12Bの間の空間)にも充填されるので、軸受8に対して弾性シール部材9の高い保持性を得ることができる。 In this way, a tense force can be ensured both inside and outside of the elastic seal member 9 in the radial direction. Therefore, the sealing property of the elastic sealing member 9 is improved more effectively. Further, since the elastic seal member 9 is also filled in the inner space of the double pipe structure (that is, the space between the outer tubular portion 12A and the inner tubular portion 12B) at the time of baking, the elastic seal member 9 of the elastic seal member 9 with respect to the bearing 8. High retention can be obtained.

また、弁軸6の軸方向について弁軸挿入穴13における軸受8側の端部13aと弁体5側の端部13bとの間の長さLaは、弁軸6が当該弁軸6の軸方向に駆動する長さであるストロークの長さLsよりも大きい。 Further, in the axial direction of the valve shaft 6, the length La between the end portion 13a on the bearing 8 side and the end portion 13b on the valve body 5 side in the valve shaft insertion hole 13 is such that the valve shaft 6 is the shaft of the valve shaft 6. It is larger than the stroke length Ls, which is the length to drive in the direction.

このようにして、弾性シール部材9のシール性や耐久性を維持できる。 In this way, the sealing property and durability of the elastic sealing member 9 can be maintained.

<変形例について>
また、軸受8と弾性シール部材9については、以下のような変形例も考えられる。
<About modification>
Further, with respect to the bearing 8 and the elastic seal member 9, the following deformation examples can be considered.

第1変形例として、例えば、図6に示すように、管構造は、1つの管状部12が形成される構造となっており、この管状部12に軸受8の径方向の内側に突出する凸状部15が設けられる構造であってもよい。このようにして、凸状部15が設けられることにより、軸受8と弾性シール部材9の接着面積を大きくできるため、軸受8と弾性シール部材9をより密着させることができる。 As a first modification, for example, as shown in FIG. 6, the pipe structure has a structure in which one tubular portion 12 is formed, and the tubular portion 12 is convex inward in the radial direction of the bearing 8. The structure may be such that the shape portion 15 is provided. By providing the convex portion 15 in this way, the adhesive area between the bearing 8 and the elastic seal member 9 can be increased, so that the bearing 8 and the elastic seal member 9 can be brought into close contact with each other.

第2変形例として、例えば、図7に示すように、管構造は、1つの管状部12が形成される構造となっており、この管状部12の軸受8の径方向の内側にて、軸受8の軸方向の弁体5側(すなわち、弾性シール部材9側)に突出する円筒状の凸状部16と円筒状の凸状部17が設けられる構造であってもよい。このようにして、凸状部16と凸状部17が設けられることにより、軸受8と弾性シール部材9の接着面積を大きくできるため、軸受8と弾性シール部材9をより密着させることができる。なお、この第2変形例は、言い換えれば、管構造は、管状部12と凸状部16と凸状部17が同心円状に三重に設けられる三重管構造となっているとも言える。 As a second modification, for example, as shown in FIG. 7, the pipe structure has a structure in which one tubular portion 12 is formed, and a bearing is formed inside the bearing 8 of the tubular portion 12 in the radial direction. The structure may be such that a cylindrical convex portion 16 and a cylindrical convex portion 17 projecting from the valve body 5 side (that is, the elastic seal member 9 side) in the axial direction of 8 are provided. By providing the convex portion 16 and the convex portion 17 in this way, the adhesive area between the bearing 8 and the elastic seal member 9 can be increased, so that the bearing 8 and the elastic seal member 9 can be brought into close contact with each other. In other words, in this second modification, it can be said that the pipe structure is a triple pipe structure in which the tubular portion 12, the convex portion 16 and the convex portion 17 are concentrically provided in triplets.

第3変形例として、例えば、図8に示すように、管構造は、1つの管状部12が形成される構造となっており、この管状部12に、軸受8の径方向について管状部12を貫通する貫通穴18が設けられる構造であってもよい。この貫通穴18は、管状部12において、管状部12の周方向に1つまたは複数設けられている。このようにして、貫通穴18が設けられることにより、軸受8と弾性シール部材9の接着面積を大きくできるため、軸受8と弾性シール部材9をより密着させることができる。 As a third modification, for example, as shown in FIG. 8, the pipe structure has a structure in which one tubular portion 12 is formed, and the tubular portion 12 is provided on the tubular portion 12 in the radial direction of the bearing 8. A structure may be provided in which a through hole 18 is provided. The through hole 18 is provided in the tubular portion 12 in one or more in the circumferential direction of the tubular portion 12. By providing the through hole 18 in this way, the adhesive area between the bearing 8 and the elastic seal member 9 can be increased, so that the bearing 8 and the elastic seal member 9 can be brought into close contact with each other.

第4変形例として、例えば、図9に示すように、管構造は、1つの管状部12が形成される構造となっており、この管状部12の軸受8の径方向の内側にねじ形状部19が設けられる構造であってもよい。このようにして、ねじ形状部19が設けられることにより、軸受8と弾性シール部材9の接着面積を大きくできるため、軸受8と弾性シール部材9をより密着させることができる。 As a fourth modification, for example, as shown in FIG. 9, the pipe structure has a structure in which one tubular portion 12 is formed, and a screw-shaped portion is formed inside the bearing 8 of the tubular portion 12 in the radial direction. The structure may be such that 19 is provided. By providing the screw-shaped portion 19 in this way, the adhesive area between the bearing 8 and the elastic seal member 9 can be increased, so that the bearing 8 and the elastic seal member 9 can be brought into close contact with each other.

なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。 It should be noted that the above-described embodiment is merely an example and does not limit the present disclosure in any way, and it goes without saying that various improvements and modifications can be made without departing from the gist thereof.

例えば、管構造は、複数管構造として、2重管構造に限らず、3つ以上の管状部12が軸受8の中心軸CAを中心に同心円状に設けられる3重管以上の構造であってもよい。 For example, the pipe structure is not limited to the double pipe structure as a plurality of pipe structures, and is a structure of triple pipes or more in which three or more tubular portions 12 are concentrically provided about the central axis CA of the bearing 8. May be good.

1 EGRバルブ装置
2 流路
3 ハウジング
4 弁座
5 弁体
6 弁軸
6a 第1部位
6b 第2部位
7 駆動部
8 軸受
9 弾性シール部材
10 リップ部
10a 先端
11 焼き付け部
12 管状部
12A 外側管状部
12B 内側管状部
13 (弾性シール部材の)弁軸挿入穴
13a 端部
13b 端部
14 (軸受の)弁軸挿入穴
14a 第1部位
14b 第2部位
15 凸状部
16 凸状部
17 凸状部
18 貫通穴
19 ねじ形状部
CA (軸受の)中心軸
La (弁軸挿入穴の)長さ
Ls (弁軸のストロークの)長さ
1 EGR valve device 2 Flow path 3 Housing 4 Valve seat 5 Valve body 6 Valve shaft 6a 1st part 6b 2nd part 7 Drive part 8 Bearing 9 Elastic seal member 10 Lip part 10a Tip 11 Burning part 12 Tubular part 12A Outer tubular part 12B Inner tubular part 13 (elastic seal member) valve shaft insertion hole 13a End part 13b End part 14 (bearing) valve shaft insertion hole 14a 1st part 14b 2nd part 15 Convex part 16 Convex part 17 Convex part 18 Through hole 19 Thread shape CA (bearing) Central shaft La (valve shaft insertion hole) length Ls (valve shaft stroke) length

Claims (4)

EGRガスの流路を備えるハウジングと、
前記流路を開閉する弁体と、
前記弁体が設けられた弁軸と、
前記ハウジングと前記弁軸との間に設けられ、前記弁軸を支持する軸受と、
前記ハウジングと前記弁軸との間に設けられ、前記ハウジングと前記弁軸との間を封止する弾性シール部材と、
前記弁軸を当該弁軸の軸方向に駆動させる駆動部と、
を有するEGRバルブ装置において、
前記軸受に前記弾性シール部材が焼き付けにより一体化されていること、
を特徴とするEGRバルブ装置。
A housing with an EGR gas flow path and
A valve body that opens and closes the flow path,
The valve shaft provided with the valve body and
A bearing provided between the housing and the valve shaft and supporting the valve shaft,
An elastic sealing member provided between the housing and the valve shaft and sealing between the housing and the valve shaft.
A drive unit that drives the valve shaft in the axial direction of the valve shaft,
In the EGR valve device having
The elastic sealing member is integrated with the bearing by baking.
EGR valve device characterized by.
請求項1のEGRバルブ装置において、
前記軸受における前記弾性シール部材の焼き付け部は、前記軸受の軸方向に延びる管状部を備えた管構造に形成されていること、
を特徴とするEGRバルブ装置。
In the EGR valve device of claim 1,
The baked portion of the elastic sealing member in the bearing is formed in a pipe structure having a tubular portion extending in the axial direction of the bearing.
EGR valve device characterized by.
請求項2のEGRバルブ装置において、
前記管構造は、複数の前記管状部が前記軸受の中心軸を中心に同心円状に設けられる複数管構造であること、
を特徴とするEGRバルブ装置。
In the EGR valve device of claim 2,
The pipe structure is a plurality of pipe structures in which a plurality of the tubular portions are provided concentrically around the central axis of the bearing.
EGR valve device characterized by.
請求項1乃至3のいずれか1つのEGRバルブ装置において、
前記弾性シール部材は、前記弁軸が挿入される穴部を備え、前記弁軸の軸方向について前記穴部の前記弁体側の端部にて前記弁軸と接触し、
前記弁軸の軸方向について前記穴部における前記軸受側の端部と前記弁体側の端部との間の長さは、前記弁軸が当該弁軸の軸方向に駆動する長さよりも大きいこと、
を特徴とするEGRバルブ装置。
In the EGR valve device according to any one of claims 1 to 3.
The elastic seal member includes a hole into which the valve shaft is inserted, and comes into contact with the valve shaft at the end of the hole on the valve body side in the axial direction of the valve shaft.
Regarding the axial direction of the valve shaft, the length between the end on the bearing side and the end on the valve body side in the hole is larger than the length at which the valve shaft is driven in the axial direction of the valve shaft. ,
EGR valve device characterized by.
JP2020002036A 2020-01-09 2020-01-09 EGR valve device Pending JP2021110279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020002036A JP2021110279A (en) 2020-01-09 2020-01-09 EGR valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002036A JP2021110279A (en) 2020-01-09 2020-01-09 EGR valve device

Publications (1)

Publication Number Publication Date
JP2021110279A true JP2021110279A (en) 2021-08-02

Family

ID=77059683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002036A Pending JP2021110279A (en) 2020-01-09 2020-01-09 EGR valve device

Country Status (1)

Country Link
JP (1) JP2021110279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022200643A1 (en) 2022-01-20 2023-07-20 Minebea Mitsumi Inc. Device for monitoring individual cell voltages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181211U (en) * 1983-05-23 1984-12-03 エヌオーケー株式会社 Valve guide device
JPH0484919U (en) * 1990-11-30 1992-07-23
WO2010018650A1 (en) * 2008-08-13 2010-02-18 三菱電機株式会社 Exhaust gas circulation valve device
JP2017223292A (en) * 2016-06-15 2017-12-21 愛三工業株式会社 Flow control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181211U (en) * 1983-05-23 1984-12-03 エヌオーケー株式会社 Valve guide device
JPH0484919U (en) * 1990-11-30 1992-07-23
WO2010018650A1 (en) * 2008-08-13 2010-02-18 三菱電機株式会社 Exhaust gas circulation valve device
JP2017223292A (en) * 2016-06-15 2017-12-21 愛三工業株式会社 Flow control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022200643A1 (en) 2022-01-20 2023-07-20 Minebea Mitsumi Inc. Device for monitoring individual cell voltages

Similar Documents

Publication Publication Date Title
JP5995989B2 (en) Exhaust turbocharger with wastegate valve and wastegate valve
US9297297B2 (en) Washer for reducing noise and system for reducing noise of wastegate valve apparatus by using the same
JP5197722B2 (en) Water pump
KR102622703B1 (en) Compressor recirculation valve with noise-suppressing muffler
US10816100B2 (en) Sealing member for a multi-direction changeover valve and a multi-direction changeover valve including the sealing member
JP2021110279A (en) EGR valve device
JP2017030138A (en) Robot arm
JP5243288B2 (en) Bearing device
JP2008106823A (en) Seal structure
US10753484B2 (en) Pin-fastening structure for valve shaft and valve body
KR101476518B1 (en) Valve element of butterfly valve
JP4504955B2 (en) Plug hole gasket
JP2017223292A (en) Flow control valve
JP2013185541A (en) Egr valve
JP6701436B2 (en) Butterfly valve and exhaust gas recirculation valve
JP5966876B2 (en) Intake control valve
WO2014142110A1 (en) Valve device
JP4750078B2 (en) Flow control valve
JP2007321605A (en) Seal structure of head cover
US10184362B2 (en) Intake device of internal combustion engine
JP2009275572A (en) Discharge valve device for compressor
JP2013060844A (en) Intake device of internal combustion engine
JP3389542B2 (en) Seat ring shaft sealing device
JP2022028357A (en) Valve device
JP6207994B2 (en) Poppet valve and valve assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926