JP2021107327A - Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics - Google Patents

Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics Download PDF

Info

Publication number
JP2021107327A
JP2021107327A JP2018075062A JP2018075062A JP2021107327A JP 2021107327 A JP2021107327 A JP 2021107327A JP 2018075062 A JP2018075062 A JP 2018075062A JP 2018075062 A JP2018075062 A JP 2018075062A JP 2021107327 A JP2021107327 A JP 2021107327A
Authority
JP
Japan
Prior art keywords
membrane
peptide
medium
molecule
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018075062A
Other languages
Japanese (ja)
Inventor
恒 竹内
Hisashi Takeuchi
恒 竹内
徹 夏目
Toru Natsume
徹 夏目
泰 久保
Yasushi Kubo
泰 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018075062A priority Critical patent/JP2021107327A/en
Priority to PCT/JP2019/003815 priority patent/WO2019198316A1/en
Publication of JP2021107327A publication Critical patent/JP2021107327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/533Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving isomerase
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

To provide methods for enabling binding to an intracellular target by imparting membrane permeability to a medium molecular compound.SOLUTION: The method comprises fusing a peptide sequence binding to a protein that is present in the target cell and has the activity of drawing out medium molecules from a lipid bilayer membrane with medium molecules having a molecular weight of 500 to 5000.SELECTED DRAWING: Figure 4

Description

本発明は、分子量500〜5000の中分子を膜透過させる方法に関し、より詳細には、前記中分子に、目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を持つタンパク質と結合する膜透過促進ペプチド配列を融合させることより前記中分子を膜透過させる方法及び当該方法により膜透過能を獲得した環状ペプチドライブラリに関する。 The present invention relates to a method for allowing a medium molecule having a molecular weight of 500 to 5000 to permeate the membrane. More specifically, the medium molecule binds to a protein existing in a target cell and having an activity of extracting the medium molecule from the lipid bilayer membrane. The present invention relates to a method for allowing the medium molecule to permeate the membrane by fusing the membrane permeation-promoting peptide sequence, and a cyclic peptide library that has acquired the membrane permeation ability by the method.

分子量が500程度までの有機化合物は、製造コストが安く、経口投与が可能であり、免疫毒性が少ないため、これまで多くの医薬品として開発されてきた。しかし、この低分子医薬品は、特異性が低く、オフターゲットによる副作用の問題から近年は次第に開発が難しくなってきている。これに対し、分子量が10000を超えるような抗体やタンパク質由来の高分子医薬品は、特異性が高く副作用も少ないことから売り上げが伸びているものの、高価で、経口投与ができず、免疫毒性を示す可能性があるという問題がある。 Organic compounds having a molecular weight of up to about 500 have been developed as many pharmaceuticals because of their low production cost, oral administration, and low immunotoxicity. However, this small molecule drug has low specificity, and it has become increasingly difficult to develop in recent years due to the problem of side effects due to off-targeting. On the other hand, high molecular weight drugs derived from antibodies and proteins having a molecular weight of more than 10,000 are highly specific and have few side effects, so that sales are increasing, but they are expensive, cannot be orally administered, and show immunotoxicity. There is a problem that there is a possibility.

分子量が500〜5000程度のペプチド、環状ペプチド、または天然物などのいわゆる中分子医薬品は、安価で免疫毒性が少ないという低分子医薬品の利点と、標的分子への特異性が高く、副作用が少ないというという高分子医薬品の利点を併せ持ち、また適用範囲が広い点で期待されている。しかしながら、中分子医薬品が細胞内の分子を標的とする場合、細胞膜を透過させて所望の細胞内標的分子に到達させる方法は未確立である。また経口投与により高い生物学的利用能を示すためには、プロテアーゼ耐性などの安定性を改善することも必要である。 So-called medium-molecular-weight drugs such as peptides, cyclic peptides, and natural products with a molecular weight of about 500 to 5000 have the advantages of low-molecular-weight drugs that are inexpensive and have low immunotoxicity, and that they are highly specific to target molecules and have few side effects. It is expected that it has the advantages of high molecular weight drugs and has a wide range of applications. However, when a medium-molecular-weight drug targets an intracellular molecule, a method of permeating the cell membrane to reach the desired intracellular target molecule has not been established. It is also necessary to improve stability such as protease resistance in order to show high bioavailability by oral administration.

このような中分子医薬品の1つであるシクロスポリンA(CsA)は、細胞内のカルシニューリンを標的とする免疫抑制剤であり、Tリンパ球によるインターロイキン−2(IL−2)やインターフェロン−γなどの転写を特異的かつ可逆的に抑制してサイトカイン産生と遊離を抑制する。この作用はIL−2の産生を制御する活性化T細胞核内因子(NFAT)を脱リン酸化し、T細胞を活性化する細胞内カルシウム依存的脱リン酸化酵素であるカルシニューリンによる細胞内情報伝達阻害によることが分かっている。CsAは、図1に示すように、非タンパク質性の特殊アミノ酸を含む11残基の環状ペプチドであり、ペプチド結合を形成するアミノ基のうち7個がN−メチル化されている。これにより、細胞膜透過性やプロテアーゼに対する耐性を獲得している。 Cyclosporin A (CsA), which is one of such medium-molecular-weight drugs, is an immunosuppressive drug that targets intracellular calcineurin, such as interleukin-2 (IL-2) by T lymphocytes and interferon-γ. It specifically and reversibly suppresses the transcription of cytokines and suppresses cytokine production and release. This action dephosphorylates the activated T cell nuclear factor (NFAT) that controls IL-2 production, and inhibits intracellular signal transduction by calcineurin, an intracellular calcium-dependent dephosphorylating enzyme that activates T cells. It is known that As shown in FIG. 1, CsA is an 11-residue cyclic peptide containing a non-proteinogenic special amino acid, and 7 of the amino groups forming a peptide bond are N-methylated. As a result, cell membrane permeability and resistance to proteases have been acquired.

これまで、膜透過活性を持つことが知られているペプチド配列の多くは、直鎖上の塩基性残基に富むという特徴があり、この配列を目的の生理活性を持つペプチドなどに付加することで膜透過活性と生理活性の両立を試みた報告がある(例えば、特許文献1〜5参照)。しかしながらこのような膜透過ペプチドは、任意の生理活性物質に膜透過活性を付与するものではなく、その膜透過機構も明らかでない。 Many of the peptide sequences known to have membrane permeation activity have a characteristic of being rich in basic linear residues, and this sequence should be added to a peptide having the desired physiological activity. There is a report of trying to achieve both membrane permeation activity and physiological activity (see, for example, Patent Documents 1 to 5). However, such a cell-penetrating peptide does not impart membrane-penetrating activity to any physiologically active substance, and its membrane-penetrating mechanism is not clear.

また、中分子に特定の構造を付与することで環状ペプチドの膜透過性を改善する試みもなされている。例えば、特許文献6に記載の発明は、特定構造のシクロプロパンアミノ酸ユニットを、環状ペプチドの環中に導入することで環状ペプチドの膜透過性及び/又は代謝安定性を改善している。さらに特許文献7に記載の発明は、環状ペプチドの互いに隣接していない少なくとも2つのアミノ酸が疎水性側鎖を有し、親水性環境においてはこの疎水性側鎖同士が環状ペプチドの環の内側で相互作用することで、細胞膜を透過して細胞内に到達できるペプチドを取得している。 Attempts have also been made to improve the membrane permeability of cyclic peptides by imparting a specific structure to the medium molecule. For example, the invention described in Patent Document 6 improves the membrane permeability and / or metabolic stability of a cyclic peptide by introducing a cyclopropane amino acid unit having a specific structure into the ring of the cyclic peptide. Further, in the invention described in Patent Document 7, at least two amino acids of the cyclic peptide that are not adjacent to each other have a hydrophobic side chain, and in a hydrophilic environment, the hydrophobic side chains are inside the ring of the cyclic peptide. By interacting with each other, peptides that can penetrate the cell membrane and reach the inside of the cell are obtained.

WO2011/126010WO2011 / 126010 WO2016/136708WO2016 / 136708 WO2016/136707WO2016 / 136707 WO2013/061818WO2013 / 061818 WO2010/134537WO2010 / 134537 特開2017−43615号公報JP-A-2017-43615 特開2015−42159号公報JP-A-2015-42159

Wu X, Stockdill JL, Wang P, Danishefsky SJ., Total synthesis of cyclosporine: access to N-methylated peptides via isonitrile coupling reactions. J Am Chem Soc. 2010 Mar 31;132(12):4098-100.Wu X, Stockdill JL, Wang P, Danishefsky SJ., Total synthesis of cyclosporine: access to N-methylated peptides via isonitrile coupling reactions. J Am Chem Soc. 2010 Mar 31; 132 (12): 4098-100.

中分子化合物は、その生理活性の強さから、特に細胞内タンパク質タンパク質相互作用を阻害する新たな創薬材料として期待される。しかしながらその多くは膜透過性を発揮しないことから所望の細胞内標的に対して作用しうる中分子化合物を取得する方法はいまだ未確立である。本発明は、中分子化合物に膜透過性を与え、細胞内標的に対する結合を可能にすることを目的とする。 Medium-molecular-weight compounds are expected as new drug discovery materials that inhibit intracellular protein-protein interactions, because of their strong bioactivity. However, since most of them do not exhibit membrane permeability, a method for obtaining a medium-molecular-weight compound capable of acting on a desired intracellular target has not yet been established. An object of the present invention is to impart membrane permeability to a medium molecular weight compound and enable binding to an intracellular target.

本発明者らは、膜透過性を示す中分子に共通する特徴として、これらが細胞内に豊富に存在するタンパク質の1つであるペプチジルプロリルイソメラーゼ(PPI)に対する結合能を示すことに着目した。そして、PPIに代表される細胞内に存在し脂質二重膜から中分子を引き抜く活性を有するタンパク質と結合するペプチド配列を中分子と融合させることで、このようにして得られた膜透過性融合体の細胞内への移行性が高められることを見出し、本発明を完成した。 The present inventors have focused on the common feature of medium molecules exhibiting membrane permeability that they exhibit the ability to bind to peptidyl prolyl isomerase (PPI), which is one of the proteins abundantly present in cells. .. Then, the membrane-permeable fusion thus obtained by fusing a peptide sequence that binds to a protein that exists in a cell represented by PPI and has an activity of extracting a medium molecule from a lipid bilayer with a medium molecule. The present invention has been completed by finding that the transferability into cells of the body is enhanced.

本発明の1つの実施形態において、中分子の膜透過方法は、分子量500〜5000の中分子に、目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を有するタンパク質と結合するペプチド配列を融合させて膜透過性融合体を得る工程と、この膜透過性融合体と細胞とを接触させることを特徴とする。
目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を有するタンパク質は、細胞内に豊富に存在するタンパク質の1つで脂質二重膜に弱く局在し、脂質二重膜中の中分子に結合する活性を有する提示タンパク質である。このタンパク質はペプチジルプロリルイソメラーゼ活性を有するタンパク質であることが好ましく、ペプチジルプロリルイソメラーゼA(PPIA)であることがより好ましいが、脂質二重膜から中分子を引き抜く活性を有するものであれば、これらに限定されない。そして、このペプチジルプロリルイソメラーゼ活性を有するタンパク質と結合するペプチド配列が、下記式(I)で示されるアミノ酸残基配列:
Leu−Leu−Val−Bmt−Abu・・・(I)
(式中、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)又はその相同アミノ酸残基配列であることがさらに好ましい。
In one embodiment of the present invention, the medium molecule membrane permeation method is a peptide that binds to a protein present in a target cell in a medium molecule having a molecular weight of 500 to 5000 and having an activity of extracting the medium molecule from the lipid bilayer membrane. It is characterized by a step of fusing the sequences to obtain a membrane-permeable fusion and contacting the membrane-permeable fusion with a cell.
The protein that exists in the target cell and has the activity of extracting medium molecules from the lipid bilayer is one of the proteins that are abundant in the cell and is weakly localized in the lipid bilayer, and is in the lipid bilayer. It is a presentation protein that has the activity of binding to medium molecules. This protein is preferably a protein having peptidyl prolyl isomerase activity, more preferably peptidyl prolyl isomerase A (PPIA), as long as it has an activity of extracting medium molecules from the lipid bilayer membrane. Not limited to these. Then, the peptide sequence that binds to the protein having peptidyl prolyl isomerase activity is the amino acid residue sequence represented by the following formula (I):
Leu-Leu-Val-Bmt-Abu ... (I)
(In the formula, Bmt indicates (4R) -4-[(E) -2-butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, forming a peptide bond. The amino group may be N-alkylated) or a homologous amino acid residue sequence thereof.

また、他の実施形態における、膜透過性融合体の製造方法は、分子量500〜5000の中分子を用意し、この中分子に、目的細胞内に存在し脂質二重膜から中分子を引き抜く活性を有するタンパク質と結合するペプチド配列を融合させることを特徴とする。 Further, in the method for producing a membrane-permeable fusion in another embodiment, a medium molecule having a molecular weight of 500 to 5000 is prepared, and the medium molecule has an activity of extracting the medium molecule from the lipid bilayer membrane existing in the target cell. It is characterized by fusing a peptide sequence that binds to a protein having.

さらに別の実施形態における本発明の膜透過性環状ペプチドは、下記式(II):
シクロ[(X)−Leu−Leu−Val−Bmt−Abu]・・・(II)
(式中、n個のXは、互いに独立して天然若しくは非天然の任意のアミノ酸又はその誘導体であり、nは5〜50の整数であり、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)
で表されるアミノ酸配列又はその相同アミノ酸残基からなることを特徴とする。ただし、上記環状ペプチドは、シクロスポリンAを除く。
The membrane-permeable cyclic peptide of the present invention in still another embodiment has the following formula (II):
Cyclo [(X) n- Leu-Leu-Val-Bmt-Abu] ... (II)
(In the formula, n Xs are independent of each other, natural or non-natural amino acids or derivatives thereof, n is an integer of 5 to 50, and Bmt is (4R) -4-[(E). ) -2-Butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, and the amino group forming the peptide bond may be N-alkylated.)
It is characterized by consisting of an amino acid sequence represented by or a homologous amino acid residue thereof. However, the above cyclic peptide excludes cyclosporin A.

本発明のさらに他の実施形態は、標的分子に対する結合能を有する膜透過性環状ペプチドのスクリーニング方法であって、上記式(II)における(X)で表わされるn個のXにランダムなアミノ酸を導入した環状ペプチドライブラリを構築する工程と、この環状ペプチドライブラリと標的分子とを接触させる工程と、標的分子に結合した膜透過性環状ペプチドを選択する工程と、を含むことを特徴とする。 Yet another embodiment of the present invention is a method for screening a membrane-permeable cyclic peptide having a binding ability to a target molecule, in which n X-random amino acids represented by (X) n in the above formula (II) are used. It is characterized by including a step of constructing a cyclic peptide library into which the above is introduced, a step of contacting the cyclic peptide library with a target molecule, and a step of selecting a membrane-permeable cyclic peptide bound to the target molecule.

本発明の方法によれば、目的細胞内に存在し脂質二重膜から中分子を引き抜く活性を有するタンパク質と結合するペプチド配列を融合させることで多様な中分子を膜透過させることができる。また、この多様な融合ペプチドである膜透過性融合体から構成される環状ペプチドライブラリを用いることで、膜透過性を有し、かつ所望の細胞内標的に対する結合能をもった中分子を選び出すことが可能となる。 According to the method of the present invention, various medium molecules can be permeated into a membrane by fusing a peptide sequence that binds to a protein existing in a target cell and having an activity of extracting a medium molecule from a lipid bilayer membrane. In addition, by using a cyclic peptide library composed of membrane-permeable fusions, which are various fusion peptides, a medium molecule having membrane permeability and binding ability to a desired intracellular target can be selected. Is possible.

図1は、シクロスポリンA(CsA)の構造を示す。FIG. 1 shows the structure of cyclosporin A (CsA). 図2は、カルシニューリン(Cn)とシクロスポリンA(CsA)とPPIAとの複合体の立体構造を示す。FIG. 2 shows the three-dimensional structure of a complex of calcineurin (Cn), cyclosporin A (CsA) and PPIA. 図3Aは、Cn、FK506及びFKBP複合体の立体構造を示す。FIG. 3A shows the three-dimensional structure of the Cn, FK506 and FKBP complexes. 図3(B)は、ラパマイシン標的タンパク質(mTOR)、ラパマイシン(Rap)及びFKBP複合体の立体構造を示す。FIG. 3B shows the three-dimensional structure of the rapamycin target protein (mTOR), rapamycin (Rap) and FKBP complex. 図4は、細胞膜に埋め込まれた中分子が、PPIによって引き抜かれて細胞内へ移行する様子を示す模式図である。FIG. 4 is a schematic diagram showing how the medium molecule embedded in the cell membrane is pulled out by the PPI and migrates into the cell. 図5Aは、DPCミセル中に内包したCsAをPPIAが引き抜く様子を示した模式図である。FIG. 5A is a schematic view showing how PPIA pulls out CsA contained in the DPC micelle. 図5Bは、DPCミセル中に内包したCsAとPPIAの結合をNMR解析した結果である。FIG. 5B is the result of NMR analysis of the binding between CsA and PPIA contained in the DPC micelle. 図6Aは、DPCミセル中に内包した状態で添加したCsAとPPIAとの結合による各残基の化学シフト変化を示す。FIG. 6A shows the chemical shift change of each residue due to the binding between CsA and PPIA added in the state of being encapsulated in the DPC micelle. 図6Bは、PPIA/CsA複合体(ミセル非存在下)構造上へのマッピングを示す。FIG. 6B shows the mapping onto the PPIA / CsA complex (in the absence of micelles) structure. 図7は、CsAを含まないDPCミセルとPPIAの結合をNMR解析した結果である。FIG. 7 shows the results of NMR analysis of the binding between DPC micelles containing no CsA and PPIA. 図8はPPIAに対するリポソーム添加実験の結果を示す。FIG. 8 shows the results of a liposome addition experiment for PPIA. 図9はPPIAに対するCsA含有リポソーム添加実験の結果を示す。FIG. 9 shows the results of an experiment in which CsA-containing liposomes were added to PPIA. 図10は、PPIAにCsA含有リポソームを添加した際のCsA結合型と非結合型PPIAのシグナル強度の変化を表すグラフである。FIG. 10 is a graph showing changes in signal intensity between CsA-bound and non-bound PPIA when CsA-containing liposomes are added to PPIA.

次に、本発明の好適な実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are indispensable for the means for solving the present invention. Is not always the case.

[中分子の膜透過方法]
本実施形態に係る方法は、中分子の膜透過方法である。本明細書において、「中分子」とは、低分子(分子量約500までの有機化合物)でも高分子(分子量1万以上のタンパク質など)でもない、分子量約500〜5000程度のペプチド、マクロライド化合物、核酸及び天然物又はそれらの誘導体をいう。好ましくは、分子量500〜2000程度のペプチド、すなわち、アミノ酸残基5〜20程度の直鎖状又は環状ペプチドである。ペプチドとしては、環状ペプチドが好ましく、その詳細については後述する。マクロライド化合物とは、大環状ラクトンであり、環の員数が12又はそれ以上の化合物の総称をいう。例えば、FK506やラパマイシンなどが挙げられる。核酸としては、DNA、RNAが含まれ、例えば、短鎖干渉RNA(siRNA)、二本鎖RNA(dsRNA)、マイクロRNA(miRNA)、短鎖ヘアピンRNA(shRNA)及び核酸アプタマー等を含む。
このような中分子を医薬品として用いることにより、安価で免疫原性が少なく、かつ特異性が高い医薬品の開発が期待できる。そして、前記中分子に、目的細胞内に豊富に存在し、脂質二重膜から中分子を引き抜く活性を有するタンパク質と結合するペプチド配列(「膜透過促進ペプチド配列」と称する場合がある。)を融合させることで、細胞膜を透過させて細部内の標的分子へ到達可能な中分子医薬を実現することができる。
[Membrane permeation method for medium molecules]
The method according to this embodiment is a medium molecule membrane permeation method. In the present specification, the "medium molecule" is a peptide or macrolide compound having a molecular weight of about 500 to 5000, which is neither a small molecule (organic compound having a molecular weight of about 500) nor a polymer (protein having a molecular weight of 10,000 or more). , Nucleic acid and natural products or derivatives thereof. Preferably, it is a peptide having a molecular weight of about 500 to 2000, that is, a linear or cyclic peptide having about 5 to 20 amino acid residues. As the peptide, a cyclic peptide is preferable, and the details thereof will be described later. The macrolide compound is a macrocycle lactone, and is a general term for compounds having 12 or more ring members. For example, FK506 and rapamycin can be mentioned. Nucleic acids include DNA and RNA, and include, for example, short interfering RNA (siRNA), double-stranded RNA (dsRNA), microRNA (miRNA), short-chain hairpin RNA (SHRNA), nucleic acid aptamers, and the like.
By using such a medium molecule as a drug, it is expected to develop a drug that is inexpensive, has low immunogenicity, and has high specificity. Then, in the medium molecule, a peptide sequence (sometimes referred to as "membrane permeation promoting peptide sequence") that binds to a protein that is abundant in the target cell and has an activity of extracting the medium molecule from the lipid bilayer membrane is used. By fusing, it is possible to realize a medium-molecular-weight drug that can permeate the cell membrane and reach the target molecule in the details.

本明細書において、「目的細胞」とは、本実施形態の方法により中分子を導入する細胞を意味し、真核細胞、原核細胞、動物細胞、植物細胞、真菌細胞、古細菌細胞、真正細菌細胞などが含まれる。細胞には、酵母細胞、植物細胞及び動物細胞などの真核細胞が含まれる。具体的な細胞としては、哺乳動物細胞が挙げられる。さらに、細胞には、中分子を導入することで有益であるか、または望ましい、任意の細胞が含まれる。そのような細胞には、疾患または有害な健康状態を引き起こす特定の細胞が含まれ得る。例えば、腫瘍細胞や免疫細胞であり、これらの細胞に中分子を導入することで細胞増殖を抑制し、又は免疫反応の亢進を抑制することができる。あるいは、有害な細菌細胞に中分子を導入してその増殖を阻害するか死滅させることができる。このようにして、本明細書に記載の方法により治療的処置が提供される。細胞の種類は特に限定されず、本実施形態の方法により、種々の組織(例、肝臓、腎臓、膵臓、肺、脾臓、心臓、血液、筋肉、骨、脳、胃、小腸、大腸、皮膚、脂肪組織等)中の細胞内へ、中分子と膜透過促進ペプチド配列が融合している融合体を導入することが可能である。本明細書において、「膜」とは、細胞などの形質膜、脂質二重膜を意味する。 As used herein, the term "target cell" means a cell into which a medium molecule is introduced by the method of the present embodiment, and is a eukaryotic cell, a prokaryotic cell, an animal cell, a plant cell, a fungal cell, an archaeal cell, or a eubacteria. Includes cells and the like. Cells include eukaryotic cells such as yeast cells, plant cells and animal cells. Specific examples of cells include mammalian cells. In addition, cells include any cells that are beneficial or desirable by introducing medium molecules. Such cells may include certain cells that cause disease or adverse health conditions. For example, tumor cells and immune cells, and by introducing medium molecules into these cells, cell proliferation can be suppressed or the enhancement of immune response can be suppressed. Alternatively, medium molecules can be introduced into harmful bacterial cells to inhibit their growth or kill them. In this way, therapeutic treatment is provided by the methods described herein. The type of cell is not particularly limited, and various tissues (eg, liver, kidney, pancreas, lung, spleen, heart, blood, muscle, bone, brain, stomach, small intestine, large intestine, skin, etc. It is possible to introduce a fusion in which a medium molecule and a membrane permeation-promoting peptide sequence are fused into cells in (adipose tissue, etc.). As used herein, the term "membrane" means a plasma membrane such as a cell or a lipid bilayer membrane.

本明細書において、「目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を有するタンパク質」とは特に限定されるものではないが、目的細胞内に豊富に存在し脂質二重膜から中分子を引き抜く活性を有するタンパク質、例えば、ペプチジルプロリルイソメラーゼ活性を有するタンパク質、すなわち、タンパク質分子中のプロリン残基のシス・トランス異性化を触媒する一群の酵素や甲状腺ホルモン受容体のような細胞質内受容体が挙げられる。アミノ酸間のペプチド結合は一般にトランス体がシス体に比べてはるかに安定(エネルギーの低い状態)で、この状態が自然に達成される。ところがプロリン残基ではその特異な構造(正確にはアミノ酸でなくイミノ酸)により、N側ペプチド結合がシス体としても比較的安定に存在する。タンパク質の正確なフォールディングのためにはこれらがいずれかに定まる必要がある。ただしこの結合のシス・トランス異性化に必要な活性化エネルギーは約20kcal/molと比較的高いので、この結合は自然には異性化しにくく、フォールディングにはプロリン残基の異性化が触媒される必要がある。プロリルイソメラーゼはここで働き、従ってシャペロンの一つということができる。原核生物から真核生物に至るまで約6000種類のPPIが確認されており、かつ細胞内に多量に存在する。例えば、ペプチジルプロリルイソメラーゼA(PPIA又はシクロフィリンAとも称される)は、哺乳動物細胞内で22番目に多く存在するタンパク質であり、細胞内ではμMレベルの濃度で豊富に存在すると推定される(Schwanhausser B et al., Global quantification of mammalian gene expression control., Nature. 2011 May 19;473(7347):337-42)。PPIは、そのアミノ酸配列の相同性に基づき、3つのサブファミリー:シクロフィリン(cyclophilin)ファミリー、FKBP(FK506結合タンパク質)ファミリー及びパルブリン(parvulin)ファミリーに分類されている。また甲状腺ホルモン受容体のような細胞質内受容体の一部は分子量が500を超えるようなホルモンを細胞膜から引き抜き、細胞質または核内に移行させることができるため、同様の目的に使用できる。 In the present specification, the “protein existing in the target cell and having an activity of extracting a medium molecule from the lipid bilayer membrane” is not particularly limited, but is abundantly present in the target cell and the lipid bilayer membrane. Proteins with activity to extract medium molecules from, such as proteins with peptidyl prolyl isomerase activity, i.e. a group of enzymes or thyroid hormone receptors that catalyze cis-trans isomerization of proline residues in protein molecules. Examples include intracellular receptors. Peptide bonds between amino acids are generally much more stable (low energy state) in the trans form than in the cis form, and this state is achieved naturally. However, due to the unique structure of the proline residue (to be exact, imino acid rather than amino acid), the N-side peptide bond exists relatively stably as a cis form. These need to be determined for accurate folding of the protein. However, since the activation energy required for cis-trans isomerization of this bond is relatively high at about 20 kcal / mol, this bond is difficult to isomerize naturally, and folding requires catalyzing the isomerization of proline residues. There is. Prolyl isomerase works here and is therefore one of the chaperones. About 6000 kinds of PPIs from prokaryotes to eukaryotes have been confirmed, and they are present in a large amount in cells. For example, peptidyl prolyl isomerase A (also called PPIA or cyclophilin A) is the 22nd most abundant protein in mammalian cells and is presumed to be abundant in cells at μM level concentrations (presumably). Schwanhausser B et al., Global quantification of mammalian gene expression control., Nature. 2011 May 19; 473 (7347): 337-42). PPIs are classified into three subfamilies: the cyclophilin family, the FKBP (FK506 binding protein) family, and the parvulin family, based on their amino acid sequence homology. In addition, some intracellular receptors such as thyroid hormone receptors can be used for the same purpose because hormones having a molecular weight of more than 500 can be extracted from the cell membrane and transferred into the cytoplasm or nucleus.

シクロフィリンAはエイズウィルスHIV−1の感染に、シクロフィリンDは心筋梗塞や脳梗塞に、それぞれ関与することが知られている。FKBP12は細胞増殖のシグナル伝達系で機能しているという報告がある。シクロフィリンAやFKBP12は免疫抑制剤の直接的な受容体でもあり、これらはイムノフィリン(immunophilin)とも呼ばれている。一方、パルブリン・サブファミリーのPin1はリン酸化したSer/ThrPro配列に対する特異性が高く、転写、アポトーシス、アミロイドβの産生調節など様々な局面において機能している。これらのPPIはいずれも細胞内ではシス・トランス異性化反応を触媒することにより基質タンパク質のプロリンペプチド結合の周りの構造を変えて活性化・非活性化を制御しているのであろうと考えられている。しかしながら、PPIによるシス・トランス異性化反応の触媒機構は、現在でも明確ではない。プロリルイソメラーゼは、異なる機能のサブユニット又はモジュール、例えば、触媒活性を示すモジュール、およびシャペロンもしくは結合活性を示すモジュールを含んでもよい。 Cyclophilin A is known to be involved in AIDS virus HIV-1 infection, and cyclophilin D is known to be involved in myocardial infarction and cerebral infarction. It has been reported that FKBP12 functions in the signal transduction system of cell proliferation. Cyclophilin A and FKBP12 are also direct receptors for immunosuppressants, and they are also called immunophilins. On the other hand, Pin1 of the parbrin subfamily has high specificity for the phosphorylated Ser / ThrPro sequence and functions in various aspects such as transcription, apoptosis, and regulation of amyloid β production. It is considered that all of these PPIs regulate activation / deactivation by catalyzing the cis-trans isomerization reaction in the cell to change the structure around the proline peptide bond of the substrate protein. There is. However, the catalytic mechanism of the cis-trans isomerization reaction by PPI is still unclear. Prolyl isomerases may include subunits or modules of different function, eg, modules exhibiting catalytic activity and modules exhibiting chaperones or binding activity.

したがって、本実施形態の方法により得られる中分子は、目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を有するタンパク質(例えばPPI)と結合するペプチド配列(膜透過促進ペプチド配列)と融合することにより、細胞膜からPPIなどによって引き抜かれ細胞内の標的タンパク質に提示されると考えられる。本明細書において、「結合」とは、2つの分子が非共有結合的に複合体を作ることを含む。「融合」とは、2つの分子を共有結合により1つの分子とすることをいう。中分子と膜透過促進ペプチド配列との融合は、1又は2以上の共有結合を形成してもよい。また、中分子と膜透過促進ペプチド配列とが2以上の共有結合により融合し、環を形成することが好ましい。好ましい実施形態では、上記ペプチジルプロリルイソメラーゼ活性を有するタンパク質として、ペプチジルプロリルイソメラーゼA(PPIA又はシクロフィリンA)を用いることができる。さらに好ましい実施形態では、本実施形態のペプチド配列は、シクロスポリンA(CsA)とPPIA(シクロフィリンA)との結合部位を用いることができる。 Therefore, the medium molecule obtained by the method of the present embodiment is a peptide sequence (membrane permeation promoting peptide sequence) that exists in the target cell and binds to a protein (for example, PPI) having an activity of extracting the medium molecule from the lipid bilayer membrane. It is considered that the protein is extracted from the cell membrane by PPI or the like and presented to the target protein in the cell by fusing with. As used herein, "binding" includes forming a complex of two molecules in a non-covalent bond. "Fusion" means that two molecules are covalently bonded into one molecule. The fusion of the medium molecule with the membrane permeation-promoting peptide sequence may form one or more covalent bonds. Further, it is preferable that the medium molecule and the membrane permeation-promoting peptide sequence are fused by two or more covalent bonds to form a ring. In a preferred embodiment, peptidyl prolyl isomerase A (PPIA or cyclophilin A) can be used as the protein having the peptidyl prolyl isomerase activity. In a more preferred embodiment, the peptide sequence of this embodiment can use the binding site of cyclosporin A (CsA) and PPIA (cyclophilin A).

図2は、本発明のモデルとなる、カルシニューリン(Cn)と、シクロスポリンA(CsA)と、PPIAとの複合体(Cn/CsA/PPIA複合体)の立体構造を模式的に示したものである。Cnは2つのサブユニットからなり、図2において、CnAは触媒サブユニットを、CnBはカルシウム結合サブユニットを示す。Cn/CsA/PPIA複合体において、三者の接触面のほとんどはCsAが担っており、PPIAはほぼCsAをCnに提示しているだけである。さらに、CsAはPPIAと相互作用することで立体構造が固定され、PPIAとの結合部位の反対側表面でCnに対する結合能を獲得する。 FIG. 2 schematically shows the three-dimensional structure of a complex (Cn / CsA / PPIA complex) of calcineurin (Cn), cyclosporin A (CsA), and PPIA, which is a model of the present invention. .. Cn consists of two subunits, in which CnA represents a catalytic subunit and CnB represents a calcium binding subunit. In the Cn / CsA / PPIA complex, most of the contact surfaces of the three are borne by CsA, and PPIA only presents CsA to Cn. Furthermore, the three-dimensional structure of CsA is fixed by interacting with PPIA, and the binding ability to Cn is acquired on the surface opposite to the binding site with PPIA.

他のモデル例として、図3は、FKBPとFK506(A)又はラパマイシン(B)との結合様式を示す。PPIの一種であるFKBPは、FK506やラパマイシン(Rap)のようなマクロライド化合物と結合するという興味深い特徴を有する。FK506とRapは細胞内の標的タンパク質が、Cn又はmTORと異なることから、同じPPIによって細胞内に導入された中分子であっても、PPIとの結合部位以外の構造が異なることでそれぞれ別の標的タンパク質と結合しうることを示している。 As another model example, FIG. 3 shows the binding mode between FKBP and FK506 (A) or rapamycin (B). FKBP, a type of PPI, has the interesting feature of binding to macrolide compounds such as FK506 and rapamycin (Rap). Since the target protein in the cell of FK506 and Rap is different from that of Cn or mTOR, even medium molecules introduced into the cell by the same PPI are different because they have different structures other than the binding site with PPI. It shows that it can bind to the target protein.

このことから、細胞膜に存在するCsAがPPIによって引き抜かれ細胞内へ移行する推定メカニズムを図4に模式的に示す。疎水性の高いCsAは、細胞膜に対する親和性が高く、体内に吸収されると容易に膜に移行すると考えられる(図4矢印A)。しかしながら、水溶液に対する溶解性が低いため、このままでは膜から細胞内には移行できない。この時、細胞内に存在するPPIAが膜透過を補助する。PPIAは後に示すように弱く膜に対する結合を示す(図4矢印B)。膜に結合したPPIAはCsA結合面を膜方向に向けるため効率的に、PPIと複合体を形成し、細胞膜から細胞質内へ移行する(図4矢印C)。この複合体が図2に示すように、細胞質内で標的タンパク質であるカルシニューリンへ提示されるのである。この時、細胞内に豊富に存在するPPIが膜中に存在するCsAと直接作用して引き抜くか又は膜から細胞内にわずかに分布したCsAをとらえて膜から細胞内へ移行させるかのいずれでもよい。 From this, the estimation mechanism in which CsA existing in the cell membrane is extracted by PPI and transferred into the cell is schematically shown in FIG. CsA, which has high hydrophobicity, has a high affinity for the cell membrane, and is considered to be easily transferred to the membrane when absorbed in the body (arrow A in FIG. 4). However, since it has low solubility in an aqueous solution, it cannot move from the membrane into the cell as it is. At this time, PPIA existing in the cell assists membrane permeation. PPIA is weakly bound to the membrane as shown later (arrow B in FIG. 4). The PPIA bound to the membrane efficiently forms a complex with the PPI because the CsA binding surface is directed toward the membrane, and is transferred from the cell membrane into the cytoplasm (arrow C in FIG. 4). This complex is presented in the cytoplasm to the target protein calcineurin, as shown in FIG. At this time, either PPI, which is abundant in the cell, directly acts on CsA existing in the membrane to extract it, or CsA slightly distributed in the cell from the membrane is captured and transferred from the membrane to the cell. good.

本発明は、PPIAのように細胞内に豊富に存在するタンパク質やその他、膜中の中分子を引き抜くことの可能なタンパク質群を、中分子を細胞内に濃縮し、提示する細胞内抗原提示タンパク質として位置づけ、これを利用することによって、CsAがPPIAによって膜透過活性を得るのと類似の機構により中分子の膜透過性を高めるものである。後述する実施例において実証されるように、CsAは、PPIAの添加によって膜画分から可溶性画分へ移行することから、本発明の方法により膜を透過して細胞質内へ移行することが確実に予測できる。 The present invention is an intracellular antigen-presenting protein that concentrates and presents medium molecules, such as PPIA, which are abundant in cells and other proteins capable of extracting medium molecules in the membrane. By utilizing this, the membrane permeability of medium molecules is enhanced by a mechanism similar to that in which CsA obtains membrane permeability by PPIA. As will be demonstrated in the examples described later, since CsA is transferred from the membrane fraction to the soluble fraction by the addition of PPIA, it is surely predicted that the CsA will permeate the membrane and migrate into the cytoplasm by the method of the present invention. can.

本発明の1つの実施形態において、膜透過促進ペプチド配列は、天然若しくは非天然の、側鎖に電荷をもたないアミノ酸又はその誘導体を含む5残基以上のペプチドからなる。側鎖に電荷をもたないアミノ酸とは、天然のアミノ酸では、グリシン、アラニン、バリン、ロイシン、イソロイシン、メチオニン、プロリン、フェニルアラニン、トリプトファンなどの疎水性アミノ酸が含まれる。これらの中でも、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニンなどの疎水無極性アミノ酸が好ましい。 In one embodiment of the invention, the membrane permeation-promoting peptide sequence consists of a peptide of 5 or more residues, including a natural or non-natural amino acid having no side chain charge or a derivative thereof. Amino acids having no side chain charge include natural amino acids such as glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, and tryptophan. Among these, hydrophobic non-polar amino acids such as glycine, alanine, valine, leucine, isoleucine, proline and phenylalanine are preferable.

例えば、下記式(I)で示されるアミノ酸残基(配列番号1):
Leu−Leu−Val−Bmt−Abu・・・(I)
(式中、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)であることが好ましい。上記式(I)で示されるアミノ酸残基は、CsAがPPIAと結合すると推定される5つのアミノ酸残基:MeLeu−MeLeu−MeVal−MeBmt−Abu(配列番号3)を含むが、PPIAとの結合能を有する限り、他のシクロスポリンファミリーで見られるような相同アミノ酸残基によって置換されていてもよい。本明細書において、「相同アミノ酸残基」とは、同様の特徴又は特性を共有するアミノ酸残基であり、例えば、極性、電荷、サイズ、芳香性及び/又は疎水性が類似している残基をいう。例えば、Bmtは、MeBmt、MeLeu、デソキシ−MeBmt又はメチルアミノオクタン酸であってもよく、Abuは、L−Ala、L−Thr、L−Val、L−ノルバリンであってもよく、L−Ala、D−Alaのような光学異性体も含まれる。なお、本明細書において、MeBmtやMeLeuなどの表記は、N−メチルBmt及びN−メチルLeuを示す。
For example, the amino acid residue represented by the following formula (I) (SEQ ID NO: 1):
Leu-Leu-Val-Bmt-Abu ... (I)
(In the formula, Bmt indicates (4R) -4-[(E) -2-butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, forming a peptide bond. The amino group may be N-alkylated). The amino acid residue represented by the above formula (I) contains five amino acid residues in which CsA is presumed to bind to PPIA: MeLeu-MeLeu-MeVal-MeBmt-Abu (SEQ ID NO: 3), but binds to PPIA. As long as it is capable, it may be substituted with homologous amino acid residues as found in other cyclosporin families. As used herein, "homologous amino acid residues" are amino acid residues that share similar characteristics or properties, such as residues that are similar in polarity, charge, size, aroma and / or hydrophobicity. To say. For example, Bmt may be MeBmt, MeLeu, Desoxy-MeBmt or methylaminooctanoic acid, and Abu may be L-Ala, L-Thr, L-Val, L-norvaline, L-Ala. , D-Ala and other optical isomers are also included. In addition, in this specification, the notation such as MeBmt and MeLeu indicates N-methylBmt and N-methylLeu.

また、上記式(I)で示されるアミノ酸配列は、高度に疎水的であるため、この配列を含む中分子は細胞と混合するだけで容易に細胞膜へ移行すると考えられる。特に、ペプチド骨格のN−アルキル化は、ペプチドの膜透過性、及びタンパク質分解に対する耐性を高めるための方法として報告されている(例えば、Yan T, Feringa BL, Barta K, Direct N-alkylation of unprotected amino acids with alcohols. Sci Adv. 2017 Dec 8;3(12): eaao6494等参照)。N−アルキル化の中でも、N−メチル化が好ましい。 Further, since the amino acid sequence represented by the above formula (I) is highly hydrophobic, it is considered that the medium molecule containing this sequence easily migrates to the cell membrane only by mixing with the cell. In particular, N-alkylation of the peptide backbone has been reported as a method for increasing the membrane permeability of peptides and their resistance to proteolysis (eg, Yan T, Feringa BL, Barta K, Direct N-alkylation of unprotected). amino acids with alcohols. Sci Adv. 2017 Dec 8; 3 (12): See eaao6494 etc.). Among the N-alkylations, N-methylation is preferable.

中分子と膜透過促進ペプチド配列とを融合させる方法は特に限定されないが、あらゆる中分子に対して一般的に適用しうる方法として、それぞれ別々に調製した中分子と膜透過促進ペプチド配列とを、周知且つ通常の化学反応手段で融合させる方法がある。例えば、様々なホモ二機能性及び/又はヘテロ二機能性架橋剤試薬、例えばビス(スルホサクシニミジル)スベリン酸塩、ビス(ジアゾベンジジン)、アジプイミド酸ジメチル、ピメリミド酸ジメチル、スベルイミド酸ジメチル、スベリン酸塩ジサクシニミジル、グルタルアルデヒド、m−マレイミドベンゾイル−N−ヒドロキシスクシンイミド、スルホ−m−マレイミドベンゾイル−N−ヒドロキシスクシンイミド、スルホサクシニミジル4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート、スルホサクシニミジル4−(p−マレイミド−フェニル)ブチレート及び(1−エチル−3−(3−ジメチル−アミノプロピル)カルボジイミドを使用することができる。中分子と膜透過促進ペプチド配列との間に適宜リンカーを挿入してもよい。 The method for fusing the medium molecule and the membrane permeation-promoting peptide sequence is not particularly limited, but as a method generally applicable to all medium molecules, the medium molecule and the membrane permeation-promoting peptide sequence prepared separately are used. There is a method of fusing by a well-known and usual chemical reaction means. For example, various homobifunctional and / or heterobifunctional cross-linking agents reagents such as bis (sulfosuccinimidyl) sverate, bis (diazobenzidine), dimethyl adipimide acid, dimethyl pimerimite, dimethyl suberimide, sverin. Disuccinimidyl acidate, glutaaldehyde, m-maleimide benzoyl-N-hydroxysuccinimide, sulfo-m-maleimide benzoyl-N-hydroxysuccinimide, sulfosuccinimidyl 4- (N-maleimidemethyl) cyclohexane-1-carboxylate, sulfosucci Nimidyl 4- (p-maleimide-phenyl) butyrate and (1-ethyl-3- (3-dimethyl-aminopropyl) carbodiimide can be used. An appropriate linker between the medium molecule and the membrane permeation promoting peptide sequence. May be inserted.

また、異なる実施形態としては、ペプチドからなる中分子をコードするDNAと、膜透過促進ペプチド配列若しくはその改変体をコードするDNAをインフレームで機能し得る形で連結し、該融合DNAを発現ベクターに導入し、適当な宿主細胞に該ベクターを導入して発現させることにより遺伝子工学的にリコンビナントペプチドとして作製することができる。この際、プロモーターやターミネーター等の要素を機能し得る形で連結してもよい。また、遺伝的にコードされるアミノ酸のみから構成されるリンカーを配置する場合には、中分子をコードするDNAと、膜透過促進ペプチド配列若しくはその改変体をコードするDNAの間に上記のリンカーペプチドをコードするDNAを介在させてもよい。 Further, in a different embodiment, a DNA encoding a medium molecule composed of a peptide and a DNA encoding a membrane permeation-promoting peptide sequence or a variant thereof are ligated in a form capable of functioning in-frame, and the fusion DNA is expressed as an expression vector. The vector can be genetically engineered to be produced as a recombinant peptide by introducing the vector into a suitable host cell and expressing it. At this time, elements such as promoters and terminators may be linked in a functional manner. When a linker composed of only genetically encoded amino acids is arranged, the above-mentioned linker peptide is placed between the DNA encoding the medium molecule and the DNA encoding the membrane permeation-promoting peptide sequence or a variant thereof. DNA encoding the above may be interposed.

さらに具体的に説明すると、中分子がペプチド又はその誘導体である場合、膜透過促進ペプチド配列との融合は、公知のペプチド合成方法を用いることができ、その詳細については後述する。中分子がマクロライド化合物の場合もペプチド合成法と同様の公知の化学合成法が使用できる。例えば、ビルディングブロックと呼ばれるパーツをあらかじめ複数作成し、それらを組み合わせて目的のマクロライド化合物を合成するコンバージェント合成法が報告されている(A platform for the discovery of new macrolide antibiotics, Nature volume 533, pages 338-345 (19 May 2016))。これらのビルディングブロックの中に上述したホモ二機能性及び/又はヘテロ二機能性架橋剤試薬と反応する官能基を導入しておけばよい。 More specifically, when the medium molecule is a peptide or a derivative thereof, a known peptide synthesis method can be used for fusion with the membrane permeation-promoting peptide sequence, the details of which will be described later. When the medium molecule is a macrolide compound, a known chemical synthesis method similar to the peptide synthesis method can be used. For example, a convergent synthesis method has been reported in which multiple parts called building blocks are created in advance and combined to synthesize the desired macrolide compound (A platform for the discovery of new macrolide antibiotics, Nature volume 533, pages). 338-345 (19 May 2016)). A functional group that reacts with the above-mentioned homobifunctional and / or heterobifunctional cross-linking reagent may be introduced into these building blocks.

一方、核酸とペプチドを共有結合で結合させる手法として、ターミナルデオキシヌクレオチジルトランスフェラーゼ(以下TdTと略記)という酵素を用いる方法も報告されている(例えば、特開2004−331574号公報参照)。この酵素はDNAの3’末端にトリリン酸を取り込むことができる酵素である。この酵素を用いて修飾核酸を3’末端に導入し、ペプチドと共有結合させることができる。例えば、修飾核酸として、核酸塩基にリンカーを介してマレイミド基またはチオール基を結合させたヌクレオチドと、ペプチド中に存在するチオール基と反応して、共有結合を形成することができる。また、修飾核酸中のチオール基は、ペプチドに導入したマレイミド基、又はジスルフィド結合若しくはハロゲン化メチル基を有する化合物と反応して、共有結合を形成することができる。さらに、効率が良く温和な水性媒体中で保護基なしで行う方法として、オキシム又はチアゾリジン形成反応を利用してペプチドと核酸(オリゴヌクレオチド)とを化学選択的に融合する方法も報告されている(Forget D, Boturyn D, Defrancq E, Lhomme J, Dumy P., Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation. Chemistry. 2001, 7(18):3976-84.)。オキシム形成反応は、オキシアミン基(−ONH)を含有するペプチドと、アルデヒド基(−CHO)を含有する核酸又はその逆の反応物を用いる。チアゾリジン形成反応は、システイン残基(−CH(NH)CHSH)を含有するペプチドとアルデヒド基(−CHO)を含有する核酸を用いてチアゾリジン環を形成する反応である。 On the other hand, as a method for covalently binding a nucleic acid and a peptide, a method using an enzyme called terminal deoxynucleotidyl transferase (hereinafter abbreviated as TdT) has also been reported (see, for example, Japanese Patent Application Laid-Open No. 2004-331574). This enzyme is an enzyme capable of incorporating triphosphate at the 3'end of DNA. This enzyme can be used to introduce a modified nucleic acid into the 3'end and covalently attach it to a peptide. For example, as a modified nucleic acid, a nucleotide in which a maleimide group or a thiol group is bound to a nucleobase via a linker can react with a thiol group present in the peptide to form a covalent bond. Further, the thiol group in the modified nucleic acid can react with a maleimide group introduced into the peptide or a compound having a disulfide bond or a methyl halide group to form a covalent bond. Furthermore, as a method of performing without a protecting group in an efficient and mild aqueous medium, a method of chemically selectively fusing a peptide and a nucleic acid (oligonucleotide) using an oxime or thiazolidine formation reaction has also been reported ( Forget D, Boturyn D, Defrancq E, Lhomme J, Dumy P., Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation. Chemistry. 2001, 7 (18): 3976-84.). For the oxime formation reaction, a peptide containing an oxyamine group (-ONH 2 ), a nucleic acid containing an aldehyde group (-CHO), or a reaction product vice versa is used. The thiazolidine formation reaction is a reaction for forming a thiazolidine ring using a peptide containing a cysteine residue (-CH (NH 2 ) CH 2 SH) and a nucleic acid containing an aldehyde group (-CHO).

その他、ペプチドと核酸とをリボゾーム上でピューロマイシンを用いて結合する方法、核酸の末端に光感受性の架橋試薬をコンジュゲートする方法、ストレプトアビジンとビオチンとのアフィニティーで結合させる方法などがある。また、厳密には共有結合的な融合ではないが、ペプチド核酸(PNA)と通常の核酸とをアニーリングして非共有的ではあるが堅固な二重鎖を形成したり、タンパク質の末端に核酸を付けて二重鎖を形成させることもできる。
以下、このような中分子と膜透過促進ペプチド融合体の典型的な例として、膜透過性環状ペプチドについて説明する。
In addition, there are a method of binding a peptide and a nucleic acid on a ribosome using puromycin, a method of conjugating a photosensitive cross-linking reagent to the end of the nucleic acid, and a method of binding by affinity between streptavidin and biotin. In addition, although it is not strictly a covalent fusion, peptide nucleic acids (PNAs) and ordinary nucleic acids are annealed to form non-covalent but rigid double strands, or nucleic acids are attached to the ends of proteins. It can also be attached to form a double chain.
Hereinafter, a membrane-permeable cyclic peptide will be described as a typical example of such a fusion of a medium molecule and a membrane-permeability-promoting peptide.

[膜透過性環状ペプチド]
本明細書において、「膜透過性環状ペプチド」とは、下記式(II):
シクロ[(X)−Leu−Leu−Val−Bmt−Abu]・・・(II)
(式中、n個のXは、互いに独立して天然若しくは非天然の任意のアミノ酸又はその誘導体であり、nは5〜50の整数であり、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)
で表されるアミノ酸配列又はその相同アミノ酸残基からなる。ただし、本実施形態の膜透過性環状ペプチドは、シクロスポリンAを除く。
[Membrane-permeable cyclic peptide]
In the present specification, the “membrane-permeable cyclic peptide” refers to the following formula (II):
Cyclo [(X) n- Leu-Leu-Val-Bmt-Abu] ... (II)
(In the formula, n Xs are independent of each other, natural or non-natural amino acids or derivatives thereof, n is an integer of 5 to 50, and Bmt is (4R) -4-[(E). ) -2-Butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, and the amino group forming the peptide bond may be N-alkylated.)
It consists of an amino acid sequence represented by or a homologous amino acid residue thereof. However, the membrane-permeable cyclic peptide of the present embodiment excludes cyclosporin A.

上記式(II)で表される膜透過性環状ペプチドにおいて、(X)で表される配列が本発明における中分子に相当し、Leu−Leu−Val−Bmt−Abu(配列番号1)で表される配列が本発明における膜透過促進ペプチド配列である。したがって、式(II)で表される膜透過性環状ペプチドは、全体で8以上のアミノ酸による環状構造を含むペプチドである。環状構造を安定化する観点から9又は10以上のアミノ酸からなることが好ましい。全体としてのアミノ酸残基数の上限は、環状構造を安定化する観点から25以下が好ましく、13以下がより好ましい。したがって、11アミノ酸残基からなる環状ペプチドが最も好ましい。11アミノ酸残基からなる環状ペプチドの場合、Proを除く疎水的非極性の天然アミノ酸(Ile、Leu、Val、Ala、Gly、Phe)だけでも、約4万7千種(6の6乗)。L体及びD体の両方を含むとすると約300万種(12の6乗)の多様性を有する。そして当然のことながら、特殊アミノ酸やアミノ酸の誘導体を加えればより多種の(無限の)多様性を与えることができる。 In the membrane-permeable cyclic peptide represented by the above formula (II), the sequence represented by (X) n corresponds to the medium molecule in the present invention, and is represented by Leu-Leu-Val-Bmt-Abu (SEQ ID NO: 1). The sequence represented is the membrane permeation-promoting peptide sequence in the present invention. Therefore, the membrane-permeable cyclic peptide represented by the formula (II) is a peptide containing a cyclic structure consisting of 8 or more amino acids as a whole. From the viewpoint of stabilizing the cyclic structure, it is preferably composed of 9 or 10 or more amino acids. The upper limit of the number of amino acid residues as a whole is preferably 25 or less, more preferably 13 or less, from the viewpoint of stabilizing the cyclic structure. Therefore, a cyclic peptide consisting of 11 amino acid residues is most preferred. In the case of a cyclic peptide consisting of 11 amino acid residues, about 47,000 kinds (6 to the 6th power) of hydrophobic non-polar natural amino acids (Ile, Leu, Val, Ala, Gly, Phe) excluding Pro alone. If both L-form and D-form are included, there is a diversity of about 3 million species (12 to the 6th power). And, of course, the addition of special amino acids and derivatives of amino acids can provide a wider variety (infinite) variety.

環状構造は、2つのアミノ酸が、ジスルフィド結合、ペプチド結合、アルキル結合、アルケニル結合、エステル結合、チオエステル結合、エーテル結合、チオエーテル結合、ホスホネートエーテル結合、アゾ結合、C−S−C結合、C−N−C結合、C=N−C結合、アミド結合、ラクタム架橋、カルバモイル結合、尿素結合、チオ尿素結合、アミン結合、チオアミド結合等によって結合することで形成されるが、結合の種類はこれらに限定されない。ペプチドを環状化することにより、ペプチドの構造を安定化させ、標的への親和性を高めることができる場合がある。 The cyclic structure consists of two amino acids, a disulfide bond, a peptide bond, an alkyl bond, an alkenyl bond, an ester bond, a thioester bond, an ether bond, a thioether bond, a phosphonate ether bond, an azo bond, a CSC bond, and a CN. It is formed by binding by -C bond, C = NC bond, amide bond, lactam bridge, carbamoyl bond, urea bond, thiourea bond, amine bond, thioamide bond, etc., but the type of bond is limited to these. Not done. Cyclization of the peptide may stabilize the structure of the peptide and increase its affinity for the target.

環状化は、ペプチドのN末端とC末端のアミノ酸の結合に限られず、末端のアミノ酸と末端以外のアミノ酸の結合、又は末端以外のアミノ酸同士の結合によるものであってもよい。環状ペプチドにおいて、環形成のために結合するアミノ酸の一方が末端アミノ酸で、他方が非末端アミノ酸である場合、環状ペプチドは、環状構造に直鎖のペプチドが尾のように付いた構造となる。本明細書においては、このような構造を「投げ縄型」と呼ぶ場合がある。 The cyclization is not limited to the bond between the N-terminal and C-terminal amino acids of the peptide, and may be due to the bond between the terminal amino acid and the amino acid other than the terminal, or the bond between the amino acids other than the terminal. In a cyclic peptide, when one of the amino acids bound for ring formation is a terminal amino acid and the other is a non-terminal amino acid, the cyclic peptide has a structure in which a linear peptide is attached to a cyclic structure like a tail. In the present specification, such a structure may be referred to as a "lasso type".

本明細書において「アミノ酸又はその誘導体」は、その最も広い意味で用いられ、天然アミノ酸に加え、人工のアミノ酸変異体や誘導体を含む。アミノ酸は慣用的な一文字表記又は三文字表記で示される場合もある。本明細書においてアミノ酸又はその誘導体としては、天然タンパク質性L−アミノ酸;非天然アミノ酸;アミノ酸の特徴である当業界で公知の特性を有する化学的に合成された化合物などが挙げられる。非天然アミノ酸の例として、主鎖の構造が天然型と異なる、α,α−二置換アミノ酸(α−メチルアラニンなど)、N−アルキル−α−アミノ酸、D−アミノ酸、β−アミノ酸、α−ヒドロキシ酸や、側鎖の構造が天然型と異なるアミノ酸(ノルロイシン、ホモヒスチジンなど)、側鎖に余分のメチレンを有するアミノ酸(「ホモ」アミノ酸、ホモフェニルアラニン、ホモヒスチジンなど)、側鎖に余分のハロゲン(F、Cl、Br、I)を有するアミノ酸、側鎖に余分のアミン(N)やアミノ基、側鎖に余分のオキシン(O)やカルボキシ基を有するアミノ酸、側鎖に余分のスルホン(S)やチオ基を有するアミノ酸、及び側鎖中のカルボン酸官能基がスルホン酸基で置換されるアミノ酸(システイン酸等)が挙げられるがこれらに限定されない。 As used herein, the term "amino acid or derivative thereof" is used in its broadest sense and includes artificial amino acid variants and derivatives in addition to natural amino acids. Amino acids may also be indicated in the conventional one-letter or three-letter notation. In the present specification, examples of amino acids or derivatives thereof include natural proteinaceous L-amino acids; unnatural amino acids; chemically synthesized compounds having characteristics known in the art that are characteristic of amino acids. Examples of unnatural amino acids are α, α-disubstituted amino acids (such as α-methylalanine), N-alkyl-α-amino acids, D-amino acids, β-amino acids, and α-, which have different main chain structures from the natural type. Hydroxy acid, amino acids with different side chain structures (norleucine, homohistidine, etc.), amino acids with extra methylene in the side chain ("homo" amino acids, homophenylalanine, homohistidine, etc.), extra in the side chain Amino acids with halogens (F, Cl, Br, I), extra amines (N) and amino groups on the side chains, amino acids with extra oxins (O) and carboxy groups on the side chains, extra sulfone on the side chains ( Examples thereof include, but are not limited to, S), amino acids having a thio group, and amino acids (such as cysteine acid) in which the carboxylic acid functional group in the side chain is replaced with a sulfonic acid group.

アミノ酸には、タンパク質性アミノ酸(proteinogenic amino acids)と、非タンパク質性アミノ酸(non-proteinogenic amino acids)が含まれる。本明細書において「タンパク質性アミノ酸」は、タンパク質を構成するアミノ酸(Arg、His、Lys、Asp、Glu、Ser、Thr、Asn、Gln、Cys、Gly、Pro、Ala、Ile、Leu、Met、Phe、Trp、Tyr、及びVal)を意味する。
本明細書において「非タンパク質性アミノ酸」は、タンパク質性アミノ酸以外の天然又は非天然のアミノ酸を意味する。
Amino acids include proteinogenic amino acids and non-proteinogenic amino acids. As used herein, the term "proteinogenic amino acid" refers to the amino acids that make up a protein (Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys, Gly, Pro, Ala, Ile, Leu, Met, Phe. , Trp, Tyr, and Val).
As used herein, the term "non-proteinogenic amino acid" means a natural or non-natural amino acid other than a proteinogenic amino acid.

[ペプチドの製造方法]
本発明に係るペプチドの調製方法は特に限定されない。本発明に係るペプチドまたは環状ペプチドは、液相法、固相法、液相法と固相法を組み合わせたハイブリッド法等の化学合成法、遺伝子組み換え法、無細胞翻訳系による翻訳合成等、公知の方法又はそれに準ずる方法によって調製することができる。
[Peptide production method]
The method for preparing the peptide according to the present invention is not particularly limited. The peptide or cyclic peptide according to the present invention is known to include a liquid phase method, a solid phase method, a chemical synthesis method such as a hybrid method combining a liquid phase method and a solid phase method, a gene recombination method, and translation synthesis by a cell-free translation system. It can be prepared by the method of the above or a method similar thereto.

1.固相法による合成
本発明に係るペプチドまたは環状ペプチドは、後述するスキーム1で示す方法の他、固相合成によっても調製することができるが、これに限定されない。
固相法は、例えば、水酸基を有するレジンの水酸基と、α-アミノ基が保護基で保護された第一のアミノ酸(通常、目的とするペプチドのC末端アミノ酸)のカルボキシ基をエステル化反応させる。エステル化触媒としては、1−メシチレンスルホニル−3−ニトロ−1,2,4−トリアゾール(MSNT)、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCDI)等の公知の脱水縮合剤を用いることができる。
1. 1. Synthesis by solid phase method The peptide or cyclic peptide according to the present invention can be prepared by solid phase synthesis in addition to the method shown in Scheme 1 described later, but is not limited thereto.
In the solid phase method, for example, the hydroxyl group of a resin having a hydroxyl group is subjected to an esterification reaction with the carboxy group of the first amino acid (usually the C-terminal amino acid of the target peptide) in which the α-amino group is protected by a protecting group. .. As the esterification catalyst, known dehydration condensing agents such as 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole (MSNT), dicyclohexylcarbodiimide (DCC), and diisopropylcarbodiimide (DIPCDI) can be used.

次に、第一アミノ酸のα−アミノ基の保護基を脱離させるとともに、主鎖のカルボキシ基以外のすべての官能基が保護された第二のアミノ酸を加え、当該カルボキシ基を活性化させて、第一及び第二のアミノ酸を結合させる。さらに、第二のアミノ酸のα−アミノ基を脱保護し、主鎖のカルボキシ基以外のすべての官能基が保護された第三のアミノ酸を加え、当該カルボキシ基を活性化させて、第二及び第三のアミノ酸を結合させる。これを繰り返して、目的とする長さのペプチドが合成されたら、すべての官能基を脱保護する。 Next, the protective group of the α-amino group of the first amino acid is eliminated, and the second amino acid in which all functional groups other than the carboxy group of the main chain are protected is added to activate the carboxy group. , The first and second amino acids are bound. Furthermore, the α-amino group of the second amino acid is deprotected, and a third amino acid in which all functional groups other than the carboxy group of the main chain are protected is added to activate the carboxy group to activate the second and second amino acids. Bind the third amino acid. This is repeated to deprotect all functional groups once the peptide of the desired length has been synthesized.

α-アミノ基の保護基としては、ベンジルオキシカルボニル(Cbz又はZ)基、tert−ブトキシカルボニル(Boc)基、フルオレニルメトキシカルボニル(Fmoc)基、ベンジル基、アリル基、アリルオキシカルボニル(Alloc)基等が挙げられる。Cbz基はフッ化水素酸、水素化等によって脱保護でき、Boc基はトリフルオロ酢酸(TFA)により脱保護でき、Fmoc基はピペリジンによる処理で脱保護できる。 The protecting group for the α-amino group includes a benzyloxycarbonyl (Cbz or Z) group, a tert-butoxycarbonyl (Boc) group, a fluorenylmethoxycarbonyl (Fmoc) group, a benzyl group, an allyl group, and an allyloxycarbonyl (Allloc) group. ) Group etc. The Cbz group can be deprotected by hydrofluoric acid, hydrogenation, etc., the Boc group can be deprotected by trifluoroacetic acid (TFA), and the Fmoc group can be deprotected by treatment with piperidine.

α−カルボキシ基の保護は、メチルエステル、エチルエステル、ベンジルエステル、tert−ブチルエステル、シクロヘキシルエステル等を用いることができる。アミノ酸のその他の官能基として、セリンやトレオニンのヒドロキシ基はベンジル基やtert−ブチル基で保護することができ、チロシンのヒドロキシ基は2−ブロモベンジルオキシカルボニル希やtert−ブチル基で保護する。リジン側鎖のアミノ基、グルタミン酸やアスパラギン酸のカルボキシ基は、α−アミノ基、α−カルボキシ基と同様に保護することができる。 For protection of the α-carboxy group, methyl ester, ethyl ester, benzyl ester, tert-butyl ester, cyclohexyl ester and the like can be used. As other functional groups of amino acids, the hydroxy group of serine or threonine can be protected with a benzyl group or tert-butyl group, and the hydroxy group of tyrosine is protected with a 2-bromobenzyloxycarbonyl dilute or tert-butyl group. The amino group of the lysine side chain and the carboxy group of glutamic acid and aspartic acid can be protected in the same manner as the α-amino group and the α-carboxy group.

カルボキシ基の活性化は、縮合剤を用いて行うことができる。縮合剤としては、例えば、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCDI)、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDCあるいはWSC)、(1H−ベンゾトリアゾール−1−イルオキシ)トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート(BOP)、1−[ビス(ジメチルアミノ)メチル]−1H−ベンゾトリアゾリウム−3−オキシドヘキサフルオロホスファート(HBTU)等が挙げられる。レジンからのペプチド鎖の切断は、TFA、フッ化水素(HF)等の酸で処理することによって行うことができる。 Activation of the carboxy group can be carried out using a condensing agent. Examples of the condensing agent include dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPCDI), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC or WSC), and (1H-benzotriazole-1-yloxy) tris. Examples thereof include (dimethylamino) phosphonium hexafluorophosphate (BOP), 1- [bis (dimethylamino) methyl] -1H-benzotriazolium-3-oxide hexafluorophosphate (HBTU), and the like. Cleavage of the peptide chain from the resin can be performed by treating with an acid such as TFA or hydrogen fluoride (HF).

2.環状化方法
上述した方法により生物学的又は化学的に合成された直鎖状のペプチドは、後述するスキーム1で示す方法の他、種々の方法により環状化することができる。例えば、化学修飾又は遺伝子工学的修飾によって導入したシステイン残基を介してジスルフィド結合を生じさせる手法がある(米国特許第4033940号及び米国特許第4102877号等参照)。また別の技術では細胞内において直鎖状前駆体を生成し、次いで外因性の作用因子、例えばプロテアーゼや求核試薬を添加し、これらの直鎖状前駆体を化学的に環状化する(例えば、Julio A. Camarero and Tom W. Muir, J. Am. Chem. Soc., 1999, 121 (23), pp 5597-5598)。また別の技術では、遺伝子工学的修飾により細胞内で環状化ペプチドを生成する。例えば、スプリットインテインのトランス−スプライシング能力を利用して、そのスプリットインテインの2つの部分間に介在する前駆体ペプチドを環状化する。ここで、インテイン(タンパク質イントロンという場合もある)とは、タンパク質分子の一部分で、自動的に切除され、残った部分(エクステイン)がペプチド結合で再結合される(「タンパク質スプライシング」)ようなものをいう。
2. Cyclicization method The linear peptide biologically or chemically synthesized by the above-mentioned method can be cyclized by various methods in addition to the method shown in Scheme 1 described later. For example, there is a technique for forming a disulfide bond via a cysteine residue introduced by chemical modification or genetic engineering modification (see US Pat. No. 4033940 and US Pat. No. 4,102,877). Another technique produces intracellular linear precursors, which are then added with exogenous agents such as proteases and nucleophiles to chemically cyclize these linear precursors (eg,). , Julio A. Camarero and Tom W. Muir, J. Am. Chem. Soc., 1999, 121 (23), pp 5597-5598). In yet another technique, genetic engineering modifications are used to produce cyclized peptides in cells. For example, the trans-splicing ability of the split intein is used to cyclize the precursor peptide that intervenes between the two parts of the split intein. Here, an intein (sometimes referred to as a protein intron) is a part of a protein molecule that is automatically excised and the remaining part (extein) is recombined by a peptide bond (“protein splicing”). Say something.

また、別の方法では、非天然アミノ酸や架橋剤分子を導入することで、化学的修飾を通して環状化ペプチドを生成する。例えばオレフィンメタセシス反応を用いて(S')-α-(2'-pentenyl) alanine同士を架橋させて、分子内でペプチドを環状化させる技術が知られている(特表2008−501623号公報参照)。 Alternatively, an unnatural amino acid or cross-linking agent molecule is introduced to produce a cyclic peptide through chemical modification. For example, a technique is known in which (S') -α- (2'-pentenyl) alanines are crosslinked with each other using an olefin metathesis reaction to cyclize the peptide in the molecule (see Japanese Patent Application Laid-Open No. 2008-501623). ).

さらに、クロロアセチル基とシステインのチオール基のS2反応を利用する方法(Goto, Y., et al., Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 2008;3(2):120-9)は、天然のペプチドやタンパク質中で見られるシステイン残基間のジスルフィド結合に比べて、細胞内の還元条件で安定である。また、アジド基とアルキニル基間のフイスゲン反応を利用したクリックケミストリーは、例えば、アジドホモアラニンとプロパルギルグリシンに一価の銅イオンを作用させることで2つの官能基が反応してトリアゾール環が形成される反応であるが、この2つの官能基は、この条件下ではどのタンパク質性アミノ酸とも反応しないので、目的の位置で選択的に環状構造を作ることができる(Sako, Y., et al., Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J. Am. Chem. Soc. 2008;130(23):7232-4)。 Furthermore, a method utilizing the S N 2 reaction of a chloroacetyl group and a thiol group of cysteine (Goto, Y., et al., Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 2008; 3 (2): 120-9) is more stable under intracellular reduction conditions than the disulfide bonds between cysteine residues found in natural peptides and proteins. In click chemistry utilizing the Huisgen reaction between an azide group and an alkynyl group, for example, by allowing a monovalent copper ion to act on azidohomoalanine and propargylglycine, two functional groups react to form a triazole ring. However, since these two functional groups do not react with any proteinaceous amino acid under these conditions, a cyclic structure can be selectively formed at the desired position (Sako, Y., et al.,, Ribosomal synthesis of bicyclic peptides via two functional inter-side-chain reactions. J. Am. Chem. Soc. 2008; 130 (23): 7232-4).

[環状ペプチドライブラリ及びスクリーニング方法]
本発明は、上述した環状ペプチドのライブラリとこれを用いたスクリーニング方法も提供する。本明細書において「環状ペプチドライブラリ」とは、下記式(II):
シクロ[(X)−Leu−Leu−Val−Bmt−Abu]・・・(II)
(式中、n個のXは、互いに独立して天然若しくは非天然の任意のアミノ酸又はその誘導体であり、nは5〜50の整数であり、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)
で表される環状ペプチドにおいて、PPIとの結合部位、好ましくはPPIAとの結合部位であるアミノ酸残基:MeLeu−MeLeu−MeVal−MeBmt−Abu(配列番号3)以外の部分にランダムなアミノ酸配列を含む環状ペプチドが複数含まれるペプチドの集合体をいう。PPIとの結合部位以外のアミノ酸残基は、すべてのアミノ酸がランダムな配列であってもよいし、一部の配列をランダムな配列としてもよいが、環状ペプチドライブラリは、少なくとも4万種、好ましくは200万種以上の環状ペプチドを含むことが好ましい。
[Cyclic peptide library and screening method]
The present invention also provides the above-mentioned library of cyclic peptides and a screening method using the same. As used herein, the term "cyclic peptide library" refers to the following formula (II):
Cyclo [(X) n- Leu-Leu-Val-Bmt-Abu] ... (II)
(In the formula, n Xs are independent of each other, natural or non-natural amino acids or derivatives thereof, n is an integer of 5 to 50, and Bmt is (4R) -4-[(E). ) -2-Butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, and the amino group forming the peptide bond may be N-alkylated.)
In the cyclic peptide represented by, an amino acid residue which is a binding site with PPI, preferably a binding site with PPIA: A random amino acid sequence is provided in a portion other than MeLeu-MeLeu-MeVal-MeBmt-Abu (SEQ ID NO: 3). An aggregate of peptides containing a plurality of cyclic peptides. As for the amino acid residues other than the binding site with PPI, all amino acids may have a random sequence, or some sequences may have a random sequence, but at least 40,000 kinds of cyclic peptide libraries are preferable. Preferably contains 2 million or more cyclic peptides.

実施例3に記載したペプチドライブラリの作成方法以外の方法として、例えば、ペプチド固相合成法を基盤としたスプリット・ミックス法と呼ばれる方法もある。この方法では、別々のアミノ酸(例えば20種類)が固定化された樹脂ビーズを用意し、ひとまとめに混合する。その後、その樹脂ビーズを等分(例えば20等分)し、それぞれに異なる20種類のアミノ酸をカップリングさせる。個別に反応させた樹脂ビーズを再びひとまとめに混合した後、再び等分し、それぞれ異なるアミノ酸をカップリングさせるという操作を何度も繰り返すことで、最終的に各樹脂ビーズに異なるペプチド配列が固定化されたペプチドライブラリができあがる。 As a method other than the method for preparing the peptide library described in Example 3, for example, there is also a method called a split mix method based on the peptide solid phase synthesis method. In this method, resin beads on which different amino acids (for example, 20 types) are immobilized are prepared and mixed together. Then, the resin beads are equally divided (for example, 20 equal parts), and 20 different kinds of amino acids are coupled to each. By repeating the operation of mixing the individually reacted resin beads together again, dividing them into equal parts, and coupling different amino acids, the different peptide sequences are finally immobilized on each resin bead. The completed peptide library is completed.

一方、リボソームによるポリペプチド合成系である翻訳系を利用することで、mRNAの配列を変えるだけで異なる配列のペプチドを合成することができる。ランダム配列を持つmRNAの調製はたやすいため、翻訳系を利用することで、簡便に多様性の高いペプチドライブラリを構成することも可能である。 On the other hand, by using a translation system, which is a polypeptide synthesis system using ribosomes, peptides having different sequences can be synthesized simply by changing the mRNA sequence. Since it is easy to prepare mRNA having a random sequence, it is possible to easily construct a highly diverse peptide library by using a translation system.

環状ペプチドライブラリを用いたスクリーニング方法は、環状ペプチドライブラリと標的分子を接触させてインキュベートする工程を含む。本明細書において、標的分子は特に限定されず、低分子化合物、高分子化合物、核酸、ペプチド、タンパク質、糖、脂質等とすることができるが、典型的にはタンパク質である。特に、本発明に係る環状ペプチドは、生体内での安定性が高く、細胞膜透過性に優れるため、細胞内のタンパク質を標的とすることが好ましい。本発明に係る環状ペプチドは、プロテアーゼ耐性にも優れるので、プロテアーゼ活性を有する標的分子に対するスクリーニングも行うことができる。 The screening method using the cyclic peptide library includes a step of contacting and incubating the cyclic peptide library with the target molecule. In the present specification, the target molecule is not particularly limited and may be a small molecule compound, a high molecular compound, a nucleic acid, a peptide, a protein, a sugar, a lipid or the like, but is typically a protein. In particular, the cyclic peptide according to the present invention is highly stable in vivo and has excellent cell membrane permeability, and therefore it is preferable to target intracellular proteins. Since the cyclic peptide according to the present invention is also excellent in protease resistance, screening for a target molecule having protease activity can also be performed.

標的分子は、例えば固相担体に固定して、環状ペプチドライブラリと接触させることができる。本明細書において、「固相担体」は、標的分子を固定できる担体であれば、特に限定されず、ガラス製、金属製、樹脂製等のマイクロタイタープレート、基板、ビーズ、ニトロセルロースメンブレン、ナイロンメンブレン、PVDFメンブレン等が挙げられる。標的分子は、これらの固相担体に公知の方法で固定することができる。
標的分子とライブラリは、適宜選択された緩衝液中で接触させ、pH、温度、時間等を調節して相互作用させる。
The target molecule can be immobilized on a solid phase carrier, for example, and contacted with a cyclic peptide library. In the present specification, the "solid phase carrier" is not particularly limited as long as it is a carrier capable of immobilizing a target molecule, and is made of glass, metal, resin or the like microtiter plate, substrate, beads, nitrocellulose membrane, nylon. Membranes, PVDF membranes and the like can be mentioned. The target molecule can be immobilized on these solid phase carriers by a known method.
The target molecule and the library are brought into contact with each other in an appropriately selected buffer solution, and the pH, temperature, time, etc. are adjusted to interact with each other.

本発明に係るスクリーニング方法は、次に、標的分子に結合した環状ペプチドを選択する工程を含む。標的分子への結合は、例えば、ペプチドを公知の方法で検出可能に標識し、上記インキュベーションの後、緩衝液で固相担体表面を洗浄し、標的分子に結合している化合物を質量分析法やNMR法を用いて、同定することによって行うことができる。検出可能な標識としては、ペルオキシダーゼ、アルカリホスファターゼ等の酵素、125I、131I、35S、H等の放射性同位体、フルオレセインイソチオシアネート、ローダミン、ダンシルクロリド、フィコエリトリン、テトラメチルローダミンイソチオシアネート、近赤外蛍光材料等の蛍光物質、ルシフェラーゼ、ルシフェリン、エクオリン等の発光物質、金コロイド、量子ドットなどのナノ粒子が挙げられる。酵素の場合は酵素の基質を加えて発色させ検出させてもよい。ペプチドにビオチンを結合させ、酵素等で標識したアビジン又はストレプトアビジンを結合させて検出することもできる。 The screening method according to the present invention then comprises the step of selecting a cyclic peptide bound to the target molecule. For binding to the target molecule, for example, the peptide is detectableally labeled by a known method, and after the above incubation, the surface of the solid phase carrier is washed with a buffer solution, and the compound bound to the target molecule is subjected to mass spectrometry or mass spectrometry. It can be done by identification using the NMR method. Detectable labels include peroxidase, an enzyme such as alkaline phosphatase, 125 I, 131 I, 35 S, 3 radioactive isotopes such H, fluorescein isothiocyanate, rhodamine, dansyl chloride, phycoerythrin, tetramethylrhodamine isothiocyanate, near Examples thereof include fluorescent substances such as infrared fluorescent materials, luminescent substances such as luciferase, luciferin and equolin, and nanoparticles such as gold colloids and quantum dots. In the case of an enzyme, a substrate of the enzyme may be added to develop color and detect it. It is also possible to bind biotin to a peptide and bind avidin or streptavidin labeled with an enzyme or the like for detection.

上記工程では、単に結合の有無又は程度を検出・測定するのみでなく、標的分子の活性の亢進又は阻害を測定し、かかる亢進活性又は阻害活性を有する環状ペプチドを、質量分析法やNMR法を用いて、同定することも可能である。このような方法により、生理活性を有し、医薬として有用な環状ペプチドを得ることができる。 In the above step, not only the presence or absence or degree of binding is detected and measured, but also the enhancement or inhibition of the activity of the target molecule is measured, and the cyclic peptide having such enhancing activity or inhibitory activity is subjected to mass spectrometry or NMR method. It can also be used for identification. By such a method, a cyclic peptide having physiological activity and useful as a medicine can be obtained.

本発明に係る環状ペプチドライブラリをスクリーニングして得られた標的分子に結合する環状ペプチドは、その後さらに公知の方法又はそれに準ずる方法で修飾を加え、最適化してもよい。 The cyclic peptide that binds to the target molecule obtained by screening the cyclic peptide library according to the present invention may be further modified and optimized by a known method or a method similar thereto.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[実施例1]PPIAとミセル混合CsAとの相互作用解析
シクロスポリンA(CsA;図1及び配列番号2参照)は、その構造から高い疎水性を示すため、容易に膜に移行すると考えられる。しかしながら、水溶液に対する溶解性は非常に低く、本来、膜から自ら抜け出し、細胞内の標的(Cn)に結合することは難しい。そこで本発明者らは、細胞内に豊富に存在するPPIが膜からCsAを引き抜くことで、CsAが細胞膜にトラップされることを防ぎ、効率的なCsAの細胞内移行が実現していると考えた。そこで、これを検証するため、まずDPC(ドデシルホスホコリン)ミセルにCsAを取り込ませたサンプルを用意し(図5A上左)、15Nで安定同位体標識したPPIA(図5A上右)に対して添加した際に、CsAがPPIAに結合するか否かを解析した(図5A下)。
[Example 1] Interaction analysis between PPIA and micelle-mixed CsA Cyclosporin A (CsA; see FIG. 1 and SEQ ID NO: 2) exhibits high hydrophobicity due to its structure, and is therefore considered to easily transfer to a membrane. However, its solubility in an aqueous solution is very low, and it is originally difficult to escape from the membrane by itself and bind to the intracellular target (Cn). Therefore, the present inventors consider that the intracellularly abundant PPI extracts CsA from the membrane, thereby preventing CsA from being trapped in the cell membrane and realizing efficient intracellular translocation of CsA. rice field. Therefore, in order to verify this, first, a sample in which CsA was incorporated into a DPC (dodecylphosphocholine) micelle was prepared (Fig. 5A, upper left), and the stable isotope-labeled PPIA with 15 N (Fig. 5A, upper right) was used. It was analyzed whether or not CsA binds to PPIA when added (Fig. 5A, bottom).

図5Bは、15Nで安定同位体標識したPPIA(200μM)に対して200μMのCsAを内包した20mMDPCを添加した前後での15N HSQCスペクトルの測定結果を示す(添加前:黒、添加後:灰色)。15N HSQCスペクトルにおいてはそれぞれのシグナルが1つのアミノ酸残基に対応し、結合など周辺の化学環境の変化により化学シフトが変化するとスペクトル中でのシグナルの位置が変化する。よって、今回の場合、CsAを内包したDPCの有無によりシグナルの位置が変化したPPIAの残基をCsA結合サイトとして同定できる。なおこの時、標識を施した分子のみがシグナルを与えるため、今回においては、15Nで安定同位体標識したPPIAのシグナルのみが観測されている。図6(A)は、DPCミセル中に内包した状態で添加したCsAとPPIAの結合による各残基の化学シフト変化(0.8ppm以上大きく変化したものは一律0.8ppmでプロットしてある)を示し、図6(B)は、PPIA/CsA複合体(ミセル非存在下)構造上へのマッピングを示す。さらに、図7は、15Nで安定同位体標識したPPIA(200μM)に対してCsAを含まない20mMのDPCを添加した前後での15N HSQCスペクトル(添加前:黒、添加後:灰色)を示す。 Figure 5B, 15 N stable isotope labeled PPIA (200 [mu] M) shows a 1 H 15 N HSQC measurement results of the spectrum before and after the addition of 20mMDPC containing therein the CsA of 200 [mu] M with respect to (before addition: black, added After: Gray). In the 1 H 15 N HSQC spectrum, each signal corresponds to one amino acid residue, and the position of the signal in the spectrum changes when the chemical shift changes due to a change in the surrounding chemical environment such as binding. Therefore, in this case, the residue of PPIA whose signal position has changed depending on the presence or absence of DPC containing CsA can be identified as a CsA binding site. At this time, only the labeled molecule gives a signal, so this time, only the signal of PPIA labeled with a stable isotope at 15 N was observed. FIG. 6 (A) shows a chemical shift change of each residue due to the binding of CsA and PPIA added in a state of being encapsulated in a DPC micelle (those with a large change of 0.8 ppm or more are uniformly plotted at 0.8 ppm). 6 (B) shows the mapping onto the PPIA / CsA complex (in the absence of micelles) structure. Furthermore, FIG. 7 shows 1 H 15 N HSQC spectra before and after the addition of 20 mM DPC containing no CsA to 15 N stable isotope-labeled PPIA (200 μM) (before addition: black, after addition: gray). ) Is shown.

図5によれば、DPC存在下にCsAと結合したPPIAのシグナルが検出されたことから、PPIAはDPCミセルからCsAを引き抜き、結合できることが明らかとなった。また結合にともなう化学シフト変化は、ミセル非存在下で決定されたPPIA/CsA複合体構造上と矛盾しなかったことから、CsAのPPIAに対する結合様式はDPCミセルの有無にかかわらず、同様であることが示された(図6(A))。さらに、15Nで安定同位体標識したPPIA(200μM)に対してCsAを含まない20mMのDPCを添加した前後での15N HSQCスペクトルを比較したところ、DPCのみで化学シフト変化した残基の多くが、CsAの結合にも関わる残基であった(図7、点線で囲ったシグナル)。よって、PPIAはあらかじめCsA結合面を膜に向けることで(図4中央、図7左)、膜中からCsAのような膜透過性の中分子を効率よく引き抜くことが強く示唆された(図4中央から右)。 According to FIG. 5, since the signal of PPIA bound to CsA was detected in the presence of DPC, it was clarified that PPIA can extract and bind CsA from the DPC micelle. Moreover, since the chemical shift change associated with the binding was consistent with the PPIA / CsA complex structure determined in the absence of micelles, the binding mode of CsA to PPIA is the same regardless of the presence or absence of DPC micelles. It was shown (Fig. 6 (A)). Furthermore, when comparing the 1 H 15 N HSQC spectra before and after the addition of 20mM of DPC without the CsA against stable isotope-labeled PPIA (200 [mu] M), and chemical shift changes only DPC residue with 15 N Most of the residues were also involved in the binding of CsA (Fig. 7, signal surrounded by a dotted line). Therefore, it was strongly suggested that PPIA efficiently extracts membrane-permeable medium molecules such as CsA from the membrane by directing the CsA binding surface toward the membrane (center of FIG. 4, left of FIG. 7). From the center to the right).

[実施例2]CsA含有脂質二重膜(リポソーム)の調製とNMR測定
DPCミセルを用いた実験の場合、CsA(1.2kDa)、DPC(0.35kDa)の分子量を考えると、DPCミセル中のCsA:DMPCの重量比が3:97となり3%をCsAが占めている計算になることから、PPIによる引き抜きが起こりやすい環境と考えられる。そこで、生体膜と同じ脂質二重膜(リポソーム)でのPPIAによるCsAの引き抜きの検討を行った。クロロホルムに溶解した60mgのDMPC(ジミリストイルホスファチジルコリン)を窒素気流下で乾燥したのち、2時間真空下に置き、完全に乾した脂質膜フィルムを作成し、これに1.0mLのNMRバッファーを添加、ボルテックスを行うことでリポソームを作成した。作成したリポソームはさらに超音波処理を行うことで均一化した。このリポソーム溶液のDMPCの終濃度は89mMである。ここにCsAを終濃度200μMとなるように添加しボルテックスを行うことで、脂質二重膜にCsAを取り込ませた。最終的なCsA:DMPCのモル比は1:445、CsA:DMPCの重量比が0.4:99.6であり、より生体膜に近い環境となるとともに、CsAは薄く、PPIAが引き抜きにくい状況になる。まず15Nで安定同位体標識したPPIA(200μM)に対してCsAを含まないDMPCリポソームを添加し、前後で15N HSQCスペクトルを比較したところ、一部の残基に化学シフト変化が見られた(図8)。化学シフト変化した残基は、CsAの結合にも関わる残基でありPPIAはあらかじめCsA結合面を膜に向けることで(図4中央)、膜中からCsAのような膜透過性の中分子を効率よく引き抜くことがさらに支持された。次に、13C安定同位体標識したPPIAに対してCsA含有リポソームを添加し、PPIAのシグナル変化を観察したところ、DMPCリポソームからCsAがPPIAに時間依存的に引き抜かれる様子が観測された(図9及び10)。よって、PPIは標的に対して中分子を提示する活性を担う細胞内提示タンパク質であるのみならず、膜中の中分子を効率的に引き抜くことで、膜透過性を向上させていると考えられる。
[Example 2] Preparation of CsA-containing lipid bilayer membrane (liposome) and NMR measurement In the case of an experiment using DPC micelles, considering the molecular weights of CsA (1.2 kDa) and DPC (0.35 kDa), the inside of the DPC micelle Since the weight ratio of CsA: DMPC is 3:97 and CsA accounts for 3%, it is considered that the environment is likely to be pulled out by PPI. Therefore, we examined the extraction of CsA by PPIA on the same lipid bilayer membrane (liposome) as the biological membrane. 60 mg of DMPC (dipalmitoylphosphatidylcholine) dissolved in chloroform was dried under a nitrogen stream and then placed under vacuum for 2 hours to prepare a completely dried lipid film film, to which 1.0 mL of NMR buffer was added. Liposomes were prepared by vortexing. The prepared liposomes were further homogenized by ultrasonic treatment. The final concentration of DMPC in this liposome solution is 89 mM. CsA was incorporated into the lipid bilayer membrane by adding CsA to a final concentration of 200 μM and performing vortexing. The final CsA: DMPC molar ratio is 1: 445 and the CsA: DMPC weight ratio is 0.4: 99.6, which creates an environment closer to that of a biological membrane, and the CsA is thin, making it difficult to pull out PPIA. become. First, DMPC liposomes containing no CsA were added to PPIA (200 μM) stably isotope-labeled with 15 N, and the 1 H 15 N HSQC spectra were compared before and after, and chemical shift changes were observed in some residues. (Fig. 8). Residues that have undergone a chemical shift change are residues that are also involved in CsA binding, and PPIA can release a membrane-permeable medium molecule such as CsA from the membrane by directing the CsA binding surface toward the membrane in advance (center of FIG. 4). Efficient pulling was further supported. Next, when CsA-containing liposomes were added to 13 C stable isotope-labeled PPIA and the signal change of PPIA was observed, it was observed that CsA was withdrawn from DMPC liposomes in a time-dependent manner (Fig.). 9 and 10). Therefore, it is considered that PPI is not only an intracellular presentation protein responsible for presenting medium molecules to a target, but also improves membrane permeability by efficiently extracting medium molecules in the membrane. ..

[実施例3]ペプチドライブラリの作成
CsAは11残基の環状ペプチドであるがPPIAに結合するモチーフはMeLeu−MeLeu−MeVal−MeBmt−Abuの5残基である(図1及び配列番号3)。よってこのペプチド配列を保持したまま、CsAのその他の部位の配列をランダムに改変した、11残基の環状ペプチド群を創生し、ライブラリ化することとした。
[Example 3] Preparation of peptide library CsA is a cyclic peptide of 11 residues, but the motif that binds to PPIA is 5 residues of MeLeu-MeLeu-MeVal-MeBmt-Abu (Fig. 1 and SEQ ID NO: 3). Therefore, while retaining this peptide sequence, a group of 11-residue cyclic peptides in which the sequences of other sites of CsA were randomly modified was created and made into a library.

ライブラリの作製は、CsAの全合成法を論じた非特許文献1(Wu et al, Total Synthesis of Cyclospholine: Access to N-methylated Peptide via Isonitrile Coupling Reactions, JACS, 2010, 132, 4098-)の合成スキームを一部改変して行った。本文献によれば、CsAは大きく3つのブロックに分けて全合成することが可能である(スキーム1)。下記のスキーム1ではそれぞれのブロックにおいて、側鎖構造を改変しうる部位を黒で、PPIAとの結合活性に必要であり変えることのできない部位を灰色で示した。ブロックAは不変であり。ブロックBは1アミノ酸、ブロックCは最大5アミノ酸に相当する部位の側鎖を改変しうる。 The library was prepared by a synthesis scheme of Non-Patent Document 1 (Wu et al, Total Synthesis of Cyclospholine: Access to N-methylated Peptide via Isonitrile Coupling Reactions, JACS, 2010, 132, 4098-), which discusses the total synthesis method of CsA. Was partially modified. According to this document, CsA can be roughly divided into three blocks and totally synthesized (Scheme 1). In Scheme 1 below, in each block, the site where the side chain structure can be modified is shown in black, and the site which is necessary for the binding activity with PPIA and cannot be changed is shown in gray. Block A is immutable. Block B can modify the side chain of a site corresponding to 1 amino acid and block C can modify the side chain corresponding to a maximum of 5 amino acids.

[スキーム1]CsAの全合成スキーム

Figure 2021107327
[Scheme 1] Total synthesis scheme of CsA
Figure 2021107327

ブロックAはEvansらの方法(Evans DA, Weber AE. J Am Chem Soc. 1986;108:6757-6761.)を一部改変したAebiらの方法により得られることが分かっている既知化合物である(Aebi JD, Dhaon MK, Rich DH. J Org Chem. 1987;52:2881-2886)。 Block A is a known compound known to be obtained by the method of Aebi et al., Which is a partial modification of the method of Evans et al. (Evans DA, Weber AE. J Am Chem Soc. 1986; 108: 6757-6761.). Aebi JD, Dhaon MK, Rich DH. J Org Chem. 1987; 52: 2881-2886).

ブロックBは、非特許文献1により以下のようなスキームで全合成したが、その際、B3の側鎖(R)を副反応が起きない範囲内で自由に改変することが可能である。このことから、Rを反応性の低いGly、Ala、Val、Leu、Ile、Pheの側鎖に限定しても、D体L体を併せて6×2=12種のバリエーションを持たせることが可能である。 Block B was totally synthesized according to Non-Patent Document 1 by the following scheme, and at that time, the side chain (R 1 ) of B3 can be freely modified within a range where a side reaction does not occur. From this, even if R 1 is limited to the side chains of Gly, Ala, Val, Leu, Ile, and Ph, which have low reactivity, the D-form and L-form can have 6 × 2 = 12 variations in total. Is possible.

[ブロックBの合成スキーム]

Figure 2021107327
[Synthesis scheme of block B]
Figure 2021107327

ブロックCは、非特許文献1により以下のようなスキームで全合成したが、その際、C1、C2、C3、C4、C6の側鎖(それぞれR、R、R、R、R)を副反応が起きない範囲内で自由に改変することが可能である。このことから、反応性の低いGly、Ala、Val、Leu、Ile、Pheの側鎖に限定しても、D体L体を併せて(6×2)=12種のバリエーションを持たせることが可能である。よってRと併せてここで示す合成スキームにより最大12=2985984種類のライブラリを作成することが可能である。 Block C is totally synthesized in Schemes described below by non-patent document 1, this time, C1, C2, C3, C4, C6 side-chain (respectively R 2, R 3 of, R 4, R 5, R 6 ) can be freely modified within the range where side reactions do not occur. From this, even if it is limited to the side chains of Gly, Ala, Val, Leu, Ile, and Ph, which have low reactivity, the D-form and L-form are combined to have (6 × 2) 5 = 12 5 kinds of variations. It is possible. Thus the synthetic scheme shown here in conjunction with R 1 it is possible to create up to 12 6 = 2,985,984 different libraries.

[ブロックCの合成スキーム]

Figure 2021107327
[Synthesis scheme of block C]
Figure 2021107327

本発明の方法により膜透過性の高められたペプチド、特に、本発明の環状ペプチドライブラリからスクリーニングにより得られる環状ペプチドは、細胞内の所望の標的分子に結合しうる中分子医薬品として開発が期待され、製薬産業において有用である。 The peptide whose membrane permeability has been enhanced by the method of the present invention, particularly the cyclic peptide obtained by screening from the cyclic peptide library of the present invention, is expected to be developed as a medium-molecular-weight drug capable of binding to a desired target molecule in cells. , Useful in the pharmaceutical industry.

Claims (13)

中分子の膜透過方法であって、
前記中分子は500〜5000の分子量を有し、
該方法は、前記中分子に、目的細胞内に存在し、脂質二重膜から前記中分子を引き抜く活性を持つタンパク質と結合するペプチド配列を融合させて膜透過性融合体を得る工程と、前記膜透過性融合体と細胞とを接触させる工程と、を含むことを特徴とする、方法。
It is a method of permeating medium molecules into the membrane.
The medium molecule has a molecular weight of 500 to 5000 and has a molecular weight of 500 to 5000.
The method comprises a step of fusing the medium molecule with a peptide sequence that binds to a protein existing in the target cell and having an activity of extracting the medium molecule from the lipid bilayer membrane to obtain a membrane-permeable fusion. A method comprising contacting a membrane permeable fusion with a cell.
前記ペプチド配列が、天然若しくは非天然の、側鎖に電荷をもたないアミノ酸又はその誘導体を含む5残基以上のペプチドからなる請求項1に記載の方法。 The method according to claim 1, wherein the peptide sequence comprises a peptide having 5 or more residues, which comprises a natural or non-natural amino acid having no charge on the side chain or a derivative thereof. 前記中分子が、ペプチド、マクロライド化合物、核酸又はそれらの誘導体を含む請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the medium molecule contains a peptide, a macrolide compound, a nucleic acid or a derivative thereof. 前記目的細胞が、原核細胞、動物細胞又は植物細胞であり、これらの細胞内に前記中分子を導入するための、請求項1〜3何れか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the target cell is a prokaryotic cell, an animal cell or a plant cell, and the medium molecule is introduced into these cells. 前記目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を持つタンパク質が、ペプチジルプロリルイソメラーゼ活性を有するタンパク質である請求項1〜4何れか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the protein present in the target cell and having an activity of extracting a medium molecule from a lipid bilayer membrane is a protein having a peptidyl prolyl isomerase activity. ペプチジルプロリルイソメラーゼ活性を有するタンパク質が、ペプチジルプロリルイソメラーゼA(シクロフィリンA)である請求項5に記載の方法。 The method according to claim 5, wherein the protein having peptidyl prolyl isomerase activity is peptidyl prolyl isomerase A (cyclophilin A). 前記ペプチド配列が、下記式(I)で示されるアミノ酸配列:
Leu−Leu−Val−Bmt−Abu・・・(I)
(式中、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)又はその相同アミノ酸残基を含む請求項1〜6何れか一項に記載の方法。
The peptide sequence is the amino acid sequence represented by the following formula (I):
Leu-Leu-Val-Bmt-Abu ... (I)
(In the formula, Bmt indicates (4R) -4-[(E) -2-butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, forming a peptide bond. The method according to any one of claims 1 to 6, wherein the amino group may be N-alkylated) or a homologous amino acid residue thereof.
分子量500〜5000の中分子を用意し、前記中分子に、目的細胞内に存在し、脂質二重膜から中分子を引き抜く活性を持つタンパク質と結合するペプチド配列を融合させることを特徴とする、膜透過性融合体の製造方法。 A medium molecule having a molecular weight of 500 to 5000 is prepared, and the medium molecule is fused with a peptide sequence that binds to a protein existing in the target cell and having an activity of extracting the medium molecule from the lipid bilayer membrane. A method for producing a membrane-permeable fusion. 前記目的細胞内に存在し脂質二重膜から中分子を引き抜く活性を持つタンパク質が、ペプチジルプロリルイソメラーゼ活性を有するタンパク質である請求項8に記載の方法。 The method according to claim 8, wherein the protein present in the target cell and having an activity of extracting a medium molecule from the lipid bilayer membrane is a protein having a peptidyl prolyl isomerase activity. ペプチジルプロリルイソメラーゼ活性を有するタンパク質が、ペプチジルプロリルイソメラーゼA(シクロフィリンA)である請求項9に記載の方法。 The method according to claim 9, wherein the protein having peptidyl prolyl isomerase activity is peptidyl prolyl isomerase A (cyclophilin A). 下記式(II):
シクロ[(X)−Leu−Leu−Val−Bmt−Abu]・・・(II)
(式中、n個のXは、互いに独立して天然若しくは非天然の任意のアミノ酸又はその誘導体であり、nは5〜50の整数であり、Bmtは、(4R)−4−[(E)−2−ブテニル]−4−メチル−L−スレオニンを示し;Abuは、L−2−アミノ酪酸を示し、ペプチド結合を形成するアミノ基はN−アルキル化されていてもよい。)
で表されるアミノ酸配列からなる膜透過性環状ペプチド(ただし、シクロスポリンAを除く)。
The following formula (II):
Cyclo [(X) n- Leu-Leu-Val-Bmt-Abu] ... (II)
(In the formula, n Xs are independent of each other, natural or non-natural amino acids or derivatives thereof, n is an integer of 5 to 50, and Bmt is (4R) -4-[(E). ) -2-Butenyl] -4-methyl-L-threonine; Abu indicates L-2-aminobutyric acid, and the amino group forming the peptide bond may be N-alkylated.)
A membrane-permeable cyclic peptide consisting of the amino acid sequence represented by (excluding cyclosporin A).
請求項11に記載の膜透過性環状ペプチドを200万種類以上含む、環状ペプチドライブラリ。 A cyclic peptide library containing more than 2 million types of membrane-permeable cyclic peptides according to claim 11. 請求項11に記載の(X)で表わされるn個のXにランダムなアミノ酸を導入した環状ペプチドライブラリを構築する工程と、
前記環状ペプチドライブラリと標的分子とを接触させる工程と、
前記標的分子に結合した膜透過性環状ペプチドを選択する工程と、
を含む、標的分子に対する結合能を有する膜透過性環状ペプチドのスクリーニング方法。


The step of constructing a cyclic peptide library in which a random amino acid is introduced into n Xs represented by (X) n according to claim 11.
The step of contacting the cyclic peptide library with the target molecule,
A step of selecting a membrane-permeable cyclic peptide bound to the target molecule, and
A method for screening a membrane-permeable cyclic peptide having the ability to bind to a target molecule.


JP2018075062A 2018-04-09 2018-04-09 Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics Pending JP2021107327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018075062A JP2021107327A (en) 2018-04-09 2018-04-09 Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics
PCT/JP2019/003815 WO2019198316A1 (en) 2018-04-09 2019-02-04 Method for improving pharmacokinetics of middle molecule having biological activity and method for producing middle molecule library using improved pharmacokinetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018075062A JP2021107327A (en) 2018-04-09 2018-04-09 Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics

Publications (1)

Publication Number Publication Date
JP2021107327A true JP2021107327A (en) 2021-07-29

Family

ID=68164058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018075062A Pending JP2021107327A (en) 2018-04-09 2018-04-09 Method for improving pharmacokinetics of medium molecules with bioactivity, and method for manufacturing medium molecule library using improvement of pharmacokinetics

Country Status (2)

Country Link
JP (1) JP2021107327A (en)
WO (1) WO2019198316A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669951B2 (en) * 1999-08-24 2003-12-30 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
EP2705856A1 (en) * 2012-09-07 2014-03-12 Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. Compounds for the treatment of neurodegenerative disorders

Also Published As

Publication number Publication date
WO2019198316A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US20240166689A1 (en) Peptide-compound cyclization method
JP6754997B2 (en) A large cyclic peptide, a method for producing the same, and a screening method using a large cyclic peptide library.
EP3636807A1 (en) Cyclic peptide compound having high membrane permeability, and library containing same
EP3059244B1 (en) C-met protein agonist
ES2700999T3 (en) Modification of polypeptides
KR20200057046A (en) Transglutaminase Conjugation Method and Linker
Smith et al. Emerging strategies to access peptide macrocycles from genetically encoded polypeptides
Goldflam et al. Recent advances toward the discovery of drug-like peptides de novo
Imanishi et al. In vitro selection of macrocyclic D/L-hybrid peptides against human EGFR
US11946042B2 (en) Modification of D- and T-arms of tRNA enhancing D-amino acid and β-amino acid uptake
US11975040B2 (en) Plexin binding regulator
He et al. Biocompatible strategies for peptide macrocyclisation
WO2019198316A1 (en) Method for improving pharmacokinetics of middle molecule having biological activity and method for producing middle molecule library using improved pharmacokinetics
US20220135650A1 (en) Engineered cd47 extracellular domain for bioconjugation
WO2021100833A1 (en) Modification of trna t-stem for enhancing n-methyl amino acid incorporation
US9815867B2 (en) Peptide for inhibiting vascular endothelial growth factor receptor
Ruvo et al. Branched peptides for the modulation of protein-protein interactions: more arms are better than one?
Rogers et al. Molecular technologies for pseudo‐natural peptide synthesis and discovery of bioactive compounds against undruggable targets
Helmling et al. mRNA Display and Its Growing Potential in the Discovery of De Novo Therapeutic Peptide Candidates
Moore LECTURE ABSTRACTS
Liu Development of cyclic peptidyl ligands through a combinatorial library approach
Smyrniotou et al. 2-Oxoamides based on dipeptides and pseudodipeptides as inhibitors of Ca2+-independent phospholipase A2
JP2021106565A (en) LIBRARY PRODUCTION METHOD, CYCLIC PEPTIDE, FXIIa BINDER AND IFNGR1 BINDER
SUGA PLATFORM TECHNOLOGIES FOR THE ARTIFICIAL PSEUDO-NATURAL PRODUCT DISCOVERY