JP2021108649A - Fertilizer application amount derivation device and fertilizer application amount derivation method - Google Patents

Fertilizer application amount derivation device and fertilizer application amount derivation method Download PDF

Info

Publication number
JP2021108649A
JP2021108649A JP2020180672A JP2020180672A JP2021108649A JP 2021108649 A JP2021108649 A JP 2021108649A JP 2020180672 A JP2020180672 A JP 2020180672A JP 2020180672 A JP2020180672 A JP 2020180672A JP 2021108649 A JP2021108649 A JP 2021108649A
Authority
JP
Japan
Prior art keywords
fertilizer
amount
fertilizer application
application amount
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020180672A
Other languages
Japanese (ja)
Other versions
JP6916558B2 (en
Inventor
洋 中野
Hiroshi Nakano
洋 中野
良 田中
Makoto Tanaka
良 田中
秀記 大段
Hideki Odan
秀記 大段
敏 森田
Satoshi Morita
敏 森田
森林 官
Senlin Guan
森林 官
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Publication of JP2021108649A publication Critical patent/JP2021108649A/en
Application granted granted Critical
Publication of JP6916558B2 publication Critical patent/JP6916558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To derive an appropriate fertilizer application amount based on slow release fertilizer being supplied in fertilization with respect to a fertilizer application amount of additional fertilization to be carried out after having supplied slow release fertilizer in one phase.SOLUTION: A fertilizer application amount derivation device 1 acquires the accumulated temperature before additional fertilization after initial fertilization of this term, derives this term fertilizer remaining amount being a remaining amount of slow release fertilizer or a remaining amount difference being the difference of the remaining amount of the slow release fertilizer between an average year and this term on the basis of the acquired accumulated temperature, derives a fertilizer application amount at additional fertilization by reflecting the derived this term fertilizer remaining amount or the remaining amount difference, and thereby derives the additional fertilization fertilizer application amount reflecting the remaining amount of fertilizer given at the beginning of this term.SELECTED DRAWING: Figure 1

Description

本発明は、農作物についての追肥時の施肥量を導出する施肥量導出装置および施肥量導出方法に関する。 The present invention relates to a fertilizer application amount derivation device for deriving a fertilizer application amount at the time of top dressing of agricultural products and a fertilizer application amount derivation method.

従来、農作物の栽培に際して行われる肥料の供給に関して、肥料の量に関する有益な情報を提供する技術が存在する。例えば、特許文献1には、今期生育中の稲(水稲)の葉色および茎数を測定し、葉色および茎数から吸収窒素量を求め、吸収窒素量から既に投入した窒素施用量を減算して地力窒素量を求め、地力窒素量と事前に設定された適正窒素量から次期の稲作に必要な窒素施用量(施肥量)を求める技術が記載されている。 Conventionally, there is a technique for providing useful information on the amount of fertilizer regarding the supply of fertilizer performed when cultivating crops. For example, in Patent Document 1, the leaf color and the number of stems of rice (paddy rice) growing in this term are measured, the amount of absorbed nitrogen is obtained from the leaf color and the number of stems, and the amount of nitrogen applied already added is subtracted from the amount of absorbed nitrogen. A technique for obtaining the amount of nitrogen in the soil and the amount of nitrogen applied (fertilizer application amount) required for the next rice cultivation from the amount of nitrogen in the soil and the appropriate amount of nitrogen set in advance is described.

特開2018−82648号公報JP-A-2018-82648

ところで稲作、その他の農作物の栽培では、1つの期の中で緩効性肥料を施肥した後に追肥が行われる場合がある。例えば稲作では、緩効性肥料の施肥後、幼穂の形成時期から出穂時期までの所定のタイミングで穂肥と呼ばれる追肥が行われる場合がある。この追肥時に供給される肥料の量は、農作物の品質および収量に大きな影響を与えるため、1つの期の中で緩効性肥料の施肥後に行われる追肥時の施肥量について適切な量を決定することが従来から求められていた。特に施肥時に緩効性肥料を供給するため、この緩効性肥料の養分の溶出に関する要素を踏まえた適切な施肥量を決定することが求められていた。なお、特許文献1に記載の技術は、今期の農作物の栽培に関する要素に基づいて次期の施肥量を求めるものであり、また緩効性肥料の養分の溶出に関する要素を考慮した技術に関して知見を提供するものではなく、このような要求に応えることはできない。 By the way, in rice cultivation and cultivation of other crops, additional fertilizer may be applied after applying slow-release fertilizer in one period. For example, in rice cultivation, after applying a slow-release fertilizer, topdressing called panicle fertilizer may be performed at a predetermined timing from the ear formation time to the heading time. Since the amount of fertilizer supplied at the time of top dressing has a great influence on the quality and yield of crops, an appropriate amount is determined for the amount of fertilizer applied at the time of top dressing performed after fertilization of slow-release fertilizer in one period. Has been required in the past. In particular, since slow-release fertilizer is supplied at the time of fertilizer application, it has been required to determine an appropriate amount of fertilizer application based on factors related to nutrient elution of the slow-release fertilizer. The technique described in Patent Document 1 is to obtain the amount of fertilizer applied in the next term based on the factors related to the cultivation of agricultural products in the current term, and also provides knowledge on the technique considering the factors related to the elution of nutrients in slow-release fertilizer. It does not do, and cannot meet such demands.

本発明は、このような問題を解決するために成されたものであり、1つの期の中で緩効性肥料を供給した後に行われる追肥の施肥量に関して、施肥時に緩効性肥料が供給されることを踏まえた適切な施肥量を決定できるようにすることを目的とする。 The present invention has been made to solve such a problem, and the slow-release fertilizer is supplied at the time of fertilization with respect to the amount of top-dressing fertilizer applied after the slow-release fertilizer is supplied in one period. The purpose is to be able to determine the appropriate amount of fertilizer to be applied.

上記した課題を解決するために、本発明では、今期の初期の施肥後から追肥前に至るまでの積算温度を取得し、取得した積算温度に基づいて、緩効性肥料の残存量である今期肥料残存量または平年と今期との緩効性肥料の残存量の差である残存量差を導出し、導出した今期肥料残存量または残存量差を反映して追肥時施肥量を導出するようにしている。 In order to solve the above-mentioned problems, in the present invention, the integrated temperature from the initial fertilizer application to the pre-fertilizer addition in the current period is acquired, and based on the acquired integrated temperature, the residual amount of slow-release fertilizer is obtained in the current period. The difference in the residual amount of fertilizer or the difference in the residual amount of slow-release fertilizer between the normal year and the current term is derived, and the amount of fertilizer applied at the time of top dressing is derived by reflecting the derived residual amount of fertilizer in the current term or the difference in the residual amount. ing.

緩効性肥料は、施肥後の積算温度によって養分溶出量が変化し、初期の施肥時に供給した緩効性肥料の量を一定とすると、施肥後の積算温度によって土壌に残存する肥料の量が変化する。更に積算温度と養分溶出量とには一定の関係性があり、積算温度に基づいて養分溶出量を導出することが可能である。そして、上記のように構成した本発明によれば、今期の初期の施肥後から追肥前に至るまでの積算温度に基づいて、追肥時における緩効性肥料の残存量、または、平年と今期との緩効性肥料の残存量の差が求められた上で、この残存量或いはこの差が反映されて追肥時の施肥量が導出される。このため、初期の施肥時に緩効性肥料が供給されるという事情、および、追肥時における肥料の残存の状況を踏まえた適切な施肥量を導出できる。 As for slow-release fertilizer, the amount of nutrient elution changes depending on the integrated temperature after fertilization, and if the amount of slow-release fertilizer supplied at the time of initial fertilization is constant, the amount of fertilizer remaining in the soil depends on the integrated temperature after fertilization. Change. Furthermore, there is a certain relationship between the integrated temperature and the nutrient elution amount, and it is possible to derive the nutrient elution amount based on the integrated temperature. Then, according to the present invention configured as described above, the residual amount of slow-release fertilizer at the time of top dressing, or normal and this term, based on the integrated temperature from the initial fertilizer application to the pre-fertilizer application in this term. After obtaining the difference in the residual amount of the slow-release fertilizer, the residual amount or the difference is reflected to derive the fertilizer application amount at the time of top dressing. Therefore, it is possible to derive an appropriate amount of fertilizer application based on the situation that slow-release fertilizer is supplied at the time of initial fertilizer application and the state of residual fertilizer at the time of topdressing.

本発明の第1実施形態に係る施肥量導出装置の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the fertilizer application amount derivation apparatus which concerns on 1st Embodiment of this invention. 測定タイミングにおけるNDVIと追肥時の施肥量との関係を示す図である。It is a figure which shows the relationship between the NDVI at the measurement timing and the fertilizer application amount at the time of top dressing. 窒素系の緩効性肥料について、積算温度と単位面積当たりの窒素溶出量との関係を示す図である。It is a figure which shows the relationship between the integrated temperature and the amount of nitrogen elution per unit area about the nitrogen-based slow-release fertilizer. 本発明の第1実施形態に係る施肥量導出装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the fertilizer application amount derivation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る施肥量導出装置の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the fertilizer application amount derivation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る施肥量導出装置の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the fertilizer application amount derivation apparatus which concerns on 3rd Embodiment of this invention.

<第1実施形態>
以下、本発明の第1実施形態を図面に基づいて説明する。図1は、本実施形態に係る施肥量導出装置1の機能構成例を示すブロック図である。施肥量導出装置1は、稲作に関して、追肥(追肥についての詳細は後述)時に施す肥料の量(以下「追肥時施肥量」という)を導出し、追肥時施肥量を示す情報をユーザに提供する装置である。ユーザは、追肥にあたって施肥量導出装置1により提供された追肥時施肥量を示す情報を参考にして、実際に施す肥料の量を適切に決定することができる。
<First Embodiment>
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a functional configuration example of the fertilizer application amount derivation device 1 according to the present embodiment. The fertilizer application amount derivation device 1 derives the amount of fertilizer to be applied at the time of top dressing (details of the top dressing will be described later) (hereinafter referred to as “the amount of fertilizer applied at the time of top dressing”), and provides the user with information indicating the amount of fertilizer applied at the time of top dressing. It is a device. The user can appropriately determine the amount of fertilizer to be actually applied by referring to the information indicating the amount of fertilizer applied at the time of topdressing provided by the fertilizer amount derivation device 1 for topdressing.

なお、以下の説明では、対象とする稲、稲作について、稲の品種や、稲作が行われる環境(地域(寒冷地域や、温暖地域、乾燥地域等)、標高、圃場の規模)、稲作の方法、肥料の種類、その他の稲の生育に影響を与える外部的な要素は共通しているものとする。従って、施肥量導出装置1により導出された追肥時施肥量は、特定の環境で特定の方法により栽培される特定の品種の稲について、特定の種類の肥料を施す場合に適切な施肥量ということになる。また、以下の説明では、説明の便宜のため、施肥量導出装置1は、1つの圃場を対象として追肥時施肥量を導出するものとする。ただし、まとまった複数の圃場を対象としてもよいことおよび圃場の一部の領域を対象としてもよいことは勿論である。また、本実施形態で「施肥量」という場合、特に説明がない限り単位面積あたりの肥料の量を意味する。 In the following explanation, regarding the target rice and rice cultivation, the rice varieties, the environment in which the rice is cultivated (regions (cold regions, warm regions, dry regions, etc.), altitude, scale of the field), and the method of rice cultivation , The type of fertilizer, and other external factors that affect the growth of rice shall be common. Therefore, the fertilizer application amount at the time of topdressing derived by the fertilizer application amount derivation device 1 is an appropriate fertilizer application amount when applying a specific type of fertilizer to a specific variety of rice cultivated by a specific method in a specific environment. become. Further, in the following description, for convenience of explanation, the fertilizer application amount derivation device 1 shall derive the fertilizer application amount at the time of top dressing for one field. However, it goes without saying that a plurality of cohesive fields may be targeted and a part of the field may be targeted. Further, the term "fertilizer application amount" in the present embodiment means the amount of fertilizer per unit area unless otherwise specified.

本実施形態において、「初期施肥」および「追肥」とは以下を意味する。すなわち、一般にある1つの期において、稲は、田植えによって苗代から圃場に移植された後、分げつ期→幼穂形成期→出穂期→開花・受粉期→穂揃期→登熟期→成熟期という段階を経て成長する。通常、稲代から圃場への移植時には、窒素系の緩効性肥料の施肥が行われる。そして本実施形態において「初期施肥」とは稲代から圃場への移植時に行われる窒素系の緩効性肥料の施肥を意味する。初期施肥は、いわゆる基肥に相当する。 In the present embodiment, "initial fertilizer application" and "additional fertilizer" mean the following. That is, in one general stage, after the rice is transplanted from the seedling to the field by rice planting, the tiller stage → the ear formation stage → the heading stage → the flowering / pollination stage → the panicle stage → the ripening stage → the maturation stage. It grows through the stage. Normally, nitrogen-based slow-release fertilizers are applied when transplanting from rice fields to fields. In the present embodiment, the "initial fertilizer application" means the fertilization of a nitrogen-based slow-release fertilizer performed at the time of transplantation from the rice field to the field. Initial fertilization corresponds to so-called basal fertilizer.

また、幼穂形成期前後から出穂期前後に至るまでの期間(以下「追肥対象期間」という。)では、穂に着生する籾の個数の増大や、籾に詰まるデンプンの量の増大等を目的として、所定のタイミングで穂肥と呼ばれる肥料の追加が行われる場合がある。そして本実施形態では、「追肥」とは追肥対象期間における所定のタイミングで行われる肥料の追加を意味する。 In addition, during the period from around the panicle formation stage to around the heading stage (hereinafter referred to as the "topdressing target period"), the purpose is to increase the number of paddy that grows on the spikes and increase the amount of starch that clogs the paddy. As a result, fertilizer called ear fertilizer may be added at a predetermined timing. And in this embodiment, "additional fertilizer" means addition of fertilizer performed at a predetermined timing in the period for which additional fertilizer is applied.

図1で示すように、施肥量導出装置1には、液晶ディスプレイや、有機ELディスプレイ等の表示装置2と、マウスやキーボード等の入力装置3とが接続されている。また図1で示すように、施肥量導出装置1は、機能構成として、施肥量導出部10と、仮施肥量導出部11と、残存量導出部12とを備えている。上記各機能ブロック10〜12は、ハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、上記各機能ブロック10〜12は、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。また、施肥量導出装置1は、記憶手段として、記憶部13を備えている。記憶部13に記憶されるデータについては後述する。 As shown in FIG. 1, a display device 2 such as a liquid crystal display or an organic EL display and an input device 3 such as a mouse or a keyboard are connected to the fertilizer application amount derivation device 1. Further, as shown in FIG. 1, the fertilizer application amount derivation device 1 includes a fertilizer application amount derivation unit 10, a temporary fertilizer application amount derivation unit 11, and a residual amount derivation unit 12 as a functional configuration. Each of the above functional blocks 10 to 12 can be configured by any of hardware, DSP (Digital Signal Processor), and software. For example, when configured by software, each of the functional blocks 10 to 12 is actually configured to include a computer CPU, RAM, ROM, etc., and is a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory. Is realized by the operation of. Further, the fertilizer application amount derivation device 1 includes a storage unit 13 as a storage means. The data stored in the storage unit 13 will be described later.

本実施形態では、施肥量導出装置1は、ユーザから入力装置3に対して追肥時施肥量を示す情報の提供の指示(以下「情報提供指示」という)があったことをトリガとして、追肥時施肥量を導出し、当該情報を提供する。以下、ユーザから入力装置3に対して情報提供指示があったときの施肥量導出装置1の動作について詳述する。なお、追肥時施肥量を導出するトリガは本実施形態で例示するものに限られず、例えば、予め定められた日時が到来したことをトリガとしてもよい。 In the present embodiment, the fertilizer application amount derivation device 1 is triggered by an instruction from the user to provide information indicating the fertilizer application amount at the time of fertilizer application to the input device 3 (hereinafter referred to as “information provision instruction”), and at the time of fertilizer application. The amount of fertilizer applied is derived and the information is provided. Hereinafter, the operation of the fertilizer application amount derivation device 1 when the user gives an information provision instruction to the input device 3 will be described in detail. The trigger for deriving the amount of fertilizer applied at the time of top dressing is not limited to that exemplified in this embodiment, and may be, for example, the arrival of a predetermined date and time as a trigger.

施肥量導出部10は、入力装置3に対して情報提供指示があったことを検出すると、仮施肥量導出部11に対して仮追肥時施肥量(後述)の導出を要求する。 When the fertilizer application amount derivation unit 10 detects that the input device 3 has been instructed to provide information, the fertilizer application amount derivation unit 10 requests the temporary fertilizer amount derivation unit 11 to derive the fertilizer application amount (described later) at the time of temporary topdressing.

仮施肥量導出部11は、施肥量導出部10から仮追肥時施肥量の導出の要求があった場合、以下の処理を実行する。すなわち、まず、仮施肥量導出部11は、記憶部13に記憶された分析用画像データを取得する。分析用画像データとは、追肥を行う前の所定のタイミング(以下「測定タイミング」という)で、ドローンに搭載されたマルチスペクトルセンサにより、追肥を行う対象の圃場(以下「対象圃場」という)の稲の群落を上空から撮影することによって生成された画像データである。なお測定タイミングは、追肥時施肥量の導出に利用する分析用画像データを得るための撮影を行うタイミングとして予め定められたタイミングであり、例えば、追肥を行うタイミングの直前や、出穂の3週間前、出穂の4週間前等とされる。仮施肥量導出部11は、取得した分析用画像データを分析し、周知の方法でNDVIを算出し、取得する。なお本実施形態では説明の便宜のため、指標としてのNDVIの指標値の実際の値を「NDVI」と表現する。ここで取得されたNDVIは、特許請求の範囲の「植生関連値」および「第1指標値」に相当する。 When the temporary fertilizer amount derivation unit 11 requests the derivation of the fertilizer application amount at the time of temporary topdressing, the temporary fertilizer amount derivation unit 11 executes the following processing. That is, first, the temporary fertilizer application amount derivation unit 11 acquires the analysis image data stored in the storage unit 13. The image data for analysis is a field to which fertilizer is to be topped up (hereinafter referred to as "target field") by a multispectral sensor mounted on the drone at a predetermined timing (hereinafter referred to as "measurement timing") before topdressing. It is image data generated by photographing a community of rice from the sky. The measurement timing is a predetermined timing as a timing for taking an image for obtaining image data for analysis used for deriving the amount of fertilizer applied at the time of topdressing. For example, immediately before the timing of topdressing or 3 weeks before heading. , 4 weeks before heading, etc. The temporary fertilizer application amount derivation unit 11 analyzes the acquired image data for analysis, calculates the NDVI by a well-known method, and acquires it. In the present embodiment, for convenience of explanation, the actual value of the index value of NDVI as an index is expressed as "NDVI". The NDVI acquired here corresponds to the "vegetation-related value" and the "first index value" in the claims.

なお、本実施形態では、NDVIの算出、取得にあたり、ドローンに搭載されたマルチスペクトルセンサの撮影結果に基づく分析用画像データを使用する。ここで追肥時施肥量を導出するときに使用する指標値として、NDVIに代えて、NDVIと同じく葉色に由来する稲の活性度を測る指標として利用可能なSPAD値を用いることも可能である。しかしながら、SPAD値を用いる場合、葉緑素計を用いて葉を一枚ずつ測定する必要があり、作業の困難性が高い。特に、圃場が大規模の場合、高い精度でSPAD値を算出するためには、適度に分散された地点で葉緑素計を用いた測定を行う必要があり、作業の困難性が高い。SPAD値と同様に葉色板(カラースケイル)を用いた地上でのセンシングにより得られる葉色板値を用いることも可能であるが、この場合もSPAD値と同様に困難性が高い。また、携帯型のNDVIセンサを利用して作業者が地上でNDVIの測定を行い、これを利用することも可能である。しかしながら、この場合も作業者が圃場を歩き回って測地を行う必要があり、作業の困難性が高い。特に、圃場が大規模、多数の場合は作業の困難性が非常に高い。一方で、本実施形態では、ドローンを利用して、NDVIの算出に必要なデータが収集されることになるため、NDVIの算出に際して行われる作業が簡易であり、かつ、圃場が大規模であってもスピーディに作業を行うことができる。ただし、SPAD値を用いることを排除するのではなく、SPAD値や、SPAD値に準じた指標を用いるようにしてもよい。また、「NDVIセンサを用いた地上での測定により得られるNDVI」や、「葉色板(カラースケイル)を用いた地上での測定により得られる葉色板値」を用いることを排除するものではない。 In the present embodiment, in calculating and acquiring the NDVI, image data for analysis based on the imaging result of the multispectral sensor mounted on the drone is used. Here, as an index value used when deriving the fertilizer application amount at the time of topdressing, it is also possible to use a SPAD value that can be used as an index for measuring the activity of rice derived from leaf color like NDVI, instead of NDVI. However, when the SPAD value is used, it is necessary to measure the leaves one by one using a chlorophyll meter, which is highly difficult to work with. In particular, when the field is large-scale, in order to calculate the SPAD value with high accuracy, it is necessary to perform measurement using a chlorophyll meter at appropriately dispersed points, which is highly difficult to work with. It is also possible to use the leaf color plate value obtained by sensing on the ground using a leaf color plate (color scale) as in the SPAD value, but in this case as well, the difficulty is high as in the SPAD value. It is also possible for an operator to measure NDVI on the ground using a portable NDVI sensor and use it. However, in this case as well, it is necessary for the worker to walk around the field to perform geodesy, which makes the work highly difficult. Especially when the field is large and large, the work is very difficult. On the other hand, in the present embodiment, since the data necessary for calculating the NDVI is collected by using the drone, the work performed when calculating the NDVI is simple and the field is large-scale. But you can work speedily. However, instead of excluding the use of the SPAD value, the SPAD value or an index based on the SPAD value may be used. Further, it is not excluded to use "NDVI obtained by measurement on the ground using an NDVI sensor" and "leaf color plate value obtained by measurement on the ground using a leaf color plate (color scale)".

なお、上述した効果は、葉緑素計を用いて葉を一枚ずつ測定するのではなく、稲の群落に対する遠隔からの観測により得られる指標値を、追肥時施肥量を決定するときに使用する指標値として用いることにより得ることが可能である。従って、観測(センシング)に用いる装置は、マルチスペクトルセンサに限られず、例えば、赤外線サーモグラフィであってもよい。また、指標値は、NDVIに限られない。また、観測は、必ずしもドローンを用いて行われる必要はなく、塔の上部に設置された装置や、脚立に載った人間が操作する装置を用いて行われたりしてもよい。また、NDVI(またはこれに相当する指標値)の算出に、衛星写真を用いるようにしてもよい。また仮施肥量導出部11がNDVIを算出し取得するのではなく、仮施肥量導出部11が外部の装置により算出されたNDVIを取得する構成でもよい。 The above-mentioned effect is not to measure the leaves one by one using a chlorophyll meter, but to use the index value obtained by remote observation of the rice community as an index to be used when determining the amount of fertilizer applied at the time of topdressing. It can be obtained by using it as a value. Therefore, the device used for observation (sensing) is not limited to the multispectral sensor, and may be, for example, infrared thermography. Moreover, the index value is not limited to NDVI. In addition, the observation does not necessarily have to be performed using a drone, and may be performed using a device installed on the upper part of the tower or a device operated by a human being mounted on a stepladder. In addition, satellite images may be used for the calculation of NDVI (or an index value corresponding thereto). Further, instead of the temporary fertilizer application amount derivation unit 11 calculating and acquiring the NDVI, the temporary fertilizer application amount derivation unit 11 may acquire the NDVI calculated by an external device.

以下、仮施肥量導出部11により取得されたNDVIを特に「取得NDVI」という。 Hereinafter, the NDVI acquired by the temporary fertilizer application amount derivation unit 11 is particularly referred to as "acquired NDVI".

取得NDVIを取得した後、仮施肥量導出部11は、施肥量導出計算式を利用して、取得した取得NDVIに基づいて仮追肥時施肥量(特許請求の範囲の「仮の追肥時施肥量」に相当)を導出する。施肥量導出計算式とは、NDVIを入力とし施肥量を出力とする式であり、単純な数式だけでなく、プログラム上で定義された関数(モデル)や、プログラムから呼び出し可能な関数(モデル)を概念的に表すものである。このことは後述する溶出率計算式についても同様である。 After acquiring the acquired NDVI, the temporary fertilizer application amount derivation unit 11 uses the fertilizer application amount derivation calculation formula, and based on the acquired acquired NDVI, the temporary fertilizer application amount (“temporary fertilizer application amount during the provisional fertilizer application” in the claims. "Equivalent to) is derived. The fertilizer application amount derivation calculation formula is an expression that inputs NDVI and outputs fertilizer application amount, and is not only a simple mathematical formula, but also a function (model) defined on the program and a function (model) that can be called from the program. Is conceptually represented. This also applies to the dissolution rate calculation formula described later.

施肥量導出計算式に取得NDVIを入力したときに出力される施肥量は、圃場の測定タイミングにおけるNDVI(の値)が取得NDVI(の値)である場合に、所定のカテゴリについての農作物(農作物の収穫物も含む)の状態を目標状態とするために必要かつ適切な施肥量である。ここで求められた施肥量は、後述する理由により追肥時に圃場に残存する肥料の量がゼロであることを前提とする。そして、施肥量導出計算式に取得NDVIを入力することによって出力として得られる施肥量が「仮追肥時施肥量」に相当する。 The fertilizer application amount output when the acquired NDVI is input to the fertilizer application amount derivation calculation formula is the crop (agricultural product) for a predetermined category when the NDVI (value) at the measurement timing of the field is the acquired NDVI (value). The amount of fertilizer applied is necessary and appropriate to achieve the target state (including the harvested product). The amount of fertilizer applied here is based on the premise that the amount of fertilizer remaining in the field at the time of topdressing is zero for the reason described later. Then, the fertilizer application amount obtained as an output by inputting the acquired NDVI into the fertilizer application amount derivation calculation formula corresponds to the “temporary topdressing fertilizer application amount”.

本実施形態において、所定のカテゴリについての農作物の状態とは、例えば、収穫物の外観的あるいは食味的な品質や、収穫物の収量、籾数、追肥後の生育過程の指標等である。追肥後の生育過程の指標は、例えば、追肥した後の穂揃期の葉緑素計値(SPAD値)である。なお、穂揃期の葉緑素計値(SPAD値)が一定値以上の場合は、品質が良いということができる。 In the present embodiment, the state of the crop for a predetermined category is, for example, the appearance or taste quality of the harvested product, the yield of the harvested product, the number of paddy, an index of the growth process after topdressing, and the like. The index of the growth process after topdressing is, for example, the total chlorophyll value (SPAD value) at the earing stage after topdressing. When the total chlorophyll value (SPAD value) at the earing stage is above a certain value, it can be said that the quality is good.

例えば、施肥量導出計算式の出力は、収穫物の収量(単位当たりの収量)を○○kgとするために必要かつ適切な追肥時施肥量である。この場合、収穫物の収量が「所定のカテゴリについての農作物の状態」に相当し、収量が○○kgであるという状態が「目標状態」に相当する。そしてこの場合、施肥量導出計算式の出力値分の肥料を追肥時に施すことによって(ただし、追肥時に肥料が残存していない状態であるものとする)、収穫物の収量が○○kgとなることが期待される。また例えば、施肥量導出計算式の出力は、収穫物全体に対する低外観品質の収穫物の割合(以下「低品質割合」という)を○○%とするために必要かつ適切な追肥時施肥量である。なお、低外観品質の収穫物は、例えば、白未熟粒(腹白粒や、背白粒、基部未熟粒、心白粒、乳白粒等)や、その他の未熟粒、被害粒、死米、着色粒等である。この場合、低品質割合が「所定のカテゴリについての農作物の状態」に相当し、低品質割合が○○%であるという状態が「目標状態」に相当する。そしてこの場合、施肥量導出計算式の出力値分の肥料を追肥時に施すことによって(ただし、追肥時に肥料が残存していない状態であるものとする)、低品質割合が○○%となることが期待される。なお、低品質割合に代えて、収穫物の「整粒」の割合としてもよいことは勿論である。 For example, the output of the fertilizer amount derivation calculation formula is the amount of fertilizer applied at the time of topdressing, which is necessary and appropriate for the yield (yield per unit) of the harvested product to be XX kg. In this case, the yield of the harvested product corresponds to the "state of the crop for a predetermined category", and the state where the yield is XX kg corresponds to the "target state". In this case, by applying fertilizer corresponding to the output value of the fertilizer application amount derivation formula at the time of top dressing (however, it is assumed that no fertilizer remains at the time of top dressing), the yield of the harvested product becomes XX kg. It is expected. In addition, for example, the output of the fertilizer application amount derivation formula is the amount of fertilizer applied at the time of topdressing, which is necessary and appropriate for setting the ratio of low-appearance quality crops to the total crop (hereinafter referred to as "low quality ratio") to XX%. be. The low-appearance quality harvested products include, for example, white immature grains (belly white grains, spine white grains, base immature grains, heart white grains, milky white grains, etc.), other immature grains, damaged grains, dead rice, etc. Colored grains and the like. In this case, the low quality ratio corresponds to the "state of the crop for a predetermined category", and the low quality ratio corresponds to the "target state". In this case, by applying fertilizer equivalent to the output value of the fertilizer application amount derivation formula at the time of top dressing (however, it is assumed that no fertilizer remains at the time of top dressing), the low quality ratio becomes XX%. There is expected. Of course, instead of the low quality ratio, the ratio of "grain size" of the harvested product may be used.

図2は、測定タイミングにおけるNDVIを縦軸とし追肥時の施肥量を横軸とする2次元空間に描画された1次式によって、上述した低品質割合(所定のカテゴリについての農作物の状態)を5%(目標状態)とするときの、測定タイミングにおけるNDVIと追肥時の施肥量との関係を単純化して示している。図2で示すように、低品質割合を5%とするときの追肥時の施肥量と、測定タイミングにおけるNDVIとの間には、NDVIが大きくなるほど施肥量が小さくなる関係がある。このように、所定のカテゴリについての農作物の状態を目標状態とするときの、測定タイミングにおけるNDVIと追肥時の施肥量とには強い相関関係がある。 FIG. 2 shows the above-mentioned low quality ratio (state of crops for a predetermined category) by a linear equation drawn in a two-dimensional space with NDVI at the measurement timing as the vertical axis and fertilizer application amount at the time of topdressing as the horizontal axis. The relationship between the NDVI at the measurement timing and the fertilizer application amount at the time of topdressing at the time of 5% (target state) is shown in a simplified manner. As shown in FIG. 2, there is a relationship between the amount of fertilizer applied at the time of top dressing when the low quality ratio is 5% and the NDVI at the measurement timing, the larger the NDVI, the smaller the amount of fertilizer applied. As described above, there is a strong correlation between the NDVI at the measurement timing and the fertilizer application amount at the time of topdressing when the state of the crop for a predetermined category is set as the target state.

本実施形態では、施肥量導出計算式は、蓄積された過去の実際の追肥時の施肥量および測定タイミングにおけるNDVI(植生関連値)の組み合わせと農作物の状態との関係について、農作物の状態を目的変数とし、追肥時の施肥量および測定タイミングにおける植生関連値を説明変数とする重回帰分析を行って求められた重回帰式に基づいて求められる。 In the present embodiment, the fertilizer application amount derivation calculation formula aims at the state of the agricultural product with respect to the relationship between the accumulated past fertilizer application amount at the time of actual top dressing and the combination of NDVI (vegetation-related value) at the measurement timing and the state of the agricultural product. It is obtained based on the multiple regression equation obtained by performing multiple regression analysis using the amount of fertilizer applied at the time of topdressing and the vegetation-related values at the measurement timing as explanatory variables.

詳述すると、事前に、実験や既存の圃場に対する観察により、追肥時の施肥量および測定タイミングにおけるNDVIの組み合わせと、農作物の状態との関係を示すデータ、つまり、追肥時の施肥量が○○であり、測定タイミングにおけるNDVIが○○であった場合に、所定のカテゴリについての農作物の状態は○○であったというデータが蓄積される。このとき、全てのデータについて、追肥時に残存する肥料の量はゼロであることが前提とされる。これは、全てのデータについて追肥時の施肥量についての条件を統一するため、および、条件を統一するにあたって残存する肥料の量をゼロ以外の一定量に統一することは非常に困難であるためである。 More specifically, by conducting experiments and observing existing fields in advance, data showing the relationship between the combination of NDVI at the time of topdressing and the measurement timing and the condition of the crop, that is, the amount of fertilizer applied at the time of topdressing is ○○. Therefore, when the NDVI at the measurement timing is XX, the data that the state of the crop for a predetermined category is XX is accumulated. At this time, it is assumed that the amount of fertilizer remaining at the time of topdressing is zero for all data. This is because it is very difficult to unify the conditions for the amount of fertilizer applied at the time of top dressing for all data, and to unify the amount of remaining fertilizer to a fixed amount other than zero when unifying the conditions. be.

そして、蓄積されたデータについて、農作物の状態を目的変数とし、追肥時の施肥量および測定タイミングにおけるNDVIを説明変数とする重回帰分析が行われ、農作物の状態を目標状態とするための追肥時の施肥量と測定タイミングにおけるNDVIとの関係が定義された重回帰式が算出される。例えば、収穫物の質が上述した低品質割合である場合には、低品質割合を目標値(一例として5%)とするための、追肥時の施肥量と測定タイミングにおけるNDVIとの関係が定義された重回帰式が算出される。そして重回帰式に基づいて、NDVIを入力とし、重回帰式により表されるNDVIと施肥量との関係から決定される施肥量を出力とする施肥量導出計算式が生成される。この施肥量導出計算式の出力は、追肥時に緩効性肥料が残存していないという条件下で、測定タイミングにおけるNDVIが入力された値である場合に農作物の状態を目標状態とするために必要かつ適切な追肥時の施肥量に相当する。なお重回帰式を、稲の生育時期毎、例えば出穂前30日、25日、20日、15日、10日、5日といったように作成するようにしてもよい。この場合において、生育診断する時期が出穂前何日なのかを判定するには、作付け地点、品種、移植日、苗の葉齢及び苗姿、気温や、日長時間等から推定したり、幼穂の長さから推定したりすることができる。なお、農作物の状態は、追肥後の地力窒素発現量(詳しくは後述)に影響を受けるため、上述した方法により生成される施肥量導出計算式の出力値は当然、地力窒素発現量の影響も加味された値となる。 Then, the accumulated data is subjected to multiple regression analysis using the state of the crop as the objective variable and the amount of fertilizer applied at the time of topdressing and NDVI at the measurement timing as the explanatory variables, and the state of the crop is set as the target state at the time of topdressing. A multiple regression equation is calculated in which the relationship between the amount of fertilizer applied and the NDVI at the measurement timing is defined. For example, when the quality of the harvested product is the above-mentioned low quality ratio, the relationship between the amount of fertilizer applied at the time of topdressing and the NDVI at the measurement timing is defined in order to set the low quality ratio as the target value (5% as an example). The calculated multiple regression equation is calculated. Then, based on the multiple regression equation, a fertilizer application amount derivation calculation formula is generated in which NDVI is input and the fertilizer application amount determined from the relationship between the NDVI expressed by the multiple regression equation and the fertilizer application amount is output. The output of this fertilizer application amount derivation formula is necessary to set the state of the crop as the target state when the NDVI at the measurement timing is the input value under the condition that no slow-release fertilizer remains at the time of top dressing. And it corresponds to the amount of fertilizer applied at the time of appropriate top dressing. The multiple regression equation may be created for each growing season of rice, for example, 30 days, 25 days, 20 days, 15 days, 10 days, and 5 days before heading. In this case, in order to determine how many days before heading the growth diagnosis is made, it is estimated from the planting point, variety, transplanting date, leaf age and seedling appearance of seedlings, temperature, long day, etc., or young ears. It can be estimated from the length of. Since the state of crops is affected by the amount of fertilizer nitrogen expression after topdressing (details will be described later), the output value of the fertilizer application amount derivation calculation formula generated by the above method is naturally affected by the amount of fertilizer nitrogen expression. The value will be added.

なお、本実施形態の施肥量導出計算式の内容は、あくまで単純化した一例である。施肥量導出計算式は、測定タイミングにおけるNDVIを入力の1つとし、農作物の状態を目標状態とするために必要かつ適切な追肥時の施肥量を出力する計算式であれば、どのようなものであってもよい。一例として、測定タイミングにおけるNDVI以外に、農作物の状態に影響を与える要素の要素値を入力とし、当該要素を加味して追肥時の施肥量を出力する式であってもよい。当該要素は、一例として、特定の期間の気温(到来していない期間(例えば登熟期)については予想気温)や、特定の期間における雨量等である。また、施肥量導出計算式は重回帰分析により生成されるものである必要はなく、施肥量導出計算機の生成には様々な機械学習(一例としてニューラルネットワークを用いた機械学習)を応用可能である。 The content of the fertilizer application amount derivation calculation formula of this embodiment is just an example of simplification. The fertilizer application amount derivation calculation formula is any calculation formula that uses NDVI at the measurement timing as one of the inputs and outputs the fertilizer application amount at the time of topdressing that is necessary and appropriate for setting the state of the crop to the target state. May be. As an example, in addition to the NDVI at the measurement timing, an element value of an element that affects the state of the crop may be input, and the fertilizer application amount at the time of topdressing may be output in consideration of the element. As an example, the factors include the temperature in a specific period (expected temperature for a period that has not arrived (for example, the ripening period)), the amount of rainfall in a specific period, and the like. In addition, the fertilizer application amount derivation calculation formula does not have to be generated by multiple regression analysis, and various machine learning (machine learning using a neural network as an example) can be applied to the generation of the fertilizer application amount derivation computer. ..

さて、仮施肥量導出部11は、施肥量導出計算式を利用して、取得した取得NDVIに基づいて仮追肥時施肥量を導出する。すなわち、仮施肥量導出部11は、取得NDVIを施肥量導出計算式に入力し、その出力を仮追肥時施肥量とする。仮施肥量導出部11は、導出した仮追肥時施肥量を施肥量導出部10に応答する。 By the way, the temporary fertilizer amount derivation unit 11 derives the fertilizer application amount at the time of temporary fertilizer application based on the acquired acquired NDVI by using the fertilizer application amount derivation calculation formula. That is, the temporary fertilizer amount derivation unit 11 inputs the acquired NDVI into the fertilizer amount derivation calculation formula, and uses the output as the fertilizer application amount at the time of temporary fertilizer application. The temporary fertilizer amount derivation unit 11 responds to the fertilizer application amount derivation unit 10 with the derived fertilizer application amount at the time of temporary topdressing.

また、施肥量導出部10は、入力装置3に対して情報提供指示があったことを検出すると、残存量導出部12に対して今期肥料残存量(後述)の導出を要求する。 Further, when the fertilizer application amount derivation unit 10 detects that the input device 3 has been instructed to provide information, the fertilizer application amount derivation unit 10 requests the residual amount derivation unit 12 to derive the fertilizer residual amount (described later) in the current period.

残存量導出部12は、施肥量導出部10から今期肥料残存量料の導出の要求があった場合、以下の処理を実行する。すなわち、まず、残存量導出部12は、記憶部13に記憶された積算温度データを取得する。積算温度データとは、初期施肥から現時点に至るまでの積算温度が記録されたデータである。積算温度とは、該当期間における毎日の平均気温を合計したものである。また、本実施形態では、現時点から極めて短い期間内に追肥が行われるものとし、現時点と追肥が行われるタイミングとは同視できるものとする。 When the fertilizer application amount derivation unit 10 requests the derivation of the fertilizer residual amount charge for the current term, the residual amount derivation unit 12 executes the following processing. That is, first, the residual amount derivation unit 12 acquires the integrated temperature data stored in the storage unit 13. The integrated temperature data is data in which the integrated temperature from the initial fertilization to the present time is recorded. The integrated temperature is the sum of the daily average temperatures during the period. Further, in the present embodiment, it is assumed that the top dressing is performed within an extremely short period from the present time, and the current time and the timing at which the top dressing is performed can be equated.

積算温度データは、施肥量導出装置1をインターネットに接続可能に構成し、残存量導出部12が外部サーバから取得するようにしてもよく、また、人為的な観測の下で人為的に積算温度データが作成され、記憶部13に記憶されるようにしてもよい。 The integrated temperature data may be configured so that the fertilizer application amount derivation device 1 can be connected to the Internet, and the residual amount derivation unit 12 may acquire the integrated temperature data from an external server, or the integrated temperature data is artificially integrated under artificial observation. The data may be created and stored in the storage unit 13.

積算温度データを取得した後、残存量導出部12は、当該データに記録された積算温度を取得し、溶出率計算式により窒素溶出率(養分溶出率)を導出する。以下、残存量導出部12により取得された積算温度を「取得積算温度」という。図3は、窒素系の緩効性肥料について、積算温度と窒素溶出率との関係を、初期施肥後の積算温度を横軸に取り窒素溶出率を縦軸に取った2次元空間におけるグラフによって示す図である。図3で示すように、窒素系の緩効性肥料について、施肥後の積算温度と窒素溶出率とは比例関係にあり、施肥後の積算温度が大きくなるほど、それに比例して窒素溶出率が大きくなる。そして、溶出率計算式は、積算温度を入力とし、窒素溶出率を出力する計算式である。溶出率計算式に積算温度として取得積算温度を入力したときに出力される窒素溶出率は、初期施肥後、追肥時に至るまでの積算温度が取得積算温度であった場合に予想される窒素溶出率である。 After acquiring the integrated temperature data, the residual amount derivation unit 12 acquires the integrated temperature recorded in the data and derives the nitrogen elution rate (nutrient elution rate) by the elution rate calculation formula. Hereinafter, the integrated temperature acquired by the residual amount derivation unit 12 is referred to as "acquired integrated temperature". FIG. 3 is a graph showing the relationship between the integrated temperature and the nitrogen elution rate for nitrogen-based slow-release fertilizers in a two-dimensional space with the integrated temperature after initial fertilization on the horizontal axis and the nitrogen elution rate on the vertical axis. It is a figure which shows. As shown in FIG. 3, for nitrogen-based slow-release fertilizers, the integrated temperature after fertilization and the nitrogen elution rate are in a proportional relationship, and the larger the integrated temperature after fertilization, the larger the nitrogen elution rate. Become. The elution rate calculation formula is a calculation formula that inputs the integrated temperature and outputs the nitrogen elution rate. The nitrogen elution rate output when the acquired integrated temperature is input as the integrated temperature in the dissolution rate calculation formula is the nitrogen elution rate expected when the integrated temperature from the initial fertilizer application to the time of topdressing is the acquired integrated temperature. Is.

なお、本実施形態の溶出率計算式の内容は、あくまで単純化した一例である。溶出率計算式は、積算温度を入力の1つとし、窒素溶出率を出力する計算式であればどのようなものであってもよい。一例として、積算温度以外に、窒素の溶出に影響を与える要素の要素値を入力とし、当該要素を加味して窒素溶出率を出力する計算式であってもよい。当該要素は一例として、特定の期間における日射量である。また、溶出率計算式の生成には、重回帰分析のほか、既存の機械学習を広く適用できる。また、本実施形態では、積算温度を、該当期間における毎日の平均気温を合計したものとしたが、積算温度はこれに限られない。すなわち、積算温度は、該当期間において積算された温度(気温に限られない)に基づくものであって、窒素溶出率を出力する計算式の入力となるものであれば何でもよい。例えば、水田土壌温度としてもよい。この場合に、気温や日射量等の諸条件や、葉面積指数等の植物体の生育状況から水田土壌温度を推定するようにしてもよい。 The content of the dissolution rate calculation formula of this embodiment is just an example of simplification. The elution rate calculation formula may be any calculation formula that takes the integrated temperature as one of the inputs and outputs the nitrogen elution rate. As an example, a calculation formula may be used in which an element value of an element that affects the elution of nitrogen is input in addition to the integrated temperature, and the nitrogen elution rate is output in consideration of the element. The factor is, for example, the amount of solar radiation in a specific period. In addition to multiple regression analysis, existing machine learning can be widely applied to the generation of the elution rate calculation formula. Further, in the present embodiment, the integrated temperature is the sum of the daily average temperatures in the corresponding period, but the integrated temperature is not limited to this. That is, the integrated temperature may be anything as long as it is based on the integrated temperature (not limited to the air temperature) in the corresponding period and is an input of the calculation formula for outputting the nitrogen elution rate. For example, it may be the soil temperature of a paddy field. In this case, the paddy soil temperature may be estimated from various conditions such as air temperature and amount of solar radiation, and the growth condition of the plant such as the leaf area index.

さて、残存量導出部12は、溶出率計算式を利用して、取得した取得積算温度に基づいて窒素溶出率を導出する。すなわち、残存量導出部12は、取得積算温度を溶出率計算式に入力し、その出力を窒素溶出率とする。 By the way, the residual amount derivation unit 12 derives the nitrogen elution rate based on the acquired integrated temperature obtained by using the elution rate calculation formula. That is, the residual amount derivation unit 12 inputs the acquired integrated temperature into the elution rate calculation formula, and uses the output as the nitrogen elution rate.

次いで、残存量導出部12は、記憶部13に記憶された初期施肥量データを取得する。初期施肥量データは、初期施肥時の施肥量(単位面積あたりの量として表されたもの)が記録されたデータである。次いで、残存量導出部12は、当該データに記録された施肥量を取得する。次いで、残存量導出部12は、取得した施肥量(=初期施肥時の施肥量)に対して導出した窒素溶出率を乗算して窒素溶出量を求め、更に取得した施肥量から、算出した窒素溶出量を減算し、今期肥料残存量(単位面積あたりの量として表されたもの)を導出する。次いで、残存量導出部12は、導出した今期肥料残存量を施肥量導出部10に応答する。つまり今期肥料残量は、追肥時における、初期施肥時に施した緩効性肥料の残存量である。 Next, the residual amount derivation unit 12 acquires the initial fertilizer application amount data stored in the storage unit 13. The initial fertilizer application amount data is data in which the fertilizer application amount at the time of initial fertilization (expressed as the amount per unit area) is recorded. Next, the residual amount derivation unit 12 acquires the fertilizer application amount recorded in the data. Next, the residual amount derivation unit 12 multiplies the acquired fertilizer application amount (= fertilizer application amount at the time of initial fertilizer application) by the derived nitrogen elution rate to obtain the nitrogen elution amount, and further calculates the nitrogen from the acquired fertilizer application amount. Subtract the elution amount to derive the remaining fertilizer amount for this term (expressed as the amount per unit area). Next, the residual amount derivation unit 12 responds to the fertilizer application amount derivation unit 10 with the derived current fertilizer residual amount. In other words, the remaining amount of fertilizer in this term is the residual amount of slow-release fertilizer applied at the time of initial fertilizer application at the time of top dressing.

なお、本実施形態では、積算温度から窒素溶出率を求め、初期施肥時の施肥量に窒素溶出率を乗算して窒素溶出量を求め、初期施肥時の施肥量から窒素溶出量を減算することにより今期肥料残存量を求める構成である。しかしながら、今期肥料残存量を求める流れは、この流れと完全に一致している必要はない。例えば、積算温度から窒素残存率を求める計算式を用いて、この計算式に積算温度を入力することによって窒素残存率を求め、初期施肥時の施肥量に窒素残存率を乗算して今期肥料残存量を求めてもよい。また、まず窒素溶出率を求め、「1」から窒素溶出率を減算して窒素残存率を求め、初期施肥時の施肥量に窒素残存率を乗算して今期肥料残存量を求めるようにしてもよい。 In the present embodiment, the nitrogen elution rate is obtained from the integrated temperature, the nitrogen elution amount is obtained by multiplying the fertilizer application amount at the initial fertilizer application by the nitrogen elution rate, and the nitrogen elution amount is subtracted from the fertilizer application amount at the initial fertilizer application. The composition is to obtain the residual amount of fertilizer for this term. However, the flow for finding the remaining amount of fertilizer in this term does not have to be exactly the same as this flow. For example, using a formula for calculating the nitrogen residual rate from the integrated temperature, the nitrogen residual rate is calculated by inputting the integrated temperature into this formula, and the amount of fertilizer applied at the time of initial fertilizer is multiplied by the nitrogen residual rate to determine the residual fertilizer for this term. You may ask for the amount. Alternatively, the nitrogen elution rate is first obtained, the nitrogen elution rate is subtracted from "1" to obtain the nitrogen residual rate, and the fertilizer residual rate at the time of initial fertilization is multiplied by the nitrogen residual rate to obtain the fertilizer residual amount for this term. good.

施肥量導出部10は、仮施肥量導出部11から仮追肥時施肥量の応答を受けると共に、残存量導出部12から今期肥料残存量の応答を受けると、以下の処理を実行する。すなわち、施肥量導出部10は、仮施肥量導出部11により導出された仮追肥時施肥量から残存量導出部12により導出された今期肥料残存量を引いて求めた値を最終的な追肥時施肥量として導出する。 When the fertilizer application amount derivation unit 10 receives the response of the fertilizer application amount at the time of temporary topdressing from the temporary fertilizer amount derivation unit 11 and the response of the fertilizer residual amount in the current period from the residual amount derivation unit 12, the following processing is executed. That is, the fertilizer application amount derivation unit 10 obtains a value obtained by subtracting the fertilizer residual amount in the current period derived by the residual amount derivation unit 12 from the fertilizer application amount at the time of temporary topdressing derived by the temporary fertilizer amount derivation unit 11 at the time of final topdressing. Derived as the amount of fertilizer applied.

例えば、仮施肥量導出部11により導出された仮追肥時施肥量が、10アール当たり窒素成分量で4kgであったとする。また、残存量導出部12により導出された今期肥料残存量が、10アール当たり窒素成分量で2kgであったとする。この場合、施肥量導出部10は、10アール当たり窒素成分量で4kgから2kgを引いた2kgを最終的な追肥時施肥量として導出決定する。 For example, it is assumed that the amount of fertilizer applied at the time of temporary topdressing derived by the temporary fertilizer amount derivation unit 11 is 4 kg in terms of the amount of nitrogen component per 10 ares. Further, it is assumed that the residual amount of fertilizer in this term derived by the residual amount deriving unit 12 is 2 kg in terms of the amount of nitrogen component per 10 ares. In this case, the fertilizer application amount derivation unit 10 derives and determines 2 kg, which is obtained by subtracting 2 kg from 4 kg in terms of the amount of nitrogen component per 10 ares, as the final fertilizer application amount at the time of top dressing.

施肥量導出部10がこのようにして最終的な追肥時施肥量を導出する理由は以下である。すなわち、仮追肥時施肥量は、追肥時に緩効性肥料が残存していないという条件の下での適切な追肥時施肥量である。しかしながら現実には、追肥時に緩効性肥料が残存している場合があり、残存量導出部12により導出された今期肥料残存量が、追肥時に緩効性肥料が残存している場合の肥料の残存量である。従って、仮施肥量導出部11により導出された仮追肥時施肥量から残存量導出部12により導出された今期肥料残存量を引いて求めた値を最終的な追肥時施肥量とすることによって、最終的な追肥時施肥量について、緩効性肥料の残存量を反映した適切な値とすることができる。 The reason why the fertilizer application amount deriving unit 10 derives the final fertilizer application amount at the time of top dressing in this way is as follows. That is, the amount of fertilizer applied at the time of temporary topdressing is an appropriate amount of fertilizer applied at the time of topdressing under the condition that no slow-release fertilizer remains at the time of topdressing. However, in reality, the slow-release fertilizer may remain at the time of top dressing, and the residual amount of fertilizer for this term derived by the residual amount derivation unit 12 is the fertilizer when the slow-release fertilizer remains at the time of top dressing. Residual amount. Therefore, the value obtained by subtracting the residual amount of fertilizer in the current period derived by the residual amount derivation unit 12 from the amount of fertilizer applied at the time of temporary topdressing derived by the temporary fertilizer amount derivation unit 11 is used as the final amount of fertilizer applied at the time of top dressing. The final amount of fertilizer applied at the time of top dressing can be set to an appropriate value that reflects the residual amount of slow-release fertilizer.

最終的な追肥時施肥量を導出した後、施肥量導出部10は、表示装置2を制御して、導出した追肥時施肥量を示す情報を表示装置2の表示領域に表示する。ユーザは、表示装置2を参照することにより、施肥量導出装置1が導出した追肥時施肥量を認識でき、追肥時施肥量を参考とすることができる。 After deriving the final amount of fertilizer applied at the time of topdressing, the fertilizer amount deriving unit 10 controls the display device 2 to display information indicating the derived amount of fertilizer applied at the time of topdressing in the display area of the display device 2. By referring to the display device 2, the user can recognize the fertilizer application amount at the time of topdressing derived by the fertilizer application amount derivation device 1, and can refer to the fertilizer application amount at the time of topdressing.

次に本実施形態に係る施肥量導出装置1の動作について図4のフローチャートを用いて説明する。図4(A)は施肥量導出部10の動作を示し、図4(B)は仮施肥量導出部11の動作を示し、図4(C)は残存量導出部12の動作を示している。 Next, the operation of the fertilizer application amount derivation device 1 according to the present embodiment will be described with reference to the flowchart of FIG. FIG. 4A shows the operation of the fertilizer application amount derivation unit 10, FIG. 4B shows the operation of the temporary fertilizer application amount derivation unit 11, and FIG. 4C shows the operation of the residual amount derivation unit 12. ..

図4(A)で示すように、施肥量導出部10は、情報提供指示があったか否かを監視する(ステップSA1)。情報提供指示があった場合(ステップSA1:YES)、仮施肥量導出部11に対して仮追肥時施肥量の導出を要求する(ステップSA2)。更に施肥量導出部10は、残存量導出部12に対して肥料残存量の導出を要求する(ステップSA3)。なおステップSA2とステップSA3との処理の順番は順不同であり、同時に実行されてもよい。 As shown in FIG. 4A, the fertilizer application amount derivation unit 10 monitors whether or not there is an information provision instruction (step SA1). When there is an information provision instruction (step SA1: YES), the provisional fertilizer amount derivation unit 11 is requested to derive the fertilizer application amount at the time of temporary topdressing (step SA2). Further, the fertilizer application amount derivation unit 10 requests the residual amount derivation unit 12 to derive the fertilizer residual amount (step SA3). The order of processing in step SA2 and step SA3 is in no particular order, and they may be executed at the same time.

図4(B)で示すように、仮施肥量導出部11は、施肥量導出部10から仮追肥時施肥量の導出の要求があったか否かを監視する(ステップSB1)。当該要求があった場合(ステップSB1:YES)、仮施肥量導出部11は、記憶部13に記憶された分析用画像データを取得する(ステップSB2)。次いで、仮施肥量導出部11は、ステップSB2で取得した分析用画像データを分析し、取得NDVIを取得する(ステップSB3)。次いで、仮施肥量導出部11は、施肥量導出計算式を利用して、取得した取得NDVIに基づいて仮追肥時施肥量を導出する(ステップSB4)。次いで、仮施肥量導出部11は、ステップSB4で導出した仮追肥時施肥量を施肥量導出部10に応答する(ステップSB5)。 As shown in FIG. 4B, the temporary fertilizer amount derivation unit 11 monitors whether or not there is a request from the fertilizer application amount derivation unit 10 to derive the fertilizer application amount at the time of temporary topdressing (step SB1). When the request is made (step SB1: YES), the temporary fertilizer application amount derivation unit 11 acquires the analysis image data stored in the storage unit 13 (step SB2). Next, the temporary fertilizer application amount derivation unit 11 analyzes the analysis image data acquired in step SB2 and acquires the acquired NDVI (step SB3). Next, the temporary fertilizer amount derivation unit 11 derives the fertilizer application amount at the time of temporary topdressing based on the acquired acquired NDVI by using the fertilizer application amount derivation calculation formula (step SB4). Next, the temporary fertilizer amount derivation unit 11 responds to the fertilizer application amount derivation unit 10 with the fertilizer application amount at the time of temporary topdressing derived in step SB4 (step SB5).

図4(C)で示すように、残存量導出部12は、施肥量導出部10から肥料残存料の導出の要求があったか否かを監視する(ステップSC1)。当該要求があった場合(ステップSC1:YES)、残存量導出部12は、記憶部13に記憶された積算温度データを取得する(ステップSC2)。次いで、残存量導出部12は、当該データに記録された取得積算温度を取得する(ステップSC3)。次いで、残存量導出部12は、ステップSC3で取得した取得積算温度に基づいて、溶出率計算式を用いて窒素溶出率を導出する(ステップSC4)。 As shown in FIG. 4C, the residual amount derivation unit 12 monitors whether or not there is a request from the fertilizer application amount derivation unit 10 to derive the fertilizer residual charge (step SC1). When the request is made (step SC1: YES), the residual amount derivation unit 12 acquires the integrated temperature data stored in the storage unit 13 (step SC2). Next, the residual amount derivation unit 12 acquires the acquired integrated temperature recorded in the data (step SC3). Next, the residual amount derivation unit 12 derives the nitrogen elution rate using the elution rate calculation formula based on the acquired integrated temperature acquired in step SC3 (step SC4).

次いで、残存量導出部12は、初期施肥量データを取得する(ステップSC5)。次いで、残存量導出部12は、ステップSC5で取得した初期施肥量データに記録された施肥量を取得する(ステップSC6)。次いで、残存量導出部12は、ステップSC6で取得した施肥量に対して、ステップSC4で導出した窒素溶出率を乗算して窒素溶出量を求め、当該施肥量から窒素溶出量を減算することによって今期肥料残存量を導出する(ステップSC7)。次いで、残存量導出部12は、ステップSC7で導出した今期肥料残存量を施肥量導出部10に応答する(ステップSC8)。 Next, the residual amount derivation unit 12 acquires the initial fertilizer application amount data (step SC5). Next, the residual amount derivation unit 12 acquires the fertilizer application amount recorded in the initial fertilizer application amount data acquired in step SC5 (step SC6). Next, the residual amount derivation unit 12 multiplies the fertilizer application amount acquired in step SC6 by the nitrogen elution rate derived in step SC4 to obtain the nitrogen elution amount, and subtracts the nitrogen elution amount from the fertilizer application amount. The residual amount of fertilizer for this term is derived (step SC7). Next, the residual amount derivation unit 12 responds to the fertilizer application amount derivation unit 10 with the current fertilizer residual amount derived in step SC7 (step SC8).

図4(A)で示すように、ステップSA3の処理後、施肥量導出部10は、仮施肥量導出部11からの仮追肥時施肥量の応答、および、残存量導出部12からの今期肥料残存量の応答の双方があったか否かを監視する(ステップSA4)。双方の応答があった場合(ステップSA4:YES)、施肥量導出部10は、仮施肥量導出部11により導出された仮追肥時施肥量から残存量導出部12により導出された今期肥料残存量を引いて求めた値を最終的な追肥時施肥量として導出する(ステップSA5)。次いで、施肥量導出部10は、ステップSA5で導出した追肥時施肥量を示す情報を表示装置2の表示領域に表示する(ステップSA6)。 As shown in FIG. 4A, after the treatment of step SA3, the fertilizer application amount derivation unit 10 responds to the fertilizer application amount at the time of temporary topdressing from the temporary fertilizer amount derivation unit 11 and the current fertilizer from the residual amount derivation unit 12. Monitor whether there was both a residual amount response (step SA4). When both responses are received (step SA4: YES), the fertilizer application amount derivation unit 10 is derived from the fertilizer application amount at the time of temporary topdressing derived by the temporary fertilizer amount derivation unit 11 to the residual amount fertilizer residual amount derived by the residual amount derivation unit 12. The value obtained by subtracting is derived as the final amount of fertilizer applied at the time of topdressing (step SA5). Next, the fertilizer application amount derivation unit 10 displays the information indicating the fertilizer application amount at the time of topdressing derived in step SA5 in the display area of the display device 2 (step SA6).

以上詳しく説明したように、本実施形態に係る施肥量導出装置1は、今期の初期の施肥後から追肥前に至るまでの積算温度を取得し、取得した積算温度に基づいて、緩効性肥料の残存量である今期肥料残存量を導出し、導出した今期肥料残存量を反映して追肥時施肥量を導出する。より詳細には本実施形態に係る施肥量導出装置1は、測定タイミングにおけるNDVIを取得し、NDVIを入力の1つとし施肥量を出力とする施肥量導出計算式を利用して、取得したNDVIに基づいて仮追肥時施肥量を導出する。更に本実施形態に係る施肥量導出装置1は、今期の初期施肥の後から追肥前に至るまでの積算温度を取得し、取得した積算温度に基づいて養分溶出率を求め、養分溶出率から緩効性肥料の残存量を導出する。そして本実施形態に係る施肥量導出装置1は、仮の追肥時施肥量から残存量を減算して最終的な追肥時施肥量を決定するようにしている。 As described in detail above, the fertilizer application amount derivation device 1 according to the present embodiment acquires the integrated temperature from the initial fertilizer application in the current period to before the top dressing, and based on the acquired integrated temperature, the slow-release fertilizer. The residual amount of fertilizer for this term, which is the residual amount of fertilizer, is derived, and the amount of fertilizer applied at the time of top dressing is derived by reflecting the derived residual amount of fertilizer for this term. More specifically, the fertilizer application amount derivation device 1 according to the present embodiment acquires the NDVI at the measurement timing, and uses the fertilizer application amount derivation calculation formula that uses the NDVI as one of the inputs and outputs the fertilizer amount. The amount of fertilizer applied at the time of temporary topdressing is derived based on. Further, the fertilizer application amount derivation device 1 according to the present embodiment acquires the integrated temperature from the initial fertilizer application in the current period to before the topdressing, obtains the nutrient elution rate based on the acquired integrated temperature, and relaxes from the nutrient elution rate. Derivation of the residual amount of effective fertilizer. Then, the fertilizer application amount derivation device 1 according to the present embodiment subtracts the residual amount from the provisional fertilizer application amount at the time of topdressing to determine the final fertilizer application amount at the time of topdressing.

この構成によれば、今期の初期の施肥後から追肥前に至るまでの積算温度に基づいて、追肥時における緩効性肥料の残存量が求められた上で、この残存量が反映されて追肥時の施肥量が導出される。このため、初期の施肥時に緩効性肥料が供給されるという事情、および、追肥時における肥料の残存の状況を踏まえた適切な施肥量を導出できる。より詳細には、追肥時のNDVIに基づいて施肥量導出計算式により導出される施肥量を単純に追肥時の最終的な施肥量とするのではなく、積算温度に基づいて養分溶出率および緩効性肥料の残存量が導出された上で、施肥量導出用計算式により導出された仮の追肥時施肥量から、この残存量を引いた値が最終的な追肥時の施肥量として決定される。このため、初期の施肥時に緩効性肥料が供給されることを踏まえた適切な施肥量を決定できる。 According to this configuration, the residual amount of slow-release fertilizer at the time of topdressing is determined based on the accumulated temperature from the initial fertilizer application to the prefertilizer before topdressing, and this residual amount is reflected and topdressing is performed. The amount of fertilizer applied at the time is derived. Therefore, it is possible to derive an appropriate amount of fertilizer application based on the situation that slow-release fertilizer is supplied at the time of initial fertilizer application and the state of residual fertilizer at the time of topdressing. More specifically, the fertilizer application amount derived by the fertilizer application amount derivation formula based on the NDVI at the time of topdressing is not simply the final fertilizer application amount at the time of topdressing, but the nutrient elution rate and the slowness based on the integrated temperature. After the residual amount of effective fertilizer is derived, the value obtained by subtracting this residual amount from the provisional fertilizer application amount derived by the formula for deriving the fertilizer amount is determined as the final fertilizer application amount. NS. Therefore, an appropriate amount of fertilizer can be determined based on the fact that the slow-release fertilizer is supplied at the time of initial fertilizer application.

<第1実施形態の変形例>
次に上記第1実施形態の変形例について説明する。上記実施形態では、施肥量導出部10は、仮施肥量導出部11により導出された仮追肥時施肥量から残存量導出部12により導出された肥料残存量を減算した値(以下「第1値」という)を、最終的な追肥時施肥量として決定していた。一方で、施肥量導出部10が、第1値を導出した後、この第1値が予め定められた上限値(単位面積あたりの量として表されたもの)を上回る場合には、この上限値を最終的な追肥時施肥量として決定するようにしてもよい。ここで、上限値は、追肥時のNDVIの多寡にかかわらず、この上限値を超えて肥料を供給した場合に、収穫物の質に悪影響がある可能性があるような値とされる。上限値は、事前の実験や、シミュレーションに基づいて定められる。
<Modified example of the first embodiment>
Next, a modified example of the first embodiment will be described. In the above embodiment, the fertilizer application amount derivation unit 10 is a value obtained by subtracting the fertilizer residual amount derived by the residual amount derivation unit 12 from the fertilizer application amount at the time of temporary topdressing derived by the temporary fertilizer amount derivation unit 11 (hereinafter, "first value"). ") Was determined as the final amount of fertilizer applied at the time of top dressing. On the other hand, if the fertilizer application amount derivation unit 10 derives the first value and then the first value exceeds a predetermined upper limit value (expressed as an amount per unit area), this upper limit value is reached. May be determined as the final amount of fertilizer applied at the time of top dressing. Here, the upper limit value is set to a value that may adversely affect the quality of the harvested product when fertilizer is supplied in excess of this upper limit value regardless of the amount of NDVI at the time of top dressing. The upper limit is determined based on prior experiments and simulations.

<第2実施形態>
次に第2実施形態について説明する。図5は、本実施形態に係る施肥量導出装置1Aの機能構成例を示すブロック図である。図1と図5との比較で明らかな通り施肥量導出装置1Aは、第1実施形態に係る施肥量導出部10に代えて施肥量導出部10Aを備えている。また施肥量導出装置1Aは、地力窒素予測発現量取得部20を備えている。以下、ユーザから入力装置3に対して情報提供指示があったときの施肥量導出装置1Aの動作について詳述する。
<Second Embodiment>
Next, the second embodiment will be described. FIG. 5 is a block diagram showing a functional configuration example of the fertilizer application amount derivation device 1A according to the present embodiment. As is clear from the comparison between FIGS. 1 and 5, the fertilizer application amount derivation device 1A includes a fertilizer application amount derivation unit 10A instead of the fertilizer application amount derivation unit 10 according to the first embodiment. Further, the fertilizer application amount derivation device 1A includes a soil nitrogen predicted expression amount acquisition unit 20. Hereinafter, the operation of the fertilizer application amount derivation device 1A when the user gives an instruction to provide information to the input device 3 will be described in detail.

施肥量導出部10Aは、情報提供指示に応じて、仮施肥量導出部11に対して仮追肥時施肥量の応答を要求すると共に、残存量導出部12に今期肥料残存量の応答を要求し、これに加えて地力窒素予測発現量取得部20に地力窒素予測発現量(後述)の応答を要求する。 The fertilizer application amount derivation unit 10A requests the temporary fertilizer amount derivation unit 11 to respond to the fertilizer application amount at the time of temporary topdressing, and requests the residual amount derivation unit 12 to respond to the fertilizer residual amount in the current period in response to the information provision instruction. In addition to this, the response of the predicted expression level of soil nitrogen (described later) is requested from the soil nitrogen predicted expression level acquisition unit 20.

地力窒素予測発現量取得部20は、施肥量導出部10Aからの要求に応じて、地力窒素予測発現量を取得する。地力窒素予測発現量とは、追肥後から収穫前に至るまでの期間における地力窒素の発現量の予測値である。周知の通り、地力窒素とは、人工的に施肥された肥料ではなく、土壌に残っている窒素のことをいう。地力窒素は、微生物に徐々に分解され、農作物に吸収されることにより、農作物の生育に影響を与えることが知られている。 The soil nitrogen predicted expression level acquisition unit 20 acquires the soil nitrogen predicted expression level in response to a request from the fertilizer application amount derivation unit 10A. The predicted expression level of soil nitrogen is a predicted value of the expression level of soil nitrogen in the period from after topdressing to before harvesting. As is well known, fertilizer nitrogen is not artificially fertilized fertilizer, but nitrogen remaining in the soil. It is known that soil nitrogen is gradually decomposed by microorganisms and absorbed by crops, thereby affecting the growth of crops.

地力窒素予測発現量取得部20の動作について詳述すると、施肥量導出部10Aから地力窒素予測発現量の応答の要求があると、地力窒素予測発現量取得部20は、記憶部13に記憶された地力窒素予測発現量データを取得する。地力窒素予測発現量データとは、事前に導出された地力窒素予測発現量が記録されたデータである。地力窒素予測発現量は、追肥後から収穫前に至るまでの期間における地力窒素の発現量に影響を与える種々の要素(例えば、予測される積算温度(気温や水田土壌温度を含む地温等)や、農作物の品種、土壌に関する諸条件、栽培方法に関する諸条件、農作物が所定の状態となるタイミング(例えば、幼穂が形成されたタイミングや、出穂のタイミング、登熟すると予測されるタイミング等)等)に基づいて事前に導出される。地力窒素予測発現量取得部20は、取得した地力窒素予測発現量データに基づいて地力窒素予測発現量を認識し、施肥量導出部10に応答する。 To elaborate on the operation of the soil nitrogen predicted expression amount acquisition unit 20, when the fertilizer application amount derivation unit 10A requests a response of the soil nitrogen predicted expression amount acquisition unit 20, the soil nitrogen predicted expression amount acquisition unit 20 is stored in the storage unit 13. Obtain data on the predicted expression level of soil nitrogen. The soil nitrogen predicted expression level data is data in which the soil nitrogen predicted expression level derived in advance is recorded. The predicted expression level of soil nitrogen is various factors that affect the expression level of soil nitrogen during the period from top dressing to pre-harvest (for example, predicted integrated temperature (soil temperature including temperature and paddy soil temperature)). , Crop varieties, soil conditions, cultivation method conditions, timing when crops are in a predetermined state (for example, timing when young ears are formed, timing of heading, timing expected to ripen, etc.) Derived in advance based on. The soil nitrogen predicted expression amount acquisition unit 20 recognizes the soil nitrogen predicted expression amount based on the acquired soil nitrogen predicted expression amount data, and responds to the fertilizer application amount derivation unit 10.

なお地力窒素予測発現量取得部20が、追肥後から収穫前に至るまでの期間における地力窒素の発現量に影響を与える種々の要素の要素を入力し、地力窒素予測発現量を出力するモデルを利用して、地力窒素予測発現量を導出する構成でもよい。この場合、当該種々の要素は事前に記憶部13に記憶されるか、都度ユーザに入力される。 A model in which the soil nitrogen predicted expression level acquisition unit 20 inputs various factors that affect the soil nitrogen expression level during the period from top dressing to before harvesting and outputs the soil nitrogen predicted expression level. It may be configured to derive the predicted expression level of soil nitrogen by utilizing it. In this case, the various elements are stored in the storage unit 13 in advance or input to the user each time.

施肥量導出部10Aは、仮施肥量導出部11から仮追肥時施肥量を取得し、残存量導出部12から今期肥料残存量を取得し、地力窒素予測発現量取得部20から地力窒素予測発現量を取得する。次いで施肥量導出部10Aは、取得した地力窒素予測発現量のレベルを判定する。本実施形態では、地力窒素予測発現量の大きさに応じて、大レベル、中レベル、小レベルの3つのレベルが事前に設定されており、各レベルを区分けする閾値が事前に設定されている。次いで施肥量導出部10Aは、レベルに応じて事前に設定された対応値(対応値の意義については後述)を設定する。各レベルの対応値は、レベルが大きいほど、大きさが大きい。すなわち、「大レベルに対応する対応値>中レベルに対応する対応値>小レベルに対応する対応値」である。 The fertilizer application amount derivation unit 10A acquires the fertilizer application amount at the time of temporary topdressing from the temporary fertilizer amount derivation unit 11, acquires the fertilizer residual amount for this term from the residual amount derivation unit 12, and the fertilizer nitrogen prediction expression amount acquisition unit 20. Get the quantity. Next, the fertilizer application amount derivation unit 10A determines the level of the acquired soil nitrogen predicted expression level. In the present embodiment, three levels of large level, medium level, and small level are preset according to the magnitude of the predicted expression level of soil nitrogen, and the threshold value for dividing each level is preset. .. Next, the fertilizer application amount derivation unit 10A sets a corresponding value set in advance according to the level (the significance of the corresponding value will be described later). The larger the level, the larger the corresponding value of each level. That is, "corresponding value corresponding to the large level> corresponding value corresponding to the medium level> corresponding value corresponding to the small level".

次いで施肥量導出部10Aは、仮追肥時施肥量および今期肥料残存量に基づいて、仮追肥時施肥量から今期肥料残存量を引いた値(以下「暫定値」という。この暫定値は、第1実施形態で導出される最終的な追肥時施肥量に相当)を導出する。次いで施肥量導出部10Aは、暫定値から、地力窒素予測発現量のレベルに対応する対応値を引いた値を求め、この値を最終的な追肥時施肥量として導出する。施肥量導出部10Aは、第1実施形態と同様、導出した追肥時施肥量を示す情報を表示装置2に表示する。 Next, the fertilizer application amount derivation unit 10A is a value obtained by subtracting the fertilizer residual amount in the current term from the fertilizer application amount at the time of temporary topdressing based on the fertilizer application amount at the time of temporary topdressing and the residual amount of fertilizer in this term (hereinafter, this provisional value is referred to as a "provisional value". (Corresponding to the final amount of fertilizer applied at the time of topdressing) derived in one embodiment) is derived. Next, the fertilizer application amount derivation unit 10A obtains a value obtained by subtracting the corresponding value corresponding to the level of the predicted fertilizer nitrogen expression level from the provisional value, and derives this value as the final fertilizer application amount at the time of top dressing. Similar to the first embodiment, the fertilizer application amount deriving unit 10A displays the derived information indicating the fertilizer application amount at the time of top dressing on the display device 2.

ここで、上述したように仮追肥時施肥量は、過去の実際の地力窒素発現量が反映して生成された施肥量導出計算式を利用して導出される値であり、当然、暫定値にも、過去の実際の地力窒素発現量が反映されている。しかしながら、暫定値は、今期において発現することが予測される地力窒素発現量(=地力窒素予測発現量)が的確に反映されているとは言えない。そして、「暫定値から、地力窒素予測発現量のレベルに対応する対応値を引く」処理は、最終的に導出される追肥時施肥量に、今期の地力窒素予測発現量を的確に反映させるための処理である。より具体的には、当該処理は、地力窒素予測発現量の大きさに応じて、地力窒素予測発現量の大きさが大きいほど、最終的に導出される追肥時施肥量が適切に小さくなるよう調整し、これにより最終的に導出される追肥時施肥量の精度を向上させる処理である。なお、各レベルの対応値は、地力窒素予測発現量に応じて最終的に導出される追肥時施肥量を調整するという観点の下、テストやシミュレーションの結果に基づいて適切に設定される。 Here, as described above, the fertilizer application amount at the time of temporary topdressing is a value derived by using the fertilizer application amount derivation calculation formula generated by reflecting the actual fertilizer nitrogen expression level in the past, and is naturally a provisional value. However, the actual amount of soil nitrogen expressed in the past is reflected. However, it cannot be said that the provisional value accurately reflects the amount of soil nitrogen expression (= predicted expression level of soil nitrogen) that is predicted to be expressed in this term. Then, the process of "subtracting the corresponding value corresponding to the level of the predicted expression level of soil nitrogen from the provisional value" is to accurately reflect the predicted expression level of soil nitrogen in the current period in the fertilizer application amount at the time of topdressing that is finally derived. It is the processing of. More specifically, in the treatment, the larger the predicted expression level of soil nitrogen, the smaller the amount of fertilizer applied at the time of topdressing, which is finally derived, according to the magnitude of the predicted expression level of soil nitrogen. This is a process for adjusting and improving the accuracy of the amount of fertilizer applied at the time of topdressing, which is finally derived. The corresponding value of each level is appropriately set based on the results of tests and simulations from the viewpoint of adjusting the amount of fertilizer applied at the time of topdressing, which is finally derived according to the predicted expression level of soil nitrogen.

本実施形態によれば、以下の効果を奏する。すなわち、追肥後、農作物に吸収される窒素には、追肥時に人工的に提供された肥料に由来する窒素だけではなく、地力窒素も含まれる。そして本実施形態によれば、地力窒素予測発現量も考慮して追肥時施肥量が導出されるため、より精度の高い追肥時施肥量を導出できる。 According to this embodiment, the following effects are obtained. That is, the nitrogen absorbed by the crops after topdressing includes not only nitrogen derived from fertilizer artificially provided at the time of topdressing, but also soil nitrogen. According to the present embodiment, since the fertilizer application amount at the time of topdressing is derived in consideration of the predicted expression level of soil nitrogen, it is possible to derive a more accurate fertilizer application amount at the time of topdressing.

なお第2実施形態について、第1実施形態の変形例を応用して以下の構成としてもよい。すなわち施肥量導出部10Aが、暫定値から対応値を引いた値が予め定められた上限値を上回っているときに、この上限値を最終的な追肥時施肥量として決定する構成としてもよい。 The second embodiment may be configured as follows by applying a modified example of the first embodiment. That is, when the value obtained by subtracting the corresponding value from the provisional value exceeds a predetermined upper limit value, the fertilizer application amount deriving unit 10A may determine this upper limit value as the final fertilizer application amount at the time of top dressing.

また第2実施形態について、暫定値から地力窒素予測発現量のレベルに応じた対応値を引いた値を最終的な追肥時施肥量としたのは単純化した一例であり、他の方法で最終的な追肥時施肥量が導出される構成でもよい。すなわち施肥量導出部10Aが、暫定値(仮追肥時施肥量から今期肥料残存量を引いた値)に対して、地力窒素予測発現量を反映して最終的な追肥時施肥量を導出する構成であればよい。一例として、施肥量導出部10Aが、地力窒素予測発現量に対して所定の係数を乗じた値を導出し、暫定値からこの値を引いて求めた値を最終的な追肥時施肥量とする構成でもよい。この場合、所定の係数は、最終的な追肥時施肥量を適切な値とするために、地力窒素予測発現量の値を調整するような係数とされ、事前のテストやシミュレーションにより適切に決定される。また、施肥量導出計算式が、どの程度の地力窒素発現量を前提として出力値を導出しているのかを把握し、施肥量導出計算式が前提とする地力窒素発現量と、今期の予測値である地力窒素発現量との差分を、暫定値に反映させる構成でもよい。 Further, in the second embodiment, the value obtained by subtracting the corresponding value according to the predicted expression level of soil nitrogen from the provisional value as the final fertilizer application amount at the time of top dressing is a simplified example, and is finalized by another method. The fertilizer application amount at the time of top dressing may be derived. That is, the fertilizer application amount derivation unit 10A derives the final fertilizer application amount at the time of top dressing by reflecting the predicted expression amount of fertilizer nitrogen with respect to the provisional value (value obtained by subtracting the fertilizer residual amount at this term from the fertilizer application amount at the time of provisional fertilizer application). It should be. As an example, the fertilizer application amount derivation unit 10A derives a value obtained by multiplying the predicted expression amount of soil nitrogen by a predetermined coefficient, and subtracts this value from the provisional value to obtain the value as the final fertilizer application amount at the time of top dressing. It may be configured. In this case, the predetermined coefficient is a coefficient that adjusts the value of the predicted expression level of soil nitrogen in order to make the final fertilizer application amount an appropriate value, and is appropriately determined by prior tests and simulations. NS. In addition, grasp the amount of soil nitrogen expression that the fertilizer application derivation formula presupposes to derive the output value, and the fertilizer nitrogen expression that the fertilizer derivation formula presupposes and the predicted value for this term. The difference from the amount of soil nitrogen expressed may be reflected in the provisional value.

また第2実施形態について以下の構成としてもよい。すなわち、第2実施形態体は、初期施肥時(基肥時)に緩効性肥料を施用することを前提としていた。一方、初期施肥時に速効性肥料を施用するケースがある。このケースでは、追肥時の追肥量を決定するにあたって、肥料の残存量を考慮する必要はない。一方、追肥後の地力窒素発現量を考慮することによって、精度を高めることが可能である点は上述した通りである。そして上記ケースを想定して、第2実施形態に係る施肥量導出装置1Aを以下の構成とすることができる。 Further, the second embodiment may have the following configuration. That is, the second embodiment was premised on applying a slow-release fertilizer at the time of initial fertilizer application (at the time of basal fertilizer). On the other hand, there are cases where fast-acting fertilizer is applied at the time of initial fertilizer application. In this case, it is not necessary to consider the residual amount of fertilizer when determining the amount of topdressing at the time of topdressing. On the other hand, as described above, it is possible to improve the accuracy by considering the expression level of soil nitrogen after topdressing. Then, assuming the above case, the fertilizer application amount derivation device 1A according to the second embodiment can have the following configuration.

第2実施形態に係る施肥量導出装置1Aについて、残存量導出部12を有さない構成とする。その上で、ユーザから入力装置3に対して情報提供指示があった場合、施肥量導出装置2Aは以下の処理を実行する。すなわち、施肥量導出部10Aは、情報提供指示に応じて、仮施肥量導出部11に対して仮追肥時施肥量の応答を要求すると共に、地力窒素予測発現量取得部20に地力窒素予測発現量の応答を要求する。 The fertilizer application amount derivation device 1A according to the second embodiment is configured not to have a residual amount derivation unit 12. Then, when the user gives an instruction to provide information to the input device 3, the fertilizer application amount derivation device 2A executes the following processing. That is, the fertilizer application amount derivation unit 10A requests the provisional fertilizer amount derivation unit 11 to respond to the fertilizer application amount at the time of temporary topdressing in response to the information provision instruction, and the soil fertilizer nitrogen prediction expression amount acquisition unit 20 is requested to express the soil fertilizer nitrogen prediction expression. Request a quantity response.

仮施肥量導出部11は、施肥量導出計算式を利用して、仮追肥時施肥量を導出する。この施肥量導出計算式は、測定タイミングにおけるNDVIを入力し、初期施肥時に速効性肥料が施用されるという環境において、農作物の状態を目標状態とするために必要かつ適切な追肥時の施肥量を出力する計算式とされる。仮施肥量導出部11は、導出した仮追肥時施肥量を施肥量導出部10Aに応答する。更に地力窒素予測発現量取得部20は、地力窒素予測発現量を取得し、施肥量導出部10Aに応答する。 The temporary fertilizer amount derivation unit 11 derives the fertilizer application amount at the time of temporary topdressing by using the fertilizer amount derivation calculation formula. In this fertilizer application amount derivation calculation formula, the NDVI at the measurement timing is input, and in an environment where fast-acting fertilizer is applied at the initial fertilizer application, the fertilizer application amount at the time of topdressing necessary and appropriate for setting the state of the crop to the target state is obtained. It is a calculation formula to be output. The temporary fertilizer amount derivation unit 11 responds to the fertilizer application amount derivation unit 10A with the derived fertilizer application amount at the time of temporary topdressing. Further, the soil nitrogen predicted expression amount acquisition unit 20 acquires the soil nitrogen predicted expression amount and responds to the fertilizer application amount derivation unit 10A.

施肥量導出部10Aは、仮施肥量導出部11から仮追肥時施肥量を取得すると共に、地力窒素予測発現量取得部20から地力窒素予測発現量を取得する。施肥量導出部10Aは、仮追肥時施肥量に地力窒素予測発現量を反映させて最終的な追肥時施肥量を導出する。仮追肥時施肥量に地力窒素予測発現量を反映させる方法の例は、第2実施形態で説明した通りであり、例えば、仮追肥時施肥量から、地力窒素予測発現量のレベルに対応する対応値を減算し、また例えば、仮追肥時施肥量から、地力窒素予測発現量に所定の係数を乗じた値を減算する。以上のような構成によれば、初期施肥時に初期施肥時に速効性肥料を施用するケースにおいても、予想される地力窒素の発現量を反映して、導出される追肥時の施肥量の精度を向上できる。 The fertilizer application amount derivation unit 10A acquires the fertilizer application amount at the time of temporary topdressing from the temporary fertilizer amount derivation unit 11, and acquires the fertilizer nitrogen predicted expression amount from the soil nitrogen predicted expression amount acquisition unit 20. The fertilizer application amount deriving unit 10A derives the final fertilizer application amount at the time of topdressing by reflecting the predicted expression amount of soil nitrogen in the fertilizer application amount at the time of provisional fertilizer application. An example of a method of reflecting the predicted fertilizer expression level in the amount of fertilizer applied at the time of temporary topdressing is as described in the second embodiment. The value is subtracted, and for example, the value obtained by multiplying the predicted fertilizer expression level by a predetermined coefficient is subtracted from the fertilizer application amount at the time of temporary topdressing. According to the above configuration, even in the case where the fast-acting fertilizer is applied at the time of the initial fertilizer application, the accuracy of the derived fertilizer application amount at the time of top dressing is improved by reflecting the expected expression level of fertilizer nitrogen. can.

<第3実施形態>
次に第3実施形態について説明する。図6は、本実施形態に係る施肥量導出装置1Bの機能構成例を示すブロック図である。図1と図6との比較で明らかな通り、施肥量導出装置1Bは、第1実施形態に係る施肥量導出部10に代えて施肥量導出部10Bを備えている。また施肥量導出装置1Bは、第1実施形態に係る残存量導出部12に代えて残存量導出部12Bを備えている。また施肥量導出装置1Bは、第1実施形態に係る仮施肥量導出部11を備えていない。以下、ユーザから入力装置3に対して情報提供指示があったときの施肥量導出装置1Bの動作について詳述する。
<Third Embodiment>
Next, the third embodiment will be described. FIG. 6 is a block diagram showing a functional configuration example of the fertilizer application amount derivation device 1B according to the present embodiment. As is clear from the comparison between FIGS. 1 and 6, the fertilizer application amount derivation device 1B includes a fertilizer application amount derivation unit 10B instead of the fertilizer application amount derivation unit 10 according to the first embodiment. Further, the fertilizer application amount derivation device 1B includes a residual amount derivation unit 12B instead of the residual amount derivation unit 12 according to the first embodiment. Further, the fertilizer application amount derivation device 1B does not include the temporary fertilizer application amount derivation unit 11 according to the first embodiment. Hereinafter, the operation of the fertilizer application amount derivation device 1B when the user gives an information provision instruction to the input device 3 will be described in detail.

施肥量導出部10Bは、情報提供指示に応じて、残存量導出部12Bに対して残存量差(後述)の応答を要求する。残存量導出部12Bは、施肥量導出部10Bからの要求に応じて、以下の処理を実行する。すなわち、まず残存量導出部12Bは、第1実施形態と同様の方法で積算温度に基づいて今期肥料残存量を導出する。次いで残存量導出部12Bは、記憶部13に記憶された平年肥料残存量データを参照し、当該データに記録された平年肥料残存量を認識する。平年肥料残存量とは、平年の追肥時における緩効性肥料の残存量(初期施肥で施された肥料の残存量)を意味する。平年肥料残存量は、過去の実際の圃場における残存量の実際値や、緩効性肥料の残存量に関するテスト/シミュレーションに基づいて事前に導出される。 The fertilizer application amount derivation unit 10B requests the residual amount derivation unit 12B to respond with a residual amount difference (described later) in response to the information provision instruction. The residual amount derivation unit 12B executes the following processing in response to the request from the fertilizer application amount derivation unit 10B. That is, first, the residual amount deriving unit 12B derives the fertilizer residual amount in this term based on the integrated temperature by the same method as in the first embodiment. Next, the residual amount deriving unit 12B refers to the average fertilizer residual amount data stored in the storage unit 13 and recognizes the average fertilizer residual amount recorded in the data. The normal fertilizer residual amount means the residual amount of slow-release fertilizer (residual amount of fertilizer applied in the initial fertilizer application) at the time of top dressing in normal years. The average fertilizer residual amount is derived in advance based on the actual value of the residual amount in the actual field in the past and the test / simulation regarding the residual amount of the slow-release fertilizer.

次いで残存量導出部12Bは、平年肥料残存量と、導出した今期肥料残存量との差(平年肥料残存量−今期肥料残存量)を残存量差として導出する。このようにして導出される残存量差は、平年の肥料の残存量に対する、今期の肥料の残存量の過不足量を示している。残存量差は、「平年肥料残存量>今期肥料残存量」であればプラスになり、「平年肥料残存量<今期肥料残存量」であればマイナスになる。残存量導出部12Bは、導出した残存量差を施肥量導出部10Bに応答する。 Next, the residual amount derivation unit 12B derives the difference between the normal fertilizer residual amount and the derived current fertilizer residual amount (normal year fertilizer residual amount-current term fertilizer residual amount) as the residual amount difference. The difference in the residual amount derived in this way indicates the excess or deficiency of the residual amount of fertilizer in this term with respect to the residual amount of fertilizer in the normal year. The difference in residual amount is positive if "normal fertilizer residual amount> current term fertilizer residual amount", and negative if "normal year fertilizer residual amount <current term fertilizer residual amount". The residual amount derivation unit 12B responds to the fertilizer application amount derivation unit 10B with the derived residual amount difference.

残存量導出部12Bから残存量差を取得すると、施肥量導出部10Bは、以下の処理を実行する。すなわち施肥量導出部10Bは、記憶部13に記憶された慣行追肥時施肥量データを参照し、当該データに記録された慣行追肥時施肥量を認識する。慣行追肥時施肥量とは、慣行の追肥時施肥量であり、追肥時の肥料の残存量が上述した平年肥料残存量であることを想定して設定された追肥時施肥量の基準値を意味している。次いで施肥量導出部10Bは、慣行追肥時施肥量に残存量差を加算して、最終的な追肥時施肥量を導出する。 When the residual amount difference is obtained from the residual amount derivation unit 12B, the fertilizer application amount derivation unit 10B executes the following processing. That is, the fertilizer application amount deriving unit 10B refers to the conventional fertilizer application amount data stored in the storage unit 13 and recognizes the conventional fertilizer application amount recorded in the data. The conventional fertilizer application amount at the time of topdressing is the conventional fertilizer application amount at the time of topdressing, and means the reference value of the fertilizer application amount at the time of topdressing set assuming that the residual amount of fertilizer at the time of topdressing is the above-mentioned normal fertilizer residual amount. is doing. Next, the fertilizer application amount derivation unit 10B adds the residual amount difference to the conventional fertilizer application amount at the time of top dressing to derive the final fertilizer application amount at the time of top dressing.

残存量差がプラスの場合は、今期は平年に比して、初期施肥において施した緩効性肥料の残存量が少ないということである。そしてこの場合、慣行追肥時施肥量に残存量差(>0)を加えた値が最終的な追肥時施肥量とされるため、最終的な追肥時施肥量は、平年に比して不足する分の肥料が適切に補われた値となる。一方、残存量値がマイナスの場合は、今期は平年に比して、初期施肥において施した緩効性肥料の残存量が多いということである。そしてこの場合、慣行追肥時施肥量に残存量差(<0)を加えた値(つまり残存量差の絶対値を引いた値)が最終的な追肥時施肥量とされるため、最終的な追肥時施肥量は、平年に比して過剰な分の肥料が適切に削減された値となる。 If the difference in residual amount is positive, it means that the residual amount of slow-release fertilizer applied in the initial fertilizer application is smaller than in the normal period. In this case, the value obtained by adding the residual amount difference (> 0) to the conventional fertilizer application amount is regarded as the final fertilizer application amount, so that the final fertilizer application amount is insufficient compared to the normal year. The amount of fertilizer is properly supplemented. On the other hand, if the residual amount value is negative, it means that the residual amount of slow-release fertilizer applied in the initial fertilizer application is larger than in the normal year. In this case, the final fertilizer application amount is the value obtained by adding the residual amount difference (<0) to the conventional fertilizer application amount (that is, the value obtained by subtracting the absolute value of the residual amount difference). The amount of fertilizer applied at the time of top dressing is a value in which excess fertilizer is appropriately reduced compared to the average year.

以上の通り、本実施形態によれば、今期の初期の施肥後から追肥前に至るまでの積算温度に基づいて平年と今期との緩効性肥料の残存量の差である残存量差が求められた上で、この残存量差が反映されて追肥時の施肥量が導出される。このため、初期の施肥時に緩効性肥料が供給されるという事情、および、追肥時における肥料の残存の状況を踏まえた適切な施肥量を導出できる。 As described above, according to the present embodiment, the difference in the residual amount, which is the difference in the residual amount of the slow-release fertilizer between the normal year and the current period, is obtained based on the integrated temperature from the initial fertilizer application in the current period to before the top dressing. After that, the amount of fertilizer applied at the time of topdressing is derived by reflecting this difference in the residual amount. Therefore, it is possible to derive an appropriate amount of fertilizer application based on the situation that slow-release fertilizer is supplied at the time of initial fertilizer application and the state of residual fertilizer at the time of topdressing.

<第3実施形態の変形例>
次に第3実施形態の変形例について説明する。上記第3実施形態では、残存量導出部12Bは、今期肥料残存量を導出し、平年肥料残存量から導出した今期肥料残存量を引くことによって残存量差を導出した。この点に関し、以下の構成でもよい。
<Modified example of the third embodiment>
Next, a modified example of the third embodiment will be described. In the third embodiment, the residual amount deriving unit 12B derives the residual amount of fertilizer for the current term, and subtracts the residual amount of fertilizer for the current term derived from the residual amount of fertilizer for the normal year to derive the difference in the residual amount. In this regard, the following configuration may be used.

すなわち、平年の積算温度(第1実施形態で説明したように、初期施肥から追肥時に至る期間の積算温度)と、今期の積算温度とを入力とし、残存量差(平年肥料残存量と今期肥料残存量との差)を出力とするモデルが事前に生成される。なお、「平年の積算温度と今期の積算温度との差」と、「平年肥料残存量と今期肥料残存量との差(残存量差)」とには強い相関関係があるため、相関関係を分析することにより、上述したモデルを生成することができる。なお、モデルに、平年の積算温度および今期の積算温度が入力されるのではなく、これら積算温度の差が入力される構成としてもよい。また、モデルの入力に、平年の積算温度および今期の積算温度(或いはこれらの積算温度の差)以外の、肥料の残存量に影響を与える1つ以上の要素の要素値が含まれ、モデルは、1つ以上の要素値を反映して、残存量差を導出するものでもよい。 That is, the cumulative temperature of the normal year (as described in the first embodiment, the cumulative temperature of the period from the initial fertilizer application to the time of topdressing) and the cumulative temperature of the current term are input, and the difference in the residual amount (the residual amount of the normal fertilizer and the fertilizer for the current term) is input. A model with the output (difference from the residual amount) is generated in advance. Since there is a strong correlation between the "difference between the accumulated temperature in the normal year and the accumulated temperature in the current term" and the "difference between the residual amount of fertilizer in the normal year and the residual amount of fertilizer in the current term (residual amount difference)", the correlation should be determined. By analyzing, the above-mentioned model can be generated. In addition, instead of inputting the integrated temperature of the normal year and the integrated temperature of the current period into the model, the difference between these integrated temperatures may be input. In addition, the input of the model includes the element values of one or more factors that affect the residual amount of fertilizer other than the integrated temperature of the normal year and the integrated temperature of this period (or the difference between these integrated temperatures), and the model is The residual amount difference may be derived by reflecting one or more element values.

残存量導出部12Bは、残存量差の導出に際し、以下の処理を実行する。すなわち残存量導出部12Bは、平年の積算温度および今期の積算温度を認識する。これらは、記憶部13に記憶されたデータに事前に記録される。ただし、ユーザが都度入力する構成でもよい。そして残存量導出部12Bは、モデルに平年の積算温度および今期の積算温度を入力し、その出力を残存量差とする。以上の構成でもよい。 The residual amount deriving unit 12B executes the following processing when deriving the residual amount difference. That is, the residual amount derivation unit 12B recognizes the integrated temperature in the normal year and the integrated temperature in the current period. These are recorded in advance in the data stored in the storage unit 13. However, the configuration may be such that the user inputs each time. Then, the residual amount derivation unit 12B inputs the integrated temperature of the normal year and the integrated temperature of the current period into the model, and sets the output as the residual amount difference. The above configuration may be used.

以上、本発明の一実施形態(変形例を含む)を説明したが、上記各実施形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 Although one embodiment (including a modified example) of the present invention has been described above, each of the above embodiments is merely an example of embodiment of the present invention, whereby the technique of the present invention is described. The scope should not be construed in a limited way. That is, the present invention can be implemented in various forms without departing from its gist or its main features.

例えば上記各実施形態では、施肥量導出装置1は、稲を対象として、稲作の追肥時の施肥量を導出した。しかしながら、対象とする農作物は稲に限られない。すなわち、本発明は、栽培に際して緩効性肥料の施肥が行われた後に追肥が行われる農作物に広く適用可能である。一例として小麦、大麦、大豆その他の穀物や、野菜、果物等に適用可能である。 For example, in each of the above embodiments, the fertilizer application amount derivation device 1 derives the fertilizer application amount at the time of top dressing of rice cultivation for rice. However, the target crops are not limited to rice. That is, the present invention can be widely applied to agricultural products in which topdressing is performed after fertilization of slow-release fertilizer is performed during cultivation. As an example, it can be applied to wheat, barley, soybeans and other grains, vegetables, fruits and the like.

また上記第1実施形態(変形例を含む)では、緩効性肥料は窒素系の肥料であった。しかしながら、本発明が対象とする緩効性肥料は窒素系の肥料に限らず、積算温度と養分溶出率との間に何らかの関係があり、積算温度に基づいて養分溶出率が予測できるものであれば何でもよい。一例として、水田土壌の積算温度で推定可能な地力窒素であってもよい。 Further, in the first embodiment (including a modified example), the slow-release fertilizer was a nitrogen-based fertilizer. However, the slow-release fertilizer targeted by the present invention is not limited to nitrogen-based fertilizers, and any fertilizer may have some relationship between the integrated temperature and the nutrient elution rate, and the nutrient elution rate can be predicted based on the integrated temperature. Anything is fine. As an example, it may be soil nitrogen that can be estimated from the integrated temperature of the paddy soil.

また、記憶部13は、施肥量導出装置1とは異なる外部記憶装置が有する構成でもよい。 Further, the storage unit 13 may have a configuration of an external storage device different from the fertilizer application amount derivation device 1.

また、施肥量導出装置1を、インターネット上のサーバとして構成し、インターネットを介してクライアントから追肥時施肥量を示す情報の提供の要請があったときに、上述した手法で追肥時施肥量を導出し、クライアントに提供する構成としてもよい。 Further, the fertilizer application amount derivation device 1 is configured as a server on the Internet, and when a client requests to provide information indicating the fertilizer application amount at the time of topdressing via the Internet, the fertilizer application amount at the time of topdressing is derived by the above-mentioned method. However, it may be configured to be provided to the client.

また、施肥量導出装置1は、単体のコンピュータである必要はなく、複数のコンピュータにより構成されていてもよい。例えば、インターネットを介して接続された端末とクラウドサーバとが協働して施肥量導出装置1として機能し、端末が適宜クラウドサーバと協働して処理を実行する構成でもよい。 Further, the fertilizer application amount derivation device 1 does not have to be a single computer, and may be composed of a plurality of computers. For example, the terminal connected via the Internet and the cloud server may cooperate to function as the fertilizer application amount derivation device 1, and the terminal may appropriately cooperate with the cloud server to execute processing.

また本実施形態では、初期施肥を「圃場への移植時に行われる窒素系の緩効性肥料の施肥」と定義したが、これはあくまで初期施肥の一例である。初期施肥は、ある一つの期において、追肥の前の所定のタイミングで行われる施肥であればよい。 Further, in the present embodiment, the initial fertilizer is defined as "the fertilization of a nitrogen-based slow-release fertilizer performed at the time of transplantation to a field", but this is just an example of the initial fertilizer. The initial fertilizer may be fertilizer applied at a predetermined timing before top dressing in a certain period.

1、1A、1B 施肥量導出装置
10、10A、10B 施肥量導出部
11 仮施肥量導出部
12、12B 残存量導出部
20 地力窒素予測発現量取得部
1, 1A, 1B fertilizer application amount derivation device 10, 10A, 10B fertilizer application amount derivation unit 11 Temporary fertilizer application amount derivation unit 12, 12B residual amount derivation unit 20 geological nitrogen predicted expression amount acquisition unit

Claims (13)

今期の初期の緩効性肥料の施肥後に行われる追肥時の施肥量である追肥時施肥量を導出する施肥量導出装置であって、
今期の初期の施肥後から追肥前に至るまでの積算温度を取得し、取得した積算温度に基づいて、追肥時における緩効性肥料の残存量である今期肥料残存量または平年と今期との緩効性肥料の残存量の差である残存量差を導出する残存量導出部と、
前記残存量導出部により導出された前記今期肥料残存量または前記残存量差を反映して前記追肥時施肥量を導出する施肥量導出部と、
を備えることを特徴とする施肥量導出装置。
It is a fertilizer amount derivation device that derives the amount of fertilizer applied at the time of topdressing, which is the amount of fertilizer applied at the time of topdressing performed after the application of slow-release fertilizer at the beginning of this term.
Obtain the integrated temperature from the initial fertilizer application to the pre-fertilizer before the current period, and based on the acquired integrated temperature, the residual amount of slow-release fertilizer at the time of top-dressing, or the slowness between normal and current period. The residual amount derivation unit that derives the residual amount difference, which is the difference in the residual amount of effective fertilizer,
A fertilizer application amount derivation unit that derives the fertilizer application amount at the time of top dressing by reflecting the fertilizer residual amount in the current period or the difference in the residual amount derived by the residual amount derivation unit.
A fertilizer application amount derivation device characterized by being provided with.
追肥前の農作物の植生に関する植生関連値を取得し、植生関連値を入力の1つとし施肥量を出力とする施肥量導出計算式を利用して、取得した植生関連値に基づいて仮の追肥時施肥量を導出する仮施肥量導出部を更に備え、
前記残存量導出部は、今期の初期の施肥後から追肥前に至るまでの積算温度に基づいて養分溶出率または養分残存率を求め、養分溶出率または養分残存率から前記今期肥料残存量を導出し、
前記施肥量導出部は、前記仮施肥量導出部により導出された前記仮の追肥時施肥量から前記残存量導出部により導出された前記今期肥料残存量を減算して最終的な追肥時施肥量を導出する
ことを特徴とする請求項1に記載の施肥量導出装置。
Use the fertilizer amount derivation formula that acquires the vegetation-related value related to the vegetation of the crop before topdressing, uses the vegetation-related value as one of the inputs, and outputs the fertilizer amount as the output, and temporarily topdresses based on the acquired vegetation-related value. It is further equipped with a temporary fertilizer amount derivation unit that derives the hourly fertilizer amount.
The residual amount derivation unit obtains the nutrient elution rate or the nutrient residual rate based on the integrated temperature from the initial fertilizer application to the top dressing in the current period, and derives the fertilizer residual amount in the current period from the nutrient elution rate or the nutrient residual rate. death,
The fertilizer application amount derivation unit subtracts the fertilizer residual amount of the current term derived by the residual amount derivation unit from the temporary fertilizer application amount derived by the temporary fertilizer amount derivation unit, and finally fertilizer application amount at the time of top dressing. The fertilizer application amount derivation device according to claim 1, wherein the fertilizer is derived.
前記施肥量導出部は、前記仮施肥量導出部により導出された前記仮の追肥時施肥量から前記残存量導出部により導出された前記今期肥料残存量を減算した値が、予め定められた上限値を上回る場合には、上限値を前記最終的な追肥時施肥量として導出することを特徴とする請求項2に記載の施肥量導出装置。 In the fertilizer application amount derivation unit, a value obtained by subtracting the fertilizer residual amount in the current period derived by the residual amount derivation unit from the fertilizer application amount at the time of provisional fertilizer derived by the temporary fertilizer amount derivation unit is a predetermined upper limit. The fertilizer application amount derivation device according to claim 2, wherein when the value exceeds the value, the upper limit value is derived as the final fertilizer application amount at the time of top dressing. 追肥後から収穫前に至るまでの地力窒素の発現量の予測値である地力窒素予測発現量を取得する地力窒素予測発現量取得部を更に備え、
前記施肥量導出部は、前記仮施肥量導出部により導出された前記仮の追肥時施肥量から前記残存量導出部により導出された前記今期肥料残存量を減算した値に、更に前記地力窒素予測発現量取得部により取得された前記地力窒素予測発現量を反映して前記最終的な追肥時施肥量を導出することを特徴とする請求項2に記載の施肥量導出装置。
It is further equipped with a soil nitrogen predicted expression level acquisition unit that acquires the soil nitrogen predicted expression level, which is the predicted value of the soil nitrogen expression level from after topdressing to before harvesting.
The fertilizer application amount derivation unit further predicts the fertilizer nitrogen to a value obtained by subtracting the fertilizer residual amount of this term derived by the residual amount derivation unit from the fertilizer application amount at the time of provisional fertilizer derived by the temporary fertilizer amount derivation unit. The fertilizer application amount deriving device according to claim 2, wherein the final fertilizer application amount at the time of topdressing is derived by reflecting the predicted expression amount of soil nitrogen acquired by the expression amount acquisition unit.
前記施肥量導出部は、前記仮施肥量導出部により導出された前記仮の追肥時施肥量から前記残存量導出部により導出された緩効性肥料の残存量を減算した値に、更に前記地力窒素予測発現量取得部により取得された前記地力窒素予測発現量を反映して導出した値が、予め定められた上限値を上回る場合には、上限値を前記最終的な追肥時施肥量として導出することを特徴とする請求項4に記載の施肥量導出装置。 The fertilizer application amount derivation unit is a value obtained by subtracting the residual amount of the slow-release fertilizer derived by the residual amount derivation unit from the temporary fertilizer application amount at the time of topdressing derived by the temporary fertilizer amount derivation unit, and further the soil force. If the value derived by reflecting the predicted fertilizer expression level acquired by the nitrogen predicted expression level acquisition unit exceeds a predetermined upper limit value, the upper limit value is derived as the final fertilizer application amount at the time of topdressing. The fertilizer application amount derivation device according to claim 4, wherein the fertilizer is applied. 前記仮施肥量導出部は、蓄積された過去の実際の追肥時の施肥量および追肥前の植生関連値の組み合わせと農作物の状態との関係について、農作物の状態を目的変数とし、追肥時の施肥量および追肥前の植生関連値を説明変数とする重回帰分析を行って求められた重回帰式に基づく計算式を前記施肥量導出計算式として利用して前記仮の追肥時施肥量を導出することを特徴とする請求項2から5の何れか1項に記載の施肥量導出装置。 The temporary fertilizer amount derivation unit uses the state of the agricultural product as an objective variable for the relationship between the accumulated past actual amount of fertilizer applied at the time of topdressing and the combination of vegetation-related values before topdressing and the state of the agricultural product, and fertilizer is applied at the time of topdressing. The formula based on the multiple regression formula obtained by performing multiple regression analysis using the amount and the vegetation-related value before topdressing as explanatory variables is used as the fertilizer amount derivation calculation formula to derive the provisional fertilizer application amount at the time of topdressing. The fertilizer application amount derivation device according to any one of claims 2 to 5, wherein the fertilizer application amount is derived. 前記仮施肥量導出部は、農作物の群落に対する遠隔からの観測により得られる第1指標値を前記植生関連値として取得することを特徴とする請求項2から6の何れか1項に記載の施肥量導出装置。 The fertilizer application according to any one of claims 2 to 6, wherein the temporary fertilizer application amount derivation unit acquires a first index value obtained by remote observation of a crop community as the vegetation-related value. Quantity derivation device. 前記仮施肥量導出部は、ドローンを用いた上空からのセンシングにより得られるNDVI、または、衛星写真に基づくNDVIを前記第1指標値として取得することを特徴とする請求項7に記載の施肥量導出装置。 The fertilizer application amount according to claim 7, wherein the temporary fertilizer application amount deriving unit acquires an NDVI obtained by sensing from the sky using a drone or an NDVI based on a satellite image as the first index value. Derivation device. 前記仮施肥量導出部は、NDVIセンサを用いた地上での測定により得られるNDVI、葉緑素計を用いた地上での測定により得られるSPAD値、または、葉色板を用いた地上での測定により得られる葉色板値を前記植生関連値として取得することを特徴とする請求項2から6の何れか1項に記載の施肥量導出装置。 The temporary fertilizer application amount derivation unit is obtained by NDVI obtained by measurement on the ground using an NDVI sensor, SPAD value obtained by measurement on the ground using a vegetation meter, or measurement on the ground using a leaf color plate. The fertilizer application amount derivation device according to any one of claims 2 to 6, wherein the leaf color plate value to be obtained is acquired as the vegetation-related value. 前記残存量導出部は、積算温度に基づいて前記今期肥料残存量を導出し、平年の追肥時における緩効性肥料の残存量である平年肥料残存量と、導出した前記今期肥料残存量との差を求めることによって前記残存量差を導出し、
前記施肥量導出部は、前記残存量導出部により導出された前記残存量差を慣行の追肥時の施肥量に反映させることによって前記追肥時施肥量を導出する
ことを特徴とする請求項1に記載の施肥量導出装置。
The residual amount derivation unit derives the residual amount of fertilizer for this term based on the integrated temperature, and the residual amount of fertilizer for this term, which is the residual amount of slow-release fertilizer at the time of top dressing in normal year, and the derived residual amount of fertilizer for this term. By finding the difference, the residual amount difference is derived,
The first aspect of claim 1 is characterized in that the fertilizer application amount derivation unit derives the fertilizer application amount at the time of top dressing by reflecting the difference in the residual amount derived by the residual amount derivation unit in the conventional fertilizer application amount at the time of top dressing. The fertilizer application amount derivation device described.
前記残存量導出部は、平年の積算温度と今期の積算温度との差に基づいて前記残存量差を導出し、
前記施肥量導出部は、前記残存量導出部により導出された前記残存量差を慣行の追肥時の施肥量に反映させることによって前記追肥時施肥量を導出する
ことを特徴とする請求項1に記載の施肥量導出装置。
The residual amount derivation unit derives the residual amount difference based on the difference between the integrated temperature in the normal year and the integrated temperature in the current period.
The first aspect of claim 1 is characterized in that the fertilizer application amount derivation unit derives the fertilizer application amount at the time of top dressing by reflecting the difference in the residual amount derived by the residual amount derivation unit in the fertilizer application amount at the time of conventional top dressing. The fertilizer application amount derivation device described.
前記残存量導出部に代えて、追肥後から収穫前に至るまでの地力窒素の発現量の予測値である地力窒素予測発現量を取得する地力窒素予測発現量取得部を有し、
前記施肥量導出部は、今期の初期に速効性肥料が施されている場合、前記地力窒素予測発現量取得部により取得された前記地力窒素予測発現量を反映して前記追肥時施肥量を導出する
ことを特徴とする請求項1に記載の施肥量導出装置。
Instead of the residual amount derivation unit, it has a soil nitrogen predicted expression amount acquisition unit that acquires a soil nitrogen predicted expression amount, which is a predicted value of the soil nitrogen expression amount from after topdressing to before harvesting.
When the fast-acting fertilizer is applied at the beginning of this term, the fertilizer application amount derivation unit derives the fertilizer application amount at the time of top dressing by reflecting the soil nitrogen predicted expression amount acquired by the soil nitrogen predicted expression amount acquisition unit. The fertilizer application amount derivation device according to claim 1, wherein the fertilizer application amount is derived.
今期の初期の緩効性肥料の施肥後に行われる追肥時の施肥量である追肥時施肥量を導出する施肥量導出方法であって、
今期の初期の施肥後から追肥前に至るまでの積算温度を取得し、取得した積算温度に基づいて、追肥時における緩効性肥料の残存量である今期肥料残存量または平年と今期との緩効性肥料の残存量の差である残存量差を導出するステップと、
導出した前記今期肥料残存量または前記残存量差を反映して前記追肥時施肥量を導出するステップと、
を含むことを特徴とする施肥量導出方法。
It is a fertilizer amount derivation method that derives the fertilizer application amount at the time of top dressing, which is the fertilizer application amount at the time of top dressing performed after the fertilization of the slow-release fertilizer at the initial stage of this term.
Obtain the integrated temperature from the initial fertilizer application to the pre-fertilizer before the current period, and based on the acquired integrated temperature, the residual amount of slow-release fertilizer at the time of top-dressing, or the slowness between normal and current period. The step of deriving the residual amount difference, which is the difference in the residual amount of effective fertilizer, and
The step of deriving the fertilizer application amount at the time of top dressing by reflecting the derived fertilizer residual amount in this term or the difference in the residual amount, and
A method for deriving the amount of fertilizer applied, which comprises.
JP2020180672A 2020-01-15 2020-10-28 Fertilizer application amount derivation device and fertilizer application amount derivation method Active JP6916558B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020004237 2020-01-15
JP2020004237A JP2020054395A (en) 2020-01-15 2020-01-15 Device for determining fertilizer application level and method for determining fertilizer application level

Publications (2)

Publication Number Publication Date
JP2021108649A true JP2021108649A (en) 2021-08-02
JP6916558B2 JP6916558B2 (en) 2021-08-11

Family

ID=70105482

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020004237A Pending JP2020054395A (en) 2020-01-15 2020-01-15 Device for determining fertilizer application level and method for determining fertilizer application level
JP2020180672A Active JP6916558B2 (en) 2020-01-15 2020-10-28 Fertilizer application amount derivation device and fertilizer application amount derivation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020004237A Pending JP2020054395A (en) 2020-01-15 2020-01-15 Device for determining fertilizer application level and method for determining fertilizer application level

Country Status (1)

Country Link
JP (2) JP2020054395A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054395A (en) * 2020-01-15 2020-04-09 国立研究開発法人農業・食品産業技術総合研究機構 Device for determining fertilizer application level and method for determining fertilizer application level
JP7044285B2 (en) * 2020-04-20 2022-03-30 国立研究開発法人農業・食品産業技術総合研究機構 Crop-related value derivation device and crop-related value derivation method
JP7051161B2 (en) * 2020-05-25 2022-04-11 国立研究開発法人農業・食品産業技術総合研究機構 Crop-related value derivation device and crop-related value derivation method
WO2021245890A1 (en) * 2020-06-04 2021-12-09 株式会社ナイルワークス Soil state estimation device, field management device, soil state estimation method, and soil state estimation program
CN113692793A (en) * 2021-08-27 2021-11-26 淄博市农业科学研究院 Millet field operation machine for intertillage, weeding, ridging and variable fertilization
CN115349340B (en) * 2022-09-19 2023-05-19 沈阳农业大学 Sorghum fertilization control method and system based on artificial intelligence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128523A (en) * 1999-11-08 2001-05-15 Kawasaki Kiko Co Ltd System for cleaning up farm environment
JP2015027296A (en) * 2014-07-23 2015-02-12 株式会社へんこ Fertilization designing method, and fertilization designing system
JP2018082648A (en) * 2016-11-22 2018-05-31 コニカミノルタ株式会社 Fertilization design method, fertilization design program, and fertilization design system
CN109169121A (en) * 2018-10-11 2019-01-11 内蒙古大学 A kind of soybean wide-and narrow-row cultural method for arid area
JP2019175440A (en) * 2018-03-29 2019-10-10 国立研究開発法人農業・食品産業技術総合研究機構 Soil environment prediction system for farm crop, soil environment prediction device for farm crop, and soil environment prediction method for farm crop
JP2020054395A (en) * 2020-01-15 2020-04-09 国立研究開発法人農業・食品産業技術総合研究機構 Device for determining fertilizer application level and method for determining fertilizer application level

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128523A (en) * 1999-11-08 2001-05-15 Kawasaki Kiko Co Ltd System for cleaning up farm environment
JP2015027296A (en) * 2014-07-23 2015-02-12 株式会社へんこ Fertilization designing method, and fertilization designing system
JP2018082648A (en) * 2016-11-22 2018-05-31 コニカミノルタ株式会社 Fertilization design method, fertilization design program, and fertilization design system
JP2019175440A (en) * 2018-03-29 2019-10-10 国立研究開発法人農業・食品産業技術総合研究機構 Soil environment prediction system for farm crop, soil environment prediction device for farm crop, and soil environment prediction method for farm crop
CN109169121A (en) * 2018-10-11 2019-01-11 内蒙古大学 A kind of soybean wide-and narrow-row cultural method for arid area
JP2020054395A (en) * 2020-01-15 2020-04-09 国立研究開発法人農業・食品産業技術総合研究機構 Device for determining fertilizer application level and method for determining fertilizer application level

Also Published As

Publication number Publication date
JP2020054395A (en) 2020-04-09
JP6916558B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6916558B2 (en) Fertilizer application amount derivation device and fertilizer application amount derivation method
ur Rahman et al. Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan
Lobell et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties
Giorio et al. Sap flow of several olive trees estimated with the heat-pulse technique by continuous monitoring of a single gauge
Harrison et al. Using a mathematical framework to examine physiological changes in winter wheat after livestock grazing: 1. Model derivation and coefficient calibration
Jongschaap Run-time calibration of simulation models by integrating remote sensing estimates of leaf area index and canopy nitrogen
Morel et al. Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation
Moreno et al. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models
KR100465144B1 (en) Method for determining amount of fertilizer application for grain crops, method for estimating quality and yield of grains, and apparatus for providing grain production information
JP6960698B2 (en) Crop-related value derivation device and crop-related value derivation method
Hadasch et al. Trends in mean performance and stability of winter wheat and winter rye yields in a long-term series of variety trials
Lemaire et al. A morphogenetic crop model for sugar-beet (Beta vulgaris L.)
Coelho et al. Vegetation indices in the prediction of biomass and grain yield of white oat under irrigation levels
Mirsafi et al. Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.)
JP7313056B2 (en) Fertilizer application amount determination device and fertilizer application amount determination method
Zhang et al. Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status
Seidel et al. The influence of climate variability, soil and sowing date on simulation-based crop coefficient curves and irrigation water demand
JP7044285B2 (en) Crop-related value derivation device and crop-related value derivation method
Rahimikhoob et al. Simulating crop response to Nitrogen-deficiency stress using the critical Nitrogen concentration concept and the AquaCrop semi-quantitative approach
JP7051161B2 (en) Crop-related value derivation device and crop-related value derivation method
CN104236486A (en) Rapid lossless measuring method for cotton leaf area index
Ratjen et al. Nitrogen-limited light use efficiency in wheat crop simulators: comparing three model approaches
Kurunc et al. Determination of Water Stress in Wheat Crops by Thermal Images Under Mediterranean Conditions
Li et al. Determinants of paddy yield of individual fields measured by IT combine: empirical analysis from the perspective of large-scale farm management in Japan
JP2020150887A (en) Growth management method for gramineous crops

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6916558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150