JP2021107807A5 - - Google Patents

Download PDF

Info

Publication number
JP2021107807A5
JP2021107807A5 JP2020194644A JP2020194644A JP2021107807A5 JP 2021107807 A5 JP2021107807 A5 JP 2021107807A5 JP 2020194644 A JP2020194644 A JP 2020194644A JP 2020194644 A JP2020194644 A JP 2020194644A JP 2021107807 A5 JP2021107807 A5 JP 2021107807A5
Authority
JP
Japan
Prior art keywords
opposite
charged particle
beams
particle beam
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020194644A
Other languages
Japanese (ja)
Other versions
JP2021107807A (en
JP7532225B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to TW109144237A priority Critical patent/TWI774157B/en
Priority to US17/126,802 priority patent/US11342157B2/en
Priority to KR1020200180570A priority patent/KR102495674B1/en
Publication of JP2021107807A publication Critical patent/JP2021107807A/en
Publication of JP2021107807A5 publication Critical patent/JP2021107807A5/ja
Application granted granted Critical
Publication of JP7532225B2 publication Critical patent/JP7532225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上述の荷電粒子ビーム検査装置において、荷電粒子ビームで照射可能な測定用画素サイズをPS、第2の方向又は第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、第2の方向又は第2の方向の逆方向のビームスキャン時間をTvとしたときに、ステージの移動速度VはV=PS/(2Tv)であることが好ましい。 In the above-mentioned charged particle beam inspection apparatus, the measurement pixel size that can be irradiated with the charged particle beam is defined as PS, the second direction or the second direction including the second beam settling time Ofs_v in the second direction or the opposite direction of the second direction. Preferably, the moving speed V of the stage is V=PS N /(2Tv), where Tv is the beam scanning time in the opposite direction to the second direction.

y方向又は-y方向における第2ビーム整定時間Ofs_vを含む、y方向又は-y方向のビームスキャン時間をTvとしたときに、XYステージ105の移動速度VはV=PS/(2Tv)である。これは、以下のようにして導かれる。まず、1本のビームが担当するグリッド29の面積は、(p/M)×pである。この(p/M)×pであるグリッド29におけるビームスキャンが開始されてから完了するまでにXYステージ105が移動する距離は、段落0035に記載したとおりN/M・pである。次に、測定用画素28のx方向及びy方向におけるサイズをPSとして、y方向のビームスキャンに必要な時間をTvとする。この場合、y方向のスキャン時間は(p/(M×PS))×Tvで求められる。すると、図9及び図10にて示したように、y方向において極性を変えて(y方向及び-y方向)2回スキャンを行うため、((p/(M×PS))×Tv×2)×V=N/M・pという式が成立する。よって、V=PS/(2Tv))である。なお、上述のXYステージ105の移動速度Vは、例えば、移動速度計算回路146により計算される。 When the beam scanning time in the y direction or -y direction including the second beam settling time Ofs_v in the y direction or -y direction is Tv, the moving speed V of the XY stage 105 is V=PS N /(2Tv). be. This is derived as follows. First, the area of the grid 29 covered by one beam is (p/M)×p. The distance that the XY stage 105 moves from the start to the completion of the beam scan in the grid 29, which is (p/M)×p, is N/M·p as described in paragraph 0035 . Next, let PS be the size of the measurement pixel 28 in the x direction and the y direction, and let Tv be the time required for beam scanning in the y direction. In this case, the scan time in the y direction is determined by (p/(M×PS))×Tv. Then, as shown in FIGS. 9 and 10, since scanning is performed twice with changing polarity in the y direction (y direction and -y direction), ((p/(M×PS))×Tv×2 )×V= N/M·p holds true. Therefore, V=PS N /(2Tv)). Note that the above-mentioned moving speed V of the XY stage 105 is calculated by, for example, the moving speed calculation circuit 146.

x方向又は-x方向における第1ビーム整定時間Ofs_hを含む、x方向又は-x方向のビームスキャン時間をTh、y方向又は-y方向における第2ビーム整定時間Ofs_vを含む、y方向又は-y方向のビームスキャン時間をTvとしたときに、XYステージ105の移動速度VはV=PS/(2×(M×Th+Tv))である。これは、以下のようにして導かれる。まず、1本のビームが担当するグリッド29の面積は、(p/M)×pである。この(p/M)×pであるグリッド29におけるビームスキャンが開始されてから完了するまでにXYステージ105が移動する距離は、段落0035に記載したとおりN/M・pである。次に、測定用画素28のx方向及びy方向におけるサイズをPSとして、x方向のビームスキャンに必要な時間をTh、y方向のビームスキャンに必要な時間をTvとする。この場合、x方向のスキャン時間は(p/PS)×Thで求められる。また、y方向のスキャン時間は(p/(M×PS))×Tvで求められる。すると、図11ないし図14にて示したように、x方向において極性を変えて(x方向及び-x方向)2回スキャンを行い、y方向において極性を変えて(y方向及び-y方向)2回スキャンを行うため、((p/(M×PS))×Tv×2+(p/PS)×Th×2)×V=N/M・pという式が成立する。よって、V=PS/(2×(M×Th+Tv))である。なお、上述のXYステージ105の移動速度Vは、例えば、移動速度計算回路146により計算される。 Beam scanning time in the x direction or -x direction, including the first beam settling time Ofs_h in the x direction or -x direction, Th, including the second beam settling time Ofs_v in the y direction or -y direction, in the y direction or -y When the beam scanning time in the direction is Tv, the moving speed V of the XY stage 105 is V=PS N /(2×(M×Th+Tv)). This is derived as follows. First, the area of the grid 29 covered by one beam is (p/M)×p. The distance that the XY stage 105 moves from the start to the completion of the beam scan in the grid 29, which is (p/M)×p, is N/M·p as described in paragraph 0035 . Next, the size of the measurement pixel 28 in the x and y directions is set as PS, the time required for beam scanning in the x direction is Th, and the time required for beam scanning in the y direction is set as Tv. In this case, the scan time in the x direction is determined by (p/PS)×Th. Further, the scan time in the y direction is determined by (p/(M×PS))×Tv. Then, as shown in FIGS. 11 to 14, scanning is performed twice by changing the polarity in the x direction (x direction and -x direction), and by changing the polarity in the y direction (y direction and -y direction). Since scanning is performed twice, the formula ((p/(M×PS))×Tv×2+(p/PS)×Th×2)×V= N/M·p holds true. Therefore, V=PS N /(2×(M×Th+Tv)). Note that the above-mentioned moving speed V of the XY stage 105 is calculated by, for example, the moving speed calculating circuit 146.

Claims (20)

基板を載置する、移動可能なステージと、
前記ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、
前記第1の方向に前記基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、前記基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記ステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向すると共に、前記第1の方向の逆方向に前記N/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の機能と、
前記ステージの連続移動に追従するように前記マルチビームがトラッキング偏向されている間に、前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第2の工程を行うことにより、
前記N×N’個の小領域群を走査するように、前記マルチビームを一括して偏向する第2の機能の2つの機能を持つ偏向器と、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出する検出器と、
を備え、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする荷電粒子ビーム検査装置。
a movable stage on which the substrate is placed;
a stage control circuit that continuously moves the stage in a direction opposite to the first direction;
N rows (N is an integer of 2 or more) at the same pitch p on the substrate surface in the first direction and N' rows (N' is an integer of 1 or more) in a second direction orthogonal to the first direction. ) Using a multi-beam composed of a plurality of lined up charged particle beams, the inspection area of the substrate has a size obtained by p/M (M is an integer of 2 or more) in the first direction and in the second direction. N×N' small areas on the substrate arranged at the pitch p in the first direction and N' in the second direction among a plurality of small areas divided into a predetermined size. Deflecting the multi-beams at once into a group so as to follow the continuous movement of the stage while the stage continuously moves a distance obtained by N/M·p in the opposite direction to the first direction. While tracking deflection of the multi-beam, the movement of the stage from the N×N' small area group in the opposite direction to the first direction is completed, Tracking reset is performed by collectively re-deflecting the multi-beams to a new group of N×N' small regions arranged at the pitch p in the first direction and N spaces apart in the first direction. The first function and
While the multi-beams are being tracking deflected to follow the continuous movement of the stage, each of the multi-beams is directed to each of the plurality of small areas,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , a first step in which the collective deflection of the multi-beams along the second direction is repeatedly performed from an end on a side opposite to the first direction toward an end on a side in the first direction; Perform the process, and then
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , repeatedly deflecting the multi-beams in a direction opposite to the second direction from an end opposite to the first direction toward an end opposite the first direction; By performing the second step,
a deflector having two functions, a second function of deflecting the multi-beams all at once so as to scan the N×N′ small area group;
a detector that detects secondary electrons emitted from the substrate due to irradiation of the multi-beam to the substrate;
Equipped with
A charged particle beam inspection apparatus characterized in that, as the value of N and the value of M, a combination of values such that the greatest common divisor between the value of N and the value of M is 1 is used.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2Tv)
である請求項1記載の荷電粒子ビーム検査装置。
the second direction or the second direction, including a measurement pixel size PS that can be irradiated with the charged particle beam, and a second beam settling time Ofs_v in the second direction or a direction opposite to the second direction; When the beam scan time in the opposite direction is Tv,
The moving speed V of the stage is V=PS N /(2Tv)
The charged particle beam inspection apparatus according to claim 1.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項1記載の荷電粒子ビーム検査装置。
When the measurement pixel size that can be irradiated with the charged particle beam is PS, and the scan frequency of the charged particle beam is f,
The beam scanning time Tv in the second direction or the opposite direction to the second direction is Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)× Ofs_v
The charged particle beam inspection apparatus according to claim 1.
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、を平均した平均2次電子画像を取得する平均画像取得回路をさらに備える請求項1記載の荷電粒子ビーム検査装置。 Average image acquisition for obtaining an average secondary electron image obtained by averaging the first secondary electron image acquired in the first step and the second secondary electron image acquired in the second step. The charged particle beam inspection apparatus according to claim 1, further comprising a circuit. 基板を載置する、移動可能なステージと、
前記ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、
前記第1の方向に前記基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、前記基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記ステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向すると共に、前記第1の方向の逆方向に前記N/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の機能と、
前記ステージの連続移動に追従するように前記マルチビームがトラッキング偏向されている間に、前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第2の工程を行い、その後、
前記第1の方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第3の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第4の工程を行うことにより、
前記N×N’個の小領域群を走査するように、前記マルチビームを一括して偏向する第2の機能の2つの機能を持つ偏向器と、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出する検出器と、
を備え、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする荷電粒子ビーム検査装置。
a movable stage on which the substrate is placed;
a stage control circuit that continuously moves the stage in a direction opposite to the first direction;
N rows (N is an integer of 2 or more) at the same pitch p on the substrate surface in the first direction and N' rows (N' is an integer of 1 or more) in a second direction orthogonal to the first direction. ) Using a multi-beam composed of a plurality of lined up charged particle beams, the inspection area of the substrate has a size obtained by p/M (M is an integer of 2 or more) in the first direction and in the second direction. N×N' small areas on the substrate arranged at the pitch p in the first direction and N' in the second direction among a plurality of small areas divided into a predetermined size. Deflecting the multi-beams at once into a group so as to follow the continuous movement of the stage while the stage continuously moves a distance obtained by N/M·p in the opposite direction to the first direction. While tracking deflection of the multi-beam, the movement of the stage from the N×N' small area group in the opposite direction to the first direction is completed, Tracking reset is performed by collectively re-deflecting the multi-beams to a new group of N×N' small regions arranged at the pitch p in the first direction and N spaces apart in the first direction. The first function and
While the multi-beams are being tracking deflected to follow the continuous movement of the stage, each of the multi-beams is directed to each of the plurality of small areas,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , a first step in which the collective deflection of the multi-beams along the second direction is repeatedly performed from an end on a side opposite to the first direction toward an end on a side in the first direction; Perform the process, and then
A second step of repeatedly deflecting the multi-beams in a direction opposite to the first direction is performed, and then,
A third step is performed in which the collective deflection of the multi-beams along the first direction is repeatedly performed, and then,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , repeatedly deflecting the multi-beams in a direction opposite to the second direction from an end opposite to the first direction toward an end opposite the first direction; By performing the fourth step,
a deflector having two functions, a second function of deflecting the multi-beams all at once so as to scan the N×N′ small area group;
a detector that detects secondary electrons emitted from the substrate due to irradiation of the multi-beam to the substrate;
Equipped with
A charged particle beam inspection apparatus characterized in that, as the value of N and the value of M, a combination of values such that the greatest common divisor between the value of N and the value of M is 1 is used.
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の逆方向の側から前記第2の方向の側へと向かって、繰り返し行われる請求項5記載の荷電粒子ビーム検査装置。 The charged particle beam inspection according to claim 5, wherein the collective deflection of the multi-beams in the second step is repeatedly performed from a side opposite to the second direction to a side in the second direction. Device. 前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の側から前記第2の方向の逆方向の側へと向かって、繰り返し行われる請求項5記載の荷電粒子ビーム検査装置。 The charged particle beam inspection according to claim 5, wherein the collective deflection of the multi-beams in the second step is repeatedly performed from the side in the second direction to the side in the opposite direction to the second direction. Device. 前記荷電粒子ビームで照射可能な測定用画素サイズをPS、
前記第1の方向又は前記第1の方向の逆方向における第1ビーム整定時間Ofs_hを含む、前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間をTh、
前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2×(M×Th+Tv))
である請求項5記載の荷電粒子ビーム検査装置。
The measurement pixel size that can be irradiated with the charged particle beam is PS,
Th, a beam scanning time in the first direction or in the opposite direction to the first direction, including a first beam settling time Ofs_h in the first direction or in the opposite direction to the first direction;
When Tv is the beam scanning time in the second direction or in the opposite direction to the second direction, including the second beam settling time Ofs_v in the second direction or in the opposite direction to the second direction,
The moving speed V of the stage is V=PS N /(2×(M×Th+Tv))
The charged particle beam inspection apparatus according to claim 5.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間Thは
Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
であり、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項5記載の荷電粒子ビーム検査装置。
When the measurement pixel size that can be irradiated with the charged particle beam is PS, and the scan frequency of the charged particle beam is f,
The beam scanning time Th in the first direction or in the opposite direction to the first direction is Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
and
The beam scanning time Tv in the second direction or the opposite direction to the second direction is Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)× Ofs_v
The charged particle beam inspection apparatus according to claim 5.
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、前記第3の工程で取得された第3の2次電子画像と、前記第4の工程で取得された第4の2次電子画像と、を平均した平均2次電子画像を取得する平均画像取得回路をさらに備える請求項5記載の荷電粒子ビーム検査装置。 A first secondary electron image obtained in the first step, a second secondary electron image obtained in the second step, and a third secondary electron image obtained in the third step. The charged particle beam inspection apparatus according to claim 5, further comprising an average image acquisition circuit that acquires an average secondary electron image obtained by averaging the electronic image and the fourth secondary electron image acquired in the fourth step. . 第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記基板を載置するステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向しながら、
前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第2の工程を行うことにより、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出し、
前記第1の方向の逆方向にN/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う荷電粒子ビーム検査方法であって、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いる荷電粒子ビーム検査方法。
Arranged in N rows (N is an integer of 2 or more) at the same pitch p on the substrate surface in a first direction and in N' rows (N' is an integer of 1 or more) in a second direction perpendicular to the first direction. Using a multi-beam composed of a plurality of charged particle beams, the inspection area of the substrate has a size obtained by p/M (M is an integer of 2 or more) in the first direction and a predetermined size in the second direction. Among the plurality of small regions divided by size, N×N' small regions on the substrate are arranged at the pitch p in the first direction and N' in the second direction. The multi-beams are deflected all at once to follow the continuous movement of the stage on which the substrate is placed while it continuously moves a distance obtained by N/M·p in the opposite direction to the first direction. While tracking and deflecting the multi-beam,
each of the multi-beams in each of the plurality of small areas,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , a first step in which the collective deflection of the multi-beams along the second direction is repeatedly performed from an end on a side opposite to the first direction toward an end on a side in the first direction; Perform the process, and then
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , repeatedly deflecting the multi-beams in a direction opposite to the second direction from an end opposite to the first direction toward an end opposite the first direction; By performing the second step,
detecting secondary electrons emitted from the substrate due to irradiation of the multi-beam to the substrate;
By the time the stage has completed moving a distance obtained by N/M·p in the opposite direction to the first direction, the stage has moved away from the group of N×N′ small regions by N in the first direction. , a charged particle beam inspection method that performs a tracking reset by collectively re-deflecting the multi-beam to a new group of N×N' small regions arranged at the pitch p in the first direction,
A charged particle beam inspection method using, as the value of N and the value of M, a combination of values such that the greatest common divisor between the value of N and the value of M is 1.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2Tv)
である請求項11記載の荷電粒子ビーム検査方法。
the second direction or the second direction, including a measurement pixel size PS that can be irradiated with the charged particle beam, and a second beam settling time Ofs_v in the second direction or a direction opposite to the second direction; When the beam scan time in the opposite direction is Tv,
The moving speed V of the stage is V=PS N /(2Tv)
The charged particle beam inspection method according to claim 11.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項11記載の荷電粒子ビーム検査方法。
When the measurement pixel size that can be irradiated with the charged particle beam is PS, and the scan frequency of the charged particle beam is f,
The beam scanning time Tv in the second direction or the opposite direction to the second direction is Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)× Ofs_v
The charged particle beam inspection method according to claim 11.
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、を平均した平均2次電子画像を取得する請求項11記載の荷電粒子ビーム検査装置。 11. An average secondary electron image is obtained by averaging the first secondary electron image obtained in the first step and the second secondary electron image obtained in the second step. The charged particle beam inspection device described. 第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記基板を載置するステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向しながら、
前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第2の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第3の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第4の工程を行うことにより、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出し、
前記第1の方向の逆方向にN/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う荷電粒子ビーム検査方法であって、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いる荷電粒子ビーム検査方法。
Arranged in N rows (N is an integer of 2 or more) at the same pitch p on the substrate surface in a first direction and in N' rows (N' is an integer of 1 or more) in a second direction perpendicular to the first direction. Using a multi-beam composed of a plurality of charged particle beams, the inspection area of the substrate has a size obtained by p/M (M is an integer of 2 or more) in the first direction and a predetermined size in the second direction. Among the plurality of small regions divided by size, N×N' small regions on the substrate are arranged at the pitch p in the first direction and N' in the second direction. The multi-beams are deflected all at once to follow the continuous movement of the stage on which the substrate is placed while it continuously moves a distance obtained by N/M·p in the opposite direction to the first direction. While tracking and deflecting the multi-beam,
each of the multi-beams in each of the plurality of small areas,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , a first step in which the collective deflection of the multi-beams along the second direction is repeatedly performed from an end on a side opposite to the first direction toward an end on a side in the first direction; Perform the process, and then
A second step of repeatedly deflecting the multi-beams in a direction opposite to the first direction is performed, and then,
A third step of repeatedly deflecting the multi-beams in a direction opposite to the first direction is performed, and then,
The end point of each of the plurality of small regions on the side opposite to the first direction is the starting point, and the end point of each of the plurality of small regions on the side of the first direction is the end point. , repeatedly deflecting the multi-beams in a direction opposite to the second direction from an end opposite to the first direction toward an end opposite the first direction; By performing the fourth step,
detecting secondary electrons emitted from the substrate due to irradiation of the multi-beam to the substrate;
By the time the stage has completed moving a distance obtained by N/M·p in the opposite direction to the first direction, the stage has moved away from the group of N×N′ small regions by N in the first direction. , a charged particle beam inspection method that performs a tracking reset by collectively re-deflecting the multi-beam to a new group of N×N' small regions arranged at the pitch p in the first direction,
A charged particle beam inspection method using, as the value of N and the value of M, a combination of values such that the greatest common divisor between the value of N and the value of M is 1.
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の逆方向の側から前記第2の方向の側へと向かって、繰り返し行われる請求項15記載の荷電粒子ビーム検査方法。 The charged particle beam inspection according to claim 15, wherein the collective deflection of the multi-beams in the second step is repeatedly performed from a side opposite to the second direction to a side in the second direction. Method. 前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の側から前記第2の方向の逆方向の側へと向かって、繰り返し行われる請求項15記載の荷電粒子ビーム検査方法。 The charged particle beam inspection according to claim 15, wherein the collective deflection of the multi-beams in the second step is repeatedly performed from the side in the second direction to the side in the opposite direction to the second direction. Method. 前記荷電粒子ビームで照射可能な測定用画素サイズをPS、
前記第1の方向又は前記第1の方向の逆方向における第1ビーム整定時間Ofs_hを含む、前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間をTh、
前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2×(M×Th+Tv))
である請求項15記載の荷電粒子ビーム検査方法。
The measurement pixel size that can be irradiated with the charged particle beam is PS,
Th, a beam scanning time in the first direction or in the opposite direction to the first direction, including a first beam settling time Ofs_h in the first direction or in the opposite direction to the first direction;
When Tv is the beam scanning time in the second direction or in the opposite direction to the second direction, including the second beam settling time Ofs_v in the second direction or in the opposite direction to the second direction,
The moving speed V of the stage is V=PS N /(2×(M×Th+Tv))
The charged particle beam inspection method according to claim 15.
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間Thは
Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
であり、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項15記載の荷電粒子ビーム検査方法。
When the measurement pixel size that can be irradiated with the charged particle beam is PS, and the scan frequency of the charged particle beam is f,
The beam scanning time Th in the first direction or in the opposite direction to the first direction is Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
and
The beam scanning time Tv in the second direction or the opposite direction to the second direction is Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)× Ofs_v
The charged particle beam inspection method according to claim 15.
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、前記第3の工程で取得された第3の2次電子画像と、前記第4の工程で取得された第4の2次電子画像と、を平均した平均2次電子画像を取得する請求項15記載の荷電粒子ビーム検査方法。 A first secondary electron image obtained in the first step, a second secondary electron image obtained in the second step, and a third secondary electron image obtained in the third step. 16. The charged particle beam inspection method according to claim 15, wherein an average secondary electron image is obtained by averaging the electron image and the fourth secondary electron image obtained in the fourth step.
JP2020194644A 2019-12-27 2020-11-24 Charged particle beam inspection device and charged particle beam inspection method Active JP7532225B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109144237A TWI774157B (en) 2019-12-27 2020-12-15 Charged particle beam inspection device and charged particle beam inspection method
US17/126,802 US11342157B2 (en) 2019-12-27 2020-12-18 Charged particle beam inspection apparatus and charged particle beam inspection method
KR1020200180570A KR102495674B1 (en) 2019-12-27 2020-12-22 Charged particle beam inspection device and charged particle beam inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019238575 2019-12-27
JP2019238575 2019-12-27

Publications (3)

Publication Number Publication Date
JP2021107807A JP2021107807A (en) 2021-07-29
JP2021107807A5 true JP2021107807A5 (en) 2023-10-27
JP7532225B2 JP7532225B2 (en) 2024-08-13

Family

ID=76967851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020194644A Active JP7532225B2 (en) 2019-12-27 2020-11-24 Charged particle beam inspection device and charged particle beam inspection method

Country Status (1)

Country Link
JP (1) JP7532225B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103033B2 (en) 2007-03-02 2012-12-19 株式会社日立ハイテクノロジーズ Charged particle beam application equipment
JP4764436B2 (en) 2008-02-14 2011-09-07 株式会社日立ハイテクノロジーズ Appearance inspection method and inspection apparatus
JP5174844B2 (en) 2010-03-05 2013-04-03 株式会社日立ハイテクノロジーズ Circuit pattern inspection apparatus and inspection method thereof
JP6684179B2 (en) 2016-07-27 2020-04-22 株式会社ニューフレアテクノロジー Charged particle beam inspection apparatus and charged particle beam inspection method

Similar Documents

Publication Publication Date Title
KR102217582B1 (en) Multi electron-beam image acquiring apparatus and positioning method of multi electron-beam optical system
US10041892B2 (en) Charged particle beam inspection apparatus and charged particle beam inspection method
US10120284B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
KR101829797B1 (en) Measurement method of rotation angle of multi charged particle beam image, adjustment method of rotation angle of multi charged particle beam image and multi charged particle beam drawing device
KR101698894B1 (en) Beam position measuring method for multi-charged particle beam and multi-charged particle beam writing apparatus
JP2019200983A (en) Multi electron beam irradiation device, multi electron beam inspection device, and multi electron beam irradiation method
JP2017107959A (en) Multi-charged particle beam device and method for adjusting the shape of multi-charged particle beam image
JP5174844B2 (en) Circuit pattern inspection apparatus and inspection method thereof
KR102371265B1 (en) Multiple electron beams irradiation apparatus
JP2019036403A (en) Optical system adjustment method of image acquisition apparatus
KR20200036768A (en) Multi electron beam image acquiring apparatus and multi electron beam image acquiring method
JP2019200920A (en) Multi-electron beam image acquisition apparatus and multiple electron beam image acquisition method
JP2020087788A (en) Multi electron beam image acquisition device and multi electron beam image acquisition method
JP2013128031A (en) Multiple charged particle beam lithography apparatus and multiple charged particle beam lithography method
JP7386619B2 (en) Electron beam inspection method and electron beam inspection device
KR102495674B1 (en) Charged particle beam inspection device and charged particle beam inspection method
JP2020119682A (en) Multi-electron beam irradiation device, multi-electron beam inspection device, and multi-electron beam irradiation method
JP2021107807A5 (en)
WO2022239646A1 (en) Multi-electron beam image acquisition device and multi-electron beam image acquisition method
US11961703B2 (en) Multiple electron-beam image acquisition apparatus and multiple electron-beam image acquisition method using beam arrangement with omitted corners in a scan direction
WO2022130838A1 (en) Multibeam image acquisition apparatus and multibeam image acquisition method
CN117981038A (en) Multi-electron beam image acquisition device and multi-electron beam image acquisition method
JP2022163680A (en) Multi electron beam image acquisition method, multi electron beam image acquisition device, and multi electron beam inspection device
JP2020087507A (en) Multi-electron beam inspection device and multi-electron beam inspection method
WO2021039419A1 (en) Electron gun and electron beam irradiation device