JP2021107773A - Viscosity measuring apparatus and viscosity measuring method - Google Patents

Viscosity measuring apparatus and viscosity measuring method Download PDF

Info

Publication number
JP2021107773A
JP2021107773A JP2019238666A JP2019238666A JP2021107773A JP 2021107773 A JP2021107773 A JP 2021107773A JP 2019238666 A JP2019238666 A JP 2019238666A JP 2019238666 A JP2019238666 A JP 2019238666A JP 2021107773 A JP2021107773 A JP 2021107773A
Authority
JP
Japan
Prior art keywords
chamber
viscosity
pressure
liquid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019238666A
Other languages
Japanese (ja)
Inventor
タン ヴィン グェン
Thanh Vinh Nguyen
タン ヴィン グェン
浩尚 岡田
Hironao Okada
浩尚 岡田
正聡 一木
Masaaki Ichiki
正聡 一木
高橋 英俊
Hidetoshi Takahashi
英俊 高橋
則尚 三木
Norinao Miki
則尚 三木
チョ シンウー
Xinwu Choi
チョ シンウー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019238666A priority Critical patent/JP2021107773A/en
Publication of JP2021107773A publication Critical patent/JP2021107773A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

To provide a viscosity measuring apparatus that can measure the viscosity of a small amount of sample fluid as a measurement object in a non-contact manner.SOLUTION: A viscosity measuring apparatus 100 of the present invention, which is a viscosity measuring apparatus for measuring the viscosity of a liquid L, comprises: a chamber 101 having an opening 101a for accommodating a fluid; decompression means 102 for decompressing the fluid in the chamber 101; pressure measurement means 103 for measuring the pressure of the fluid in the chamber 101; a tubular unit 104 extending to the outside of the chamber 101, in which one end 104a is connected to the opening 101a, the liquid L can be accommodated from the other end 104b, and a hollow part 104A communicates with the space of the chamber 101; and means for measuring the viscosity of the liquid L, in such a way that the pressure of the fluid in the chamber 101 is reduced to a prescribed value by the decompression means 102, and that the change of measurement value of the pressure of the fluid in the chamber 101 with time is measured by the pressure measurement means when the liquid L is sucked up into the tubular unit 104.SELECTED DRAWING: Figure 1

Description

本発明は、粘度測定装置および粘度測定方法に関する。 The present invention relates to a viscosity measuring device and a viscosity measuring method.

液体の粘度を測定するための粘度計は、概して多量の試料を必要とし、低粘度のものほど測定することが難しい。また、粘度計は、大型・高価であるため、限られた施設でのみ使用されている。一方、食品・化学薬品・製薬などの分野では、手軽に、あるいはより少ない量の試料を使って、粘度を測定することが求められている。例えば、学校や介護施設では、とろみをつけるなどして食品の粘度を高めることで、誤嚥を防ぐ努力がなされている。また、抗体薬の開発や調合には厳しい粘度管理が必要であるが、薬自体が高価であるため、粘度測定用に多量のサンプルを確保することは難しい。 A viscometer for measuring the viscosity of a liquid generally requires a large amount of sample, and the lower the viscosity, the more difficult it is to measure. In addition, viscometers are large and expensive, so they are used only in limited facilities. On the other hand, in fields such as foods, chemicals, and pharmaceuticals, it is required to measure the viscosity easily or by using a smaller amount of sample. For example, in schools and long-term care facilities, efforts are being made to prevent aspiration by increasing the viscosity of food by thickening it. In addition, although strict viscosity control is required for the development and formulation of antibody drugs, it is difficult to secure a large number of samples for viscosity measurement because the drugs themselves are expensive.

血液、高額な抗体薬やDNA溶液の粘度を計測する時に、微小量(数μL)のサンプルで計測できる手法が望ましい。ところが、現状の市販の粘度計では粘度を計測するためには、少なくとも50μLのサンプルが必要である。数μLの液滴で粘度を計測できる例として、上記の特願2015−5778の特許のように液滴の振動を計測することで振動の減衰率から粘度を計測することがある。しかし、この手法でも従来の他のでも粘度を計測するために液体のサンプルを用意して、コップに入れたり、粘度計に入れたりする必要がある。計測後の液体サンプルは、粘度計の計測部分と接触するので、他の検査等に使用できない。 When measuring the viscosity of blood, expensive antibody drugs or DNA solutions, it is desirable to use a method that can measure with a small amount (several μL) of sample. However, in the current commercially available viscometer, at least 50 μL of a sample is required to measure the viscosity. As an example in which the viscosity can be measured with a droplet of several μL, the viscosity may be measured from the vibration attenuation rate by measuring the vibration of the droplet as in the patent of Japanese Patent Application No. 2015-5778. However, both with this method and with other conventional methods, it is necessary to prepare a liquid sample and put it in a cup or a viscometer. Since the liquid sample after measurement comes into contact with the measurement part of the viscometer, it cannot be used for other inspections.

特開2016−130716号公報Japanese Unexamined Patent Publication No. 2016-130716

本発明は上記事情に鑑みてなされたものであり、計測対象の液体の少量のサンプルに対し、その粘度を非接触で測定することを可能とする粘度測定装置および粘度測定方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a viscosity measuring device and a viscosity measuring method capable of measuring the viscosity of a small amount of a sample of a liquid to be measured in a non-contact manner. The purpose.

上記課題を解決するため、本発明は以下の手段を採用している。 In order to solve the above problems, the present invention employs the following means.

(1)本発明の一態様に係る粘度測定装置は、液体の粘度を測定する粘度測定装置であって、流体を収容し、開口部を有するチャンバーと、前記チャンバー内の前記流体を減圧する減圧手段と、前記チャンバー内の前記流体の圧力を測定する圧力測定手段と、一端が前記開口部に接続され、前記チャンバーの外側に延在し、他端から前記液体を収容可能であり、中空部分が前記チャンバー内の空間と連通している筒状部と、前記減圧手段により前記チャンバー内の前記流体の圧力を所定の値に減少させ、前記液体が前記筒状部に吸い上げられる際の前記圧力測定手段による前記チャンバー内の前記流体の圧力の測定値の時間変化に基づいて、前記液体の粘度を計測する手段と、を備える。 (1) The viscosity measuring device according to one aspect of the present invention is a viscosity measuring device for measuring the viscosity of a liquid, which accommodates a fluid, has an opening, and reduces the pressure of the fluid in the chamber. A means, a pressure measuring means for measuring the pressure of the fluid in the chamber, one end connected to the opening, extending outside the chamber, accommodating the liquid from the other end, and a hollow portion. Reduces the pressure of the fluid in the chamber to a predetermined value by the tubular portion communicating with the space in the chamber and the depressurizing means, and the pressure when the liquid is sucked up by the tubular portion. A means for measuring the viscosity of the liquid based on a time change of a measured value of the pressure of the fluid in the chamber by the measuring means is provided.

(2)前記(1)に記載の粘度測定装置において、前記チャンバーの側壁に、外力に応じて変形する変形部が設けられ、前記減圧手段として、前記チャンバーの外側から前記変形部を引張る引張り装置を備えていてもよい。 (2) In the viscosity measuring device according to (1) above, a deforming portion that deforms in response to an external force is provided on the side wall of the chamber, and as the decompression means, a tensioning device that pulls the deformed portion from the outside of the chamber. May be provided.

(3)前記(1)または(2)のいずれかに記載の粘度測定装置において、前記減圧手段として、前記チャンバー内の前記流体を排出するポンプを備えていてもよい。 (3) The viscosity measuring device according to any one of (1) or (2) may include a pump for discharging the fluid in the chamber as the depressurizing means.

(4)前記(1)〜(3)のいずれか一つに記載の粘度測定装置において、前記圧力測定手段として、前記チャンバー内の圧力に応じて変形する膜を有し、前記膜の変形度合いに応じて出力を行う圧力センサーを備えていてもよい。 (4) In the viscosity measuring device according to any one of (1) to (3), the pressure measuring means includes a film that deforms according to the pressure in the chamber, and the degree of deformation of the film. A pressure sensor that outputs according to the above may be provided.

(5)前記(1)〜(4)のいずれか一つに記載の粘度測定装置において、前記圧力測定手段は、微小電気機械システム(MEMS)圧力センサを含んでもよい。 (5) In the viscosity measuring apparatus according to any one of (1) to (4), the pressure measuring means may include a microelectromechanical system (MEMS) pressure sensor.

(6)本発明の一態様に係る粘度測定方法は、前記(1)〜(5)のいずれか一つに記載の粘度測定装置を用いて、液体の粘度を測定する粘度測定方法であって、前記筒状部材の他端を計測対象の液体に接触させた状態で、前記減圧手段を用いて前記チャンバー内の流体を減圧する減圧工程と、前記減圧工程において、前記圧力測定手段を用いて前記チャンバー内の前記流体の圧力の時間変化を測定する圧力測定工程と、を有する。 (6) The viscosity measuring method according to one aspect of the present invention is a viscosity measuring method for measuring the viscosity of a liquid using the viscosity measuring device according to any one of (1) to (5) above. In the depressurizing step of depressurizing the fluid in the chamber by using the depressurizing means while the other end of the tubular member is in contact with the liquid to be measured, and in the depressurizing step, the pressure measuring means is used. It has a pressure measuring step of measuring a time change of the pressure of the fluid in the chamber.

(7)前記(6)に記載の粘度測定方法において、前記減圧工程における前記減圧手段により前記チャンバー内の前記流体の圧力を所定の値に減少させ、前記圧力計測工程において、計測対象の前記液体が前記筒状部に吸い上げられる際の前記チャンバー内の前記流体の圧力の時間変化の計測から、前記液体の粘度を計測してもよい。 (7) In the viscosity measuring method according to (6), the pressure of the fluid in the chamber is reduced to a predetermined value by the depressurizing means in the depressurizing step, and the liquid to be measured in the pressure measuring step. The viscosity of the liquid may be measured from the measurement of the time change of the pressure of the fluid in the chamber when the fluid is sucked up into the tubular portion.

本発明の粘度測定装置では、圧力測定手段が、チャンバー、筒状部を介して測定対象の液体から離間して配置されており、測定対象の液体に接触することがない。そのため、測定対象の液体のコンタミネーション等の問題を回避することができ、測定後の液体を、同じ測定に繰り返し使用したり、元の液体源に戻して本来の用途に使用したり、あるいは、他の用途に流用することも可能となる。また、本発明の粘度測定装置は、筒状部に吸い上げられる際の筒状部内の液体の流動性を圧力変化によって検知するため、少量の、例えば、数μL程度の液体で粘度測定を行うことができるため、測定対象の液体が製造困難なものであったり、希少で入手が難しいような場合に有効となる。 In the viscosity measuring device of the present invention, the pressure measuring means is arranged apart from the liquid to be measured via the chamber and the tubular portion, and does not come into contact with the liquid to be measured. Therefore, problems such as contamination of the liquid to be measured can be avoided, and the measured liquid can be repeatedly used for the same measurement, returned to the original liquid source, and used for the original purpose. It can also be used for other purposes. Further, in the viscosity measuring device of the present invention, in order to detect the fluidity of the liquid in the tubular portion when it is sucked up by the tubular portion by a pressure change, the viscosity is measured with a small amount of liquid, for example, about several μL. This is effective when the liquid to be measured is difficult to manufacture or rare and difficult to obtain.

本発明の第一実施形態に係る粘度測定装置の断面図である。It is sectional drawing of the viscosity measuring apparatus which concerns on 1st Embodiment of this invention. 図1の粘度測定装置の構成例の断面図である。It is sectional drawing of the structural example of the viscosity measuring apparatus of FIG. 図1の粘度測定装置の他の構成例の断面図である。It is sectional drawing of another configuration example of the viscosity measuring apparatus of FIG. (a)〜(d)圧力センサーの製造過程における被処理体の断面図である。(A)-(d) It is sectional drawing of the object to be processed in the manufacturing process of a pressure sensor. 本発明の実施例として用いた粘度測定装置の断面図である。It is sectional drawing of the viscosity measuring apparatus used as the Example of this invention. (a)、(b)本発明の実施例において得られた、液体の粘度の測定結果を示すグラフである。(A), (b) is a graph which shows the measurement result of the viscosity of the liquid obtained in the Example of this invention. 本発明の実施例において得られた、液体の粘度とチャンバーの圧力変化の減衰係数との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of a liquid and the damping coefficient of the pressure change of a chamber obtained in the Example of this invention.

以下、本発明を適用した実施形態に係る粘度測定装置および粘度測定方法について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the viscosity measuring apparatus and the viscosity measuring method according to the embodiment to which the present invention is applied will be described in detail with reference to the drawings. In the drawings used in the following description, in order to make the features easier to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. do not have. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

<第一実施形態>
図1は、本発明の一実施形態に係る粘度測定装置100の主要部分の構成を、模式的に示す断面図である。粘度測定装置100は、主にチャンバー101と、減圧手段102と、圧力測定手段103と、筒状部(ニードル)104と、粘度計測手段(不図示)を備えている。
<First Embodiment>
FIG. 1 is a cross-sectional view schematically showing the configuration of a main part of the viscosity measuring device 100 according to the embodiment of the present invention. The viscosity measuring device 100 mainly includes a chamber 101, a depressurizing means 102, a pressure measuring means 103, a tubular portion (needle) 104, and a viscosity measuring means (not shown).

チャンバー101は、空気、不活性ガス、液体等の任意の流体(不図示)を収容し、側壁の一部を貫通する第一開口部101aを有する。チャンバー101の側壁の材料については、チャンバー101内部の密閉性を維持できるものであれば、特に限定されることはない。 The chamber 101 accommodates an arbitrary fluid (not shown) such as air, an inert gas, or a liquid, and has a first opening 101a that penetrates a part of the side wall. The material of the side wall of the chamber 101 is not particularly limited as long as it can maintain the airtightness inside the chamber 101.

減圧手段102はチャンバー102内の流体を減圧するものであり、その構成としては、例えば、チャンバー101内の流体の量を削減するタイプのもの、チャンバー101内の空間を膨張させるタイプのもの等が挙げられる。チャンバー101内の流体の量を削減するタイプのものとしては、例えば、チャンバー101内の流体を排出するポンプが挙げられる。チャンバー101内の空間を膨張させるタイプのものについては、後述する。 The decompression means 102 decompresses the fluid in the chamber 102, and its configuration includes, for example, a type that reduces the amount of fluid in the chamber 101, a type that expands the space in the chamber 101, and the like. Can be mentioned. Examples of the type that reduces the amount of fluid in the chamber 101 include a pump that discharges the fluid in the chamber 101. The type that expands the space in the chamber 101 will be described later.

圧力測定手段103は、チャンバー101内の圧力を測定するものであり、その構成としては、例えば、微小電気機械システム(MEMS)圧力センサー等を含むものが挙げられる。この場合の圧力センサーは、チャンバー101と連通し、チャンバー101内の圧力に応じて変形する膜(メンブレン)を有し、膜の変形度合いに応じて出力を行うものである。圧力センサーの構成については、後述する。 The pressure measuring means 103 measures the pressure in the chamber 101, and examples thereof include those including a microelectromechanical system (MEMS) pressure sensor and the like. The pressure sensor in this case has a film (membrane) that communicates with the chamber 101 and deforms according to the pressure in the chamber 101, and outputs according to the degree of deformation of the film. The configuration of the pressure sensor will be described later.

筒状部104は、その一端104aが第一開口部101aに接続され、チャンバー101の外側に延在し、他端104bからの液体Lの収容を可能とする。筒状部の他端104bは、粘度測定する液体Lの吸い込み口となる。ここでは、所定の容器Vに収容された液体Lの内部に、筒状部の他端104bを挿入し、液体Lを吸い上げている状態を例示している。なお、吸い上げる液体Lが、チャンバ101内の流体と混ざる虞がある場合には、液体Lと流体との境界に、圧力に応じて移動可能な仕切り部を設けることが好ましい。 One end 104a of the tubular portion 104 is connected to the first opening 101a and extends to the outside of the chamber 101 to accommodate the liquid L from the other end 104b. The other end 104b of the tubular portion serves as a suction port for the liquid L for which the viscosity is to be measured. Here, a state in which the other end 104b of the tubular portion is inserted into the liquid L housed in the predetermined container V and the liquid L is sucked up is illustrated. When the liquid L to be sucked up may be mixed with the fluid in the chamber 101, it is preferable to provide a partition portion that can move according to the pressure at the boundary between the liquid L and the fluid.

筒状部104の形状について特に限定されることはないが、液体Lの吸い上げを円滑化させる観点から、少なくとも内径が略一様な円筒状であることが好ましい。同じ観点から、筒状部104の内径は、0.1mm以上であることが好ましく、一方、粘度測定を少量の液体Lで行う観点から、筒状部104の内径は、3mm以下であることが好ましい。 The shape of the tubular portion 104 is not particularly limited, but from the viewpoint of facilitating the suction of the liquid L, it is preferable that the tubular portion 104 has a cylindrical shape having a substantially uniform inner diameter. From the same viewpoint, the inner diameter of the tubular portion 104 is preferably 0.1 mm or more, while the inner diameter of the tubular portion 104 is 3 mm or less from the viewpoint of performing viscosity measurement with a small amount of liquid L. preferable.

筒状部104内の空間(中空部分)104Aは、チャンバー101内の空間101Aと連通している。液面Lの位置を目視で確認する観点から、筒状部104は、可視光に対して透明であることが好ましい。筒状部104の材料としては、例えばガラスが挙げられる。 The space (hollow portion) 104A in the tubular portion 104 communicates with the space 101A in the chamber 101. From the viewpoint of checking the position of the liquid surface L 1 visually, cylindrical portion 104 is preferably transparent to visible light. Examples of the material of the tubular portion 104 include glass.

粘度計測手段は、減圧手段102によりチャンバー101内の流体の圧力を所定の値に減少させ、液体Lが筒状部104に吸い上げられる際の、圧力測定手段103によるチャンバー101内の流体の圧力の測定値の時間変化に基づいて、液体Lの粘度を計測する装置である。実際には、パソコン(プロセッサ)等を用いて、圧力の測定値の時間変化から減衰係数を求め、減衰係数と粘度との相関関係を含むデータベースを参照することにより、減衰係数に対応する液体Lの粘度を求めることができる。 The viscosity measuring means reduces the pressure of the fluid in the chamber 101 to a predetermined value by the depressurizing means 102, and the pressure of the fluid in the chamber 101 by the pressure measuring means 103 when the liquid L is sucked up by the tubular portion 104. It is an apparatus for measuring the viscosity of the liquid L based on the time change of the measured value. Actually, the damping coefficient is obtained from the time change of the measured value of the pressure using a personal computer (processor) or the like, and the liquid L corresponding to the damping coefficient is referred to by referring to the database including the correlation between the damping coefficient and the viscosity. The viscosity of can be determined.

粘度測定装置100を用いた粘度測定は、主に、次の手順で行うことができる。まず、所定の容器Vに粘度測定する液体Lを収容し、筒状部材の他端104bをその液体Lに接触させた状態で、減圧手段102を用いてチャンバー101内の流体を減圧する(減圧工程)。容器V内の液体Lの液面は、チャンバー101外の大気に接しているものとする。 The viscosity measurement using the viscosity measuring device 100 can be mainly performed by the following procedure. First, the liquid L whose viscosity is to be measured is contained in a predetermined container V, and the fluid in the chamber 101 is depressurized (depressurized) by using the depressurizing means 102 in a state where the other end 104b of the tubular member is in contact with the liquid L. Process). It is assumed that the liquid level of the liquid L in the container V is in contact with the atmosphere outside the chamber 101.

ここでの減圧は、初期状態よりも圧力を小さくするものであり、初期の圧力の値によらず、所定の圧力変化があればよい。圧力変化の範囲について特に限定されることはないが、少なくとも、液体Lを吸い上げられる程度(1kPa程度)であれば十分である。 The depressurization here is to make the pressure smaller than the initial state, and it is sufficient that there is a predetermined pressure change regardless of the initial pressure value. The range of the pressure change is not particularly limited, but at least it is sufficient as long as the liquid L can be sucked up (about 1 kPa).

チャンバー101内の圧力が小さくなると、チャンバー101外の空気が容器V内の液体Lを押す力が相対的に強まることによって、筒状部104内に液体Lが入り込み、チャンバー101方向に吸い上げられることになる。 When the pressure inside the chamber 101 becomes small, the force of the air outside the chamber 101 pushing the liquid L inside the container V becomes relatively strong, so that the liquid L enters the tubular portion 104 and is sucked up in the direction of the chamber 101. become.

減圧工程において、減圧手段によりチャンバー101内の流体の圧力を所定の値に減少させると、チャンバー101内の圧力がチャンバーの外の圧力より低くなるため、液面Lが上がり、それに従ってチャンバー101内の圧力が、時間とともに増加する。その圧力変化量の絶対値の減衰率(減少率)を計算し、液体の粘度を求める(圧力測定工程)。 In a vacuum process, reducing the pressure of the fluid in the chamber 101 to a predetermined value by the pressure reducing means, the pressure in the chamber 101 is lower than the pressure outside the chamber, raise the liquid level L 1, the chamber 101 accordingly The pressure inside increases over time. The decay rate (decrease rate) of the absolute value of the pressure change amount is calculated, and the viscosity of the liquid is obtained (pressure measurement step).

チャンバー101内の圧力は、平衡状態に至る過程において、Patm-Ce−αt(Patm:減圧前のチャンバーの圧力、Patm-C:減圧時のチャンバー101内の圧力、α:減衰係数(減少係数)、t:経過時間)で表されるように変化する。このときの減衰係数αは、液体の粘度と比例関係にあり、粘度が高いほど減衰係数αが小さくなり、また、粘度が低いほど減衰係数αが大きくなる。したがって、チャンバー101内の流体の圧力の減衰係数αを比較することにより、異なる液体の粘度の大小関係を確認することができる。 The pressure in the chamber 101 is P atm -Ce- αt (P atm: the pressure in the chamber before decompression, P atm -C: the pressure in the chamber 101 at the time of decompression, α: damping coefficient (P atm: pressure in the chamber before decompression, α: damping coefficient It changes as represented by the decrease coefficient) and t: elapsed time). The damping coefficient α at this time has a proportional relationship with the viscosity of the liquid. The higher the viscosity, the smaller the damping coefficient α, and the lower the viscosity, the larger the damping coefficient α. Therefore, by comparing the damping coefficient α of the pressure of the fluid in the chamber 101, it is possible to confirm the magnitude relationship of the viscosities of different liquids.

なお、粘度が既知の複数の液体サンプルに対し、それぞれ、上記方法で減衰係数を算出し、データベースとして粘度と減衰係数との関係式を求めておけば、この関係式を介して、任意の液体について、減衰係数の測定結果に対応する粘度の値を知ることができる。 If the damping coefficient is calculated for each of a plurality of liquid samples having known viscosities by the above method and the relational expression between the viscosity and the damping coefficient is obtained as a database, any liquid can be used through this relational expression. It is possible to know the value of the viscosity corresponding to the measurement result of the damping coefficient.

図2は、減圧手段として、チャンバー101内の流体の体積(容積)を増加させる手段を用いる場合の粘度測定装置100Aについて、その構成例を模式的に示す断面図である。チャンバー101の側壁の一部に、フレキシブルな材料からなり、外力に応じて変形する変形部101Bが設けられている。また、減圧手段として、チャンバー101の外側から変形部を引張る引張り装置102Aを備えている。変形部101Bと引張り装置102A以外の構成は、図1に示した粘度測定装置100の構成と同様である。 FIG. 2 is a cross-sectional view schematically showing a configuration example of the viscosity measuring device 100A when a means for increasing the volume (volume) of the fluid in the chamber 101 is used as the depressurizing means. A deformed portion 101B made of a flexible material and deformed in response to an external force is provided on a part of the side wall of the chamber 101. Further, as the depressurizing means, a pulling device 102A for pulling the deformed portion from the outside of the chamber 101 is provided. The configuration other than the deformed portion 101B and the tensioning device 102A is the same as the configuration of the viscosity measuring device 100 shown in FIG.

引張り装置102Aは、主に、変形部101Bに固定(接着)した金属部材(金属球)110と、金属部材110を挟んでチャンバー101と対向するように配置された電磁石111と、電磁石111を支持する支持部材112と、で構成されている。 The tensioning device 102A mainly supports a metal member (metal ball) 110 fixed (adhered) to the deformed portion 101B, an electromagnet 111 arranged so as to face the chamber 101 with the metal member 110 interposed therebetween, and an electromagnet 111. It is composed of a support member 112 and a support member 112.

電磁石111を駆動して磁場を発生させ、金属部材110を引き寄せることにより、金属部材110に固定されている変形部101Bが、一緒に引張られて変形する。その結果として、チャンバー101が膨張し、チャンバー101内は減圧されることになる。 By driving the electromagnet 111 to generate a magnetic field and attracting the metal member 110, the deformed portion 101B fixed to the metal member 110 is pulled together and deformed. As a result, the chamber 101 expands and the inside of the chamber 101 is depressurized.

図3(a)は、圧力測定手段として、微小電気機械システム(MEMS)技術を適用した圧力センサー103Aを用いる場合の粘度測定装置100Bについて、その構成例を模式的に示す断面図である。図3(b)は、圧力センサー103Aをメンブレンの厚み方向から平面視した図である。図3(c)は、図3(b)の圧力センサー103AをA−A’線に沿って厚み方向に切断した際の断面図である。圧力センサー103以外の構成は、図1に示した粘度測定装置100の構成と同様である。なお、減圧手段102として、図2で示した引張り装置102Aを適用してもよい。 FIG. 3A is a cross-sectional view schematically showing a configuration example of a viscosity measuring device 100B when a pressure sensor 103A to which a microelectromechanical system (MEMS) technology is applied is used as a pressure measuring means. FIG. 3B is a plan view of the pressure sensor 103A from the thickness direction of the membrane. FIG. 3 (c) is a cross-sectional view of the pressure sensor 103A of FIG. 3 (b) cut along the line AA'in the thickness direction. The configuration other than the pressure sensor 103 is the same as the configuration of the viscosity measuring device 100 shown in FIG. As the depressurizing means 102, the tensioning device 102A shown in FIG. 2 may be applied.

チャンバー101の側壁のうち、圧力センサー103Aの接続部分には、圧力センサー103Aがチャンバー101内の流体の圧力を検知できるように、すなわち、流体がメンブレンに接触するように、開口部(第二開口部)101bが設けられている。ここでは、チャンバー101に対し、直接接続されている場合について例示しているが、パイプ等を介して間接的に接続されていてもよい。 Of the side walls of the chamber 101, the connection portion of the pressure sensor 103A has an opening (second opening) so that the pressure sensor 103A can detect the pressure of the fluid in the chamber 101, that is, the fluid contacts the membrane. Part) 101b is provided. Here, the case where the chamber 101 is directly connected to the chamber 101 is illustrated, but the chamber 101 may be indirectly connected to the chamber 101 via a pipe or the like.

圧力センサー103Aは、主に、基板105と、酸化シリコン(SiO)等からなる絶縁体膜106と、不純物がドープされたシリコンからなり、ピエゾ抵抗素子として機能する半導体膜107と、金、クローム等からなる導電体膜108と、パリレン等の樹脂からなるメンブレン109と、で構成されている。基板105は、シリコン等の剛体からなり、厚み方向に貫通する貫通孔105Aを有する。基板の一方の主面105aにおいて、貫通孔105Aの周囲に、絶縁体膜106と、半導体膜107、導電体膜108が、順に積層されている。半導体膜107の一部は、貫通孔105A上に突出し、カンチレバーとして機能する突出部107aを有する。 The pressure sensor 103A is mainly composed of a substrate 105, an insulating film 106 made of silicon oxide (SiO 2 ) or the like, a semiconductor film 107 made of silicon doped with impurities and functioning as a piezoresistive element, and gold and chrome. It is composed of a conductor film 108 made of a resin such as parylene and a membrane 109 made of a resin such as parylene. The substrate 105 is made of a rigid body such as silicon and has a through hole 105A penetrating in the thickness direction. On one main surface 105a of the substrate, an insulator film 106, a semiconductor film 107, and a conductor film 108 are laminated in this order around the through hole 105A. A part of the semiconductor film 107 has a protruding portion 107a that projects above the through hole 105A and functions as a cantilever.

メンブレン109は、基板105の厚み方向からの平面視において、少なくとも貫通孔105Aと重なる領域を覆い、外周部分109aが、導電体膜108あるいは半導体膜の突出部107aに支持されている。メンブレン109は、チャンバー101内の流体が接触した際に、その流体の圧力に応じて、厚み方向Tに反り、これに伴い、メンブレン109を支持している半導体膜の突出部107aも、厚み方向Tに反る。反り量に応じて突出部107aの電気抵抗が変わるため、電気抵抗の変化を通じて、チャンバー101内の流体の圧力変化を知ることができる。 The membrane 109 covers at least a region overlapping the through hole 105A in a plan view from the thickness direction of the substrate 105, and the outer peripheral portion 109a is supported by the conductor film 108 or the protruding portion 107a of the semiconductor film. Membrane 109, when the fluid in the chamber 101 is in contact, in response to the pressure of the fluid, the warp in the thickness direction T 2, Accordingly, even protrusion 107a of the semiconductor film which supports the membrane 109, the thickness warp in the direction T 1. Since the electric resistance of the protrusion 107a changes according to the amount of warpage, it is possible to know the pressure change of the fluid in the chamber 101 through the change of the electric resistance.

図4(a)〜(d)は、圧力センサー103Aの主な製造工程のフローを示す図である。まず、図4(a)に示すように、基板の一方の主面105aに、CVD法、スパッタリング法等の公知の成膜方法を用いて絶縁体膜106、半導体膜107、導電体膜108を順に形成する。次に、図4(b)に示すように、フォトリソグラフィ法を用いて、半導体膜107、導電体膜108に対し、所定のパターンが形成する。次に、図4(c)に示すように、蒸着法等を用いて、貫通孔が形成される中央の領域を覆うメンブレン109を形成する。最後に、図4(d)に示すように、エッチング法を用いて、基板の他方の主面101b側から、貫通孔105Aが形成されるように基板105と絶縁膜106を除去することにより、圧力センサー103Aを得ることができる。 4 (a) to 4 (d) are diagrams showing a flow of a main manufacturing process of the pressure sensor 103A. First, as shown in FIG. 4A, the insulator film 106, the semiconductor film 107, and the conductor film 108 are formed on one main surface 105a of the substrate by using a known film forming method such as a CVD method or a sputtering method. Form in order. Next, as shown in FIG. 4B, a predetermined pattern is formed on the semiconductor film 107 and the conductor film 108 by using a photolithography method. Next, as shown in FIG. 4C, a membrane 109 covering the central region where the through holes are formed is formed by using a thin-film deposition method or the like. Finally, as shown in FIG. 4D, the substrate 105 and the insulating film 106 are removed from the other main surface 101b side of the substrate so that the through hole 105A is formed by using an etching method. A pressure sensor 103A can be obtained.

以上のように、本実施形態に係る粘度測定装置100では、圧力測定手段103が、チャンバー101、筒状部104を介して測定対象の液体Lから離間して配置されており、測定対象の液体Lに接触することがない。そのため、測定対象の液体Lのコンタミネーション等の問題を回避することができ、測定後の液体Lを、同じ測定に繰り返し使用したり、元の液体源に戻して本来の用途に使用したり、あるいは、他の用途に流用することも可能となる。また、本実施形態に係る粘度測定装置100は、筒状部104に吸い上げられる際の筒状部104内の液体Lの流動性を、圧力変化によって検知するため、少量の、例えば、数μL程度の液体で粘度測定を行うことができ、測定対象の液体が製造困難なものであったり、希少で入手が難しいような場合に有効となる。 As described above, in the viscosity measuring device 100 according to the present embodiment, the pressure measuring means 103 is arranged apart from the liquid L to be measured via the chamber 101 and the tubular portion 104, and the liquid to be measured is measured. Does not come into contact with L. Therefore, problems such as contamination of the liquid L to be measured can be avoided, and the measured liquid L can be repeatedly used for the same measurement, or returned to the original liquid source and used for the original purpose. Alternatively, it can be diverted to other uses. Further, since the viscosity measuring device 100 according to the present embodiment detects the fluidity of the liquid L in the tubular portion 104 when it is sucked up by the tubular portion 104 by a pressure change, a small amount, for example, about several μL. The viscosity can be measured with the liquid of the above, and it is effective when the liquid to be measured is difficult to manufacture or rare and difficult to obtain.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.

上記実施形態を適用した粘度測定装置を用いて、二つの液体サンプル1、2の粘度測定を行った。図5は、粘度測定装置200の構成を模式的に示す断面図である。減圧手段として上記引張り装置102Aを適用し、圧力測定手段として上記圧力センサー103Aを適用した。図2、3では図示を省略していたが、ここでは、電磁石111を駆動する駆動手段113、圧力センサの出力を取得するための増幅回路114、オシロスコープ115を明示している。その他の構成は、図1に示した粘度測定装置100の構成と同様である。筒状部材104としては、内径が1mmのガラス管を用いた。液体サンプル1を水とし、液体サンプ2を、水とグリセロールを50:50の比率で含む混合液体とした。 The viscosities of the two liquid samples 1 and 2 were measured using the viscometer measuring device to which the above embodiment was applied. FIG. 5 is a cross-sectional view schematically showing the configuration of the viscosity measuring device 200. The tensioning device 102A was applied as the depressurizing means, and the pressure sensor 103A was applied as the pressure measuring means. Although not shown in FIGS. 2 and 3, the driving means 113 for driving the electromagnet 111, the amplifier circuit 114 for acquiring the output of the pressure sensor, and the oscilloscope 115 are shown here. Other configurations are the same as the configuration of the viscosity measuring device 100 shown in FIG. As the tubular member 104, a glass tube having an inner diameter of 1 mm was used. The liquid sample 1 was water, and the liquid sump 2 was a mixed liquid containing water and glycerol in a ratio of 50:50.

図6(a)、(b)は、それぞれ、液体サンプル1、2に対してセンサの出力の測定結果を示すグラフである。グラフの横軸は測定時間(s)を示し、グラフの縦軸は、圧力センサーから得られる出力抵抗の変化率ΔR/Rを示している。出力抵抗の変化率ΔR/Rは、チャンバー101内の圧力に反比例する。そのため、これらのグラフから、時刻0(s)で、減圧手段102を用いた減圧を行い、抵抗変化率の絶対値が短時間で急峻に立ち上がっていることが分かる。また、時刻0(s)以降は、Ce−αt(C:減圧時の抵抗変化率、α:減衰係数、t:経過時間)に従って緩やかに減少する傾向があり、特に時刻20(s)以降は、ほぼ一定値に近づくことが分かる。 6 (a) and 6 (b) are graphs showing the measurement results of the output of the sensor for the liquid samples 1 and 2, respectively. The horizontal axis of the graph shows the measurement time (s), and the vertical axis of the graph shows the rate of change ΔR / R of the output resistance obtained from the pressure sensor. The rate of change ΔR / R of the output resistance is inversely proportional to the pressure in the chamber 101. Therefore, from these graphs, it can be seen that the decompression is performed using the depressurizing means 102 at time 0 (s), and the absolute value of the resistance change rate rises sharply in a short time. Further, after time 0 (s), it tends to gradually decrease according to Ce − αt (C: resistance change rate at the time of decompression, α: attenuation coefficient, t: elapsed time), and particularly after time 20 (s). , It can be seen that it approaches a nearly constant value.

粘度が低い液体サンプル1のグラフ(図6(a))では、単位時間当たりの圧力変化が1mPa・sとなっている。一方、粘度が高い液体サンプル1のグラフ(図6(b))では、単位時間当たりの圧力変化が6mPa・sとなっている。これらの結果から、粘度が高い液体Lを用いた場合には、チャンバー101内の圧力は緩やかに変化する傾向が見られ、反対に粘度が低い液体Lを用いた場合には、チャンバー101内の圧力は急激に変化する傾向が見られる。 In the graph of the liquid sample 1 having a low viscosity (FIG. 6A), the pressure change per unit time is 1 mPa · s. On the other hand, in the graph of the liquid sample 1 having a high viscosity (FIG. 6B), the pressure change per unit time is 6 mPa · s. From these results, when a liquid L having a high viscosity was used, the pressure in the chamber 101 tended to change slowly, and conversely, when a liquid L having a low viscosity was used, the pressure in the chamber 101 was used. The pressure tends to change rapidly.

図7は、上記二つの液体サンプル1、2、および新たに加えた二つの液体サンプル3、4について、液体の粘度と液体の圧力の減衰係数との関係を示すグラフである。液体サンプ3を、水とグリセロールを70:30の比率で含む混合液体とし、液体サンプ4を、水とグリセロールを30:70の比率で含む混合液体とした。グラフの横軸が液体の粘度(mPa・s)を示し、グラフの縦軸がチャンバー101内の圧力変化の減衰係数を示している。このグラフから、四つのサンプルのデータが、一つの曲線上に載っていることが分かる。粘性が高いサンプルほど、圧力変化の減衰係数が小さくなっていることが分かる。これらの傾向は、サンプル数を増やしたとしても、同様であると考えられる。したがって、粘度が既知の複数のサンプルを用いて、図7に示すような減衰係数と粘度との相関を示す検量線、あるいはそれに相当する換算表や換算式が得られていれば、これをデータベースとして活用することができる。すなわち、このデータベースによって本発明の粘度測定を行って得られた減衰係数から、対応する粘度の値を求めることができる。 FIG. 7 is a graph showing the relationship between the viscosity of the liquid and the damping coefficient of the pressure of the liquid for the two liquid samples 1 and 2 and the two newly added liquid samples 3 and 4. The liquid sump 3 was a mixed liquid containing water and glycerol at a ratio of 70:30, and the liquid sump 4 was a mixed liquid containing water and glycerol at a ratio of 30:70. The horizontal axis of the graph shows the viscosity of the liquid (mPa · s), and the vertical axis of the graph shows the damping coefficient of the pressure change in the chamber 101. From this graph, it can be seen that the data of the four samples are on one curve. It can be seen that the higher the viscosity of the sample, the smaller the damping coefficient of the pressure change. These tendencies are considered to be the same even if the number of samples is increased. Therefore, if a calibration curve showing the correlation between the attenuation coefficient and the viscosity as shown in FIG. 7 or a conversion table or conversion formula corresponding to the calibration curve is obtained using a plurality of samples having known viscosities, this is used as a database. Can be used as. That is, the corresponding viscosity value can be obtained from the attenuation coefficient obtained by measuring the viscosity of the present invention using this database.

100、100A、100B・・・粘度測定装置
101・・・チャンバー
101a・・・第一開口部
101A・・・チャンバー内の空間
102・・・減圧手段
102A・・・引張り装置
103・・・圧力測定装置
103A・・・圧力センサー
104・・・筒状部材
104a・・・筒状部材の一端
104b・・・筒状部材の他端
104A・・・筒状部材内の空間
105・・・基板
105a・・・基板の一方の主面
105b・・・基板の他方の主面
105A・・・貫通孔
106・・・絶縁体膜
107・・・半導体膜
108・・・導電体膜
109・・・メンブレン
110・・・金属部材
111・・・電磁石
112・・・支持部材
113・・・駆動手段
114・・・増幅回路
115・・・オシロスコープ
L・・・液体
・・・液面
V・・・容器
100, 100A, 100B ... Viscosity measuring device 101 ... Chamber 101a ... First opening 101A ... Space in the chamber 102 ... Decompressing means 102A ... Tensioning device 103 ... Pressure measurement Device 103A ... Pressure sensor 104 ... Cylindrical member 104a ... One end of the tubular member 104b ... The other end of the tubular member 104A ... Space in the tubular member 105 ... Substrate 105a ... ... One main surface 105b of the substrate ... The other main surface 105A of the substrate ... Through hole 106 ... Insulator film 107 ... Semiconductor film 108 ... Conductor film 109 ... Membrane 110 ... Metal member 111 ... Electromagnet 112 ... Support member 113 ... Drive means 114 ... Amplifier circuit 115 ... Oscilloscope L ... Liquid L 1 ... Liquid level V ... Container

Claims (7)

液体の粘度を測定する粘度測定装置であって、
流体を収容し、開口部を有するチャンバーと、
前記チャンバー内の前記流体を減圧する減圧手段と、
前記チャンバー内の圧力を測定する圧力測定手段と、
一端が前記開口部に接続され、前記チャンバーの外側に延在し他端から前記液体を収容可能であり、中空部分が前記チャンバー内の空間と連通している筒状部と、
前記減圧手段により前記チャンバー内の前記流体の圧力を所定の値に減少させ、前記液体が前記筒状部に吸い上げられる際の前記圧力測定手段による前記チャンバー内の前記流体の圧力の測定値の時間変化に基づいて前記液体の粘度を計測する手段と、
を備える粘度測定装置。
A viscometer measuring device that measures the viscosity of a liquid.
A chamber that houses fluid and has an opening,
A decompression means for depressurizing the fluid in the chamber, and
A pressure measuring means for measuring the pressure in the chamber and
A tubular portion having one end connected to the opening, extending outside the chamber and accommodating the liquid from the other end, and a hollow portion communicating with the space in the chamber.
The time of the measured value of the pressure of the fluid in the chamber by the pressure measuring means when the pressure of the fluid in the chamber is reduced to a predetermined value by the depressurizing means and the liquid is sucked up into the tubular portion. A means for measuring the viscosity of the liquid based on the change,
A viscosity measuring device.
前記チャンバーの側壁に、外力に応じて変形する変形部が設けられ、
前記減圧手段として、前記チャンバーの外側から前記変形部を引張る引張り装置を備えていることを特徴とする請求項1に記載の粘度測定装置。
A deformed portion that deforms in response to an external force is provided on the side wall of the chamber.
The viscosity measuring device according to claim 1, further comprising a pulling device for pulling the deformed portion from the outside of the chamber as the depressurizing means.
前記減圧手段として、前記チャンバー内の前記流体を排出するポンプを備えていることを特徴とする請求項1に記載の粘度測定装置。 The viscosity measuring device according to claim 1, wherein the decompression means includes a pump for discharging the fluid in the chamber. 前記圧力測定手段として、前記チャンバー内の圧力に応じて変形する膜を有し、前記膜の変形度合いに応じて出力を行う圧力センサーを備えていることを特徴とする請求項1〜3のいずれか一項に記載の粘度測定装置。 3. The viscosity measuring device according to item 1. 前記圧力測定手段は、微小電気機械システム(MEMS)圧力センサを含むことを特徴とする、請求項1〜4のいずれか一項に記載の粘度測定装置。 The viscosity measuring device according to any one of claims 1 to 4, wherein the pressure measuring means includes a microelectromechanical system (MEMS) pressure sensor. 請求項1〜5のいずれか一項に記載の粘度測定装置を用いて、液体の粘度を測定する粘度測定方法であって、
前記筒状部材の他端を計測対象の液体に接触させた状態で、前記減圧手段を用いて前記チャンバー内の流体を減圧する減圧工程と、
前記減圧工程において、前記圧力測定手段を用いて前記チャンバー内の前記流体の圧力の時間変化を測定する圧力測定工程と、を有することを特徴とする粘度測定方法。
A viscosity measuring method for measuring the viscosity of a liquid using the viscosity measuring device according to any one of claims 1 to 5.
A decompression step of decompressing the fluid in the chamber using the decompression means while the other end of the tubular member is in contact with the liquid to be measured.
A viscosity measuring method comprising a pressure measuring step of measuring a time change of the pressure of the fluid in the chamber by using the pressure measuring means in the depressurizing step.
前記減圧工程において、前記減圧手段により前記チャンバー内の前記流体の圧力を所定の値に減少させ、
前記圧力計測工程において、計測対象の前記液体が前記筒状部に吸い上げられる際の前記チャンバー内の前記流体の圧力の時間変化の計測から、前記液体の粘度を計測することを特徴とする請求項6に記載の粘度測定方法。
In the depressurizing step, the pressure of the fluid in the chamber is reduced to a predetermined value by the depressurizing means.
The claim is characterized in that, in the pressure measuring step, the viscosity of the liquid is measured from the measurement of the time change of the pressure of the fluid in the chamber when the liquid to be measured is sucked up into the tubular portion. The viscosity measuring method according to 6.
JP2019238666A 2019-12-27 2019-12-27 Viscosity measuring apparatus and viscosity measuring method Pending JP2021107773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019238666A JP2021107773A (en) 2019-12-27 2019-12-27 Viscosity measuring apparatus and viscosity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238666A JP2021107773A (en) 2019-12-27 2019-12-27 Viscosity measuring apparatus and viscosity measuring method

Publications (1)

Publication Number Publication Date
JP2021107773A true JP2021107773A (en) 2021-07-29

Family

ID=76968229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238666A Pending JP2021107773A (en) 2019-12-27 2019-12-27 Viscosity measuring apparatus and viscosity measuring method

Country Status (1)

Country Link
JP (1) JP2021107773A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240804A (en) * 1975-09-27 1977-03-30 Katsumi Ito Voice coil type pump
JP2008203241A (en) * 2006-11-30 2008-09-04 Chevron Oronite Sa Method for using pressure alternating viscometer
JP2010530545A (en) * 2007-10-05 2010-09-09 シュルンベルジェ ホールディングス リミテッド Viscosity measurement
JP2018031730A (en) * 2016-08-26 2018-03-01 コニカミノルタ株式会社 Measuring method of hematocrit value, measuring apparatus of hematocrit value, measuring method of quantity of substance to be measured, and measuring apparatus of quantity of substance to be measured

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240804A (en) * 1975-09-27 1977-03-30 Katsumi Ito Voice coil type pump
JP2008203241A (en) * 2006-11-30 2008-09-04 Chevron Oronite Sa Method for using pressure alternating viscometer
JP2010530545A (en) * 2007-10-05 2010-09-09 シュルンベルジェ ホールディングス リミテッド Viscosity measurement
JP2018031730A (en) * 2016-08-26 2018-03-01 コニカミノルタ株式会社 Measuring method of hematocrit value, measuring apparatus of hematocrit value, measuring method of quantity of substance to be measured, and measuring apparatus of quantity of substance to be measured

Similar Documents

Publication Publication Date Title
US7290441B2 (en) Micro slit viscometer with monolithically integrated pressure sensors
US5199298A (en) Wall shear stress sensor
EP1266214B1 (en) Flexural plate wave sensor
US6959608B2 (en) Ultra-miniature pressure sensors and probes
US8424370B2 (en) Liquid analysis using capacitative micromachined ultrasound transducers
US20030062193A1 (en) Flexible structure with integrated sensor/actuator
US7851226B2 (en) Osmotic reaction detector for monitoring biological and non-biological reactions
Smith et al. A MEMS-based Coriolis mass flow sensor for industrial applications
EP2467684B1 (en) A microfluidic-channel embeddable, laterally oscillating gravimetric sensor device fabricated with micro-electro-mechanical systems (mems) technology
US9360385B2 (en) Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures
EP1754036A2 (en) Micro slit viscometer with monolithically integrated pressure sesonrs
JP4373427B2 (en) Electrical dripping monitoring
CN101627292A (en) Pressure sensor
US6966228B2 (en) Resonator-type microelectronic pressure sensor that withstands high pressures
Thaysen et al. Cantilever-based bio-chemical sensor integrated in a microliquid handling system
Catling High-sensitivity silicon capacitive sensors for measuring medium-vacuum gas pressures
Baek et al. Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N 1 and N 2 measurements
Tadigadapa et al. Reliability of micro-electro-mechanical systems (MEMS)
JP2021107773A (en) Viscosity measuring apparatus and viscosity measuring method
EP1255642A4 (en) Method for attaching a micromechanical device to a manifold, and fluid control system produced thereby
US7484418B1 (en) Ultra miniature multi-hole probes having high frequency response
JP4196025B2 (en) Biosensor matrix and manufacturing method thereof
CN115541099A (en) Capacitive microfluidic pressure sensor, preparation method and microfluidic chip thereof
EP1544597A2 (en) Osmotic reaction detector for monitoring biological and non-biological reactions
Sparks et al. A microfluidic system for the measurement of chemical concentration and density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231219