JP2021104581A - Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles - Google Patents

Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles Download PDF

Info

Publication number
JP2021104581A
JP2021104581A JP2019235622A JP2019235622A JP2021104581A JP 2021104581 A JP2021104581 A JP 2021104581A JP 2019235622 A JP2019235622 A JP 2019235622A JP 2019235622 A JP2019235622 A JP 2019235622A JP 2021104581 A JP2021104581 A JP 2021104581A
Authority
JP
Japan
Prior art keywords
resin particles
temperature
temperature sensor
resin
resin particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019235622A
Other languages
Japanese (ja)
Inventor
達紀 三村
Tatsunori Mimura
達紀 三村
和弥 丸田
Kazuya Maruta
和弥 丸田
欣紀 堀場
Yoshinori Horiba
欣紀 堀場
ヘンリ・チャルレス
Charles Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Aspect Inc
Original Assignee
Ricoh Co Ltd
Aspect Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Aspect Inc filed Critical Ricoh Co Ltd
Priority to JP2019235622A priority Critical patent/JP2021104581A/en
Publication of JP2021104581A publication Critical patent/JP2021104581A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing device of a three-dimensional shaped product that can accurately detect excess resin particles.SOLUTION: A manufacturing device of a three-dimensional shaped product includes layer formation means 110 and energy applying means. The layer formation means includes: a resin particle transfer part 111; a first temperature sensor 112 disposed in the vicinity of the resin particle transfer part and at a position where it is contactable with a resin particle when the amount of resin particles P to be transferred to a shaping area exceeds a predetermined amount, so as to measure a temperature of the resin particle when contacting with the resin particle; a second temperature sensor 113 disposed in the vicinity of the first temperature sensor and at a position where it is not contactable with the resin particle, so as to measure an atmospheric temperature in the shaping area; means for storing an individual difference between a temperature measured by the first temperature sensor and a temperature measured by the second temperature sensor; and a circuit for accurately detecting the generation of excess resin particles, by means of a circuit for detecting the generation of a predetermined temperature difference as a result of adding the individual difference to the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor.SELECTED DRAWING: Figure 2A

Description

本発明は、立体造形物の製造装置、及び余剰樹脂粒子検知装置に関する。 The present invention relates to an apparatus for manufacturing a three-dimensional object and an apparatus for detecting surplus resin particles.

樹脂粒子どうしを選択的に融着させることにより、試作品又は最終製品などの立体造形物を製造する方法が知られている。 A method of producing a three-dimensional model such as a prototype or a final product by selectively fusing resin particles to each other is known.

例えば、粉末床溶融(PBF: Powder Bed Fusion)方式では、樹脂粒子の薄層にレーザーを照射することで、樹脂粒子どうしを選択的に融着させて得られた造形層を積層させて立体造形物を製造する。PBF方式には、樹脂粒子に対し選択的にレーザーを照射して造形するSLS(Selective Laser Sintering)方式、及び樹脂粒子を部分的にマスクして平面状にレーザーを照射するSMS(Selective Mask Sintering)方式などが含まれる。また、PBF方式の応用として、樹脂粒子に熱吸収材を含む液体を滴下し、赤外光で加熱することにより選択的に樹脂粒子どうしを融着させるMJF(Multi Jet Fusion)方式なども知られている。 For example, in the powder bed fusion (PBF) method, a thin layer of resin particles is irradiated with a laser to selectively fuse the resin particles to each other, and the resulting molding layers are laminated to form a three-dimensional shape. Manufacture things. The PBF method includes an SLS (Selective Laser Sintering) method in which resin particles are selectively irradiated with a laser to form a model, and an SMS (Selective Mask Sintering) method in which the resin particles are partially masked and the laser is irradiated in a plane. The method etc. are included. Further, as an application of the PBF method, an MJF (Multi Jet Fusion) method in which a liquid containing a heat absorbing material is dropped on resin particles and the resin particles are selectively fused to each other by heating with infrared light is also known. ing.

樹脂粒子を用いて造形するときに、造形層間の内部応力を低く維持し、緩和(リラックス)するため、軟化点付近の温度に調整された樹脂粒子を用いて造形することがある。軟化点付近の温度に調整された樹脂粒子にレーザーが照射されると、樹脂粒子は、軟化点以上の温度に加熱されて溶融する。 When modeling with resin particles, in order to keep the internal stress between the modeling layers low and relax (relax), resin particles adjusted to a temperature near the softening point may be used for modeling. When the laser is applied to the resin particles adjusted to a temperature near the softening point, the resin particles are heated to a temperature higher than the softening point and melted.

このような方式においては、樹脂粒子を選択的に溶融して造形する方法では、造形のプロセスで融着させなかった余剰な樹脂粒子をリサイクルすることがある。例えば、余剰な樹脂粒子のゆるみかさ密度を真密度に対して20%超の範囲とし、余剰な樹脂粒子を再利用する立体造形方法が提案されている(例えば、特許文献1参照)。
しかし、造形のプロセスで融着させなかった余剰な樹脂粒子は、軟化点付近の温度にさらされたことにより、酸化や重合など樹脂粒子の性質が劣化してしまうことになる。その結果、造形物の機械物性や表面粗さなどに悪影響を与えてしまうことになるため、劣化してしまった樹脂粒子はリサイクルをせずに、破棄しなければならない。破棄する材料は結果的に造形物のコストに直接影響するため、可能な限り余剰な樹脂粒子を発生させないことが重要である。そこで、余剰な樹脂粒子を発生させないための装置と方法が提案されている(例えば、特許文献2参照)。
In such a method, in the method of selectively melting and modeling the resin particles, excess resin particles that have not been fused in the modeling process may be recycled. For example, a three-dimensional modeling method has been proposed in which the looseness density of excess resin particles is set in the range of more than 20% with respect to the true density, and the excess resin particles are reused (see, for example, Patent Document 1).
However, the surplus resin particles that have not been fused in the molding process are exposed to a temperature near the softening point, so that the properties of the resin particles such as oxidation and polymerization deteriorate. As a result, the mechanical properties and surface roughness of the modeled object are adversely affected. Therefore, the deteriorated resin particles must be discarded without being recycled. As a result, the material to be discarded directly affects the cost of the modeled object, so it is important not to generate excess resin particles as much as possible. Therefore, an apparatus and a method for not generating excess resin particles have been proposed (see, for example, Patent Document 2).

本発明は、余剰な樹脂粒子を精度良く検知し、樹脂粒子移送部が移送する樹脂粒子の量を最適化することができる立体造形物の製造装置を提供することを目的とする。 An object of the present invention is to provide a three-dimensional model manufacturing apparatus capable of accurately detecting excess resin particles and optimizing the amount of resin particles transferred by the resin particle transfer unit.

上記の課題を解決するための手段としての本発明の立体造形物の製造装置は、造形領域に樹脂粒子を移送して樹脂粒子層を形成する層形成手段と、前記造形領域における前記樹脂粒子層にエネルギーを選択的に付与して、前記樹脂粒子層における前記樹脂粒子どうしを融着させるエネルギー付与手段とを有し、前記層形成手段が、前記樹脂粒子を移送させる樹脂粒子移送部と、前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと前記第一温度センサーが測定した温度と、前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、を有する。 The apparatus for manufacturing a three-dimensional model of the present invention as a means for solving the above problems includes a layer forming means for transferring resin particles to a modeling region to form a resin particle layer, and the resin particle layer in the modeling region. It has an energy applying means for selectively applying energy to the resin particles to fuse the resin particles in the resin particle layer, and the layer forming means transfers the resin particles to the resin particle transfer unit and the resin particles. When the amount of the resin particles transferred to the modeling region exceeds a predetermined amount and is in the vicinity of the resin particle transfer portion, the resin particles are arranged at a position where they can come into contact with the resin particles, and when the particles come into contact with the resin particles. A first temperature sensor that measures the temperature of the resin particles, and a molding region that is located near the first temperature sensor and at a position where it cannot contact the resin particles, and the resin particle layer is exposed. A means for storing in advance individual differences between the temperature measured by the second temperature sensor for measuring the ambient temperature, the temperature measured by the first temperature sensor, and the temperature measured by the second temperature sensor, and the measurement by the first temperature sensor. A circuit that accurately detects the generation of excess resin particles by a circuit that detects that a predetermined temperature difference has occurred as a result of adding the individual difference to the temperature and the temperature measured by the second temperature sensor. Have.

本発明によると、余剰な樹脂粒子を精度良く検知することができ、粉の消費を最適化することができる立体造形物の製造装置を提供することができる。 According to the present invention, it is possible to provide a three-dimensional model manufacturing apparatus capable of accurately detecting excess resin particles and optimizing powder consumption.

図1は、本発明の一実施形態に係る立体造形物の製造装置を示す概略図である。FIG. 1 is a schematic view showing a three-dimensional model manufacturing apparatus according to an embodiment of the present invention. 図2Aは、本発明の一実施形態に係る供給ユニットを示す概略図である。FIG. 2A is a schematic view showing a supply unit according to an embodiment of the present invention. 図2Bは、本発明の一実施形態に係る供給ユニットを示す概略図である。FIG. 2B is a schematic view showing a supply unit according to an embodiment of the present invention. 図3Aは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3A is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Bは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3B is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Cは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3C is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Dは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3D is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Eは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3E is an explanatory view showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Fは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3F is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Gは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3G is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Hは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3H is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Iは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3I is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area. 図3Jは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。FIG. 3J is an explanatory diagram showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area.

(立体造形物の製造装置及び余剰樹脂粒子検知装置)
本発明の立体造形物の製造装置は、造形領域に樹脂粒子を移送して樹脂粒子層を形成する層形成手段と、前記造形領域における前記樹脂粒子層にエネルギーを選択的に付与して、前記樹脂粒子層における前記樹脂粒子どうしを融着させるエネルギー付与手段とを有し、前記層形成手段が、前記樹脂粒子を移送させる樹脂粒子移送部と、前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと、前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、を有し、更に必要に応じてその他の手段を有する。
(Manufacturing equipment for three-dimensional objects and excess resin particle detection equipment)
The apparatus for producing a three-dimensional model of the present invention is a layer forming means for transferring resin particles to a modeling region to form a resin particle layer, and selectively applying energy to the resin particle layer in the modeling region to obtain the above-mentioned It has an energy applying means for fusing the resin particles in the resin particle layer, and the layer forming means is in the vicinity of the resin particle transfer portion for transferring the resin particles and the resin particle transfer portion, and A first temperature at which the resin particles are arranged at a position where they can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount, and the temperature of the resin particles when they come into contact with the resin particles is measured. A sensor, a second temperature sensor that measures the ambient temperature of the molding region that is located near the first temperature sensor and is in contact with the resin particles and in which the resin particle layer is exposed. A means for storing individual differences between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor in advance, and the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor. It also has a circuit that accurately detects the generation of excess resin particles by a circuit that detects that a predetermined temperature difference has occurred as a result of adding the individual differences to the above, and further, if necessary, other Have means.

本発明の立体造形物の製造装置は、従来の余剰な樹脂粒子を再利用する立体造形方法では、再利用した樹脂粉末を用いて造形すると、立体造形物に、粗面、空孔、ゆがみ、又はオレンジピールと呼ばれる表面欠陥が発生したり、立体造形物の引張強度が低下したりする場合があるという知見に基づくものである。 In the conventional three-dimensional modeling method in which the surplus resin particles are reused, the three-dimensional model manufacturing apparatus of the present invention uses the recycled resin powder to form the three-dimensional model, and the three-dimensional model has rough surfaces, holes, and distortions. Alternatively, it is based on the finding that surface defects called orange peel may occur or the tensile strength of the three-dimensional model may decrease.

本発明の立体造形物の製造装置では、第一温度センサーが、樹脂粒子を移送させる樹脂粒子移送部の近傍であって、かつ造形領域に移送する樹脂粒子の量が所定量を超えたときに樹脂粒子と接触可能な位置に配され、樹脂粒子と接触した際における樹脂粒子の温度を測定する。また、第二温度センサーは、第一温度センサーの近傍であって、かつ樹脂粒子と接触不可能な位置に配され、樹脂粒子層が露出する造形領域の雰囲気温度を測定する。これにより、例えば、雰囲気温度の測定値と樹脂粒子の温度を測定値との差分を求め、装置内部の温度分布や気流などの外乱の影響をキャンセルすることにより、余剰な樹脂粒子を精度良く検知できるようにした。
なお、立体造形物の製造装置は、余剰な樹脂粒子を検知したか否かに応じて、次に造形領域に供給する樹脂粒子の量を少なくするように制御することで、余剰な樹脂粒子を発生させないようにすることができる。
In the three-dimensional model manufacturing apparatus of the present invention, when the first temperature sensor is in the vicinity of the resin particle transfer section for transferring resin particles and the amount of resin particles transferred to the modeling area exceeds a predetermined amount. It is arranged at a position where it can come into contact with the resin particles, and the temperature of the resin particles when they come into contact with the resin particles is measured. Further, the second temperature sensor is arranged in the vicinity of the first temperature sensor and at a position where it cannot come into contact with the resin particles, and measures the ambient temperature of the modeling region where the resin particle layer is exposed. As a result, for example, the difference between the measured value of the ambient temperature and the measured value of the temperature of the resin particles is obtained, and the influence of disturbances such as the temperature distribution inside the device and the air flow is canceled, so that the excess resin particles are detected accurately. I made it possible.
It should be noted that the three-dimensional model manufacturing apparatus controls the amount of the resin particles to be supplied to the modeling area next depending on whether or not the excess resin particles are detected, thereby producing the excess resin particles. It can be prevented from occurring.

以下に具体的な制御方法を示す。
樹脂粒子移送部の供給量が適切で、余剰な樹脂粒子を検知していない場合は、
樹脂粒子移送部の供給量=基本供給量+最大追加供給量×(塗りつぶし面積/最大塗りつぶし面積)+回収量
で計算された量を供給する。
A specific control method is shown below.
If the supply amount of the resin particle transfer part is appropriate and excess resin particles are not detected,
The amount calculated by the supply amount of the resin particle transfer unit = basic supply amount + maximum additional supply amount x (filled area / maximum filled area) + recovery amount is supplied.

樹脂粒子移送部の供給量が余剰で、余剰な樹脂粒子が検知された場合は、
樹脂粒子移送部の供給量=基本供給量+最大追加供給量×(塗りつぶし面積/最大塗りつぶし面積)+回収量−低減量
で計算された量を供給する。
If the supply amount of the resin particle transfer unit is excessive and excess resin particles are detected,
The amount calculated by the supply amount of the resin particle transfer unit = basic supply amount + maximum additional supply amount x (filled area / maximum filled area) + recovery amount-reduction amount is supplied.

ここで、上式の各要素の定義を以下に示す。
基本供給量とは、積層動作時の樹脂粒子移送部の樹脂粒子基本供給量で、造形領域一層分の樹脂粒子必要量に応じた量である。
最大追加供給量とは、塗りつぶし面積が最大になる時の最大追加供給量で、この値を入力することにより、その層の塗りつぶし面積に応じた樹脂粒子を追加供給する。
回収量とは、積層動作時に樹脂粒子移送部に樹脂粒子を供給する側の槽と反対側の樹脂粒子回収量である。
供給低減量は、余剰な樹脂粒子が検知されたときの樹脂粒子の低減量である。
Here, the definition of each element of the above equation is shown below.
The basic supply amount is the basic supply amount of resin particles in the resin particle transfer portion during the laminating operation, and is an amount corresponding to the required amount of resin particles for one layer of the modeling region.
The maximum additional supply amount is the maximum additional supply amount when the filled area is maximized, and by inputting this value, resin particles corresponding to the filled area of the layer are additionally supplied.
The recovered amount is the recovered amount of the resin particles on the side opposite to the tank on the side where the resin particles are supplied to the resin particle transfer portion during the laminating operation.
The supply reduction amount is the reduction amount of the resin particles when excess resin particles are detected.

また、本発明の余剰樹脂粒子検知装置は、立体造形物の製造装置に用いられ、立体造形物の製造装置における造形領域に移送された樹脂粒子の量が所定量を超えたことを検知する余剰樹脂粒子検知装置であり、本発明の立体造形物の製造装置と同様に、樹脂粒子移送部と、第一温度センサーと、第二温度センサーと、を有する。
したがって、本発明の余剰樹脂粒子検知装置は、本発明の立体造形物の製造装置の説明で足りるため、本発明の立体造形物の製造装置の説明を通じて本発明の余剰樹脂粒子検知装置の詳細についても明らかにする。
Further, the surplus resin particle detection device of the present invention is used in a three-dimensional model manufacturing device, and detects that the amount of resin particles transferred to the modeling area in the three-dimensional model manufacturing device exceeds a predetermined amount. It is a resin particle detection device, and has a resin particle transfer unit, a first temperature sensor, and a second temperature sensor, similarly to the device for manufacturing a three-dimensional model of the present invention.
Therefore, since the surplus resin particle detection device of the present invention is sufficient for the description of the three-dimensional model manufacturing device of the present invention, the details of the surplus resin particle detection device of the present invention will be described through the description of the three-dimensional model manufacturing device of the present invention. Also reveal.

本発明の立体造形物の製造装置は、層形成手段と、エネルギー付与手段と、更に必要に応じてその他の手段を有する。 The apparatus for producing a three-dimensional object of the present invention includes a layer forming means, an energy applying means, and further, if necessary, other means.

<層形成手段>
層形成手段は、造形領域に樹脂粒子を移送して樹脂粒子層を形成する。
造形領域とは、エネルギー付与手段によりエネルギーが付与され、樹脂粒子どうしを融着させて立体造形物が造形される領域を意味する。また、樹脂粒子層とは、造形領域に形成される樹脂粒子の層を意味する。
層形成手段としては、樹脂粒子移送部と、第一温度センサーと、第二温度センサーとを有していれば特に制限はなく、目的に応じて適宜選択することができる。
<Layer forming means>
The layer forming means transfers the resin particles to the modeling region to form the resin particle layer.
The modeling region means an region in which energy is applied by the energy applying means and the resin particles are fused to each other to form a three-dimensional modeled object. Further, the resin particle layer means a layer of resin particles formed in the modeling region.
The layer forming means is not particularly limited as long as it has a resin particle transfer unit, a first temperature sensor, and a second temperature sensor, and can be appropriately selected depending on the intended purpose.

<<樹脂粒子移送部>>
樹脂粒子移送部の形状、構造、大きさ、及び材質としては、樹脂粒子を移送させることができれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ローラ、平板状のスキージなどが挙げられる。これらの中でも、ローラを使うことで、造形槽の中の粉の密度をあげることができる点で好ましい。
<< Resin particle transfer section >>
The shape, structure, size, and material of the resin particle transfer portion are not particularly limited as long as the resin particles can be transferred, and can be appropriately selected according to the purpose. For example, a roller, a flat plate-shaped squeegee, or the like. Can be mentioned. Among these, it is preferable to use a roller because the density of powder in the modeling tank can be increased.

<<第一温度センサー>>
第一温度センサーは、樹脂粒子移送部の近傍であって、かつ造形領域に移送する樹脂粒子の量が所定量を超えたときに樹脂粒子と接触可能な位置に配され、樹脂粒子と接触した際における樹脂粒子の温度を測定する。
所定量としては、特に制限はなく、樹脂粒子移送部が移送する樹脂粒子の量などに応じて適宜選択することができる。
第一温度センサーの最適位置を決める際には、造形領域にエネルギーを選択的に付与した状態で、層形成手段における造形領域に樹脂粒子の必要量のみを移送するとき、第一温度センサーが樹脂粒子に接触しない位置に第一温度センサーを仮設置する。その後、最大追加供給量を多めに設定することにより、造形領域に樹脂粒子の必要量を超える余剰を移送させて、第一温度センサーが樹脂粒子と接触することを確認することにより、導き出される。第一温度センサーの最適位置は、造形領域一層分に必要な樹脂粒子の量に依存するが、目安として樹脂粒子移送部から水平方向に5mm〜6mm離れ、造形領域の樹脂粒子層の上面から5mm〜6mm程度が好ましい。
<< First temperature sensor >>
The first temperature sensor is arranged in the vicinity of the resin particle transfer portion and at a position where it can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount, and comes into contact with the resin particles. The temperature of the resin particles is measured.
The predetermined amount is not particularly limited and may be appropriately selected depending on the amount of resin particles transferred by the resin particle transfer unit and the like.
When determining the optimum position of the first temperature sensor, when only the required amount of resin particles is transferred to the modeling region in the layer forming means with energy selectively applied to the modeling region, the first temperature sensor is made of resin. Temporarily install the first temperature sensor at a position where it does not come into contact with particles. After that, by setting a large maximum additional supply amount, a surplus exceeding the required amount of the resin particles is transferred to the modeling region, and it is derived by confirming that the first temperature sensor comes into contact with the resin particles. The optimum position of the first temperature sensor depends on the amount of resin particles required for one layer of the modeling area, but as a guide, it is 5 mm to 6 mm horizontally away from the resin particle transfer portion and 5 mm from the upper surface of the resin particle layer in the modeling area. It is preferably about 6 mm.

第一温度センサーに用いる温度センサーの種類としては、特に制限はなく、目的に応じて適宜選択することができるが、測定精度、計測安定性が良く、温度変化に対する応答が高く、素早く検知できるように温度センサーの検知部のシースの熱容量が小さいものが好ましい。例えば、白金測温抵抗体(PTセンサー)、熱電対などが挙げられるが、特に表面に樹脂粒子が付着しにくい温度センサーが好ましい。樹脂粒子が付着しにくいと、付着している樹脂粒子の温度を測定してしまうことによる誤検知の発生を防ぐことができるためである。
第一温度センサーの表面に樹脂粒子が付着しやすいと、余剰の樹脂粒子を第一温度センサーで検知した後で、その一部の樹脂粒子が第一温度センサーの表面に付着したままになると誤検知しやすくなり、この点から、温度センサーが1つの場合は誤検知しやすいと言える。
The type of temperature sensor used for the first temperature sensor is not particularly limited and can be appropriately selected according to the purpose, but the measurement accuracy and measurement stability are good, the response to temperature changes is high, and the detection can be performed quickly. It is preferable that the sheath of the detection unit of the temperature sensor has a small heat capacity. Examples thereof include a platinum resistance temperature detector (PT sensor) and a thermocouple, and a temperature sensor in which resin particles do not easily adhere to the surface is particularly preferable. This is because if the resin particles are hard to adhere, it is possible to prevent the occurrence of erroneous detection due to measuring the temperature of the adhered resin particles.
If resin particles easily adhere to the surface of the first temperature sensor, it is erroneous that some of the resin particles remain attached to the surface of the first temperature sensor after the excess resin particles are detected by the first temperature sensor. It becomes easy to detect, and from this point, it can be said that it is easy to make a false detection when there is only one temperature sensor.

<<第二温度センサー>>
第二温度センサーは、第一温度センサーの近傍であって、かつ樹脂粒子と接触不可能な位置に配され、樹脂粒子層が露出する造形領域の雰囲気温度を測定する。
第一温度センサーの近傍としては、第一温度センサーが測定する雰囲気温度と、第二温度センサーが測定する雰囲気温度とがほぼ同様になる位置が好ましい。
<< Second temperature sensor >>
The second temperature sensor is arranged in the vicinity of the first temperature sensor and at a position where it cannot come into contact with the resin particles, and measures the ambient temperature of the modeling region where the resin particle layer is exposed.
As the vicinity of the first temperature sensor, it is preferable that the ambient temperature measured by the first temperature sensor and the ambient temperature measured by the second temperature sensor are substantially the same.

第二温度センサーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第一温度センサーと同様のセンサーなどが挙げられるが、第一温度センサーと温度を測定するスピードやサンプリング周波数が同じセンサーが好ましい。この点で、第二温度センサーとしては、第一温度センサーと同じ品番のセンサーがより好ましい。第二温度センサーが好ましい態様であると、各温度センサーが測定するタイミングが合わせやすくなり、第一温度センサーで測定する温度と第二温度センサーで測定する雰囲気温度との差分を求める際に、測定のタイミングがずれることによる誤差が発生しにくい点で有利である。 The second temperature sensor is not particularly limited and may be appropriately selected according to the purpose. For example, a sensor similar to the first temperature sensor may be used, but the speed of measuring the temperature with the first temperature sensor may be used. Sensors with the same sampling frequency are preferred. In this respect, as the second temperature sensor, a sensor having the same part number as the first temperature sensor is more preferable. When the second temperature sensor is a preferable embodiment, it becomes easier to match the timing of measurement by each temperature sensor, and the measurement is performed when the difference between the temperature measured by the first temperature sensor and the ambient temperature measured by the second temperature sensor is obtained. It is advantageous in that an error due to a shift in the timing of is unlikely to occur.

層形成手段は、第一温度センサーが測定した温度が、第二温度センサーが測定した温度よりも高い温度に予め設定された所定温度より高いか否かを検知可能であることが好ましい。このようにすると、エネルギーを付与したときに樹脂粒子どうしを融着しやすくするために樹脂粒子が予熱されている場合には、樹脂粒子の温度のほうが雰囲気温度より高いことから、第一温度センサーが測定した温度が予め設定した所定温度より高いと余剰な樹脂粒子が発生したと判定することができる。 It is preferable that the layer forming means can detect whether or not the temperature measured by the first temperature sensor is higher than the temperature measured by the second temperature sensor and higher than a predetermined temperature set in advance. In this way, when the resin particles are preheated in order to facilitate the fusion of the resin particles when energy is applied, the temperature of the resin particles is higher than the ambient temperature, so that the first temperature sensor If the temperature measured by is higher than a predetermined temperature set in advance, it can be determined that excess resin particles are generated.

予め設定された所定温度より高いか否かを検知可能にするには、第一温度センサーが測定した温度が予め設定した所定温度より高いと検知する検知部を層形成手段に有するようにしてもよく、装置内や装置外に有するようにしてもよい。 In order to be able to detect whether or not the temperature is higher than the preset predetermined temperature, the layer forming means may have a detection unit that detects that the temperature measured by the first temperature sensor is higher than the preset predetermined temperature. Often, it may be held inside or outside the device.

予め設定された所定温度としては、第二温度センサーが測定した雰囲気温度をX(℃)とし、第一温度センサーが樹脂粒子に接触した際に測定した樹脂粒子の温度をY(℃)としたとき、次式、〔X+(Y−X)/2〕(℃)、で表されることが好ましい。これによって、第二温度センサーが測定した雰囲気温度のXと第一温度センサーが樹脂粒子に接触した際に測定した樹脂粒子の温度のYとの中間の温度を、余剰な樹脂粒子を検知するためのしきい値として設定でき、誤検知の発生を抑制しやすくすることができる。 As the preset predetermined temperature, the ambient temperature measured by the second temperature sensor was set to X (° C.), and the temperature of the resin particles measured when the first temperature sensor came into contact with the resin particles was set to Y (° C.). Then, it is preferably expressed by the following equation, [X + (Y−X) / 2] (° C.). As a result, the excess resin particles are detected at a temperature between the ambient temperature X measured by the second temperature sensor and the resin particle temperature Y measured when the first temperature sensor comes into contact with the resin particles. It can be set as the threshold value of, and it is possible to easily suppress the occurrence of false positives.

このとき、次式、|X−Y|≦20℃、を満たすことが好ましく、次式、|X−Y|≦15℃、を満たすことがより好ましく、次式、|X−Y|≦10℃、を満たすことが更に好ましい。次式、|X−Y|≦20℃、を満たす場合、即ち、雰囲気温度と樹脂粒子の温度との差が小さい場合には、樹脂粒子の温度を測定する温度センサーのみであると、装置内の気流などの外乱により雰囲気温度の測定値が変化してしきい値を容易に超えてしまうため、誤検知しやすい。この点、立体造形物の製造装置では、外乱の影響をキャンセルできるため、次式、|X−Y|≦20℃、を満たす場合であっても、余剰な樹脂粒子を精度良く検知できる。ただし、第一温度センサーと第二温度センサーの個体差を加味した計算をすることが必須である。 At this time, it is preferable to satisfy the following equation, | XY | ≤20 ° C., more preferably to satisfy the following equation, | XY | ≤15 ° C., and the following equation, | XY | ≤10. It is more preferable to satisfy ℃. When the following equation, | XY | ≤20 ° C. is satisfied, that is, when the difference between the ambient temperature and the temperature of the resin particles is small, only the temperature sensor that measures the temperature of the resin particles is used in the apparatus. Since the measured value of the atmospheric temperature changes due to the disturbance such as the air flow of the airflow and easily exceeds the threshold value, it is easy to make a false detection. In this respect, since the influence of the disturbance can be canceled in the three-dimensional model manufacturing apparatus, excess resin particles can be detected accurately even when the following equation, | XY | ≤ 20 ° C. is satisfied. However, it is essential to make a calculation that takes into account the individual differences between the first temperature sensor and the second temperature sensor.

樹脂粒子層の平均厚みの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、10μm以上が好ましく、50μm以上がより好ましく、100μm以上が更に好ましい。また、樹脂粒子層の平均厚みの上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、200μm未満が好ましく、150μm未満がより好ましく、120μm未満が更に好ましい。 The lower limit of the average thickness of the resin particle layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 μm or more, more preferably 50 μm or more, still more preferably 100 μm or more. The upper limit of the average thickness of the resin particle layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably less than 200 μm, more preferably less than 150 μm, and even more preferably less than 120 μm.

<エネルギー付与手段>
エネルギー付与手段は、造形領域における樹脂粒子層にエネルギーを選択的に付与して、樹脂粒子層における樹脂粒子どうしを融着させる。
エネルギー付与手段としては、造形領域における樹脂粒子層にエネルギーを選択的に付与できれば特に制限はなく、目的に応じて適宜選択することができ、例えば、レーザー照射手段、赤外照射源、マイクロウエーブ発生器、放射加熱器、LEDランプ、又はこれらの組合せなどが挙げられる。これらの中でも、レーザー照射手段が、エネルギーを狭い範囲に選択的に付与することが容易であり、立体造形物の造形精度が高くなる点で有利である。
レーザー照射手段としては、例えば、COレーザーなどが挙げられる。また、レーザーの出力としては、特に制限はなく、目的に応じて適宜選択されるが、10ワット以上150ワット以下が好ましい。
<Energy applying means>
The energy applying means selectively applies energy to the resin particle layer in the modeling region to fuse the resin particles in the resin particle layer.
The energy applying means is not particularly limited as long as energy can be selectively applied to the resin particle layer in the modeling region, and can be appropriately selected according to the purpose. For example, a laser irradiation means, an infrared irradiation source, and a microwave generation. Examples include a vessel, a radiant heater, an LED lamp, or a combination thereof. Among these, the laser irradiation means is advantageous in that it is easy to selectively apply energy to a narrow range and the modeling accuracy of the three-dimensional modeled object is improved.
Examples of the laser irradiation means include a CO 2 laser and the like. The laser output is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 watts or more and 150 watts or less.

なお、エネルギー付与手段が赤外照射源、マイクロウエーブ発生器、放射加熱器、LEDランプなどの場合には、例えば、樹脂粒子の一部を遮蔽マスクによりマスクし、マスクされていない部分に赤外線などの電磁線を照射し、選択的に樹脂粒子どうしを融着することにより造形する。この場合、樹脂粒子は、赤外吸収特性を増強させる熱吸収材、又は暗色物質などを1種以上含有することが好ましい。
熱吸収材又は暗色物質としては、例えば、カーボンファイバー、カーボンブラック、カーボンナノチューブ、セルロースナノファイバーなどが挙げられる。
When the energy applying means is an infrared irradiation source, a microwave generator, a radiant heater, an LED lamp, or the like, for example, a part of the resin particles is masked with a shielding mask, and the unmasked part is covered with infrared rays or the like. It is formed by irradiating the electromagnetic rays of the above and selectively fusing the resin particles to each other. In this case, the resin particles preferably contain at least one kind of heat absorbing material or dark-colored substance that enhances the infrared absorption characteristics.
Examples of the heat absorbing material or the dark-colored substance include carbon fiber, carbon black, carbon nanotube, and cellulose nanofiber.

<その他の手段>
その他の手段としては、特に制限はなく、目的に応じて適宜選択することができる。
<Other means>
The other means are not particularly limited and may be appropriately selected depending on the purpose.

<樹脂粒子>
樹脂粒子とは、熱可塑性樹脂を含む粒子を意味する。
熱可塑性樹脂を含む粒子の材質としては、樹脂成分として熱可塑性樹脂を含み、更に必要に応じてその他の成分を含む樹脂組成物などが挙げられる。
<Resin particles>
The resin particles mean particles containing a thermoplastic resin.
Examples of the material of the particles containing the thermoplastic resin include a resin composition containing a thermoplastic resin as a resin component and, if necessary, other components.

−熱可塑性樹脂−
熱可塑性樹脂とは、熱を加えると可塑化し、溶融する樹脂を意味する。
熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶性樹脂、非結晶性樹脂、液晶樹脂などが挙げられる。これらの中でも、熱可塑性樹脂としては、結晶性樹脂、液晶樹脂が好ましい。また、熱可塑性樹脂としては、融解開始温度と、冷却時の再結晶温度の差が大きな樹脂が好ましい。
なお、結晶性樹脂とは、ISO3146(プラスチック転移温度測定方法、JIS K7121)に準拠した測定において、融点ピークが検出される樹脂である。
-Thermoplastic resin-
The thermoplastic resin means a resin that is plasticized and melted when heat is applied.
The thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include crystalline resin, amorphous resin and liquid crystal resin. Among these, as the thermoplastic resin, a crystalline resin and a liquid crystal resin are preferable. Further, as the thermoplastic resin, a resin having a large difference between the melting start temperature and the recrystallization temperature at the time of cooling is preferable.
The crystalline resin is a resin in which a melting point peak is detected in a measurement based on ISO3146 (plastic transition temperature measuring method, JIS K7121).

熱可塑性樹脂としては、例えば、ポリオレフィン、ポリアミド、ポリエステル、ポリエーテル、ポリフェニレンスルフィド、液晶ポリマー(LCP:Liquid Crystal Polymer)、ポリアセタール(POM:Polyoxymethylene)、ポリイミド、フッ素樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermoplastic resin include polyolefin, polyamide, polyester, polyether, polyphenylene sulfide, liquid crystal polymer (LCP: Liquid Crystal Polymer), polyacetal (POM: Polyoxymethylene), polyimide, fluororesin and the like. These may be used alone or in combination of two or more.

ポリオレフィンとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などが挙げられる。 Examples of the polyolefin include polyethylene (PE) and polypropylene (PP).

ポリアミドとしては、例えば、ポリアミド410(PA410)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド11(PA11)、ポリアミド12(PA12)等のポリアミド;ポリアミド4T(PA4T)、ポリアミドMXD6(PAMXD6)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド10T(PA10T)等の半芳香族性のポリアミドなどが挙げられる。 Examples of the polyamide include polyamides such as polyamide 410 (PA410), polyamide 6 (PA6), polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 11 (PA11), and polyamide 12 (PA12). Examples include semi-aromatic polyamides such as polyamide 4T (PA4T), polyamide MXD6 (PAMXD6), polyamide 6T (PA6T), polyamide 9T (PA9T), and polyamide 10T (PA10T).

ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブタジエンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。これらの中でも、耐熱性を付与する点から、テレフタル酸やイソフタル酸を一部に含む芳香族を有するものが好ましい。 Examples of the polyester include polyethylene terephthalate (PET), polybutadiene terephthalate (PBT), polylactic acid (PLA) and the like. Among these, those having an aromatic component containing terephthalic acid or isophthalic acid as a part are preferable from the viewpoint of imparting heat resistance.

ポリエーテルとしては、例えば、ポリアリールケトン、ポリエーテルスルフォンなどが挙げられる。
ポリアリールケトンとしては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリアリールエーテルケトン(PAEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)などが挙げられる。
Examples of the polyether include polyarylketone and polyethersulphon.
Examples of the polyarylketone include polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketone ketone (PEKK), polyaryletherketone (PAEK), polyetheretherketone ketone (PEEKK), and polyether. Examples thereof include ketone ether ketone ketone (PEKEKK).

立体造形物の積層方向における強度、及び造形精度をより向上させる観点から、熱可塑性樹脂としては、ポリプロピレン(PP)が好ましい。
ポリプロピレンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ランダムポリプロピレン、ホモポリプロピレン、ブロックポリプロピレンなどが挙げられる。これらの中でも、ブロックポリプロピレンが好ましい。
ポリプロピレンとしては、市販品を用いることができ、前記市販品としては、例えば、ブロックポリプロピレンとしては、住友ノーブレンAW564(住友化学株式会社製)、ホモポリプロピレンとしては、VS700R(サンアロマー株式会社製)、ランダムポリプロピレンとしては、J226T(株式会社プライムポリマー製)などが挙げられる。
Polypropylene (PP) is preferable as the thermoplastic resin from the viewpoint of further improving the strength in the stacking direction of the three-dimensional modeled object and the modeling accuracy.
The polypropylene is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include random polypropylene, homopolypropylene and block polypropylene. Among these, block polypropylene is preferable.
As the polypropylene, a commercially available product can be used. As the commercially available product, for example, the block polypropylene is Sumitomo Noblen AW564 (manufactured by Sumitomo Chemical Co., Ltd.), the homopolypropylene is VS700R (manufactured by SunAllomer Ltd.), and random. Examples of polypropylene include J226T (manufactured by Prime Polymer Co., Ltd.).

−その他の成分−
樹脂粒子におけるその他の成分としては、例えば、充填材、劣化防止剤、流動化剤、難燃剤、可塑剤、結晶核剤等の添加剤や、非結晶性樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、その他の成分は、各熱可塑性樹脂粒子に混合して使用しても、各熱可塑性樹脂粒子の表面に被覆して使用してもよい。
-Other ingredients-
Examples of other components in the resin particles include additives such as fillers, deterioration inhibitors, fluidizing agents, flame retardants, plasticizers, and crystal nucleating agents, and amorphous resins. These may be used alone or in combination of two or more. In addition, other components may be mixed with each thermoplastic resin particle and used, or may be used by coating the surface of each thermoplastic resin particle.

充填材としては、二酸化ケイ素を主成分に含むものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、タルク、マイカ、クレー、モンモリナイト、ベントナイト、ゾノライトなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、充填材としては、タルクが特に好ましい。充填材がタルクであると、立体造形物の積層方向における強度、及び造形精度を特に向上することができる。 The filler is not particularly limited as long as it contains silicon dioxide as a main component, and can be appropriately selected depending on the intended purpose. Examples thereof include talc, mica, clay, montmorillonite, bentonite, and zonolite. These may be used alone or in combination of two or more. Among these, talc is particularly preferable as the filler. When the filler is talc, the strength in the stacking direction of the three-dimensional modeled object and the modeling accuracy can be particularly improved.

[樹脂粒子の製造方法]
樹脂の粒子化は、粉砕又は切断がよい。樹脂を粉砕する方法としては、例えば、上記の熱可塑性樹脂を含むペレット形状の樹脂組成物を、粉砕装置により粉砕し、定められた粒径以外の粒子をフィルターにより分級又は濾過することで得られる。樹脂の脆弱性を利用して粉砕する場合、粉砕時の環境は、樹脂の脆弱温度以下とし、好ましくは室温以下であり、より好ましくは0℃以下であり、更に好ましくは−25℃以下であり、特に好ましくは−100℃以下である。樹脂粒子の流動性を向上させるため、分級操作で、例えば、80μm以上及び25μm以下の粒子を除去することが好ましい。樹脂粉末は、造形に影響を及ぼさない程度に乾燥していることが好ましい。このため、真空乾燥機やシリカゲルにより乾燥させた樹脂粉末を用いて造形してもよい。樹脂を切断する方法としては、繊維化した樹脂を切断してもよい。
[Manufacturing method of resin particles]
The resin may be granulated by crushing or cutting. As a method for pulverizing the resin, for example, it is obtained by pulverizing a pellet-shaped resin composition containing the above-mentioned thermoplastic resin with a pulverizer and classifying or filtering particles having a particle size other than the specified particle size with a filter. .. When crushing by utilizing the fragility of the resin, the environment at the time of crushing is set to the fragile temperature or lower of the resin, preferably room temperature or lower, more preferably 0 ° C. or lower, and further preferably -25 ° C. or lower. , Especially preferably −100 ° C. or lower. In order to improve the fluidity of the resin particles, it is preferable to remove particles having a size of 80 μm or more and 25 μm or less by a classification operation, for example. The resin powder is preferably dried to such an extent that it does not affect the molding. Therefore, the resin powder dried by a vacuum dryer or silica gel may be used for modeling. As a method of cutting the resin, the fibrous resin may be cut.

<立体造形物>
樹脂粒子によって形成される立体造形物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子機器パーツや自動車部品のプロトタイプ、強度試験用の試作品、エアロスペース、又は自動車産業のドレスアップツールなどに使われる少量製品などが挙げられる。PBF方式については、FFF(Fused Filament Fabrication)方式やインクジェット方式などの他の方式と比較し、強度が優れることが期待されるため、実用の製品としても使用に耐える。
生産スピードについては、例えば、小さい部品を平面状に大量に作ることにより必要な生産量を得ることができる。また、本発明に用いられるPBF方式における立体造形物の造形方法は、射出成形のような金型を必要としないため、試作及びプロトタイプの作製においては、圧倒的なコスト削減と納期削減を達成することができる。
<Three-dimensional model>
The three-dimensional model formed by the resin particles is not particularly limited and may be appropriately selected depending on the purpose. For example, a prototype of an electronic device part or an automobile part, a prototype for a strength test, an aero space, or Examples include small-quantity products used in dress-up tools for the automobile industry. The PBF method is expected to be superior in strength to other methods such as the FFF (Fused filament Fabrication) method and the inkjet method, and therefore can be used as a practical product.
Regarding the production speed, for example, the required production amount can be obtained by producing a large number of small parts in a plane shape. Further, since the method for forming a three-dimensional object in the PBF method used in the present invention does not require a mold unlike injection molding, overwhelming cost reduction and delivery time reduction are achieved in trial production and prototype production. be able to.

以下、図面を参照しながら、発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.

(第1の実施形態)
第1の実施形態では、本発明の立体造形物の製造装置が、樹脂粒子に含まれる熱可塑性樹脂をポリアミド12(PA12、融点:185℃)として立体造形物を造形する場合の実施態様について説明する。
(First Embodiment)
In the first embodiment, the embodiment in which the three-dimensional model manufacturing apparatus of the present invention forms a three-dimensional model using the thermoplastic resin contained in the resin particles as polyamide 12 (PA12, melting point: 185 ° C.) will be described. do.

[立体造形物の製造装置の構造]
図1は、本発明の一実施形態に係る立体造形物の製造装置を示す概略図である。
図1に示すように、立体造形物の製造装置100は、層形成手段としての供給ユニット110と、供給槽130,150と、造形槽140と、エネルギー付与手段としてのレーザー照射手段170と、パージエリア120,160とを有する。
なお、レーザー照射手段170によりレーザーLが照射され、立体造形物が造形される造形槽140の表面は、造形領域Zと称する。
また、供給槽130,150及び造形槽140の底面は、それぞれ昇降させることができる。
[Structure of manufacturing equipment for 3D objects]
FIG. 1 is a schematic view showing a three-dimensional model manufacturing apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the three-dimensional model manufacturing apparatus 100 includes a supply unit 110 as a layer forming means, supply tanks 130 and 150, a modeling tank 140, a laser irradiation means 170 as an energy applying means, and a purge. It has areas 120 and 160.
The surface of the modeling tank 140 in which the laser L is irradiated by the laser irradiation means 170 to form a three-dimensional object is referred to as a modeling area Z.
Further, the bottom surfaces of the supply tanks 130 and 150 and the modeling tank 140 can be raised and lowered, respectively.

図2A及び図2Bは、本発明の一実施形態に係る供給ユニットを示す概略図である。
図2Aに示すように、供給ユニット110は、樹脂粒子移送部としてのローラ111と、第一温度センサー112,114と、第二温度センサー113,115とを有する。
2A and 2B are schematic views showing a supply unit according to an embodiment of the present invention.
As shown in FIG. 2A, the supply unit 110 includes a roller 111 as a resin particle transfer unit, first temperature sensors 112 and 114, and second temperature sensors 113 and 115.

ローラ111は、供給槽130,150の樹脂粒子Pを、造形槽140の造形領域Zに均しながら移送するように軸を中心に回転しながら移動し、1層分の厚さとした樹脂粒子層を形成する。
第一温度センサー112,114は、それぞれローラ111の近傍であって、かつ造形領域Zに移送する樹脂粒子Pの量が所定量を超えたときに樹脂粒子Pと接触可能な位置に配され、樹脂粒子Pと接触した際における樹脂粒子Pの温度を測定する。
第二温度センサー113,115は、それぞれ第一温度センサー112,114の近傍であって、かつ樹脂粒子Pと接触不可能な位置に配され、樹脂粒子層が露出する造形領域Zの雰囲気温度を測定する。
The roller 111 moves while rotating around the axis so as to transfer the resin particles P of the supply tanks 130 and 150 while leveling them to the modeling region Z of the modeling tank 140, and has a resin particle layer having a thickness of one layer. To form.
The first temperature sensors 112 and 114 are arranged in the vicinity of the roller 111 and at positions where they can come into contact with the resin particles P when the amount of the resin particles P transferred to the modeling region Z exceeds a predetermined amount. The temperature of the resin particles P when they come into contact with the resin particles P is measured.
The second temperature sensors 113 and 115 are arranged in the vicinity of the first temperature sensors 112 and 114 and at positions where they cannot contact the resin particles P, respectively, and the ambient temperature of the modeling region Z where the resin particle layer is exposed can be measured. Measure.

図1に戻り、供給槽130,150は、熱可塑性樹脂がPA12である樹脂粒子Pをそれぞれ貯蔵する。供給槽130,150に貯蔵される樹脂粒子Pは、供給槽130,150の上方にそれぞれ設置されたヒータにより150℃で予熱される。 Returning to FIG. 1, the supply tanks 130 and 150 store the resin particles P whose thermoplastic resin is PA12, respectively. The resin particles P stored in the supply tanks 130 and 150 are preheated at 150 ° C. by heaters installed above the supply tanks 130 and 150, respectively.

造形槽140は、ローラ111により供給槽130又は供給槽150から樹脂粒子Pを移送され、樹脂粒子層が形成される。造形槽140に形成された樹脂粒子層は、造形槽140の上方に設置されたヒータにより170℃で予熱される。 In the modeling tank 140, the resin particles P are transferred from the supply tank 130 or the supply tank 150 by the rollers 111 to form the resin particle layer. The resin particle layer formed in the modeling tank 140 is preheated at 170 ° C. by a heater installed above the modeling tank 140.

なお、本実施形態では、熱可塑性樹脂がPA12であり、供給槽130,150の予熱温度を150℃とし、造形槽140の予熱温度を170℃としたが、これに限ることはない。造形槽140での予熱温度としては、樹脂粒子Pどうしを融着するときに反りの発生を抑制する点で、可能な限り高いほうが好ましいが、造形槽140での樹脂粒子Pどうしの融着を抑制する点では、樹脂粒子Pの融点より10℃以上低温であることが好ましい。 In the present embodiment, the thermoplastic resin is PA12, the preheating temperature of the supply tanks 130 and 150 is set to 150 ° C., and the preheating temperature of the modeling tank 140 is set to 170 ° C., but the present invention is not limited to this. The preheating temperature in the modeling tank 140 is preferably as high as possible in terms of suppressing the occurrence of warpage when the resin particles P are fused to each other, but the fusion of the resin particles P to each other in the modeling tank 140 is preferable. In terms of suppression, it is preferable that the temperature is 10 ° C. or higher lower than the melting point of the resin particles P.

レーザー照射手段170は、立体造形物の3D(three−dimensional)モデルの2次元データ、即ち3Dモデルを所定間隔でスライスしたときの各断面形状に基づき、造形領域Zにおける樹脂粒子層にレーザーLを選択的に照射し、樹脂粒子層における樹脂粒子Pを融点以上に加熱することにより、樹脂粒子層における樹脂粒子どうしを融着させ、造形層Sを形成する。 The laser irradiation means 170 applies the laser L to the resin particle layer in the modeling region Z based on the two-dimensional data of the 3D (three-dimensional) model of the three-dimensional model, that is, the cross-sectional shape when the 3D model is sliced at predetermined intervals. By selectively irradiating and heating the resin particles P in the resin particle layer to a temperature equal to or higher than the melting point, the resin particles in the resin particle layer are fused to each other to form the modeling layer S.

このように、立体造形物の製造装置100は、造形槽140に樹脂粒子Pを供給して樹脂粒子層を形成する工程と、樹脂粒子層における樹脂粒子Pを融点以上に加熱することにより、樹脂粒子層における樹脂粒子Pどうしを融着させて造形層Sを形成する工程と、を繰り返すことで、造形層Sを積層させる。立体造形物の製造装置100は、複数の2次元データの全てに基づく造形が完了すると、3Dモデルと同形状の立体造形物が得られる。 As described above, the three-dimensional model manufacturing apparatus 100 supplies the resin particles P to the modeling tank 140 to form the resin particle layer, and heats the resin particles P in the resin particle layer to a temperature equal to or higher than the melting point to obtain a resin. The modeling layer S is laminated by repeating the steps of fusing the resin particles P in the particle layer to form the modeling layer S. When the modeling based on all of the plurality of two-dimensional data is completed, the three-dimensional model manufacturing apparatus 100 can obtain a three-dimensional model having the same shape as the 3D model.

パージエリア120,160は、余剰な樹脂粒子Pが発生した場合に、ローラ111により移送された余剰な樹脂粒子Pを収容する。 The purge areas 120 and 160 accommodate the surplus resin particles P transferred by the roller 111 when the surplus resin particles P are generated.

ここで、第一温度センサー112,114及び第二温度センサー113,115を設けていない従来の立体造形物の製造装置が、パージエリア120,160に余剰な樹脂粒子Pを収容する動作について説明する。 Here, the operation of the conventional three-dimensional object manufacturing apparatus not provided with the first temperature sensors 112, 114 and the second temperature sensors 113, 115 will describe the operation of accommodating the surplus resin particles P in the purge areas 120 and 160. ..

図3A〜図3Iは、従来の立体造形物の製造装置が、余剰な樹脂粒子をパージエリアに収容する動作の一例を示す説明図である。
まず、立体造形物の製造装置100は、図3Aに示すように、供給槽130の底面を上昇させて樹脂粒子Pを隆起させる。次に、立体造形物の製造装置100は、ローラ111を図3A中の矢印Raの方向に回転させながら矢印Aの方向に移動させ、図3B及び図3Cに示すように、造形槽140の造形領域Zに均しながら樹脂粒子Pを移送して供給し、1層分の厚さとした樹脂粒子層Cを形成する。すると、図3Dに示すように、供給槽150の上面の一部には、余剰な樹脂粒子Pが堆積する。また、造形領域Zに移送された樹脂粒子Pは、ヒータによって加熱される。
3A to 3I are explanatory views showing an example of an operation in which a conventional three-dimensional object manufacturing apparatus accommodates excess resin particles in a purge area.
First, as shown in FIG. 3A, the three-dimensional model manufacturing apparatus 100 raises the bottom surface of the supply tank 130 to raise the resin particles P. Next, the three-dimensional model manufacturing apparatus 100 moves the roller 111 in the direction of arrow A while rotating it in the direction of arrow Ra in FIG. 3A, and as shown in FIGS. 3B and 3C, models the modeling tank 140. The resin particles P are transferred and supplied while being leveled in the region Z to form a resin particle layer C having a thickness equivalent to one layer. Then, as shown in FIG. 3D, excess resin particles P are deposited on a part of the upper surface of the supply tank 150. Further, the resin particles P transferred to the modeling region Z are heated by the heater.

ここで、立体造形物の製造装置100は、3Dモデルから生成される複数の二次元データの入力を受け付ける。立体造形物の製造装置100は、二次元データに基づいてレーザー照射手段170によりレーザーLを選択的に照射させ、その二次元データによって示される画素に対応する位置の樹脂粒子Pを融着させることで造形層Sを形成する。 Here, the three-dimensional model manufacturing apparatus 100 accepts input of a plurality of two-dimensional data generated from the 3D model. The three-dimensional model manufacturing apparatus 100 selectively irradiates the laser L with the laser irradiation means 170 based on the two-dimensional data, and fuses the resin particles P at the positions corresponding to the pixels indicated by the two-dimensional data. The modeling layer S is formed with.

次に、立体造形物の製造装置100は、図3Eに示すように、造形領域Zに樹脂粒子層1層分の厚さの造形スペースが形成されるように造形槽140の底面を降下させる。また、立体造形物の製造装置100は、新たな樹脂粒子Pを造形領域Zに供給可能とするため、供給槽150の底面を上昇させる。続いて、立体造形物の製造装置100は、ローラ111を図3E中の矢印Rbの方向に回転させながら、矢印Bの方向に移動させ、図3F及び図3Gに示すように、造形槽140の造形領域Zに均しながら供給し、1層分の厚さとした樹脂粒子層を形成する。 Next, as shown in FIG. 3E, the three-dimensional model manufacturing apparatus 100 lowers the bottom surface of the modeling tank 140 so that a modeling space having a thickness of one resin particle layer is formed in the modeling region Z. Further, the three-dimensional model manufacturing apparatus 100 raises the bottom surface of the supply tank 150 so that the new resin particles P can be supplied to the modeling region Z. Subsequently, the three-dimensional model manufacturing apparatus 100 moves the roller 111 in the direction of arrow B while rotating the roller 111 in the direction of arrow Rb in FIG. 3E, and as shown in FIGS. 3F and 3G, the modeling tank 140 It is supplied while being leveled to the modeling region Z to form a resin particle layer having a thickness equivalent to one layer.

次に、立体造形物の製造装置100は、供給槽150のステージを上昇させ、余剰な樹脂粒子Pが堆積した樹脂粒子Pを隆起させる。立体造形物の製造装置100は、ローラ111を図3F中の矢印Rbの方向に回転させながら、矢印Bの方向に移動させ、図3Gに示すように、造形槽140の造形領域Zに均しながら供給し、1層分の厚さとした樹脂粒子層Cを形成する。すると、図3Hに示すように、パージエリア120には、余剰な樹脂粒子Pが収容される。そして、再度ローラ111を矢印Aの方向に移動させると、図3Iに示すように、パージエリア120にも余剰な樹脂粒子Pが収容され、これを繰り返すと、図3Jに示すように、パージエリア120,160はいずれも余剰な樹脂粒子Pで溢れてしまう。 Next, the three-dimensional model manufacturing apparatus 100 raises the stage of the supply tank 150 to raise the resin particles P on which the surplus resin particles P are deposited. The three-dimensional model manufacturing apparatus 100 moves the roller 111 in the direction of arrow B while rotating the roller 111 in the direction of arrow Rb in FIG. 3F, and smoothes the roller 111 into the modeling area Z of the modeling tank 140 as shown in FIG. 3G. A resin particle layer C having a thickness equivalent to that of one layer is formed. Then, as shown in FIG. 3H, the purge area 120 contains the surplus resin particles P. Then, when the roller 111 is moved in the direction of the arrow A again, as shown in FIG. 3I, the excess resin particles P are also contained in the purge area 120, and when this is repeated, the purge area is repeated as shown in FIG. 3J. Both 120 and 160 are overflowed with excess resin particles P.

そこで、本実施形態の立体造形物の製造装置100における供給ユニット110は、図2Aに示すように、余剰な樹脂粒子Pの温度を測定する第一温度センサー112に加えて、雰囲気温度を測定する第二温度センサー113を備える。これにより、例えば、雰囲気温度の測定値Xと樹脂粒子Pの温度の測定値Yとの差分を求めることにより、装置内部の雰囲気温度の分布などの外乱の影響をキャンセルできるため、余剰な樹脂粒子Pを精度良く検知することができる。
余剰な樹脂粒子Pの検知は、第一温度センサー112が測定した温度が、第二温度センサー113が測定した温度よりも高い温度に予め設定された所定温度(しきい値)より高いか否かにより行う。具体的には、次式、〔X+(Y−X)/2〕(℃)、をしきい値とし、雰囲気温度Xが120℃で、樹脂粒子の温度Yが150℃の場合には、〔120+(150−120)/2〕=135℃をしきい値とし、雰囲気温度に応じてしきい値を変更した。
Therefore, as shown in FIG. 2A, the supply unit 110 in the three-dimensional model manufacturing apparatus 100 of the present embodiment measures the ambient temperature in addition to the first temperature sensor 112 that measures the temperature of the surplus resin particles P. A second temperature sensor 113 is provided. As a result, for example, by obtaining the difference between the measured value X of the atmospheric temperature and the measured value Y of the temperature of the resin particles P, the influence of disturbance such as the distribution of the atmospheric temperature inside the apparatus can be canceled, so that the excess resin particles P can be detected with high accuracy.
The detection of the excess resin particles P is whether or not the temperature measured by the first temperature sensor 112 is higher than the temperature measured by the second temperature sensor 113 and higher than a predetermined temperature (threshold) set in advance. To do. Specifically, when the following equation, [X + (YX) / 2] (° C.), is set as the threshold value, the atmospheric temperature X is 120 ° C., and the temperature Y of the resin particles is 150 ° C., [ 120+ (150-120) / 2] = 135 ° C. was set as the threshold value, and the threshold value was changed according to the atmospheric temperature.

また、供給ユニット110は、図2Bに示すように、ローラ111を矢印Bの方向に移動させる際には、余剰な樹脂粒子Pを検知できるように、供給槽150で150℃の予熱が加えられた余剰な樹脂粒子Pをその温度で検知する第一温度センサー114と、雰囲気温度を測定する第二温度センサー115とを備える。
これにより、供給ユニット110は、ローラ111を矢印A及び矢印Bのいずれの方向に移動させても余剰な樹脂粒子Pを精度良く検知することができる。
Further, as shown in FIG. 2B, the supply unit 110 is preheated to 150 ° C. in the supply tank 150 so that excess resin particles P can be detected when the roller 111 is moved in the direction of the arrow B. It includes a first temperature sensor 114 that detects excess resin particles P at that temperature, and a second temperature sensor 115 that measures the ambient temperature.
As a result, the supply unit 110 can accurately detect the excess resin particles P regardless of which direction the arrow A or the arrow B moves the roller 111.

なお、立体造形物の製造装置100は、余剰な樹脂粒子Pを検知したか否かに応じて、次に造形領域Zに供給する樹脂粒子Pの量を少なくするように制御することで、余剰な樹脂粒子Pを発生させないようにすることができる。 The three-dimensional model manufacturing apparatus 100 controls to reduce the amount of the resin particles P to be supplied to the modeling region Z next, depending on whether or not the surplus resin particles P are detected. It is possible to prevent the generation of various resin particles P.

(第2の実施形態)
第2の実施形態は、第1の実施形態において、熱可塑性樹脂をポリアミド12(PA12、融点:185℃)からポリプロピレン(PP、融点:125℃)に代え、供給槽130,150の予熱温度をそれぞれ100℃とし、造形槽140の予熱温度を110℃とした以外は、第1の実施形態と同様である。
この場合、供給槽130,150と造形槽140との予熱温度が近く、その予熱温度自体が低く雰囲気温度に近い。このため、温度センサーが1つの場合には、供給槽130,150や造形槽140の樹脂粒子Pが温度センサーに接触しても測定した温度が変化しにくく、余剰な樹脂粒子Pを検知することが困難な場合がある。
(Second embodiment)
In the second embodiment, in the first embodiment, the thermoplastic resin is changed from polyamide 12 (PA12, melting point: 185 ° C.) to polypropylene (PP, melting point: 125 ° C.), and the preheating temperatures of the supply tanks 130 and 150 are set. It is the same as that of the first embodiment except that the temperature is set to 100 ° C. and the preheating temperature of the modeling tank 140 is set to 110 ° C.
In this case, the preheating temperatures of the supply tanks 130 and 150 and the modeling tank 140 are close to each other, and the preheating temperature itself is low and close to the atmospheric temperature. Therefore, when there is only one temperature sensor, the measured temperature does not easily change even if the resin particles P of the supply tanks 130 and 150 and the modeling tank 140 come into contact with the temperature sensor, and excess resin particles P are detected. May be difficult.

そこで、第2の実施形態では、立体造形物の製造装置100は、第1の実施形態と同様に、2つの温度センサーでそれぞれ温度を測定する。これにより、雰囲気温度の測定値と樹脂粒子Pの温度を測定値との差分を求め、装置内部の気流などの外乱の影響をキャンセルすることで、供給槽130,150と造形槽140との予熱温度が近く、その予熱温度自体が低い場合であっても、余剰な樹脂粒子Pを精度良く検知することができる。
第2の実施形態では、第1の実施形態と同様に、余剰な樹脂粒子Pの検知は、第一温度センサー112が測定した温度が、第二温度センサー113が測定した温度よりも高い温度に予め設定された所定温度(しきい値)より高いか否かにより行う。具体的には、しきい値を、次式、〔X+(Y−X)/2〕(℃)、とし、雰囲気温度Xが80℃で、樹脂粒子の温度Yが100℃の場合には、〔80+(100−80)/2〕=90℃をしきい値とし、雰囲気温度に応じてしきい値を変更した。
Therefore, in the second embodiment, the three-dimensional model manufacturing apparatus 100 measures the temperature with two temperature sensors, respectively, as in the first embodiment. As a result, the difference between the measured value of the ambient temperature and the temperature of the resin particles P is obtained, and the influence of disturbance such as the air flow inside the device is canceled to preheat the supply tanks 130 and 150 and the modeling tank 140. Even when the temperature is close and the preheating temperature itself is low, the surplus resin particles P can be detected with high accuracy.
In the second embodiment, as in the first embodiment, the detection of the excess resin particles P is such that the temperature measured by the first temperature sensor 112 is higher than the temperature measured by the second temperature sensor 113. This is performed depending on whether or not the temperature is higher than a preset predetermined temperature (threshold). Specifically, when the threshold value is the following equation, [X + (Y−X) / 2] (° C.), the atmospheric temperature X is 80 ° C., and the temperature Y of the resin particles is 100 ° C., [80+ (100-80) / 2] = 90 ° C. was set as the threshold value, and the threshold value was changed according to the atmospheric temperature.

このように、次式、|X−Y|≦20℃、を満たす場合、即ち雰囲気温度と樹脂粒子の温度との差が小さい場合には、樹脂粒子の温度を測定する温度センサーのみであると、装置内の気流などの外乱により雰囲気温度の測定値が変化してしきい値を容易に超えてしまうため、誤検知しやすい。この点、立体造形物の製造装置100は、外乱の影響をキャンセルできるため、次式、|X−Y|≦20℃、を満たす場合であっても、余剰な樹脂粒子を精度良く検知できる。 As described above, when the following equation, | XY | ≤20 ° C. is satisfied, that is, when the difference between the ambient temperature and the temperature of the resin particles is small, only the temperature sensor that measures the temperature of the resin particles is used. Since the measured value of the ambient temperature changes due to disturbances such as airflow in the device and easily exceeds the threshold value, erroneous detection is likely to occur. In this respect, since the three-dimensional model manufacturing apparatus 100 can cancel the influence of disturbance, excess resin particles can be accurately detected even when the following equation, | XY | ≤ 20 ° C., is satisfied.

以上説明したように、本発明の立体造形物の製造装置は、造形領域に樹脂粒子を移送して樹脂粒子層を形成する層形成手段と、造形領域における樹脂粒子層にエネルギーを選択的に付与して、樹脂粒子層における樹脂粒子どうしを融着させるエネルギー付与手段とを有する。層形成手段は、樹脂粒子を移送させる樹脂粒子移送部と、第一温度センサーと、第二温度センサーとを有する。この第一温度センサーは、樹脂粒子を移送させる樹脂粒子移送部の近傍であって、かつ造形領域に移送する樹脂粒子の量が所定量を超えたときに樹脂粒子と接触可能な位置に配され、樹脂粒子と接触した際における樹脂粒子の温度を測定する。また、第二温度センサーは、第一温度センサーの近傍であって、かつ樹脂粒子と接触不可能な位置に配され、樹脂粒子層が露出する造形領域の雰囲気温度を測定する。これにより、例えば、雰囲気温度の測定値と樹脂粒子の温度を測定値との差分を求め、装置内部の温度分布や気流などの外乱の影響をキャンセルすることにより、余剰な樹脂粒子を精度良く検知できるようにした。
なお、立体造形物の製造装置は、余剰な樹脂粒子を検知したか否かに応じて、次に造形領域に供給する樹脂粒子の量を少なくするように制御することで、余剰な樹脂粒子を発生させないようにすることができる。
As described above, the three-dimensional model manufacturing apparatus of the present invention selectively applies energy to the layer forming means for transferring the resin particles to the modeling region to form the resin particle layer and the resin particle layer in the modeling region. Then, it has an energy imparting means for fusing the resin particles in the resin particle layer. The layer forming means includes a resin particle transfer unit for transferring resin particles, a first temperature sensor, and a second temperature sensor. This first temperature sensor is arranged in the vicinity of the resin particle transfer portion for transferring the resin particles and at a position where the resin particles can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount. , Measure the temperature of the resin particles when they come into contact with the resin particles. Further, the second temperature sensor is arranged in the vicinity of the first temperature sensor and at a position where it cannot come into contact with the resin particles, and measures the ambient temperature of the modeling region where the resin particle layer is exposed. As a result, for example, the difference between the measured value of the ambient temperature and the measured value of the temperature of the resin particles is obtained, and the influence of disturbances such as the temperature distribution inside the device and the air flow is canceled, so that the excess resin particles are detected accurately. I made it possible.
It should be noted that the three-dimensional model manufacturing apparatus controls the amount of the resin particles to be supplied to the modeling area next depending on whether or not the excess resin particles are detected, thereby producing the excess resin particles. It can be prevented from occurring.

本発明の態様は、例えば、以下のとおりである。
<1> 造形領域に樹脂粒子を移送して樹脂粒子層を形成する層形成手段と、
前記造形領域における前記樹脂粒子層にエネルギーを選択的に付与して、前記樹脂粒子層における前記樹脂粒子どうしを融着させるエネルギー付与手段と、を有し、
前記層形成手段が、
前記樹脂粒子を移送させる樹脂粒子移送部と、
前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、
前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、
を有することを特徴とする立体造形物の製造装置である。
<2> 前記層形成手段における前記樹脂粒子移送部がローラである、前記<1>に記載の立体造形物の製造装置である。
<3> 前記層形成手段が、前記第一温度センサーが測定した温度が、前記第二温度センサーが測定した温度よりも高い温度に予め設定された所定温度よりも高いか否かを検知可能である、前記<1>から<2>のいずれかに記載の立体造形物の製造装置である。
<4> 前記予め設定された所定温度が、前記第二温度センサーが測定した温度をX(℃)とし、前記樹脂粒子の温度をY(℃)としたとき、次式、〔X+(Y−X)/2〕(℃)、で表される、前記<3>に記載の立体造形物の製造装置である。
<5> 次式、|X−Y|≦20(℃)、を満たす、前記<4>に記載の立体造形物の製造装置である。
<6> 立体造形物の製造装置に用いられ、前記立体造形物の製造装置における造形領域に移送された樹脂粒子の量が所定量を超えたことを検知する余剰樹脂粒子検知装置であって、
前記造形領域に前記樹脂粒子を移送して樹脂粒子層を形成する樹脂粒子移送部と、
前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、
前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、
を有することを特徴とする余剰樹脂粒子検知装置である。
<7> 前記樹脂粒子移送部がローラである、前記<6>に記載の余剰樹脂粒子検知装置である。
<8> 前記第一温度センサーが測定した温度が、前記第二温度センサーが測定した温度よりも高い温度に予め設定された所定温度よりも高いか否かを検知可能である、前記<6>から<7>のいずれかに記載の余剰樹脂粒子検知装置である。
<9> 前記予め設定された所定温度が、前記第二温度センサーが測定した温度をX(℃)とし、前記樹脂粒子の温度をY(℃)としたとき、次式、〔X+(Y−X)/2〕(℃)、で表される、前記<8>に記載の余剰樹脂粒子検知装置である。
<10> 次式、|X−Y|≦20(℃)、を満たす、前記<9>に記載の余剰樹脂粒子検知装置である。
Aspects of the present invention are, for example, as follows.
<1> A layer forming means for transferring resin particles to a modeling region to form a resin particle layer, and
It has an energy applying means for selectively applying energy to the resin particle layer in the modeling region to fuse the resin particles in the resin particle layer.
The layer forming means
A resin particle transfer unit for transferring the resin particles and
When the resin particles are arranged in the vicinity of the resin particle transfer portion and in a position where they can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount and come into contact with the resin particles. The first temperature sensor that measures the temperature of the resin particles in
A second temperature sensor that measures the ambient temperature of the modeling region that is located near the first temperature sensor and is in contact with the resin particles and exposes the resin particle layer.
A means for storing individual differences between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor in advance, and
Excess resin particles were generated by the circuit that detects that a predetermined temperature difference was generated as a result of adding the individual difference to the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor. With a circuit that accurately detects
It is a three-dimensional model manufacturing apparatus characterized by having.
<2> The apparatus for manufacturing a three-dimensional model according to <1>, wherein the resin particle transfer portion in the layer forming means is a roller.
<3> The layer forming means can detect whether or not the temperature measured by the first temperature sensor is higher than the temperature measured by the second temperature sensor and higher than a predetermined temperature set in advance. A device for manufacturing a three-dimensional model according to any one of <1> to <2>.
<4> When the preset predetermined temperature is the temperature measured by the second temperature sensor as X (° C.) and the temperature of the resin particles is Y (° C.), the following equation, [X + (Y−) X) / 2] (° C.), which is the apparatus for manufacturing a three-dimensional model according to <3>.
<5> The apparatus for manufacturing a three-dimensional model according to <4>, which satisfies the following equation, | XY | ≤20 (° C.).
<6> A surplus resin particle detection device that is used in a three-dimensional model manufacturing device and detects that the amount of resin particles transferred to the modeling area in the three-dimensional model manufacturing device exceeds a predetermined amount.
A resin particle transfer unit that transfers the resin particles to the modeling region to form a resin particle layer,
When the resin particles are arranged in the vicinity of the resin particle transfer portion and in a position where they can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount and come into contact with the resin particles. The first temperature sensor that measures the temperature of the resin particles in
A second temperature sensor that measures the ambient temperature of the modeling region that is located near the first temperature sensor and is in contact with the resin particles and exposes the resin particle layer.
A means for storing individual differences between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor in advance, and
Excess resin particles were generated by the circuit that detects that a predetermined temperature difference was generated as a result of adding the individual difference to the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor. With a circuit that accurately detects
It is a surplus resin particle detection device characterized by having.
<7> The surplus resin particle detection device according to <6>, wherein the resin particle transfer unit is a roller.
<8> It is possible to detect whether or not the temperature measured by the first temperature sensor is higher than the temperature measured by the second temperature sensor and higher than a predetermined temperature set in advance. <6> The surplus resin particle detection device according to any one of <7>.
<9> When the preset predetermined temperature is the temperature measured by the second temperature sensor as X (° C.) and the temperature of the resin particles is Y (° C.), the following equation, [X + (Y−) X) / 2] (° C.), which is the surplus resin particle detection device according to <8>.
<10> The surplus resin particle detection device according to <9>, which satisfies the following equation, | XY | ≤20 (° C.).

前記<1>から<5>のいずれかに記載の立体造形物の製造装置、及び前記<6>から<10>のいずれかに記載の余剰樹脂粒子検知装置によると、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。 According to the device for manufacturing a three-dimensional model according to any one of <1> to <5> and the surplus resin particle detection device according to any one of <6> to <10>, the above-mentioned problems in the prior art can be solved. It can be solved and the object of the present invention can be achieved.

特開2018−15972号公報Japanese Unexamined Patent Publication No. 2018-15792 特許第4866145号公報Japanese Patent No. 4866145

100 立体造形物の製造装置(余剰樹脂粒子検知装置)
110 供給ユニット(層形成手段)
111 ローラ(樹脂粒子移送部)
112,114 第一温度センサー
113,115 第二温度センサー
120,160 パージエリア
130,150 供給槽
140 造形槽
170 レーザー照射手段(エネルギー付与手段)
C 樹脂粒子層
P 樹脂粒子
S 造形層
Z 造形領域
100 Three-dimensional model manufacturing equipment (surplus resin particle detection equipment)
110 Supply unit (layer forming means)
111 Roller (resin particle transfer part)
112, 114 First temperature sensor 113, 115 Second temperature sensor 120, 160 Purge area 130, 150 Supply tank 140 Modeling tank 170 Laser irradiation means (energy applying means)
C Resin particle layer P Resin particles S Modeling layer Z Modeling area

Claims (10)

造形領域に樹脂粒子を移送して樹脂粒子層を形成する層形成手段と、
前記造形領域における前記樹脂粒子層にエネルギーを選択的に付与して、前記樹脂粒子層における前記樹脂粒子どうしを融着させるエネルギー付与手段とを有し、
前記層形成手段が、
前記樹脂粒子を移送させる樹脂粒子移送部と、
前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、
前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、
を有することを特徴とする立体造形物の製造装置。
A layer forming means for transferring resin particles to a modeling region to form a resin particle layer,
It has an energy applying means for selectively applying energy to the resin particle layer in the modeling region and fusing the resin particles in the resin particle layer.
The layer forming means
A resin particle transfer unit for transferring the resin particles and
When the resin particles are arranged in the vicinity of the resin particle transfer portion and in a position where they can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount and come into contact with the resin particles. The first temperature sensor that measures the temperature of the resin particles in
A second temperature sensor that measures the ambient temperature of the modeling region that is located near the first temperature sensor and is in contact with the resin particles and exposes the resin particle layer.
A means for storing individual differences between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor in advance, and
Excess resin particles were generated by the circuit that detects that a predetermined temperature difference was generated as a result of adding the individual difference to the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor. With a circuit that accurately detects
A device for manufacturing a three-dimensional object, which is characterized by having.
前記層形成手段における前記樹脂粒子移送部がローラである、請求項1に記載の立体造形物の製造装置。 The apparatus for manufacturing a three-dimensional model according to claim 1, wherein the resin particle transfer portion in the layer forming means is a roller. 前記層形成手段が、
前記第一温度センサーが測定した温度が、前記第二温度センサーが測定した温度よりも高い温度に予め設定された所定温度よりも高いか否かを検知可能である、請求項1から2のいずれかに記載の立体造形物の製造装置。
The layer forming means
Any of claims 1 and 2, which can detect whether or not the temperature measured by the first temperature sensor is higher than the temperature measured by the second temperature sensor and higher than a predetermined temperature set in advance. A device for manufacturing a three-dimensional model described in Crab.
前記予め設定された所定温度が、前記第二温度センサーが測定した温度をX(℃)とし、前記樹脂粒子の温度をY(℃)としたとき、次式、〔X+(Y−X)/2〕(℃)、で表される、請求項3に記載の立体造形物の製造装置。 When the preset predetermined temperature is the temperature measured by the second temperature sensor as X (° C.) and the temperature of the resin particles is Y (° C.), the following equation, [X + (YX) / 2] The apparatus for manufacturing a three-dimensional model according to claim 3, which is represented by (° C.). 次式、|X−Y|≦20(℃)、を満たす、請求項4に記載の立体造形物の製造装置。 The apparatus for manufacturing a three-dimensional model according to claim 4, wherein the following equation, | XY | ≤20 (° C.), is satisfied. 立体造形物の製造装置に用いられ、前記立体造形物の製造装置における造形領域に移送された樹脂粒子の量が所定量を超えたことを検知する余剰樹脂粒子検知装置であって、
前記造形領域に前記樹脂粒子を移送して樹脂粒子層を形成する樹脂粒子移送部と、
前記樹脂粒子移送部の近傍であって、かつ前記造形領域に移送する前記樹脂粒子の量が所定量を超えたときに前記樹脂粒子と接触可能な位置に配され、前記樹脂粒子と接触した際における前記樹脂粒子の温度を測定する第一温度センサーと、
前記第一温度センサーの近傍であって、かつ前記樹脂粒子と接触不可能な位置に配され、前記樹脂粒子層が露出する前記造形領域の雰囲気温度を測定する第二温度センサーと、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度の個体差をあらかじめ記憶しておく手段と、
前記第一温度センサーが測定した温度と前記第二温度センサーが測定した温度に前記個体差を加味した結果、所定の温度差が発生したことを検知する回路により、余剰な樹脂粒子が発生したことを精度良く検知する回路と、
を有することを特徴とする余剰樹脂粒子検知装置。
A surplus resin particle detection device that is used in a three-dimensional model manufacturing device and detects that the amount of resin particles transferred to the modeling area in the three-dimensional model manufacturing device exceeds a predetermined amount.
A resin particle transfer unit that transfers the resin particles to the modeling region to form a resin particle layer,
When the resin particles are arranged in the vicinity of the resin particle transfer portion and in a position where they can come into contact with the resin particles when the amount of the resin particles transferred to the modeling region exceeds a predetermined amount and come into contact with the resin particles. The first temperature sensor that measures the temperature of the resin particles in
A second temperature sensor that measures the ambient temperature of the modeling region that is located near the first temperature sensor and is in contact with the resin particles and exposes the resin particle layer.
A means for storing individual differences between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor in advance, and
Excess resin particles were generated by the circuit that detects that a predetermined temperature difference was generated as a result of adding the individual difference to the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor. With a circuit that accurately detects
A surplus resin particle detection device characterized by having.
前記樹脂粒子移送部がローラである、請求項6に記載の余剰樹脂粒子検知装置。 The surplus resin particle detection device according to claim 6, wherein the resin particle transfer unit is a roller. 前記第一温度センサーが測定した温度が、前記第二温度センサーが測定した温度よりも高い温度に予め設定された所定温度よりも高いか否かを検知可能である、請求項6から7のいずれかに記載の余剰樹脂粒子検知装置。 Any of claims 6 to 7, wherein it is possible to detect whether or not the temperature measured by the first temperature sensor is higher than the temperature measured by the second temperature sensor and higher than a predetermined temperature set in advance. Excess resin particle detection device described in Crab. 前記予め設定された所定温度が、前記第二温度センサーが測定した温度をX(℃)とし、前記樹脂粒子の温度をY(℃)としたとき、次式、〔X+(Y−X)/2〕(℃)、で表される、請求項8に記載の余剰樹脂粒子検知装置。 When the preset predetermined temperature is the temperature measured by the second temperature sensor as X (° C.) and the temperature of the resin particles is Y (° C.), the following equation, [X + (YX) / 2] The surplus resin particle detection device according to claim 8, which is represented by (° C.). 次式、|X−Y|≦20(℃)、を満たす、請求項9に記載の余剰樹脂粒子検知装置。 The surplus resin particle detection device according to claim 9, wherein the following equation, | XY | ≤20 (° C.), is satisfied.
JP2019235622A 2019-12-26 2019-12-26 Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles Pending JP2021104581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019235622A JP2021104581A (en) 2019-12-26 2019-12-26 Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019235622A JP2021104581A (en) 2019-12-26 2019-12-26 Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles

Publications (1)

Publication Number Publication Date
JP2021104581A true JP2021104581A (en) 2021-07-26

Family

ID=76919305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235622A Pending JP2021104581A (en) 2019-12-26 2019-12-26 Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles

Country Status (1)

Country Link
JP (1) JP2021104581A (en)

Similar Documents

Publication Publication Date Title
JP6825333B2 (en) Manufacturing method of three-dimensional model and manufacturing equipment of three-dimensional model
JP6958217B2 (en) Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling
US11801633B2 (en) Apparatuses for continuously refreshing a recoater blade for additive manufacturing including a blade feed unit and arm portion
EP3601416A1 (en) Resin powder for producing three-dimensional object, three-dimensional object producing method, and three-dimensional object producing apparatus
WO2018173755A1 (en) Resin powder for producing three-dimensional object, three-dimensional object producing method, and three-dimensional object producing apparatus
US11458678B2 (en) Method for SLS of PEKK and articles manufactured from the same
CN102886900B (en) Improved component characteristics through rays in laser sintering
JP2018015972A (en) Three-dimensional molding method, molded article and three-dimensional molding apparatus
CN109108283B (en) Method of manufacturing an article and apparatus for metal-based additive manufacturing
AU2018229975B2 (en) 3D printing nozzle calibration inside a heated chamber
US10751946B2 (en) Build material analysis
JP2019135092A (en) Manufacturing method of three-dimensional object and manufacturing apparatus of three-dimensional object
JP2021104581A (en) Manufacturing device of three-dimensional shaped product, and detection device of excess resin particles
US20200290277A1 (en) Modeling apparatus, method, and computer readable medium
CN113767005B (en) Additive manufacturing systems, methods, and media
Austermann et al. Influence of material modification and fillers on the dimensional stability and warpage of polypropylene in screw‐extrusion‐based large area additive manufacturing
EP3593999B1 (en) Method of analytically determining laser power for sintering
JP2019151012A (en) Three-dimensional object manufacturing apparatus, three-dimensional object manufacturing method, and three-dimensional object manufacturing program
CN110132883A (en) Terahertz inspection to increasing material manufacturing material
Kurfess A thermally-driven design methodology for large-scale polymer additive manufacturing systems
Biswal et al. Development of a laser‐assisted fused deposition modeling process for improvement in bond tensile strength of ABS
Phillips et al. Smart manufacturing in additive manufacturing
JP2020082628A (en) Molding apparatus, molding method and molding program
Sharma et al. Challenges Associated with 3D Printing of Poly-Ether-Ether Ketone (PEEK) Components
JP2020093515A (en) Powder for stereo-lithography, molding device, molding method and powder