JP2021104190A - Space adjustment device and space adjustment method - Google Patents
Space adjustment device and space adjustment method Download PDFInfo
- Publication number
- JP2021104190A JP2021104190A JP2019236632A JP2019236632A JP2021104190A JP 2021104190 A JP2021104190 A JP 2021104190A JP 2019236632 A JP2019236632 A JP 2019236632A JP 2019236632 A JP2019236632 A JP 2019236632A JP 2021104190 A JP2021104190 A JP 2021104190A
- Authority
- JP
- Japan
- Prior art keywords
- plant
- space
- volatile component
- volatile
- release
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 claims abstract description 46
- 230000008786 sensory perception of smell Effects 0.000 claims abstract description 33
- 229960003692 gamma aminobutyric acid Drugs 0.000 claims abstract description 31
- 210000005036 nerve Anatomy 0.000 claims abstract description 26
- 241000196324 Embryophyta Species 0.000 claims description 300
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 52
- 241000218922 Magnoliophyta Species 0.000 claims description 25
- 150000003505 terpenes Chemical class 0.000 claims description 25
- 241000195940 Bryophyta Species 0.000 claims description 22
- 235000007586 terpenes Nutrition 0.000 claims description 22
- 229930004725 sesquiterpene Natural products 0.000 claims description 17
- 230000002889 sympathetic effect Effects 0.000 claims description 16
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 claims description 15
- 150000004354 sesquiterpene derivatives Chemical class 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 210000005037 parasympathetic nerve Anatomy 0.000 claims description 12
- 229930003658 monoterpene Natural products 0.000 claims description 9
- 150000002773 monoterpene derivatives Chemical class 0.000 claims description 9
- 235000002577 monoterpenes Nutrition 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 210000002265 sensory receptor cell Anatomy 0.000 claims description 7
- 230000033228 biological regulation Effects 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 6
- 230000003750 conditioning effect Effects 0.000 claims 1
- 230000003340 mental effect Effects 0.000 abstract description 19
- 230000000694 effects Effects 0.000 abstract description 17
- 230000003371 gabaergic effect Effects 0.000 abstract description 11
- 239000000341 volatile oil Substances 0.000 description 84
- 239000000203 mixture Substances 0.000 description 42
- 239000000126 substance Substances 0.000 description 39
- 108020003175 receptors Proteins 0.000 description 20
- 102000005962 receptors Human genes 0.000 description 20
- 239000003337 fertilizer Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 19
- 229910017464 nitrogen compound Inorganic materials 0.000 description 15
- 150000002830 nitrogen compounds Chemical class 0.000 description 15
- 230000000845 anti-microbial effect Effects 0.000 description 14
- 239000000470 constituent Substances 0.000 description 14
- 230000002040 relaxant effect Effects 0.000 description 14
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 12
- RXBQNMWIQKOSCS-UHFFFAOYSA-N (7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)methanol Chemical compound C1C2C(C)(C)C1CC=C2CO RXBQNMWIQKOSCS-UHFFFAOYSA-N 0.000 description 12
- 241000218631 Coniferophyta Species 0.000 description 12
- 230000003078 antioxidant effect Effects 0.000 description 12
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 12
- 240000005109 Cryptomeria japonica Species 0.000 description 11
- 241000255925 Diptera Species 0.000 description 11
- 244000301850 Cupressus sempervirens Species 0.000 description 10
- 241000196323 Marchantiophyta Species 0.000 description 10
- 238000007599 discharging Methods 0.000 description 10
- 230000002262 irrigation Effects 0.000 description 10
- 238000003973 irrigation Methods 0.000 description 10
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 10
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 9
- 235000016626 Agrimonia eupatoria Nutrition 0.000 description 9
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 9
- 235000013305 food Nutrition 0.000 description 9
- 230000004936 stimulating effect Effects 0.000 description 9
- 239000012855 volatile organic compound Substances 0.000 description 9
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- WONIGEXYPVIKFS-UHFFFAOYSA-N Verbenol Chemical compound CC1=CC(O)C2C(C)(C)C1C2 WONIGEXYPVIKFS-UHFFFAOYSA-N 0.000 description 8
- 230000000843 anti-fungal effect Effects 0.000 description 8
- 229940041616 menthol Drugs 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 240000002924 Platycladus orientalis Species 0.000 description 7
- IPZIYGAXCZTOMH-UHFFFAOYSA-N alpha-eudesmol Natural products CC1=CCCC2CCC(CC12)C(C)(C)O IPZIYGAXCZTOMH-UHFFFAOYSA-N 0.000 description 7
- WWULHQLTPGKDAM-UHFFFAOYSA-N gamma-eudesmol Natural products CC(C)C1CC(O)C2(C)CCCC(=C2C1)C WWULHQLTPGKDAM-UHFFFAOYSA-N 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- FUCYIEXQVQJBKY-ZFWWWQNUSA-N (+)-δ-Cadinene Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CCC(C)=C21 FUCYIEXQVQJBKY-ZFWWWQNUSA-N 0.000 description 6
- 241000790519 Asterella africana Species 0.000 description 6
- 244000035851 Chrysanthemum leucanthemum Species 0.000 description 6
- 235000008495 Chrysanthemum leucanthemum Nutrition 0.000 description 6
- 235000004357 Mentha x piperita Nutrition 0.000 description 6
- 241001479543 Mentha x piperita Species 0.000 description 6
- RXBQNMWIQKOSCS-RKDXNWHRSA-N Myrtenol Natural products C1[C@H]2C(C)(C)[C@@H]1CC=C2CO RXBQNMWIQKOSCS-RKDXNWHRSA-N 0.000 description 6
- 240000005125 Myrtus communis Species 0.000 description 6
- 235000013418 Myrtus communis Nutrition 0.000 description 6
- QMAYBMKBYCGXDH-UHFFFAOYSA-N alpha-amorphene Natural products C1CC(C)=CC2C(C(C)C)CC=C(C)C21 QMAYBMKBYCGXDH-UHFFFAOYSA-N 0.000 description 6
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- YOCDGWMCBBMMGJ-UHFFFAOYSA-N delta-cadinene Natural products C1C=C(C)CC2C(C(C)C)CCC(=C)C21 YOCDGWMCBBMMGJ-UHFFFAOYSA-N 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 6
- USDOQCCMRDNVAH-UHFFFAOYSA-N sigma-cadinene Natural products C1C=C(C)CC2C(C(C)C)CC=C(C)C21 USDOQCCMRDNVAH-UHFFFAOYSA-N 0.000 description 6
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 5
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 5
- 241001311472 Abies sachalinensis Species 0.000 description 5
- 235000011201 Ginkgo Nutrition 0.000 description 5
- 244000194101 Ginkgo biloba Species 0.000 description 5
- 235000008100 Ginkgo biloba Nutrition 0.000 description 5
- TWVJWDMOZJXUID-SDDRHHMPSA-N Guaiol Chemical compound C1([C@H](CC[C@H](C2)C(C)(C)O)C)=C2[C@@H](C)CC1 TWVJWDMOZJXUID-SDDRHHMPSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- TWVJWDMOZJXUID-QJPTWQEYSA-N guaiol Natural products OC(C)(C)[C@H]1CC=2[C@H](C)CCC=2[C@@H](C)CC1 TWVJWDMOZJXUID-QJPTWQEYSA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229930007744 linalool Natural products 0.000 description 5
- 230000008035 nerve activity Effects 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 241000736280 Bazzania Species 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 240000005308 Juniperus chinensis Species 0.000 description 4
- 241000707701 Plagiochila bifaria Species 0.000 description 4
- 244000178231 Rosmarinus officinalis Species 0.000 description 4
- 235000005710 Santolina chamaecyparissus Nutrition 0.000 description 4
- 244000082975 Santolina chamaecyparissus Species 0.000 description 4
- 241001072888 Teucrium Species 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 4
- 229940026455 cedrol Drugs 0.000 description 4
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 4
- 235000001510 limonene Nutrition 0.000 description 4
- 229940087305 limonene Drugs 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000001734 parasympathetic effect Effects 0.000 description 4
- 235000015639 rosmarinus officinalis Nutrition 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- 240000000073 Achillea millefolium Species 0.000 description 3
- 235000007754 Achillea millefolium Nutrition 0.000 description 3
- 241000404033 Ajania fruticulosa Species 0.000 description 3
- 241001519271 Ajuga Species 0.000 description 3
- 235000000008 Alchemilla vulgaris Nutrition 0.000 description 3
- 241001468370 Anthoceros caucasicus Species 0.000 description 3
- 241000557793 Calypogeia muelleriana Species 0.000 description 3
- 241001003163 Chandonanthus Species 0.000 description 3
- IRZWAJHUWGZMMT-UHFFFAOYSA-N Chrysanthenol Natural products CC1=CCC2C(C)(C)C1C2O IRZWAJHUWGZMMT-UHFFFAOYSA-N 0.000 description 3
- 241000134376 Conocephalum conicum Species 0.000 description 3
- 244000168525 Croton tiglium Species 0.000 description 3
- 241001529849 Dracocephalum Species 0.000 description 3
- 241001180225 Drepanolejeunea Species 0.000 description 3
- 244000308760 Helichrysum petiolatum Species 0.000 description 3
- 241001219653 Homalia trichomanoides Species 0.000 description 3
- 241000195932 Jungermannia Species 0.000 description 3
- 241000592238 Juniperus communis Species 0.000 description 3
- 241001530572 Lavandula stoechas Species 0.000 description 3
- 235000010661 Lavandula stoechas Nutrition 0.000 description 3
- 241001405826 Lepidolaena clavigera Species 0.000 description 3
- 241001375772 Lophozia ventricosa Species 0.000 description 3
- 241000557163 Marchantia paleacea Species 0.000 description 3
- 244000182802 Mentha sylvestris Species 0.000 description 3
- 235000002901 Mentha sylvestris Nutrition 0.000 description 3
- 241000134379 Mnium hornum Species 0.000 description 3
- 241001059292 Plagiochila retrorsa Species 0.000 description 3
- 244000004774 Sabina virginiana Species 0.000 description 3
- 235000008691 Sabina virginiana Nutrition 0.000 description 3
- 241001116498 Taxus baccata Species 0.000 description 3
- 235000007236 Thymus mastichina Nutrition 0.000 description 3
- 240000006219 Thymus mastichina Species 0.000 description 3
- 240000002657 Thymus vulgaris Species 0.000 description 3
- 235000007303 Thymus vulgaris Nutrition 0.000 description 3
- 241001662415 Trichocolea pluma Species 0.000 description 3
- 241000606265 Valeriana jatamansi Species 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 229960005233 cineole Drugs 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000004141 diterpene derivatives Chemical class 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- 230000001932 seasonal effect Effects 0.000 description 3
- 239000001585 thymus vulgaris Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 241000238876 Acari Species 0.000 description 2
- 241000722941 Achillea Species 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 241000256118 Aedes aegypti Species 0.000 description 2
- 241001140361 Ajania nematoloba Species 0.000 description 2
- 244000082872 Alchemilla vulgaris Species 0.000 description 2
- 240000008554 Aloysia triphylla Species 0.000 description 2
- 235000013668 Aloysia triphylla Nutrition 0.000 description 2
- 241001247482 Amsonia Species 0.000 description 2
- 241001547433 Anemopsis californica Species 0.000 description 2
- 241000404028 Anthemis Species 0.000 description 2
- 235000001405 Artemisia annua Nutrition 0.000 description 2
- 240000000011 Artemisia annua Species 0.000 description 2
- 235000004039 Artemisia santolina Nutrition 0.000 description 2
- 241001201010 Artemisia santolina Species 0.000 description 2
- 241000132011 Atractylodes lancea Species 0.000 description 2
- 241000736281 Bazzania trilobata Species 0.000 description 2
- 235000021533 Beta vulgaris Nutrition 0.000 description 2
- 241000335053 Beta vulgaris Species 0.000 description 2
- 235000003717 Boswellia sacra Nutrition 0.000 description 2
- 241000518465 Buckiella undulata Species 0.000 description 2
- 241000243771 Bursaphelenchus xylophilus Species 0.000 description 2
- 241000907862 Callosobruchus maculatus Species 0.000 description 2
- 241000218646 Cedrus deodara Species 0.000 description 2
- 241000718035 Cenchrus echinatus Species 0.000 description 2
- 241000723436 Chamaecyparis obtusa Species 0.000 description 2
- 241000422842 Chamaecyparis pisifera Species 0.000 description 2
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- 244000290929 Coridothymus capitatus Species 0.000 description 2
- 235000000294 Coridothymus capitatus Nutrition 0.000 description 2
- 241000894679 Corsinia coriandrina Species 0.000 description 2
- 241000256113 Culicidae Species 0.000 description 2
- 241000218691 Cupressaceae Species 0.000 description 2
- 241000036343 Cupressus atlantica Species 0.000 description 2
- 244000235531 Cupressus funebris Species 0.000 description 2
- 241001337353 Elionurus tristis Species 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 241001299561 Grindelia integrifolia Species 0.000 description 2
- 244000196755 Hesperocyparis lusitanica Species 0.000 description 2
- 244000169657 Hyptis suaveolens Species 0.000 description 2
- 235000004185 Hyptis suaveolens Nutrition 0.000 description 2
- 241000842649 Jackiella javanica Species 0.000 description 2
- 241001647576 Juniperus excelsa Species 0.000 description 2
- 241000879986 Juniperus phoenicea Species 0.000 description 2
- 235000014556 Juniperus scopulorum Nutrition 0.000 description 2
- 244000197239 Juniperus scopulorum Species 0.000 description 2
- 241000207923 Lamiaceae Species 0.000 description 2
- 244000178870 Lavandula angustifolia Species 0.000 description 2
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 2
- 235000010658 Lavandula latifolia Nutrition 0.000 description 2
- 244000178860 Lavandula latifolia Species 0.000 description 2
- 241001227551 Lavandula x intermedia Species 0.000 description 2
- 241000441857 Lepidozia vitrea Species 0.000 description 2
- 241001362029 Marsupella emarginata Species 0.000 description 2
- 244000042664 Matricaria chamomilla Species 0.000 description 2
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 2
- 240000007707 Mentha arvensis Species 0.000 description 2
- 235000018978 Mentha arvensis Nutrition 0.000 description 2
- 244000245214 Mentha canadensis Species 0.000 description 2
- 244000024873 Mentha crispa Species 0.000 description 2
- 235000014749 Mentha crispa Nutrition 0.000 description 2
- 235000001878 Mentha haplocalyx Nutrition 0.000 description 2
- 241000941715 Micromeria cristata Species 0.000 description 2
- 241001381533 Mnium marginatum Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 240000003191 Myroxylon peruiferum Species 0.000 description 2
- 241001258872 Neoorthocaulis floerkei Species 0.000 description 2
- 241001303775 Phlomis Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000948309 Picea jezoensis Species 0.000 description 2
- 241001487824 Pilgerodendron uviferum Species 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 235000000405 Pinus densiflora Nutrition 0.000 description 2
- 240000008670 Pinus densiflora Species 0.000 description 2
- 235000011608 Pinus heldreichii Nutrition 0.000 description 2
- 241000018649 Pinus heldreichii Species 0.000 description 2
- 241001236213 Pinus peuce Species 0.000 description 2
- 241000518503 Plagiochila Species 0.000 description 2
- 241000066364 Plagiochila maderensis Species 0.000 description 2
- 241000718014 Plagiochila stricta Species 0.000 description 2
- 241000371712 Plagiomnium undulatum Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- 241000218976 Populus trichocarpa Species 0.000 description 2
- 241000133620 Porella navicularis Species 0.000 description 2
- 241000519519 Preissia quadrata Species 0.000 description 2
- 244000184734 Pyrus japonica Species 0.000 description 2
- 241000054672 Radula boryana Species 0.000 description 2
- 241000054678 Radula carringtonii Species 0.000 description 2
- 241001529742 Rosmarinus Species 0.000 description 2
- 241001082253 Salvia multicaulis Species 0.000 description 2
- 244000007853 Sarothamnus scoparius Species 0.000 description 2
- 235000010495 Sarothamnus scoparius Nutrition 0.000 description 2
- 241001596613 Scapania undulata Species 0.000 description 2
- 235000005151 Schinus molle Nutrition 0.000 description 2
- 240000008202 Schinus molle Species 0.000 description 2
- 241000285622 Smyrnium cordifolium Species 0.000 description 2
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 2
- 235000016641 Syzygium paniculatum Nutrition 0.000 description 2
- 244000223082 Syzygium paniculatum Species 0.000 description 2
- 241000736873 Tetraclinis articulata Species 0.000 description 2
- 235000019041 Teucrium polium Nutrition 0.000 description 2
- 240000002218 Teucrium polium Species 0.000 description 2
- 241001336776 Thapsia garganica Species 0.000 description 2
- 235000008109 Thuja occidentalis Nutrition 0.000 description 2
- 240000003243 Thuja occidentalis Species 0.000 description 2
- 241001614769 Trachydium roylei Species 0.000 description 2
- 241001048068 Tritomaria quinquedentata Species 0.000 description 2
- 241001505102 Valeriana fauriei Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 230000001887 anti-feedant effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 235000001053 badasse Nutrition 0.000 description 2
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000000749 insecticidal effect Effects 0.000 description 2
- 230000000974 larvacidal effect Effects 0.000 description 2
- 235000009606 lavandin Nutrition 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000001771 mentha piperita Substances 0.000 description 2
- 239000001220 mentha spicata Substances 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 235000017807 phytochemicals Nutrition 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 229930000223 plant secondary metabolite Natural products 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- AYZYZJOUAKBQDF-UHFFFAOYSA-N (-)-7-epi-isojunenol Natural products C1CC=C(C)C2C(O)C(C(C)C)CCC21C AYZYZJOUAKBQDF-UHFFFAOYSA-N 0.000 description 1
- ITYNGVSTWVVPIC-DHGKCCLASA-N (-)-allo-Aromadendrene Chemical compound C([C@@H]1[C@H]2C1(C)C)CC(=C)[C@@H]1[C@H]2[C@H](C)CC1 ITYNGVSTWVVPIC-DHGKCCLASA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- YSOYXLPARMWZFY-GFIAIGKSSA-N (1e,5e,7r)-1,5-dimethyl-7-prop-1-en-2-ylcyclodeca-1,5-diene Chemical compound CC(=C)[C@@H]/1CCC\C(C)=C\CC\C(C)=C\1 YSOYXLPARMWZFY-GFIAIGKSSA-N 0.000 description 1
- LHORCXXUZJAMPU-UHFFFAOYSA-N 1,7,11-trimethyl-4-(propan-2-yl)cyclotetradecane Chemical compound CC(C)C1CCC(C)CCCC(C)CCCC(C)CC1 LHORCXXUZJAMPU-UHFFFAOYSA-N 0.000 description 1
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 1
- 241000218642 Abies Species 0.000 description 1
- 241001311509 Abies firma Species 0.000 description 1
- 241000697336 Abies kawakamii Species 0.000 description 1
- 244000147966 Acacia stricta Species 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- 241000783433 Achillea wilhelmsii Species 0.000 description 1
- 241000226474 Aegorhinus superciliosus Species 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241001441965 Ajania nitida Species 0.000 description 1
- 241001092085 Alchemilla Species 0.000 description 1
- 241000044904 Anthemis melampodina Species 0.000 description 1
- 241001674913 Anthemis scrobicularis Species 0.000 description 1
- 241000195967 Anthoceros Species 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- 235000003826 Artemisia Nutrition 0.000 description 1
- 235000011106 Artemisia sieberi Nutrition 0.000 description 1
- 241001249150 Artemisia sieberi Species 0.000 description 1
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 1
- 241000557808 Asterella Species 0.000 description 1
- 241001184073 Basilicum Species 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- 240000007551 Boswellia serrata Species 0.000 description 1
- 235000012035 Boswellia serrata Nutrition 0.000 description 1
- MPDUJZZNNBJFAB-UHFFFAOYSA-N Calliterpenone Natural products C1CC2(CC3(CO)O)CC3CCC2C2(C)C1C(C)(C)C(=O)CC2 MPDUJZZNNBJFAB-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000196298 Chaetomorpha Species 0.000 description 1
- 241000723437 Chamaecyparis Species 0.000 description 1
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 102000003914 Cholinesterases Human genes 0.000 description 1
- 108090000322 Cholinesterases Proteins 0.000 description 1
- 244000089742 Citrus aurantifolia Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005320 Coleus barbatus Nutrition 0.000 description 1
- 240000007311 Commiphora myrrha Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- 241000931679 Conocephalum japonicum Species 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 241001648664 Croton micans Species 0.000 description 1
- 241001116468 Cunninghamia Species 0.000 description 1
- 244000050510 Cunninghamia lanceolata Species 0.000 description 1
- 241000254171 Curculionidae Species 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 235000018782 Dacrydium cupressinum Nutrition 0.000 description 1
- 241001375805 Dendromastigophora flagellifera Species 0.000 description 1
- YJHVMPKSUPGGPZ-UHFFFAOYSA-N Dihydro-beta-eudesmol Natural products C1CC(C(C)(C)O)CC2C(C)CCCC21C YJHVMPKSUPGGPZ-UHFFFAOYSA-N 0.000 description 1
- 241000244163 Echinococcus multilocularis Species 0.000 description 1
- 241001046947 Ectropis obliqua Species 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 235000004504 Eucalyptus gunnii Nutrition 0.000 description 1
- 244000059939 Eucalyptus gunnii Species 0.000 description 1
- 244000061408 Eugenia caryophyllata Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 244000207543 Euphorbia heterophylla Species 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 241000371710 Frullania Species 0.000 description 1
- 241001487339 Frullania falciloba Species 0.000 description 1
- 241001487419 Frullania pycnantha Species 0.000 description 1
- 241001487586 Frullania spinifera Species 0.000 description 1
- 241000570015 Frullaniaceae Species 0.000 description 1
- 101000993347 Gallus gallus Ciliary neurotrophic factor Proteins 0.000 description 1
- 241001634830 Geometridae Species 0.000 description 1
- 241000134874 Geraniales Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 239000005980 Gibberellic acid Substances 0.000 description 1
- 241000035923 Helichrysum microphyllum Species 0.000 description 1
- 101001109689 Homo sapiens Nuclear receptor subfamily 4 group A member 3 Proteins 0.000 description 1
- 235000010650 Hyssopus officinalis Nutrition 0.000 description 1
- 240000001812 Hyssopus officinalis Species 0.000 description 1
- 241000238889 Ixodidae Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- 241000274177 Juniperus sabina Species 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 241000494789 Lepidozia fauriana Species 0.000 description 1
- 244000185347 Lippia alba Species 0.000 description 1
- 235000013445 Lippia alba Nutrition 0.000 description 1
- 235000011986 Lippia geminata Nutrition 0.000 description 1
- 241000557755 Lunularia Species 0.000 description 1
- 241000557757 Lunularia cruciata Species 0.000 description 1
- 241000196322 Marchantia Species 0.000 description 1
- 241000790568 Marchantia emarginata Species 0.000 description 1
- 241000196329 Marchantia polymorpha Species 0.000 description 1
- 241000586830 Marchesinia mackaii Species 0.000 description 1
- 241001462813 Marsupella alpina Species 0.000 description 1
- 241000378467 Melaleuca Species 0.000 description 1
- 241000366182 Melaleuca alternifolia Species 0.000 description 1
- 235000014435 Mentha Nutrition 0.000 description 1
- 241001072983 Mentha Species 0.000 description 1
- 235000016278 Mentha canadensis Nutrition 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 241001257583 Microphyllum Species 0.000 description 1
- 241001217493 Monochamus urussovii Species 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- 241000207746 Nicotiana benthamiana Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- SPTHOEKISABNFX-UHFFFAOYSA-N OC(=S)S=N Chemical class OC(=S)S=N SPTHOEKISABNFX-UHFFFAOYSA-N 0.000 description 1
- 244000180308 Ocimum basilicum Species 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 241000040384 Pallenis Species 0.000 description 1
- 101710093888 Pentalenene synthase Proteins 0.000 description 1
- CWRVKFFCRWGWCS-UHFFFAOYSA-N Pentrazole Chemical compound C1CCCCC2=NN=NN21 CWRVKFFCRWGWCS-UHFFFAOYSA-N 0.000 description 1
- 231100000674 Phytotoxicity Toxicity 0.000 description 1
- 241000218641 Pinaceae Species 0.000 description 1
- 235000005205 Pinus Nutrition 0.000 description 1
- 241000218602 Pinus <genus> Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000013697 Pinus resinosa Nutrition 0.000 description 1
- 235000008585 Pinus thunbergii Nutrition 0.000 description 1
- 241000218686 Pinus thunbergii Species 0.000 description 1
- 244000090599 Plantago psyllium Species 0.000 description 1
- 241000131460 Plectranthus Species 0.000 description 1
- 241000131459 Plectranthus barbatus Species 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 241000218982 Populus nigra Species 0.000 description 1
- 241001097179 Porella perrottetiana Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 241001003182 Radula Species 0.000 description 1
- 241000054674 Radula aquilegia Species 0.000 description 1
- 241001003180 Radula complanata Species 0.000 description 1
- 241000054680 Radula holtii Species 0.000 description 1
- 241000054684 Radula lindenbergiana Species 0.000 description 1
- 241000054687 Radula nudicaulis Species 0.000 description 1
- 241000054576 Radula wichurae Species 0.000 description 1
- 241000589771 Ralstonia solanacearum Species 0.000 description 1
- 241001426913 Saccogyna viticulosa Species 0.000 description 1
- 235000017276 Salvia Nutrition 0.000 description 1
- 240000002982 Salvia apiana Species 0.000 description 1
- 235000002302 Salvia apiana Nutrition 0.000 description 1
- 235000002087 Salvia elegans Nutrition 0.000 description 1
- 244000228391 Salvia elegans Species 0.000 description 1
- 235000006108 Salvia polystachya Nutrition 0.000 description 1
- 101710115850 Sesquiterpene synthase Proteins 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 235000009065 Taxus cuspidata Nutrition 0.000 description 1
- 241001454293 Tetranychus urticae Species 0.000 description 1
- HATRDXDCPOXQJX-UHFFFAOYSA-N Thapsigargin Natural products CCCCCCCC(=O)OC1C(OC(O)C(=C/C)C)C(=C2C3OC(=O)C(C)(O)C3(O)C(CC(C)(OC(=O)C)C12)OC(=O)CCC)C HATRDXDCPOXQJX-UHFFFAOYSA-N 0.000 description 1
- 241000736890 Thujopsis Species 0.000 description 1
- 235000017826 Thymus zygis Nutrition 0.000 description 1
- 244000157222 Thymus zygis Species 0.000 description 1
- 241001396045 Tosana Species 0.000 description 1
- 241000254113 Tribolium castaneum Species 0.000 description 1
- 235000010730 Ulex europaeus Nutrition 0.000 description 1
- 240000003864 Ulex europaeus Species 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- KJGPBYUQZLUKLL-UHFFFAOYSA-N afrormosin Chemical compound C1=CC(OC)=CC=C1C1=COC2=CC(O)=C(OC)C=C2C1=O KJGPBYUQZLUKLL-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- UIDUJXXQMGYOIN-UHFFFAOYSA-N aromadendrin Natural products CC1(C)C2C1CCC(C)C1C2C(C)CC1 UIDUJXXQMGYOIN-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 244000030166 artemisia Species 0.000 description 1
- 235000009052 artemisia Nutrition 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- XFSVWZZZIUIYHP-UHFFFAOYSA-N beta-Eudesmol Natural products CC(C)(O)C1CCC2CCCC(=C)C2C1 XFSVWZZZIUIYHP-UHFFFAOYSA-N 0.000 description 1
- MSJJKJCIFIGTJY-GBJTYRQASA-N beta-Verbesinol Natural products O[C@@H]1[C@H](C(C)C)CC[C@]2(C)[C@@H]1C(=C)CCC2 MSJJKJCIFIGTJY-GBJTYRQASA-N 0.000 description 1
- BOPIMTNSYWYZOC-VNHYZAJKSA-N beta-eudesmol Chemical compound C1CCC(=C)[C@@H]2C[C@H](C(C)(O)C)CC[C@]21C BOPIMTNSYWYZOC-VNHYZAJKSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- MPDUJZZNNBJFAB-JHSPYMOQSA-N calliterpenone Chemical compound C([C@H]1C[C@]2(C[C@@]1(CO)O)CC1)C[C@@H]2[C@]2(C)[C@@H]1C(C)(C)C(=O)CC2 MPDUJZZNNBJFAB-JHSPYMOQSA-N 0.000 description 1
- 238000003965 capillary gas chromatography Methods 0.000 description 1
- 229930001594 cembrane Natural products 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940048961 cholinesterase Drugs 0.000 description 1
- 229930007050 cineol Natural products 0.000 description 1
- WTEVQBCEXWBHNA-YFHOEESVSA-N citral B Natural products CC(C)=CCC\C(C)=C/C=O WTEVQBCEXWBHNA-YFHOEESVSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- YYJNOYZRYGDPNH-MFKUBSTISA-N fenpyroximate Chemical compound C=1C=C(C(=O)OC(C)(C)C)C=CC=1CO/N=C/C=1C(C)=NN(C)C=1OC1=CC=CC=C1 YYJNOYZRYGDPNH-MFKUBSTISA-N 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000002464 fungitoxic effect Effects 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 1
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 1
- 230000003779 hair growth Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000321 herbal drug Substances 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 102000047217 human NR4A3 Human genes 0.000 description 1
- 230000007688 immunotoxicity Effects 0.000 description 1
- 231100000386 immunotoxicity Toxicity 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- QWXYZCJEXYQNEI-OSZHWHEXSA-N intermediate I Chemical class COC(=O)[C@@]1(C=O)[C@H]2CC=[N+](C\C2=C\C)CCc2c1[nH]c1ccccc21 QWXYZCJEXYQNEI-OSZHWHEXSA-N 0.000 description 1
- 229930184766 isogermacrene Natural products 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 235000020044 madeira Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000401 methanolic extract Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000003887 narcotic antagonist Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229930015704 phenylpropanoid Natural products 0.000 description 1
- 125000001474 phenylpropanoid group Chemical group 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000008659 phytopathology Effects 0.000 description 1
- 230000000885 phytotoxic effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229930009674 sesquiterpene lactone Natural products 0.000 description 1
- 150000002107 sesquiterpene lactone derivatives Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
本発明は、人間の生活空間等の空間の環境を調節する空間調節装置および空間調節方法に関する。 The present invention relates to a space adjusting device and a space adjusting method for adjusting a space environment such as a human living space.
人間の生活空間等の空間の環境を調節する方法がこれまでに検討され、例えば、特許文献1には、「生体植物の放出成分を利用した生活環境の改善方法」として、植物の放出成分含有空気を建造物内の人間生活空間に供給することによって、都市の建造物内において自然の森林と同様の空気浄化作用を行わせることができる方法が開示されている。
Methods for adjusting the environment of a space such as a human living space have been studied so far. For example,
特許文献1と同様に空気浄化を目的とした技術として、特許文献2には、「生体植物の放出成分を利用した生活環境の改善方法および装置」、特許文献3には、「揮発性成分発生用植物の培養容器」、特許文献4には、「植物の揮発性成分発生用インテリア装置」、特許文献5には、「生体植物の揮発性成分発生促進装置」、および特許文献6には、「生体植物による揮発性成分発生の促進装置」が開示されている。
Similar to
特許文献1〜6には、植物として、森林に植生されるような樹木を用いることが開示され、特許文献1,2には、トドマツ、ヒノキ、スギ、イチョウ等の樹木を用いることが開示されている。
特許文献7には、「樹木の揮発性成分発生促進装置」として、樹木収容々器の底部に設けた植木鉢載置装置と、この樹木収容々器の内部に空気を供給する吸気孔と、この樹木収容々器の内部の樹木から開放される揮発性成分を含有する空気を生活空間に排気する排気装置と、植木鉢に給水する給水装置からなり、植木鉢載置装置の複数箇所に配置された植木鉢は水平回転可能に構成され、これにより接触した樹木の枝葉に大きな機械的刺激を与えるように構成されている、樹木の揮発性成分発生促進装置が開示され、樹木としてヒノキを用いることが開示されている。 In Patent Document 7, as a "tree volatile component generation promoting device", a plant pot mounting device provided at the bottom of the tree container, an intake hole for supplying air to the inside of the tree container, and the intake hole thereof. It consists of an exhaust device that exhausts air containing volatile components released from the trees inside the tree container to the living space and a water supply device that supplies water to the plant pot, and the plant pots are arranged at multiple locations in the plant pot mounting device. Discloses a tree volatile component generation promoter, which is configured to be horizontally rotatable and thereby to give a large mechanical stimulus to the branches and leaves of the tree in contact with it, and to use hinoki as the tree. ing.
特許文献1〜6で開示されている従来技術は、いずれも生体植物から放出される成分で室内の空気を浄化することが目的であって、トドマツ、ヒノキ、スギ、イチョウ等の樹木では、ヒトの精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるような効果は得られない。また、オフィスや家屋の室内空間でトドマツ、ヒノキ、スギ、イチョウ等の樹木を用いると、植物設置のためのスペース確保が必要になる。
The prior arts disclosed in
特許文献7で開示されている従来技術は、植木鉢に植栽する樹木を回転させて葉の機械的刺激で揮発性成分の発生を促進させているが、蘚苔類に代表されるような背丈の小さい植物、または葉同士の機械的接触が困難である植物については、効力を発揮することはできない。 In the prior art disclosed in Patent Document 7, the tree to be planted in the flowerpot is rotated to promote the generation of volatile components by mechanical stimulation of the leaves, but the height is typified by bryophytes. It cannot be effective for small plants or plants for which mechanical contact between leaves is difficult.
本発明は、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節する装置および方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention is a device for adjusting the environment of a space so as to reduce mental stress, increase human intellectual productivity, or enhance a relaxing effect even in a small space such as an office or a house. And aims to provide a method.
本発明は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を有する、空間調節装置である。 The present invention is a spatial regulator having a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell.
前記空間調節装置において、さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを有することが好ましい。 In the space regulator, a second plant that releases a second volatile component that acts on the sympathetic nerve receptors present in the sense of smell, and a third volatile substance that acts on the parasympathetic nerve receptors present in the sense of smell. It is preferable to have at least one of the third plants that release the component.
前記空間調節装置において、前記空間調節装置は、前記第1の植物と前記第2の植物と前記第3の植物とを有し、前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替える切替手段を備えることが好ましい。 In the space control device, the space control device has the first plant, the second plant, and the third plant, and the first volatile component from the first plant and the first plant. A switching means for switching between the release of the second volatile component from the second plant and the release of the first volatile component from the first plant and the third volatile component from the third plant. It is preferable to prepare.
前記空間調節装置において、前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことが好ましい。 In the space adjusting device, it is preferable that the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
前記空間調節装置において、前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことが好ましい。 In the space control device, the terpenes preferably contain at least one of monoterpenes and sesquiterpenes.
前記空間調節装置において、前記揮発性成分のそれぞれの放出量は、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節されることが好ましい。 In the space control device, the amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, and the light irradiated to the plant. It is preferably adjusted by at least one of the color tone of the plant, the humidity of the cultivation environment of the plant, and the temperature of the cultivation environment of the plant.
前記空間調節装置において、前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであることが好ましく、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることが好ましい。 In the space control device, the first plant and, if present, the third plant are preferably at least one of moss, angiosperms, and gymnosperms, respectively, if present. The second plant is preferably at least one of gymnosperms and angiosperms.
本発明は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を用いる、空間調節方法である。 The present invention is a spatial regulation method using a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell.
前記空間調節方法において、さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを用いることが好ましい。 In the space regulation method, a second plant that releases a second volatile component that acts on the sympathetic nerve receptor present in the sense of smell, and a third volatile substance that acts on the parasympathetic nerve receptor present in the sense of smell. It is preferable to use at least one of the third plants that release the component.
前記空間調節方法において、前記第1の植物と前記第2の植物と前記第3の植物とを用い、前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替えることが好ましい。 In the space adjustment method, the first plant, the second plant, and the third plant are used, and the first volatile component from the first plant and the second from the second plant are used. It is preferable to switch between the release of the volatile component of the above and the release of the first volatile component from the first plant and the third volatile component from the third plant.
前記空間調節方法において、前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことが好ましい。 In the space adjusting method, it is preferable that the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
前記空間調節方法において、前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことが好ましい。 In the space adjustment method, it is preferable that the terpenes contain at least one of monoterpenes and sesquiterpenes.
前記空間調節方法において、前記揮発性成分のそれぞれの放出量を、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節することが好ましい。 In the space adjustment method, the amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, and the light irradiated to the plant. It is preferable to adjust by at least one of the color tone of the plant, the humidity of the cultivation environment of the plant, and the temperature of the cultivation environment of the plant.
前記空間調節方法において、前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであることが好ましく、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることが好ましい。 In the space regulation method, the first plant and, if present, the third plant are preferably at least one of moss, angiosperms, and gymnosperms, respectively, if present. The second plant is preferably at least one of gymnosperms and angiosperms.
本発明により、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節する装置および方法を提供することができる。 According to the present invention, a device for adjusting the environment of a space so as to reduce mental stress, increase human intellectual productivity, or enhance a relaxing effect even in a small space such as an office or a house. And methods can be provided.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.
本発明の実施形態に係る空間調節装置は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を有する。本発明の実施形態に係る空間調節装置は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物と、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つと、を有していてもよい。 The spatial regulator according to an embodiment of the present invention has a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell. The space regulator according to the embodiment of the present invention exists in the sense of smell and a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell. At least one of a second plant that releases a second volatile component that acts on sympathetic nerve receptors and a third plant that releases a third volatile component that acts on parasympathetic nerve receptors present in the sense of smell. And may have.
本実施形態に係る空間調節装置は、例えば、植物を植栽するための植物植栽手段と、枠材で形成され、植物植栽手段を有する植物植栽空間を外気と隔離するための隔離手段と、植物植栽空間に外気を取り入れるための外気吸入手段と、植物の揮発性成分を排出するための揮発性成分排出手段と、を備える。 The space adjusting device according to the present embodiment is, for example, a plant planting means for planting a plant and an isolation means for separating a plant planting space formed of a frame material and having the plant planting means from the outside air. It is provided with an outside air inhaling means for taking in outside air into the plant planting space and a volatile component discharging means for discharging the volatile components of the plant.
本実施形態に係る空間調節装置の一例の概略を図1に示し、その構成について説明する。本実施形態に係る空間調節装置は、これらの構成に限定されるものではない。 An outline of an example of the space adjusting device according to the present embodiment is shown in FIG. 1, and the configuration thereof will be described. The space adjusting device according to the present embodiment is not limited to these configurations.
図1に示す空間調節装置1は、壁型の装置である。枠材66で形成された植物植栽空間60内に、植物を植栽するための植物植栽手段として、装置の底面に対して略垂直方向に、植物設置台10を備え、この植物設置台10内に栽培床12が設置され、この栽培床12に植物14が植栽されている。植物植栽空間60を外気と隔離するための隔離手段として、装置の前面に透明のアクリル板やガラス板等の透明板16が設置されている。植物植栽空間60に外気の空気を取り入れるための外気吸入手段として、吸入口18と、植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファン20および排気口22とが設置されている。植物14に可視光等の光を照射する光照射手段として、全灌防水LED(RGB)24が植物植栽空間60内の例えば上下左右部にそれぞれ設置されている。
The space adjusting
空間調節装置1は、植物植栽空間60の温度を調整する温度調整手段として、加温器26と、植物植栽空間60の温度を測定する温度測定手段および植物植栽空間60の湿度を測定する湿度測定手段として、温湿度センサ28と、植物14に水を供給する水供給手段として、水タンク30と、植物14に窒素化合物を供給する窒素化合物供給手段として、液肥タンク32とを備えてもよい。植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録し、制御する制御手段として、データ記録・調節器54を備えてもよい。
As a temperature adjusting means for adjusting the temperature of the
例えば、水タンク30に貯留された水および液肥タンク32に貯留された窒素化合物等を含む液肥が配管等を通して栽培床12に供給され、全灌防水LED(RGB)24によって植物14に可視光等の光が照射され、植物14が栽培される。必要に応じて加温器26によって植物植栽空間60の温度が所定の温度に調整されてもよい。栽培床12からの排水は、配管等を通して排水タンク50で回収される。加湿は、栽培床12に供給される給水で確保することができるが、植物14から放出される揮発性成分の拡散効率を上げるために、水タンク30から供給される水を霧化する霧化手段として霧発生器を設けてもよい。空間調節装置1からの漏水を防止するための漏水防止手段として、水タンク30、液肥タンク32、排水タンク50を収容する防水容器52を設置してもよい。植物14が放出する揮発性成分中の有効成分の効果を助長するような補助成分を外部の空間へ噴霧する補助成分供給手段として噴霧器56と、噴霧した補助成分を排気する補助成分排気手段として排気ファン58とを設置してもよい。空間調節装置1に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。
For example, water stored in the
空間調節装置1において、吸入口18から外気の空気が植物植栽空間60内へ取り入れられ、植物設置台10内の栽培床12に植栽された植物14から放出される揮発性成分が排気ファン20によって排気口22から空間調節装置1が設置された空間へ放出され、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境が調節される。
In the
栽培床12としては、水や液肥を含浸可能であり、植物14を植栽できるものであればよく、特に制限はないが、例えばスポンジ状の樹脂等を用いることができ、スポンジ内の水分保持量や流れ等に応じて、例えば、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリプロピレン系樹脂、フェノール系樹脂、およびポリアミド系樹脂を用いればよい。
The
植物14としては、リナロール、メントール、ミルテノール、およびベルベノール等のヒト等の嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用してγ−アミノ酪酸(GABA)作動性神経を刺激しうる揮発性成分(第1の揮発性成分)を放出する植物(第1の植物)を用いることができる。リモネン、シネオール、オイデスモール、およびグアイオール等のヒト等の嗅覚に存在する交感神経受容体に作用して交感神経を刺激しうる揮発性成分(第2の揮発性成分)を放出する植物(第2の植物)、およびα−ピネン、δ−カジネン、およびセドロール等のヒト等の嗅覚に存在する副交感神経受容体(例えば、ムスカリン受容体)に作用して副交感神経を刺激しうる揮発性成分(第3の揮発性成分)を放出する植物(第3の植物)のうち少なくとも1つをさらに用いてもよい。
例えば、第1の植物を栽培床12に植栽すればよい。また、例えば、第1の植物と第2の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。第1の植物と第3の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。第1の植物と第2の植物と第3の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。
For example, the first plant may be planted on the
第1の植物を用いることによって、空間を活性化または沈静化することができる。例えば、第1の植物を用いることによって、精神的ストレスを低減させるとともに、知的生産性を高める空間(例えば、「仕事モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性を高めることができる。または、第1の植物を用いることによって、精神的ストレスを低減させるとともに、リラックス効果を高める空間(例えば、「休憩モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激することによって、精神的ストレスを低減させるとともに、リラックス効果を高めることができる。 By using the first plant, the space can be activated or calmed down. For example, by using the first plant, it is possible to provide a space (for example, referred to as a "work mode space") that reduces mental stress and enhances intellectual productivity. The first volatile components such as volatile organic compounds such as terpenes (linalool, menthol, myrtenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. By acting on and stimulating GABAergic nerves, mental stress can be reduced and intellectual productivity can be increased. Alternatively, by using the first plant, it is possible to provide a space (referred to as, for example, a "rest mode space") that reduces mental stress and enhances the relaxing effect. The first volatile components such as volatile organic compounds such as terpenes (linalool, menthol, myrtenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. By stimulating GABAergic nerves, it is possible to reduce mental stress and enhance the relaxing effect.
第1の植物と第2の植物と第3の植物とを所定の組み合わせで組み合わせて用いることによって、空間をより活性化または沈静化することができる。例えば、第1の植物と第2の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、知的生産性をより高める空間(例えば、「仕事モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(リモネン、シネオール、オイデスモール、グアイオール等)等の揮発性有機化合物等の第2の揮発性成分が、嗅覚に存在する交感神経受容体に作用し、交感神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性をより高めることができる。 By using the first plant, the second plant, and the third plant in combination in a predetermined combination, the space can be further activated or calmed down. For example, by using the first plant and the second plant in combination, it is possible to provide a space (for example, referred to as a "work mode space") that reduces mental stress and further enhances intellectual productivity. Can be done. The first volatile components such as volatile organic compounds such as terpenes (linarol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. A second volatile component such as volatile organic compounds such as terpenes (limonen, cineole, eudesmol, guayol, etc.) released from plants is present in the sense of smell as well as stimulating GABAergic nerves. By acting on the sympathetic nerve receptors and stimulating the sympathetic nerves, mental stress can be reduced and intellectual productivity can be further increased.
例えば、第1の植物と第3の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、リラックス効果をより高める空間(例えば、「休憩モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(α−ピネン、δ−カジネン、セドロール等)等の揮発性有機化合物等の第3の揮発性成分が、嗅覚に存在する副交感神経受容体に作用し、副交感神経を刺激することによって、精神的ストレスを低減させるとともに、リラックス効果をより高めることができる。 For example, by using the first plant and the third plant in combination, it is possible to provide a space (for example, referred to as a "rest mode space") that reduces mental stress and further enhances the relaxing effect. .. The first volatile components such as volatile organic compounds such as terpenes (linarol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. Along with stimulating GABAergic nerves, a third volatile component such as volatile organic compounds such as terpenes (α-pinene, δ-cadinene, sedrol, etc.) released from plants becomes the sense of smell. By acting on existing parasympathetic receptors and stimulating the parasympathetic nerves, mental stress can be reduced and the relaxing effect can be further enhanced.
第1の植物と第2の植物と第3の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、知的生産性をより高め、リラックス効果をより高める空間を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(リモネン、シネオール、オイデスモール、グアイオール等)の第2の揮発性成分が、嗅覚に存在する交感神経受容体に作用し、交感神経を刺激し、植物から放出されるテルペン類(α−ピネン、δ−カジネン、セドロール等)等の揮発性有機化合物等の第3の揮発性成分が、嗅覚に存在する副交感神経受容体に作用し、副交感神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性をより高め、リラックス効果をより高めることができる。 By using the first plant, the second plant, and the third plant in combination, it is possible to provide a space that reduces mental stress, enhances intellectual productivity, and enhances the relaxing effect. .. The first volatile components such as volatile organic compounds such as terpenes (linalol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. Along with stimulating GABAergic nerves, the second volatile components of terpenes (limonen, cineole, eudesmol, guayol, etc.) released from plants act on sympathetic receptors present in the sense of smell. However, a third volatile component such as a volatile organic compound such as terpenes (α-pinene, δ-cadinene, sedrol, etc.) released from plants that stimulates the sympathetic nerve is a parasympathetic nerve receptor present in the sense of smell. By acting on the body and stimulating parasympathetic nerves, it is possible to reduce mental stress, increase intellectual productivity, and enhance the relaxing effect.
従来技術のトドマツ、ヒノキ、スギ、イチョウ等の樹木では、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する揮発性成分を放出しないので、ヒトの精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるような効果は得られない。 Prior art trees such as Todomatsu, Hinoki, Sugi, and Ginkgo do not release volatile components that act on γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell, thus reducing human mental stress. At the same time, it does not have the effect of increasing human intellectual productivity or enhancing the relaxing effect.
空間調節装置1において、植物14から放出される揮発性成分のそれぞれの放出量は、例えば、植物14に与えられる水分量、植物14に与えられる窒素量、植物14に照射される光の照度、植物14に照射される光の色調、植物14の栽培環境の湿度、および植物14の栽培環境の温度のうち少なくとも1つにより調節されればよい。
In the
例えば、植物14から放出される揮発性成分の放出量は、全灌防水LED(RGB)24による照度や色調、加温器26、温湿度センサ28による植物植栽空間60の温度や湿度、水タンク30から供給される給水量や栽培床12の水分含量、液肥タンク32から供給される窒素化合物供給量や栽培床12に含まれる窒素量によって調節することができる。なお、例えば、水タンク30からの栽培床12への給水量は、水中ポンプ34,36と調節バルブ38,40によって調節され、液肥タンク32からの栽培床12への窒素化合物供給量は、水中ポンプ42,44と調節バルブ46,48によって調節される。データ記録・調節器54は、植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録することができ、これらのうち少なくとも1つを用いて、植物植栽空間60の温度、湿度、栽培床12へ供給する水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等を調節してもよい。また、水タンク30からの栽培床12への給水、液肥タンク32からの栽培床12への窒素化合物供給、全灌防水LED(RGB)24の点灯等は、タイマーで時間設定を行い、制御してもよい。
For example, the amount of volatile components released from the
光照射手段としては、レッド(R)、グリーン(G)、ブルー(B)の光を含む可視光(400〜800nm)を照射することができるものであればよく、特に制限はないが、例えば、全灌防水LED(RGB)24、収穫ACE(光合成補光用植物栽培LED照明器)、および、Derlights 30W(植物育成LEDライト)等を用いることができる。光照射手段として、紫外光、および赤外光等を照射することができるものを併用してもよい。可視光に紫外光を併用すると、植物に付着している微生物等を殺菌することができる。 The light irradiation means may be any one capable of irradiating visible light (400 to 800 nm) including red (R), green (G), and blue (B) light, and is not particularly limited, but for example. , Total irrigation waterproof LED (RGB) 24, Harvest ACE (plant cultivation LED illuminator for photosynthetic supplementation), Derlights 30W (plant growth LED light) and the like can be used. As the light irradiation means, those capable of irradiating ultraviolet light, infrared light, or the like may be used in combination. When ultraviolet light is used in combination with visible light, microorganisms and the like attached to plants can be sterilized.
温度調整手段としては、植物植栽空間60の温度を調整することができるものであればよく、特に制限はないが、例えば、加温器26、冷却器等を用いることができる。加温器26としては、セラミックヒーター等の電気ファンヒーター、スチームラジエーター、輻射線加熱器等を用いることができる。
The temperature adjusting means may be any one capable of adjusting the temperature of the
液肥としては、硝酸等の窒素化合物を含む水溶液等が挙げられる。液肥には窒素化合物の他に、リン酸、カリウム等を含んでもよい。 Examples of the liquid fertilizer include an aqueous solution containing a nitrogen compound such as nitric acid. The liquid fertilizer may contain phosphoric acid, potassium and the like in addition to the nitrogen compound.
補助成分としては、例えば、植物14が放出する揮発性成分中の有効成分の効果を助長する効果を有する助長成分等が挙げられる。補助成分としては、例えば、レモングラス等の芳香性成分、ゲラニオール、ゲラニアール、ネラール等が挙げられる。
Examples of the auxiliary component include a promoting component having an effect of promoting the effect of the active ingredient in the volatile component released by the
本実施形態に係る空間調節装置の他の例の概略を図2に示す。図2に示す空間調節装置3は、図1に示す空間調節装置1の構成に、植物植栽空間60内を2つ以上の区分に区分けする区分手段として、仕切り板62をさらに有し、この仕切り板62によって植物植栽空間60内の左右の空間が仕切られている。
FIG. 2 shows an outline of another example of the space adjusting device according to the present embodiment. The space adjusting device 3 shown in FIG. 2 further includes a
例えば、仕切り板62によって植物植栽空間60内を2つの空間に区分けし、上記第1の植物と上記第2の植物とを用い、植物植栽空間60の左区域に第1の植物、右区域に第2の植物を植栽することによって、GABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出とを切り替えて調節することができる。また、上記第1の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第1の植物、右区域に第3の植物を植栽することによって、GABA作動性神経作用空間からの第1の揮発性成分の放出と、副交感神経作用空間からの第3の揮発性成分の放出とを切り替えて調節することができる。
For example, the inside of the
これらの場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域および右区域にそれぞれに設置して、上記第1の植物からの第1の揮発性成分の放出と、上記第2の植物からの第2の揮発性成分の放出とを切り替えてもよい。また、上記第1の植物からの第1の揮発性成分の放出と、上記第3の植物からの第3の揮発性成分の放出とを切り替えてもよい。
In these cases, exhaust fans and exhaust ports are installed in the left area and the right area, respectively, as volatile component discharging means for discharging the volatile components of each plant from each space of the
例えば、仕切り板62によって植物植栽空間60内を2つの空間に区分けし、上記第1の植物と上記第2の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第1の植物および第3の植物、右区域に第1の植物および第2の植物を植栽することによって、副交感神経作用空間からの第3の揮発性成分の放出およびGABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出およびGABA作動性神経作用空間からの第1の揮発性成分の放出とを切り替えて調節することができる。
For example, the inside of the
この場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域および右区域にそれぞれに設置して、上記第1の植物および上記第2の植物からの揮発性成分の放出(例えば、「仕事モード」と呼ぶ)と、上記第1の植物および上記第3の植物からの揮発性成分の放出(例えば、「休憩モード」と呼ぶ)とを切り替えてもよい。
In this case, as a volatile component discharging means for discharging the volatile component of each plant from each space of the
例えば、仕切り板62によって植物植栽空間60内を3つの空間に区分けし、上記第1の植物と上記第2の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第3の植物、中区域に第1の植物、右区域に第2の植物を植栽することによって、副交感神経作用空間からの第3の揮発性成分の放出と、GABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出とを切り替えて調節することができる。
For example, the inside of the
この場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域、中区域および右区域にそれぞれに設置して、上記第1の植物からの第1の揮発性成分の放出と、上記第2の植物からの第2の揮発性成分の放出と、上記第3の植物からの第3の揮発性成分の放出とを切り替えてもよい。
In this case, exhaust fans and exhaust ports are installed in the left area, the middle area, and the right area, respectively, as volatile component discharging means for discharging the volatile components of each plant from each space of the
これらによって、精神的ストレスを低減しながらの交感神経作用空間や精神的ストレスを低減しながらの副交感神経作用空間をつくることができる。 As a result, it is possible to create a sympathetic nerve action space while reducing psychological stress and a parasympathetic nerve action space while reducing psychological stress.
切替手段は、例えば制御装置を用いて各排気ファンおよび各排気口の動作を制御して上記第1の植物、第2の植物、第3の植物からの揮発性成分の放出を切り替えればよい。 The switching means may switch the release of the volatile components from the first plant, the second plant, and the third plant by controlling the operation of each exhaust fan and each exhaust port by using, for example, a control device.
図3に示す空間調節装置5は、テーブル型の装置である。空間調節装置5は、例えば、テーブル部68と、植物植栽部70とを有する。植物植栽部70は、枠材66で形成された植物植栽空間60内に、植物を植栽するための植物植栽手段として、装置の上面に対して略平行方向に、植物設置台10を備え、この植物設置台10内に栽培床12が設置され、この栽培床12に植物14が植栽されている。植物植栽空間60を外気と隔離するための隔離手段として、装置の上面に透明のアクリル板やガラス板等の透明板16が設置されている。植物植栽空間60に外気の空気を取り入れるための外気吸入手段として、吸入口18と、植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファン20および排気口22とが設置されている。植物14に可視光等の光を照射する光照射手段として、全灌防水LED(RGB)24が植物植栽空間60内の例えば上部に設置されている。
The
空間調節装置5は、植物植栽空間60の温度を調整する温度調整手段として、加温器26と、植物植栽空間60の温度を測定する温度測定手段および植物植栽空間60の湿度を測定する湿度測定手段として、温湿度センサ28と、植物14に水を供給する水供給手段として、水タンク30と、植物14に窒素化合物を供給する窒素化合物供給手段として、液肥タンク32とを備えてもよい。植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録し、制御する制御手段として、データ記録・調節器54を備えてもよい。
The
例えば、水タンク30に貯留された水および液肥タンク32に貯留された窒素化合物等を含む液肥が配管等を通して栽培床12に供給され、全灌防水LED(RGB)24によって植物14に可視光等の光が照射され、植物14が栽培される。必要に応じて加温器26によって植物植栽空間60の温度が所定の温度に調整されてもよい。栽培床12からの排水は、配管等を通して排水タンク50で回収される。加湿は、栽培床12に供給される給水で確保することができるが、植物14から放出される揮発性成分の拡散効率を上げるために、水タンク30から供給される水を霧化する霧化手段として霧発生器を設けてもよい。空間調節装置5からの漏水を防止するための漏水防止手段として、水タンク30、液肥タンク32、排水タンク50を収容する防水容器52を設置してもよい。例えば植物14が放出する揮発性成分中の有効成分の効果を助長するような補助成分を外部の空間へ噴霧する補助成分供給手段として噴霧器と、噴霧した補助成分を排気する補助成分排気手段として排気ファンとを設置してもよい。また、給水口64を設けてもよく、ここを開けると、水タンク30と液肥を含む液肥タンク32に水や液肥を補給できるとともに、排水タンク50の水の排水処理を行うことができる。空間調節装置5に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。
For example, water stored in the
空間調節装置5において、吸入口18から外気の空気が植物植栽空間60内へ取り入れられ、植物設置台10内の栽培床12に植栽された植物14から放出される揮発性成分が排気ファン20によって排気口22から空間調節装置5が設置された空間へ放出され、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境が調節される。
In the
栽培床12としては、水や液肥を含浸可能であり、植物14を植栽できるものであればよく、特に制限はないが、例えばスポンジ状の樹脂等を用いることができ、スポンジ内の水分保持量や流れ等に応じて、例えば、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリプロピレン系樹脂、およびフェノール系樹脂を用いればよい。また、栽培床12として、土壌を用いてもよい。
The
植物14は、上記第1の植物を用いることができ、上記第2の植物および上記第3の植物のうち少なくとも1つをさらに用いてもよい。
As the
空間調節装置5において、空間調節装置1,3と同様にして、植物14から放出される揮発性成分のそれぞれの放出量は、例えば、植物14に与えられる水分量、植物14に与えられる窒素量、植物14に照射される光の照度、植物14に照射される光の色調、植物14の栽培環境の湿度、および植物14の栽培環境の温度のうち少なくとも1つにより調節されればよい。
In the
空間調節装置5に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。また、図4に示すように、空間調節装置5の下部の植物植栽部70をスライドしてテーブル部68から取り出すことができるようにしてもよい。
When a plant is installed in the
本実施形態に係る空間調節装置および空間調節方法は、人間等の生活空間等の環境を調節するために用いることができ、例えば、家屋、オフィス、車両、学習室、図書室等において用いることができる。 The space adjusting device and the space adjusting method according to the present embodiment can be used to adjust the environment such as a living space of a human being, and can be used, for example, in a house, an office, a vehicle, a study room, a library, or the like. can.
以下、本実施形態に係る空間調節装置および空間調節方法で用いられる植物を例示する。 Hereinafter, the plants used in the space adjusting device and the space adjusting method according to the present embodiment will be illustrated.
植物14としては、例えば、蘚苔類、被子植物類、裸子植物類等が挙げられるが、これらに限定されるものではない。蘚苔類、被子植物類、および、芯材や辺材より小さく切断加工等された裸子植物類は、背丈が小さく、植物設置のためのスペースが小さいため装置を小型化可能である等の点で好ましく、蘚苔類は、低照度で栽培可能である、耐乾燥性に優れる等の点でより好ましい。上記第1の植物および上記第3の植物としては、それぞれ下記に示される蘚苔類、被子植物類、および裸子植物類の中から1つまたは複数を選択すればよい。上記第2の植物としては、下記に示される蘚苔類および被子植物類の中から1つまたは複数を選択すればよい。
Examples of the
上記第1の植物、上記第2の植物および上記第3の植物が放出する揮発性成分のそれぞれが、テルペン類を含むことが好ましく、テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことがより好ましい。 It is preferable that each of the volatile components released by the first plant, the second plant and the third plant contains terpenes, and the terpenes contain at least one of monoterpenes and sesquiterpenes. It is more preferable to include it.
ヒト等の嗅覚に存在する交感神経受容体に作用する第2の揮発性成分として、例えば、1,8−シネオール、リモネン、オイデスモール、グアイオール等が挙げられる。 Examples of the second volatile component acting on the sympathetic nerve receptor present in the sense of smell of humans and the like include 1,8-cineole, limonene, eudesmol, guaiol and the like.
1,8−シネオールを放出する蘚苔類として、例えば、Asterella africana(下記参考文献(1)参照、以下同じ)、Chandonanthus hirtellus(2)等が挙げられる。 Examples of bryophytes that release 1,8-cineole include Asterella africana (see reference (1) below, the same applies hereinafter), Chandonanthus hirtellus (2), and the like.
リモネンを放出する蘚苔類として、例えば、Asterella africana(1)、Barbilophozia floerkei(3)、Bazzania harpago(4)、Bazzania praerupta(5)、Conocephalum conicum(4)、Conocephalum japonicum(2)、Chandonanthus hirtellus(6,4)、Drepanolejeunea madagascariensis(4)、Marchantia paleacea(6)、Homalia trichomanoides(8)、Mnium hornum(8)、Mnium marginatum(8)、Plagiomnium undulatum(8)、Plagiothecium undulatum(8)、Anthoceros caucasicus(9)等が挙げられる。 Examples of limonene-releasing mosses include Asterella africana (1), Barbilophozia floerkei (3), Bazzania harpago (4), Bazzania praerupta (5), Conocephalum conicum (4), Conocephalum japonicum (2), Chandonanthus hirtellus (6). , 4), Drepanolejeunea madagascariensis (4), Marchantia paleacea (6), Homalia trichomanoides (8), Mnium hornum (8), Mnium marginatum (8), Plagiomnium undulatum (8), Plagiothecium undulatum (8), Anthoceros cauc ) Etc. can be mentioned.
オイデスモールを放出する蘚苔類として、例えば、Marchantia polymorpha(10)、Porella perrottetiana(11)、Lunularia cruciate(12)、Marchantia pileata(12,13)、Marchesinia mackaii(14)、Trichocolea pluma(15)等が挙げられる。 Examples of liverworts that release eudesmol include Marchantia polymorpha (10), Porella perrottetiana (11), Lunularia cruciate (12), Marchantia pileata (12, 13), Marchsinia mackaii (14), Trichocolea pluma (15), etc. Can be mentioned.
グアイオールを放出する蘚苔類は知られていないが、グアイオールの類似化合物である5−グアイエン−11−オールを放出する蘚苔類として、例えば、Anthoceros caucasicus(9)、Unidentified Jungermannia sp.(15)、Lophozia ventricosa(29)、Bazzania trilobata(35)、Calypogeia muelleriana(36),(37)、Jackiella javanica(38)等が挙げられる。 The bryophytes that release guaiol are not known, but bryophytes that release 5-guaien-11-ol, which is a similar compound of guaiol, include, for example, Anthoceros caucasicus (9), Unified Jungermannia sp. Examples thereof include ventricosa (29), Bazzania trilobata (35), Calypogeia muelleriana (36), (37), Jackiella javanica (38) and the like.
1,8−シネオールを放出する被子植物類として、例えば、Phlomis regelii(39)、Thymus mastichina(40)、Lavandula stoechas(41)、Ajania fruticulosa(42)、Tanacetum vulgare(43)、Anemopsis californica(44)、Cenchrus echinatus(45)、Rosmarinus officinalis(46)、Santolina chamaecyparissus(47)、Salvia apiana(48)、Melaleuca alternifolia(103)、Eucalyptus gunnii(104)、Citrus aurantifolia(105)等が挙げられる。
Angiosperms that
リモネンを放出する被子植物類として、例えば、Mentha piperita(49)、Mentha Spicta(50)、Thymus capitatus(51)、Phlomis regelii(39)、Mentha longifolia(52)、Dracocephalum foetidum(53)等が挙げられる。 Examples of angiosperms that release limonene include Mentha piperita (49), Mentha Spicta (50), Thymus capitatus (51), Phlomis regelii (39), Mentha longifolia (52), Dracocephalum foetidum (53) and the like. ..
オイデスモールを放出する被子植物類として、例えば、Atractylodes lancea(54)、Anthemis malampodina(55)、Anthemis scrobicularis(55)、Santolina chamaecyparissus(56)、Ajuga comata Stapf(57)、Teucrium ramosissimum(58)、Grindelia integrifolia(59)等が挙げられる。 As angiosperms that release Eudesmol, for example, Atractylodes lancea (54), Anthemis malampodina (55), Anthemis scrobicularis (55), Santolina chamaecyparissus (56), Ajuga comata Stapf (57), Teucrium ramosissimum (58), Grindelia Integrifolia (59) and the like can be mentioned.
グアイオールを放出する被子植物類として、例えば、Salvia elegans(48)、Teucrium polium(60)、Achillea millefolium(61)、Valeriana jatamansi(62)、Croton micans(63)、Amsonia illustris(64)等が挙げられる。 Examples of angiosperms that release guaiol include Salvia elegans (48), Teucrium polium (60), Achillea millefolium (61), Valeriana jatamansi (62), Croton micans (63), Amsonia illustris (64) and the like. ..
ヒト等の嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分として、例えば、リナロール、メントール、ミルテノール、およびベルベノール等が挙げられる。 Examples of the first volatile component acting on the γ-aminobutyric acid (GABA) -operated nerve receptor present in the sense of smell of humans and the like include linalool, menthol, myrtenol, verbenol and the like.
リナロールを放出する蘚苔類として、例えば、Asterella africana(16)、Chandonanthus hirtellus(4,16)、Plagiochila bifaria(2)、Radula carringtonii(17)、Trichocolea pluma(15)等が挙げられる。 Examples of linalool-releasing bryophytes include Asterella africana (16), Chandonanthus hirtellus (4,16), Plagiochila bifaria (2), Radula carringtonii (17), Trichocolea pluma (15) and the like.
ミルテノールを放出する蘚苔類として、例えば、Asterella africana(1)およびHomalia trichomanoides(8)等が挙げられる。 Examples of bryophytes that release myrtenol include Asterella africana (1) and Homalia trichomanoides (8).
ベルベノールを放出する蘚苔類として、例えば、Lepidolaena clavigera(18,19)等が挙げられる。 Examples of bryophytes that release verbenol include Lepidolaena clavigera (18, 19).
リナロールを放出する被子植物類として、例えば、Thymus zygis(65)、Ajuga turkestanica(39)、Thymus mastichina(40)、Myrtus communis(66)、Aloysia triphylla(67)、Lavandula latifolia(68)、Lavandula angustifolia(68)、Thapsia garganica(69)、Myrtus communis(70)、Thymus vulgaris(71)、Lavandula x intermedia(72)、Ocimum basilicum(73)等が挙げられる。 As angiosperms that release linalool, for example, Thymus zygis (65), Ajuga turkestanica (39), Thymus mastichina (40), Myrtus communis (66), Aloysia triphylla (67), Lavandula latifolia (68), Lavandula angustifolia ( 68), Thapsia garganica (69), Myrtus communis (70), Thymus vulgaris (71), Lavandula x intermedia (72), Occimum basilicum (73) and the like.
メントールを放出する被子植物類として、例えば、Mentha piperita(49)、Mentha x piperita(74)、Mentha haplocalyx(75)、Mentha arvensis(76)等が挙げられる。 Examples of angiosperms that release menthol include Mentha piperita (49), Mentha x piperita (74), Mentha haplocalyx (75), and Mentha arvensis (76).
ミルテノールを放出する被子植物類として、例えば、Ajania fruticulosa(42)、Tanacetum vulgare(43)、Alchemilla xanthochlora(77)、Lavandula stoechas(41)、Myrtus communis(66)、Salvia multicaulis(78)、Tanacetum vulgare(79)等が挙げられる。 Angiosperms that release myrtenol include, for example, Ajania fruticulosa (42), Tanacetum vulgare (43), Alchemilla xanthochlora (77), Lavandula stoechas (41), Myrtus communis (66), Salvia multicaulis (78), Tanacetum vulgare. (79) and the like.
ベルベノールを放出する被子植物類として、例えば、Cytisus scoparius(80)、Dracocephalum fruticulosum(53)、Rosmarinus officinalis(81)、Artemisia santolina(82)、Mentha longifolia(52)、Tanacetum vulgare(83)、Artemisia sieberi(84)、Micromeria cristata(85)、Ajania nematoloba(86)等が挙げられる。 As angiosperms that release berbenol, for example, Cytisus scoparius (80), Dracocephalum fruticulosum (53), Rosmarinus officinalis (81), Artemisia santolina (82), Mentha longifolia (52), Tanacetum vulgare (83), Artemisia sieberi ( 84), Micromeria cristata (85), Ajania nematoloba (86) and the like.
リナロールを放出する裸子植物類として、例えば、Sabina chinensis(イブキ)(137)、Juniperus communis(セイヨウネズ)(118)、Tetraclinis articulata(138)、Cupressus lusitanica(139)、Cedrus deodara(ヒマラヤスギ)(140)等が挙げられる。 Gymnosperms that release linarol include, for example, Sabina chinensis (137), Juniperus communis (118), Tetraclinis articulata (138), Cupressus lusitanica (139), Cedrus deodara (140). And so on.
ミルテノールを放出する裸子植物類として、例えば、Taxus baccata(ヨーロッパイチイ)(142)、Chamecyparis formosensis (タイワンベニヒノキ)(126)、Chamecyparis obtusa (ヒノキ)(126)等が挙げられる。 Examples of gymnosperms that release myrtenol include Taxus baccata (European Yew) (142), Chamecyparis formosensis (Taiwan Benihinoki) (126), and Chamecyparis obtusa (Hinoki) (126).
ベルベノールを放出する裸子植物類として、例えば、Juniperus phoenicea(141)等が挙げられる。 Examples of gymnosperms that release verbenol include Juniperus phoenicea (141) and the like.
ヒト等の嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分として、例えば、α−ピネン、δ−カジネン、およびセドロール等が挙げられる。 Examples of the third volatile component acting on the parasympathetic nerve receptor present in the sense of smell of humans and the like include α-pinene, δ-cadinene, and cedrol.
α−ピネンを放出する蘚苔類として、例えば、Asterella africana(1)、Asterella venosa(20)、Barbilophozia floerkei(3)、Bazzania japonica(21)、Corsinia coriandrina(10,22)、Dendromastigophora flagellifera(12)、Frullania falciloba(23)、Frullania pycnantha(23)、Frullania spinifera(23)、Jungermannia truncata(13)、Lophozia ventricosa(24)、Lunularia cruciata(10)、Marsupella alpina(25)、Marsupella emarginata(25)、Marchantia paleacea var. diptera(26)、Plagiochila bifaria(27)、Plagiochila maderensis(27)、Plagiochila retrorsa(27)、Plagiochila stricta(27)、Radula aquilegia(17)、Radula boryana(2)、Radula complanata(17)、Radula holtii(17)、Radula lindenbergiana(17)、Radula nudicaulis(17)、Radula wichurae(17)、Saccogyna viticulosa(28)、Trichocolea pluma(15)、Homalia trichomanoides(8)、Mnium hornum(8)、Mnium marginatum(8)、Plagiomnium undulatum(8)、Plagiothecium undulatum(8)、Anthoceros caucasicus(9)等が挙げられる。 Examples of bryophytes that release α-pinene include Asterella africana (1), Asterella venosa (20), Barbilophozia floerkei (3), Bazzania japonica (21), Corsinia coriandrina (10,22), Dendromastigophora flagellifera (12), Frullania falciloba (23), Frullania pycnantha (23), Frullania spinifera (23), Jungermannia truncata (13), Lophozia ventricosa (24), Lunularia cruciata (10), Marsupella alpina (25), Marsupella emarginata (25), Marchant pale var. diptera (26), Plagiochila bifaria (27), Plagiochila maderensis (27), Plagiochila retrorsa (27), Plagiochila stricta (27), Radula aquilegia (17), Radula boryana (2), Radula complanata (17), Radula holtii (17), Radula lindenbergiana (17), Radula nudicaulis (17), Radula wichurae (17), Saccogyna viticulosa (28), Trichocolea pluma (15), Homalia trichomanoides (8), Mnium hornum (8), Mnium marginatum ( 8), Plagiomnium undulatum (8), Plagiothecium undulatum (8), Anthoceros caucasicus (9) and the like.
δ−カジネンを放出する蘚苔類として、例えば、Drepanolejeunea madagascariensis(6)、Lepidozia vitrea(29)、Lophozia ventricosa(24)、Marchesinia mackaii(14)、Marsupella emarginata(25)、Plagiochila bifaria(27)、Plagiochila maderensis(27)、Plagiochila retrorsa(27)、Plagiochila stricta(27)、Radula carringtonii(17)、Scapania undulata(1)、Mnium hornum(8)、Preissia quadrata(30)、Calypogeia muelleriana(31)、Marchantia emarginata subsp.tosana(32)等が挙げられる。 Examples of bryophytes that release δ-cadinene include Drepanolejeunea madagascariensis (6), Lepidozia vitrea (29), Lophozia ventricosa (24), Marchesinia mackaii (14), Marsupella emarginata (25), Plagiochila bifaria (27), Plagiochila made. (27), Plagiochila retrorsa (27), Plagiochila stricta (27), Radula carringtonii (17), Scapania undulata (1), Mnium hornum (8), Preissia quadrata (30), Calypogeia muelleriana (31), Marchantia emarginata subsp. Examples include tosana (32).
セドロールを放出する蘚苔類として、例えば、Tritomaria quinquedentata(33)、Porella navicularis(34)等が挙げられる。 Examples of bryophytes that release cedrol include Tritomaria quinquedentata (33) and Porella navicularis (34).
α−ピネンを放出する被子植物類として、例えば、Anthemis melampodina(9)、Elionurus tristis(87)、Hyptis suaveolens(88)、Plectranthus barbatus(89)等が挙げられる。 Examples of angiosperms that release α-pinene include Anthemis melampodina (9), Elionurus tristis (87), Hyptis suaveolens (88), and Plectranthus barbatus (89).
δ−カジネンを放出する被子植物類として、例えば、Teucrium ramosissimum(90)、Pallenis spinose(91)、Beta vulgaris(92)、Helichrysum genus(93)、Smyrnium cordifolium(94)、Achillea aucheri(95)、Helichrysum microphyllum(96)等が挙げられる。 Angiosperms that release δ-cadinene include, for example, Teucrium ramosissimum (90), Palalenis spinose (91), Beta vulgaris (92), Helichrysum genus (93), Smyrnium cordifolium (94), Achillea aucheri (95), Helichrysum. Examples thereof include microphyllum (96).
セドロールを放出する被子植物類として、例えば、Croton limae(97)、Trachydium roylei(98)、Pyrolae herba(99)、Artemisia annua(100)、Chamomilla recutita(101)、Valeriana fauriei(102)等が挙げられる。 Examples of angiosperms that release cedrol include Croton limae (97), Trachydium roylei (98), Pyrolae herba (99), Artemisia annua (100), Chamomile recutita (101), Valeriana fauriei (102) and the like. ..
α−ピネンを放出する裸子植物類として、例えば、Cryptomeria japonica(スギ)(106)、Chamaecyparis obtuse(ヒノキ)(107)、Chamaecyparis pisifera(サワラ)(108)、Abies firma(モミ)(109)、Pinus thunbergii(クロマツ)(110)、Pinus densiflora(アカマツ)(111)、Picea jezoensis(エゾマツ)(112)、Abies sachalinensis(トドマツ)(109)、Myroxylon peruiferum(113)、Populus nigra(セイヨウハコヤナギ)(114)、Populus trichocarpa(ブラックコットンウッド)(114)、Schinus molle(コショウボク)(115)、Syzygium paniculatum (116)、Boswellia carteri(ボスウェリア・サクラ)(117)、Juniperus communis(セイヨウネズ)(118)、Juniperus scopulorum(コロラドビャクシン)(119)、Cupressus sempervirens(ホソイトスギ)(120)、Thuja orientalis(コノテガシワ)(121)、Platycladus orientalis(122)、Juniperus excelsa(123)等が挙げられる。 Naked plants that release α-pinen include, for example, Cryptomeria japonica (106), Chamaecyparis obtuse (cypress) (107), Chamaecyparis pisifera (sawara) (108), Abies firma (fir) (109), Pinus. thunbergii (110), Pinus densiflora (red pine) (111), Picea jezoensis (112), Abies sachalinensis (109), Myroxylon peruiferum (113), Populus nigra (114) , Populus trichocarpa (black cottonwood) (114), Schinus molle (115), Syzygium paniculatum (116), Boswellia carteri (117), Juniperus communis (118), Juniperus scopulorum (Colorado juniper) (119), Cupressus sempervirens (Hinoki cypress) (120), Thuja orientalis (121), Platycladus orientalis (122), Juniperus excelsa (123) and the like.
δ−カジネンを放出する裸子植物類として、例えば、Juniperus chinensis(イブキ)(118)、Pinus heldreichii(ボスニアマツ)(124)、Pilgerodendron uviferum(125)、Chamecyparis obtuse(ヒノキ)(126,127)、Thujopsis dolabrata(アスナロ)(127)、Pinus peuce(128)、Cryptomeria japonica(スギ)(127,129,130)、Cupressus atlantica(131)が挙げられる。 Naked plants that release δ-kajinen include, for example, Juniperus chinensis (118), Pinus heldreichii (124), Pilgerodendron uviferum (125), Chamecyparis obtuse (Hinoki) (126,127), Thujopsis. Examples thereof include dolabrata (127), Pinus peuce (128), Cryptomeria japonica (Sugi) (127,129,130) and Cupressus atlantica (131).
セドロールを放出する裸子植物類として、例えば、Platycladus orientalis (コノテガシワ)(132)、Juniperus virginiana(エンピツビャクシン)(133)、Thuja occidentalis(ニオイヒバ)(134)、Cupressus sempervirens(ホソイトスギ)(120、135)、Cunninghamia lanceolate(コウヨウザン)(136)、Thuja orientalis (コノテガシワ)(121)、Abies kawakamii(122)、Cupressus funebris(シダレイトスギ)(118)が挙げられる。 Examples of nude plants that release sedrol include Platycladus orientalis (132), Juniperus virginiana (133), Thuja occidentalis (134), Cupressus sempervirens (120, 135). Cunninghamia lanceolate (136), Thuja orientalis (121), Abies kawakamii (122), Cupressus funebris (118).
これらの蘚苔類、被子植物類、および、芯材や辺材より小さく切断加工等された裸子植物類等は、トドマツ、ヒノキ、スギ、イチョウ等の樹木に比べて、背丈が小さく、植物設置のためのスペースが小さいため、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節することができる。 These moss, undergrowth plants, and gymnosperms that have been cut and processed smaller than the core and sapwood are shorter than trees such as Abies sachalinensis, cypress, sugi, and ginkgo, and are installed in plants. Because the space for the space is small, even in a small space such as an office or a house, the environment of the space can be reduced so that mental stress can be reduced, human intellectual productivity can be increased, or the relaxing effect can be enhanced. Can be adjusted.
[参考文献]
(1)Figueiredo AC, Barroso JG, Pedro LG, Fontinha SS, Sim-Sim M, Sergio C, Luis L,Scheffer JJC (2006) Asterella africana (Mont.) A. Evans Grown on Madeira and in Mainland Portugal: Morphological Data and Composition of the Essential Oil. Flavour Fragr J 21: 534
(2)Figueiredo AC, Garcia C, Sim-Sim M, Sergio C, Pedro LG, Barroso JG (2010) Volatiles from Plicanthus hirtellus (F. Weber) R.M. Schust. and Radula boryana (F. Weber) Nees (Hepaticae) Grown in Sao Tome e Principe Archipelago. Flavour Fragr J 25: 219
(3)Adio AM, Konig WA (2007)Sesquiterpenoids and Norsesquiterpenoids from Three Liverworts. Tetrahedron Asymm 18: 1693
(4)Ludwiczuk A, Asakawa Y (2010) Chemosystematics of Selected Liverworts Collected in Borneo. Tropical Bryology 31: 33
(5)Toyota M, Saito T, Matsunami J, Asakawa Y (1997) A Comparative Study on Three Chemotypes of the Liverwort Conocephalum conicum Using Volatile Constituents. Phytochemistry 44: 1265
(6)Gauvin-Bialecki A, Ah-Peng C, Smadja J, Strasberg D (2010) Fragrant Volatile Compounds in the Liverwort Drepanolejeunea madagascariensis (Steph.)Grolle: Approach by HSSPME Technique. Chem Biodivers 7: 639
(7)Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(8)Saritas Y, Mekem Sonwa M, Iznaguen H, Konig WA, Muhle H, Mues R (2001) Volatile Constituents in Mosses (Musci). Phytochemistry 57: 443
(9)Mekem Sonwa M, Konig WA (2003)Chemical Constituents of the Essential Oil of the Hornwort Anthoceros caucasicus. Flavour Frag J 18: 286
(10)Asakawa Y, Toyota M, Baser KHC, von Reus SH, Konig WA, Erol B, Ozenoglu H, Gokler I (2007) Volatile Components of Turkish Liverworts. 51st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics. Nagahama, Japan, Symposium Papers, p 263
(11)Toyota M, Yonehara Y, Horibe I, Minagawa K, Asakawa Y (1999) A Revision of a Positive Sign of the Optical Rotation and Its Maximum Value of a-Eudesmol. Phytochemistry 52: 689
(12)Asakawa Y, Toyota M, Nakaishi E, Tada Y (1996)Distribution of Terpenoids and Aromatic Compounds in New Zealand Liverworts. J Hattori Bot Lab 80: 271
(13)Nagashima F, Kondoh M, Uematsu T, Nishiyama A, Saito S, Sato M, Asakawa Y (2002) Cytotoxic and Apoptosis-Inducing ent-Kaurane-type Diterpenoids from the Japanese Liverwort Jungermannia trunctata Nees. Chem Pharm Bull 50: 808
(14)Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Santos PAG, Fontinha SS, Schripsema J, Deans SG, Scheffer JJC (2002) Composition of the Essential Oil from the Marchesinia mackaii (Hook.) S.F. Gray Grown in Portugal. J Essent Oil Res 14: 439
(15)Ludwiczuk A, Komala I, Pham A, Bianchini J-P, Raharivelomanana P, Asakawa Y (2009) Volatile Components from Selected Tahitian Liverworts. Nat Prod Commum 4: 1387
(16)Komala I, Ito T, Nagashima F, Yagi Y, Kawahata M, Yamaguchi K, Asakawa Y (2010) Zierane Sesquiterpene Lactone, Cembrane and Fusicoccane Diterpenoids, from the Tahithian Liverwort Chendonanthus hirtellus. Phytochemistry 71: 1387
(17)Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Esquivel MG, Fintinha S, Luis L, Martins S, Lobo C, Stech M (2009) Liverwort Radula Species from Portugal: Chemotaxonomical Evaluation of Volatiles Composition. Flavour Fragr J 24: 316
(18)Perry NB, Burgess EJ, Foster LM, Gerard PJ (2003)Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera . Tetrahedron Lett 44 : 1651
(19)Perry NB, Burgess EJ, Foster LM, Gerard PJ, Toyota M, Asakawa Y (2008) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera . 2. Structures, Artifacts and Activity. J Nat Prod 71 : 258
(20)Ludwiczuk A, Nagashima F, Gradstein SR, Asakawa Y (2008) Volatile Components from the Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts. Nat Prod Commun 3: 133
[References]
(1) Figueiredo AC, Barroso JG, Pedro LG, Fontinha SS, Sim-Sim M, Sergio C, Luis L, Scheffer JJC (2006) Asterella africana (Mont.) A. Evans Grown on Madeira and in Mainland Portugal: Morphological Data and Composition of the Essential Oil. Flavor Fragr J 21: 534
(2) Figueiredo AC, Garcia C, Sim-Sim M, Sergio C, Pedro LG, Barroso JG (2010) Volatiles from Plicanthus hirtellus (F. Weber) RM Schust. And Radula boryana (F. Weber) Nees (Hepaticae) Grown in Sao Tome e Principe Archipelago. Flavor Fragr J 25: 219
(3) Adio AM, Konig WA (2007) Sesquiterpenoids and Norsesquiterpenoids from Three Liverworts. Tetrahedron Asymm 18: 1693
(4) Ludwiczuk A, Asakawa Y (2010) Chemosystematics of Selected Liverworts Collected in Borneo. Tropical Bryology 31:33
(5) Toyota M, Saito T, Matsunami J, Asakawa Y (1997) A Comparative Study on Three Chemotypes of the Liverwort Conocephalum conicum Using Volatile Constituents. Phytochemistry 44: 1265
(6) Gauvin-Bialecki A, Ah-Peng C, Smadja J, Strasberg D (2010) Fragrant Volatile Compounds in the Liverwort Drepanolejeunea madagascariensis (Steph.) Grolle: Approach by HSSPME Technique. Chem Biodivers 7: 639
(7) Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(8) Saritas Y, Mekem Sonwa M, Iznaguen H, Konig WA, Muhle H, Mues R (2001) Volatile Constituents in Mosses (Musci). Phytochemistry 57: 443
(9) Mekem Sonwa M, Konig WA (2003) Chemical Constituents of the Essential Oil of the Hornwort Anthoceros caucasicus. Flavor Frag J 18: 286
(10) Asakawa Y, Toyota M, Baser KHC, von Reus SH, Konig WA, Erol B, Ozenoglu H, Gokler I (2007) Volatile Components of Turkish Liverworts. 51st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics. Nagahama, Japan, Symposium Papers, p 263
(11) Toyota M, Yonehara Y, Horibe I, Minagawa K, Asakawa Y (1999) A Revision of a Positive Sign of the Optical Rotation and Its Maximum Value of a-Eudesmol. Phytochemistry 52: 689
(12) Asakawa Y, Toyota M, Nakaishi E, Tada Y (1996) Distribution of Terpenoids and Aromatic Compounds in New Zealand Liverworts. J Hattori Bot Lab 80: 271
(13) Nagashima F, Kondoh M, Uematsu T, Nishiyama A, Saito S, Sato M, Asakawa Y (2002) Cytotoxic and Apoptosis-Inducing ent-Kaurane-type Diterpenoids from the Japanese Liverwort Jungermannia trunctata Nees. Chem Pharm Bull 50: 808
(14) Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Santos PAG, Fontinha SS, Schripsema J, Deans SG, Scheffer JJC (2002) Composition of the Essential Oil from the Marchesinia mackaii (Hook.) SF Gray Grown in Portugal. J Essent Oil Res 14: 439
(15) Ludwiczuk A, Komala I, Pham A, Bianchini JP, Raharivelomanana P, Asakawa Y (2009) Volatile Components from Selected Tahitian Liverworts. Nat Prod Commum 4: 1387
(16) Komala I, Ito T, Nagashima F, Yagi Y, Kawahata M, Yamaguchi K, Asakawa Y (2010) Zierane Sesquiterpene Lactone, Cembrane and Fusicoccane Diterpenoids, from the Tahithian Liverwort Chendonanthus hirtellus. Phytochemistry 71: 1387
(17) Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Esquivel MG, Fintinha S, Luis L, Martins S, Lobo C, Stech M (2009) Liverwort Radula Species from Portugal: Chemotaxonomical Evaluation of Volatiles Composition. Flavor Fragr J 24: 316
(18) Perry NB, Burgess EJ, Foster LM, Gerard PJ (2003) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera. Tetrahedron Lett 44: 1651
(19) Perry NB, Burgess EJ, Foster LM, Gerard PJ, Toyota M, Asakawa Y (2008) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera. 2. Structures, Artifacts and Activity. J Nat Prod 71: 258
(20) Ludwiczuk A, Nagashima F, Gradstein SR, Asakawa Y (2008) Volatile Components from the Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts. Nat Prod Commun 3: 133
(21)Lu R, Paul C, Basar S, Konig WA, Hashimoto T, Asakawa Y (2003) Sesquiterpene Constituents from the Liverwort Bazzania japonica. Phytochemistry 63: 581
(22)von Reub SH, Konig WA (2005)Olefinic Isothiocyanates and Iminodithiocarbonates from the Liverwort Corsinia coriandrina. Eur J Org Chem: 1184
(23)Asakawa Y, Toyota M, von Konrad M, Braggins JE (2003)Volatile Components of Selected Species of the Liverwort Genera Frullania and Schusterella (Frullaniaceae)from New Zealand, Australia and South America: A Chemosystematic Approach. Phytochemistry 62:439
(24)Lu R, Paul C, Basar S, Konig WA (2005) Sesquiterpene Constituents of the Liverwort Lophozia ventricosa. Tetrahedron Asymm 16: 883
(25)Adio AM, Paul C, Kloth P, Konig WA (2004) Sesquiterpenes of the Liverwort Scapania undulata. Phytochemistry 65: 199
(26)Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(27)Figueiredo AC, Sim-Sim M, Costa MM, Barroso JG, Pedro LG, Esquivel MG, Gutierres F, Lobo C, Fontinha S (2005) Comparison of the Essential Oil Composition of Four Plagiochila species: P. bifaria, P. maderensis, P. retrorsa and P. stricta. Flavour Fragr J 20: 703
(28)Hackl T, Konig WA, Muhle H (2004) Isogermacrene A, a Proposed Intermediate I Sesquiterpene Biosynthesis. Phytochemistry 65: 2261
(29)Paul C, Konig WA, Wu C-L (2001) Sesquiterpenoid Constituents of the Liverworts Lepidozia fauriana and Lepidozia vitrea. Phytochemistry 58: 789
(30)Konig WA, Bulow N, Fricke C, Melching S, Rieck A, Muhle H (1996) The Sesquiterpene Constituents of the Liverwort Preissia quadrata. Phytochemistry 43: 629
(31)Warmers U, Wihstutz K, Bulow N, Fricke C, Konig WA (1998) Sesquiterpene Constituents of the Liverworts Calypogeia muelleriana. Phytochemistry 49: 1723
(32)Hosoda A (2003) Phytochemical Study on the Chemical Constituents of Some New Zealand and Japanese Liverworts. Master’s Thesis, Tokushima Bunri University, Japan, pp 75
(33)Warmers U, Konig WA (1999) (-)-7-epi-Isojunenol and (+)-7-epi-Junenol, Constituents of the Liverwort Tritomaria quinquedentata. Phytochemistry 52: 1519
(34)Bungert M, Gabler J, Adam K-P, Zapp J, Becker H (1998) Pinguisane Sesquiterpenes from the Liverwort Porella navicularis. Phytochemistry 49: 1079
(35)Warmers, U., Konig, W. A. (1999) Sesquiterpene constituents of the liverwort Bazzania trilobata, Phytochemistry 52: 99
(36)Shi, D., Han, L., Sun, J. (2007) Sesquiterpenes and their derivatives from marine green alga Chaetomorpha basiretorsa. CHINESE TRADITIONAL AND HERBAL DRUGS 38: 496
(37)Melching, S., Warmers, U., Konig, W. A., Muhle, H. (1999) Two aromadendrane type alcohols from the liverwort Conocephalum conicum. Phytochemistry 51: 277
(38)Nagashima, F., Wakayama, K., Ioka, Y., Asakawa, Y. (2008) New ent-verticillane diterpenoids from the Japanese liverwort Jackiella javanica. Chemical and Pharmaceutical Bulletin 56: 1184
(39)Mamadalieva, N. Z., Youssef, F. S., Ashour, M. L., Sasmakov, S. A., Tiezzi, A., Azimova, S. S. (2019) Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Nat Prod Res 33: 2394
(40)Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS One 13: e0190790
(21) Lu R, Paul C, Basar S, Konig WA, Hashimoto T, Asakawa Y (2003) Sesquiterpene Constituents from the Liverwort Bazzania japonica. Phytochemistry 63: 581
(22) von Reub SH, Konig WA (2005) Olefinic Isothiocyanates and Iminodithiocarbonates from the Liverwort Corsinia coriandrina. Eur J Org Chem: 1184
(23) Asakawa Y, Toyota M, von Konrad M, Braggins JE (2003) Volatile Components of Selected Species of the Liverwort Genera Frullania and Schusterella (Frullaniaceae) from New Zealand, Australia and South America: A Chemosystematic Approach. Phytochemistry 62: 439
(24) Lu R, Paul C, Basar S, Konig WA (2005) Sesquiterpene Constituents of the Liverwort Lophozia ventricosa. Tetrahedron Asymm 16: 883
(25) Adio AM, Paul C, Kloth P, Konig WA (2004) Sesquiterpenes of the Liverwort Scapania undulata. Phytochemistry 65: 199
(26) Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(27) Figueiredo AC, Sim-Sim M, Costa MM, Barroso JG, Pedro LG, Esquivel MG, Gutierres F, Lobo C, Fontinha S (2005) Comparison of the Essential Oil Composition of Four Plagiochila species: P. bifaria, P . maderensis, P. retrorsa and P. stricta. Flavor Fragr J 20: 703
(28) Hackl T, Konig WA, Muhle H (2004) Isogermacrene A, a Proposed Intermediate I Sesquiterpene Biosynthesis. Phytochemistry 65: 2261
(29) Paul C, Konig WA, Wu CL (2001) Sesquiterpenoid Constituents of the Liverworts Lepidozia fauriana and Lepidozia vitrea. Phytochemistry 58: 789
(30) Konig WA, Bulow N, Fricke C, Melching S, Rieck A, Muhle H (1996) The Sesquiterpene Constituents of the Liverwort Preissia quadrata. Phytochemistry 43: 629
(31) Warmers U, Wihstutz K, Bulow N, Fricke C, Konig WA (1998) Sesquiterpene Constituents of the Liverworts Calypogeia muelleriana. Phytochemistry 49: 1723
(32) Hosoda A (2003) Phytochemical Study on the Chemical Constituents of Some New Zealand and Japanese Liverworts. Master's Thesis, Tokushima Bunri University, Japan, pp 75
(33) Warmers U, Konig WA (1999) (-)-7-epi-Isojunenol and (+)-7-epi-Junenol, Constituents of the Liverwort Tritomaria quinquedentata. Phytochemistry 52: 1519
(34) Bungert M, Gabler J, Adam KP, Zapp J, Becker H (1998) Pinguisane Sesquiterpenes from the Liverwort Porella navicularis. Phytochemistry 49: 1079
(35) Warmers, U., Konig, WA (1999) Sesquiterpene constituents of the liverwort Bazzania trilobata, Phytochemistry 52: 99
(36) Shi, D., Han, L., Sun, J. (2007) Sesquiterpenes and their derivatives from marine green alga Chaetomorpha basiretorsa. CHINESE TRADITIONAL AND HERBAL DRUGS 38: 496
(37) Melching, S., Warmers, U., Konig, WA, Muhle, H. (1999) Two aromadendrane type alcohols from the liverwort Conocephalum conicum. Phytochemistry 51: 277
(38) Nagashima, F., Wakayama, K., Ioka, Y., Asakawa, Y. (2008) New ent-verticillane diterpenoids from the Japanese liverwort Jackiella javanica. Chemical and Pharmaceutical Bulletin 56: 1184
(39) Mamadalieva, NZ, Youssef, FS, Ashour, ML, Sasmakov, SA, Tiezzi, A., Azimova, SS (2019) Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Nat Prod Res 33: 2394
(40) Cutillas, AB, Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS One 13: e0190790
(41)Giray, E. S., Kirici, S., Kaya, D. A., Turk, M., Sonmez, O., Inan, M. (2008) Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas. Talanta 74: 930-5
(42)Liang, J. Y., Guo, S. S., You, C. X., Zhang, W. J., Wang, C.F., Geng, Z.F., Deng, Z. W., Du, S. S., Zhang, J. (2016) Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil. Chem Biodivers 13: 1053
(43)Piras, A., Falconieri, D., Bagdonaite, E., Maxia, A., Goncalves, M. J., Cavaleiro, C., Salgueiro, L., Porcedda, S. (2014) Chemical composition and antifungal activity of supercritical extract and essential oil of Tanacetum vulgare growing wild in Lithuania. Nat Prod Res 28: 1906
(44)Medina-Holguin, A. L., Holguin, F. O., Micheletto, S., Goehle, S., Simon, J. A., O'Connell, M. A. (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69: 919
(45)Elshamy, A. I., Abd-ElGawad, A. M., El Gendy, A. E. G., Assaeed, A. M. (2019) Chemical Characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chem Biodivers 16: e1900051
(46)Borges, R. S., Ortiz, B. L. S., Pereira, A. C. M., Keita, H., Carvalho, J. C. T. (2019) Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol 229: 29
(47)Grosso, C., Figueiredo, A. C., Burillo, J., Mainar, A.M., Urieta, J.S., Barroso, J. G., Coelho, J. A., Palavra, A. M. (2009) Supercritical fluid extraction of the volatile oil from Santolina chamaecyparissus. J Sep Sci 32: 3215
(48)Ali, A., Tabanca, N., Demirci, B., Blythe, E. K., Ali, Z., Baser, K. H., Khan, I. A. (2015) Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem 63: 447
(49)Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha x piperita L. J Sci Food Agric 95: 621
(50)Govindarajan, M., Sivakumar, R., Rajeswari, M., Yogalakshmi, K. (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110: 2023
(51)Hizem, A., Lundstrom-Stadelmann, B., M'Rad, S., Souiai, S., Ben Jannet, H., Flamini, G., Ascrizzi, R., Ghedira, K., Babba, H., Hemphill, A. (2019) Activity of Thymus capitatus essential oil components against in vitro cultured Echinococcus multilocularis metacestodes and germinal layer cells. Parasitology 146: 956
(52)Khani, A., Asghari, J. (2012) Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J Insect Sci 12: 73
(53)Ozek, G., Tabanca, N., Radwan, M. M., Shatar, S., Altantsetseg, A., Baatar, D., Baser, K. H. C., Becnel, J. J., Ozek, T. (2016) Preparative Capillary GC for Characterization of Five Dracocephalum Essential Oils from Mongolia, and their Mosquito Larvicidal Activity. Nat Prod Commun 11: 1541
(54)Guo, S. S., Wang, Y., Pang, X., Geng, Z.F., Cao, J.Q., Du, S. S. (2019) Seven herbs against the stored product insect: Toxicity evidence and the active sesquiterpenes from Atractylodes lancea. Ecotoxicol Environ Saf 169: 807-813
(55)Yusufoglu, H. S., Tabanca, N., Bernier, U. R., Li, A. Y., Salkini, M. A., Alqasoumi, S. I., Demirci, B. (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26: 860
(56)Salah-Fatnassi, K. B. H., Hassayoun, F., Cheraif, I., Khan, S., Jannet, H. B., Hammami, M., Aouni, M., Harzallah-Skhiri, F. (2017) Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi journal of biological sciences 24: 875
(57)Karami, A. (2017) Essential oil composition of Ajuga comata Stapf. from Southern Zagros, Iran. Nat Prod Res 31: 359
(58)Ben Sghaier, M., Mousslim, M., Pagano, A., Ammari, Y., Luis, J., Kovacic, H. (2016) beta-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell. Environ Toxicol Pharmacol 46: 227
(59)Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzinska, E., Olszewska, M. A., Kicel, A. (2019) Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Nat Prod Res 33:1535
(60)Hassan, M. M., Muhtadi, F., J., Al-Badr, A. A. (1979) GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 68: 800
(41) Giray, ES, Kirici, S., Kaya, DA, Turk, M., Sonmez, O., Inan, M. (2008) Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas. Talanta 74: 930-5
(42) Liang, JY, Guo, SS, You, CX, Zhang, WJ, Wang, CF, Geng, ZF, Deng, ZW, Du, SS, Zhang, J. (2016) Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil. Chem Biodivers 13: 1053
(43) Piras, A., Falconieri, D., Bagdonaite, E., Maxia, A., Goncalves, MJ, Cavaleiro, C., Salgueiro, L., Porcedda, S. (2014) Chemical composition and antifungal activity of supercritical extract and essential oil of Tanacetum vulgare growing wild in Lithuania. Nat Prod Res 28: 1906
(44) Medina-Holguin, AL, Holguin, FO, Micheletto, S., Goehle, S., Simon, JA, O'Connell, MA (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69 : 919
(45) Elshamy, AI, Abd-ElGawad, AM, El Gendy, AEG, Assaeed, AM (2019) Chemical characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chem Biodivers 16: e1900051
(46) Borges, RS, Ortiz, BLS, Pereira, ACM, Keita, H., Carvalho, JCT (2019) Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol 229: 29
(47) Grosso, C., Figueiredo, AC, Burillo, J., Mainar, AM, Urieta, JS, Barroso, JG, Coelho, JA, Palavra, AM (2009) Supercritical fluid extraction of the volatile oil from Santolina chamaecyparissus. J Sep Sci 32: 3215
(48) Ali, A., Tabanca, N., Demirci, B., Blythe, EK, Ali, Z., Baser, KH, Khan, IA (2015) Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem 63: 447
(49) Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha x piperita L. J Sci Food Agric 95: 621
(50) Govindarajan, M., Sivakumar, R., Rajeswari, M., Yogalakshmi, K. (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) Against three mosquito species. Parasitol Res 110: 2023
(51) Hizem, A., Lundstrom-Stadelmann, B., M'Rad, S., Souiai, S., Ben Jannet, H., Flamini, G., Ascrizzi, R., Ghedira, K., Babba, H., Hemphill, A. (2019) Activity of Thymus capitatus essential oil components against in vitro cultured Echinococcus multilocularis metacestodes and germinal layer cells. Parasitology 146: 956
(52) Khani, A., Asghari, J. (2012) Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J Insect Sci 12: 73
(53) Ozek, G., Tabanca, N., Radwan, MM, Shatar, S., Altantsetseg, A., Baatar, D., Baser, KHC, Becnel, JJ, Ozek, T. (2016) Preparative Capillary GC for TEXT of Five Dracocephalum Essential Oils from Mongolia, and their Mosquito Larvicidal Activity. Nat Prod Commun 11: 1541
(54) Guo, SS, Wang, Y., Pang, X., Geng, ZF, Cao, JQ, Du, SS (2019) Seven herbs against the stored product insect: Toxicity evidence and the active sesquiterpenes from Atractylodes lancea. Ecotoxicol Environ Saf 169: 807-813
(55) Yusufoglu, HS, Tabanca, N., Bernier, UR, Li, AY, Salkini, MA, Alqasoumi, SI, Demirci, B. (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26: 860
(56) Salah-Fatnassi, KBH, Hassayoun, F., Cheraif, I., Khan, S., Jannet, HB, Hammami, M., Aouni, M., Harzallah-Skhiri, F. (2017) Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi journal of biological sciences 24: 875
(57) Karami, A. (2017) Essential oil composition of Ajuga comata Stapf. From Southern Zagros, Iran. Nat Prod Res 31: 359
(58) Ben Sghaier, M., Mousslim, M., Pagano, A., Ammari, Y., Luis, J., Kovacic, H. (2016) beta-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cells. Environ Toxicol Pharmacol 46: 227
(59) Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzinska, E., Olszewska, MA, Kicel, A. (2019) Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Nat Prod Res 33: 1535
(60) Hassan, MM, Muhtadi, F., J., Al-Badr, AA (1979) GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 68: 800
(61)Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019) The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiol Biochem 142: 43
(62)Verma, R. S., Verma, R. K., Padalia, R. C., Chauhan, A., Singh, A., Singh, H. P. (2011) Chemical diversity in the essential oil of Indian valerian (Valeriana jatamansi Jones). Chem Biodivers 8: 1921
(63)Neves, I. A., da Camara, C. A. (2011). Acaricidal activity against Tetranychus urticae and essential oil composition of four Croton species from Caatinga biome in northeastern Brazil. Nat Prod Commun 6: 893
(64)London, A., Veres, K., Szabo, K., Haznagy-Radnai, E., Mathe, I. (2011) Analysis of the essential oil of Amsonia illustris. Nat Prod Commun 6: 235
(65)Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thyme essential oils from Spain: Aromatic profile ascertained by GC-MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J Food Drug Anal 26: 529
(66)Sacchetti, G., Muzzoli, M., Statti, G. A. Conforti, F., Bianchi, A., Agrimonti, C., Ballero, M., Poli, F. (2007) Intra-specific biodiversity of Italian myrtle (Myrtus communis) through chemical markers profile and biological activities of leaf methanolic extracts. Nat Prod Res 2l: 167
(67)de Souza, R. C., da Costa, M. M., Baldisserotto, B., Heinzmann, B. M., Schmidt, D., Caron, B. O., Copatti, C. E. (2017) Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp. Microb Pathog l13: 29
(68)Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2016) Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Med 82: 163
(69)Hassen, I., M'Rabet, Y., Belgacem, C., Kesraoui, O., Casabianca, H., Hosni, K. (2015) Chemodiversity of volatile oils in Thapsia garganica L. (Apiaceae). Chem Biodivers 12: 637
(70)Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., Ercisli, S. (2016) Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers 13: 77
(71)Houicher, A., Hechachna, H., Teldji, H., Ozogul, F. (2016) In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat Food Nutr Agric 8; 99
(72)Ortiz de Elguea-Culebras, G., Sanchez-Vioque, R., Berruga, M. I., Herraiz-Penalver, D., Gonzalez-Coloma, A., Andres, M. F., Santana-Meridas, O. (2018) Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula x intermedia var. Super, and Santolina chamaecyparissus. Chem Biodivers 15:
(73)Pirmoradi, M. R., Moghaddam, M., Farhadi, N. (2013) Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran. Chem Biodivers 10: 1361
(74)Sgorbini, B., Cagliero, C., Pagani, A., Sganzerla, M., Boggia, L., Bicchi, C., Rubiolo, P. (2015) Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & L.M.Perry). Phytochemistry 117: 296
(75)Xu, Y. M., Yue, W., Sang, M. R., Wu, D. W., Liu, C. C., Zhao, L. L., Wu, Q. N. (2017) [Analysis on quality and differences of Mentha haplocalyx from different regions]. Zhongguo Zhong Yao Za Zhi 42: 3391
(76)Bose, S. K., Yadav, R. K., Mishra, S., Sangwan, R. S., Singh, A. K., Mishra, B., Srivastava, A. K., Sangwan, N. S. (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66: 150
(77)Falchero, L., Coppa, M., Fossi, A., Lombardi, G., Ramella, D., Tava, A. (2009) Essential oil composition of lady's mantle (Alchemilla xanthochlora Rothm.) growing wild in Alpine pastures. Nat Prod Res 23: 1367
(78)Senatore, F., Arnold, N. A., Piozzi, F. (2004) Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. J Chromatogr A 1052: 237
(79)Hethelyi, E., Tetenyi, P., Dabi, E., Danos, B. (1987) The role of mass spectrometry in medicinal plant research. Biomed Environ Mass Spectrom 14: 627
(80)Pardo-Muras, M., Puig, C. G., Lopez-Nogueira, A., Cavaleiro, C., Pedrol, N. (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13: e0205997
(61) Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019) The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes / phenylpropanoids in yarrow (Achillea millefolium). Plant Physiol Biochem 142: 43
(62) Verma, RS, Verma, RK, Padalia, RC, Chauhan, A., Singh, A., Singh, HP (2011) Chemical diversity in the essential oil of Indian valerian (Valeriana jatamansi Jones). Chem Biodivers 8: 1921
(63) Neves, IA, da Camara, CA (2011). Acaricidal activity against Tetranychus urticae and essential oil composition of four Croton species from Caatinga biome in northeastern Brazil. Nat Prod Commun 6: 893
(64) London, A., Veres, K., Szabo, K., Haznagy-Radnai, E., Mathe, I. (2011) Analysis of the essential oil of Amsonia illustris. Nat Prod Commun 6: 235
(65) Cutillas, AB, Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thyme essential oils from Spain: Aromatic profile ascertained by GC-MS, and their antioxidant, anti -lipoxygenase and antimicrobial activities. J Food Drug Anal 26: 529
(66) Sacchetti, G., Muzzoli, M., Statti, GA Conforti, F., Bianchi, A., Agrimonti, C., Ballero, M., Poli, F. (2007) Intra-specific biodiversity of Italian myrtle (Myrtus communis) through chemical markers profile and biological activities of leaf methanolic extracts. Nat Prod Res 2l: 167
(67) de Souza, RC, da Costa, MM, Baldisserotto, B., Heinzmann, BM, Schmidt, D., Caron, BO, Copatti, CE (2017) Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp. Microb Pathog l13: 29
(68) Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2016) Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Med 82: 163
(69) Hassen, I., M'Rabet, Y., Belgacem, C., Kesraoui, O., Casabianca, H., Hosni, K. (2015) Chemodiversity of volatile oils in Thapsia garganica L. (Apiaceae). Chem Biodivers 12: 637
(70) Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., Ercisli, S. (2016) Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers 13:77
(71) Houicher, A., Hechachna, H., Teldji, H., Ozogul, F. (2016) In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat Food Nutr Agric 8; 99
(72) Ortiz de Elguea-Culebras, G., Sanchez-Vioque, R., Berruga, MI, Herraiz-Penalver, D., Gonzalez-Coloma, A., Andres, MF, Santana-Meridas, O. (2018) Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula x intermedia var. Super, and Santolina chamaecyparissus. Chem Biodivers 15:
(73) Pirmoradi, MR, Moghaddam, M., Farhadi, N. (2013) Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran. Chem Biodivers 10: 1361
(74) Sgorbini, B., Cagliero, C., Pagani, A., Sganzerla, M., Boggia, L., Bicchi, C., Rubiolo, P. (2015) Determination of free and glucosidically-bound volatiles in plants . Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & LMPerry). Phytochemistry 117: 296
(75) Xu, YM, Yue, W., Sang, MR, Wu, DW, Liu, CC, Zhao, LL, Wu, QN (2017) [Analysis on quality and differences of Mentha haplocalyx from different regions]. Zhongguo Zhong Yao Za Zhi 42: 3391
(76) Bose, SK, Yadav, RK, Mishra, S., Sangwan, RS, Singh, AK, Mishra, B., Srivastava, AK, Sangwan, NS (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66: 150
(77) Falchero, L., Coppa, M., Fossi, A., Lombardi, G., Ramella, D., Tava, A. (2009) Essential oil composition of lady's mantle (Alchemilla xanthochlora Rothm.) Growing wild in Alpine pastures. Nat Prod Res 23: 1367
(78) Senatore, F., Arnold, NA, Piozzi, F. (2004) Chemical composition of the essential oil of Salvia multicaulis Vahl. Var. Simplicifolia Boiss. Growing wild in Lebanon. J Chromatogr A 1052: 237
(79) Hethelyi, E., Tetenyi, P., Dabi, E., Danos, B. (1987) The role of mass spectrometry in medicinal plant research. Biomed Environ Mass Spectrom 14: 627
(80) Pardo-Muras, M., Puig, CG, Lopez-Nogueira, A., Cavaleiro, C., Pedrol, N. (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13: e0205997
(81)Zhang, Z., Bian, L., Sun, X., Luo, Z., Xin, Z., Luo, F., Chen, Z. (2015) Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Manag Sci 71: 96
(82)Gohari, A. R., Kurepaz-Mahmoodabadi, M., Saeidnia, S. (2013) Volatile oil of Artemisia santolina decreased morphine withdrawal jumping in mice. Pharmacognosy Res 5: 118
(83)Palsson, K., Jaenson, T. G., Baeckstrom, P., Borg-Karlson, A. K. (2OO8) Tick repellent substances in the essential oil of Tanacetum vulgare. J Med Entomol 45: 88
(84)Farzaneh, M., Ahmadzadeh, M., Hadian, J., Tehrani, A. S. (2006) Chemical composition and antifungal activity of the essential oils of three species of Artemisia on some soil-borne phytopathogens. Commun Agric Appl Biol Sci 71: 1327
(85)Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, K. H. (2001) Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J Agric Food Chem 49: 4300
(86)Li, Y., Yan, S. S., Wang, J.J., Li, L. Y., Zhang, J., Wang, K., Liang, J.Y. (2018) Insecticidal Activities and Chemical Composition of the Essential Oils of Ajania nitida and Ajania nematoloba from China. J Oleo Sci 67: 1571
(87)Garcia, G. P., Sutour, S., Rabehaja, D., Tissandie, L., Filippi, J. J., Tomi, F. (2019) Essential oil of the malagasy grass Elionurus tristis Hack. contains several undescribed sesquiterpenoids. Phytochemistry 162: 29
(88)Sharma, A., Singh, H. P., Batish, D. R., Kohli, R. K. (2019) Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf 171: 863
(89)Mothana, R. A., Khaled, J. M., Noman, O. M., Kumar, A., Alajmi, M. F., Al-Rehaily, A. J., Kurkcuoglu, M. (2018) Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement Altern Med 18: 237
(90)Ghazouani, N., Sifaoui, I., Bachrouch, O., Abderrabba, M., J, E. P., Lorenzo-Morales, J. (2017) Essential oil composition and anti Acanthamoeba studies of Teucrium ramosissimum. Exp Parasitol 183: 207
(91)Al-Qudah, M. A., Saleh, A. M., Alhawsawi, N. L., Al-Jaber, H. I., Rizvi, S. A., Afifi, F. U. (2017) Composition, Antioxidant, and Cytotoxic Activities of the Essential Oils from Fresh and Air-Dried Aerial Parts of Pallenis spinosa. Chem Biodivers 14:
(92)Zardi-Bergaoui, A., Ben Nejma, A., Harzallah-Skhiri, F., Flamini, G., Ascrizzi, R., Ben Jannet, H. (2017) Chemical Composition and Biological Studies of the Essential Oil from Aerial Parts of Beta vulgaris subsp. maritima (L.) Arcang. Growing in Tunisia. Chem Biodivers 14:
(93)Giovanelli, S., De Leo, M., Cervelli, C., Ruffoni, B., Ciccarelli, D., Pistelli, L. (2018) Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy. Chem Biodivers 15: e1700545
(94)Abbasi, N., Mohammadpour, S., Karimi, E., Aidy, A., Karimi, P., Azizi, M., Asadollahi, K. (2017) Protective effects of Smyrnium cordifolium boiss essential oil on pentylenetetrazol-induced seizures in mice: involvement of benzodiazepine and opioid antagonists. J Biol Regul Homeost Agents 31: 683
(95)Afshari, M., Rahimmalek, M. (2018) Variation in Essential Oil Composition, Bioactive Compounds, Anatomical and Antioxidant Activity of Achillea aucheri, an Endemic Species of Iran, at Different Phenological Stages. Chem Biodivers 15: el800319
(96)Ornano, L., Venditti, A., Sanna, C., Ballero, M., Maggi, F., Lupidi, G., Bramucci, M., Quassinti, L., Bianco, A. (2015) Chemical composition and biological activity of the essential oil from Helichrysum microphyllum Cambess. ssp. tyrrhenicum Bacch., Brullo e Giusso growing in La Maddalena Archipelago, Sardinia. J Oleo Sci 64: 19
(97)Leite, T. R., Silva, M., Santos, A., Coutinho, H. D. M., Duarte, A. E., Costa, J. (2017) Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm Biol 55: 2015
(98)Wang, Y. T., Zhu, L., Zeng, D., Long, W., Zhu, S. M. (2016) Chemical composition and anti-inflammatory activities of essential oil from Trachydium roylei. J Food Drug Anal 24: 602
(99)Cai, L., Ye, H., Li, X., Lin, Y., Yu, F., Chen, J., Li, H., Liu, X. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42: 1452
(100)Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A., Brodelius, P. E. (2012) Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant Cell Rep 31: 1309
(81) Zhang, Z., Bian, L., Sun, X., Luo, Z., Xin, Z., Luo, F., Chen, Z. (2015) Electrophysiological and behavioral responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Manag Sci 71: 96
(82) Gohari, AR, Kurepaz-Mahmoodabadi, M., Saeidnia, S. (2013) Volatile oil of Artemisia santolina decreased morphine withdrawal jumping in mice. Pharmacognosy Res 5: 118
(83) Palsson, K., Jaenson, TG, Baeckstrom, P., Borg-Karlson, AK (2OO8) Tick repellent substances in the essential oil of Tanacetum vulgare. J Med Entomol 45: 88
(84) Farzaneh, M., Ahmadzadeh, M., Hadian, J., Tehrani, AS (2006) Chemical composition and antifungal activity of the essential oils of three species of Artemisia on some soil-borne phytopathogens. Commun Agric Appl Biol Sci 71: 1327
(85) Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, KH (2001) Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. Phrygia and the enantiomeric distribution of borneol. J Agric Food Chem 49: 4300
(86) Li, Y., Yan, SS, Wang, JJ, Li, LY, Zhang, J., Wang, K., Liang, JY (2018) Insecticidal Activities and Chemical Composition of the Essential Oils of Ajania nitida and Ajania nematoloba from China. J Oleo Sci 67: 1571
(87) Garcia, GP, Sutour, S., Rabehaja, D., Tissandie, L., Filippi, JJ, Tomi, F. (2019) Essential oil of the malagasy grass Elionurus tristis Hack. Contains several undescribed sesquiterpenoids. Phytochemistry 162 : 29
(88) Sharma, A., Singh, HP, Batish, DR, Kohli, RK (2019) Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf 171: 863
(89) Mothana, RA, Khaled, JM, Noman, OM, Kumar, A., Alajmi, MF, Al-Rehaily, AJ, Kurkcuoglu, M. (2018) Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement Altern Med 18: 237
(90) Ghazouani, N., Sifaoui, I., Bachrouch, O., Abderrabba, M., J, EP, Lorenzo-Morales, J. (2017) Essential oil composition and anti-Acanthamoeba studies of Teucrium ramosissimum. Exp Parasitol 183 : 207
(91) Al-Qudah, MA, Saleh, AM, Alhawsawi, NL, Al-Jaber, HI, Rizvi, SA, Afifi, FU (2017) Composition, Antioxidant, and Cytotoxic Activities of the Essential Oils from Fresh and Air-Dried Aerial Parts of Pallenis spinosa. Chem Biodivers 14:
(92) Zardi-Bergaoui, A., Ben Nejma, A., Harzallah-Skhiri, F., Flamini, G., Ascrizzi, R., Ben Jannet, H. (2017) Chemical Composition and Biological Studies of the Essential Oil from Aerial Parts of Beta vulgaris subsp. Maritima (L.) Arcang. Growing in Tunisia. Chem Biodivers 14:
(93) Giovanelli, S., De Leo, M., Cervelli, C., Ruffoni, B., Ciccarelli, D., Pistelli, L. (2018) Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy. Chem Biodivers 15: e1700545
(94) Abbasi, N., Mohammadpour, S., Karimi, E., Aidy, A., Karimi, P., Azizi, M., Asadollahi, K. (2017) Protective effects of Smyrnium cordifolium boiss essential oil on pentylenetetrazol -induced seizures in mice: involvement of benzodiazepine and opioid antagonists. J Biol Regul Homeost Agents 31: 683
(95) Afshari, M., Rahimmalek, M. (2018) Variation in Essential Oil Composition, Bioactive Compounds, Anatomical and Antioxidant Activity of Achillea aucheri, an Endemic Species of Iran, at Different Phenological Stages. Chem Biodivers 15: el800319
(96) Ornano, L., Venditti, A., Sanna, C., Ballero, M., Maggi, F., Lupidi, G., Bramucci, M., Quassinti, L., Bianco, A. (2015) Chemical composition and biological activity of the essential oil from Helichrysum microphyllum Cambess. Ssp. Tyrrenicum Bacch., Brullo e Giusso growing in La Maddalena Archipelago, Sardinia. J Oleo Sci 64: 19
(97) Leite, TR, Silva, M., Santos, A., Coutinho, HDM, Duarte, AE, Costa, J. (2017) Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm Biol 55: 2015
(98) Wang, YT, Zhu, L., Zeng, D., Long, W., Zhu, SM (2016) Chemical composition and anti-inflammatory activities of essential oil from Trachydium roylei. J Food Drug Anal 24: 602
(99) Cai, L., Ye, H., Li, X., Lin, Y., Yu, F., Chen, J., Li, H., Liu, X. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42: 1452
(100) Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A., Brodelius, PE (2012) Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant Cell Rep 31: 1309
(101)Szoke, E., Maday, E., Tyihak, E., Kuzovkina, I. N., Lemberkovics, E. (2004) New terpenoids in cultivated and wild chamomile (in vivo and in vitro). J Chromatogr B Analyt Technol Biomed Life Sci 800: 231
(102)Chung, I. M., Kim, E. H., Moon, H. I. (2011) Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L. Immunopharmacol Immunotoxicol 33: 107
(103)Sharifi-Rad, J., Salehi, B., Varoni, E. M., Sharopov, F., Yousaf, Z., Ayatollahi, S. A., Kobarfard, F., Sharifi-Rad, M., Afdjei, M. H., Sharifi-Rad, M., Iriti, M. (2017) Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother Res. 31: 1475
(104)Lucia, A., Licastro, S., Zerba, E., Gonzalez Audino, P., Masuh, H. (2009) Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol 100: 6083
(105)Chaiyana, W., Okonogi, S. (2012) Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 19: 836
(106)Garcia, G., Garcia, A., Gibernau, M., Bighelli, A., Tomi, F. (2017) Chemical compositions of essential oils of five introduced conifers in Corsica. Nat Prod Res 31: 1697
(107)Katoh, S., Noda, A., Furuno, T. (2006) Tree-to-tree and clone-to-clone variations of monoterpenes emitted from needles of hinoki (Chamaecyparis obtusa). Journal of wood science 52: 84
(108)Yatagai, M., Sato, T., Takahashi, T. (1985) Terpenes of leaf oils from Cupressaceae. Biochemical systematics and ecology 13: 377
(109)Satou, T., Matsuura, M., Takahashi, M., Murakami, S., Hayashi, S., Sadamoto, K., Koike, K. (2011) Components of essential oils extracted from leaves and shoots of abies species in Japan. Chem Biodivers 8: 1132
(110)KURODA, K. (1989) Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Japanese Journal of Phytopathology 55: 170
(111)Lim, J. H., Kim, J. C., Kim, K. J., Son, Y. S., Sunwoo, Y., Han, J. S. (2008) Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 73: 470
(112)Xiao-shuang, S. (2009) Relationship between Volatile Matters from Picea jezoensis and Endangerments of Monochamus urussovi [J]. Journal of Anhui Agricultural Sciences 26:
(113)Pereira, R., Pereira, A. L., Ferreira, M. M., Fontenelle, R. O. S., Saker-Sampaio, S., Santos, H. S., Bandeira, P. N., Vasconcelos, M. A., Queiroz, J. A. N., Braz-Filho, R., Teixeira, E. H. (2019) Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4', 6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum L.f. An Acad Bras Cienc 91: e20180204
(114)Lackus, N. D., Lackner, S., Gershenzon, J., Unsicker, S. B., Kollner, T. G. (2018) The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 8: 17936
(115)do Prado, A. C., Garces, H. G., Bagagli, E., Rall, V. L. M., Furlanetto, A., Fernandes Junior, A., Furtado, F. B. (2019) Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties. J Appl Microbiol 126: 516
(116)Okoh, S. O., Okoh, O. O., Okoh, A. I. (2019) Seasonal variation of volatile oil composition and antioxidant property of aerial parts of Syzygium paniculatum Gaertn. grown in the Eastern Cape, South Africa. Nat Prod Res 33: 2276
(117)Ljaljevic Grbic, M., Unkovic, N., Dimkic, I., Janackovic, P., Gavrilovic, M., Stanojevic, O., Stupar, M., Vujisic, L., Jelikic, A., Stankovic, S., Vukojevic, J. (2018) Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients? J Ethnopharmacol 219: 1
(118)Carroll, J. F., Tabanca, N., Kramer, M., Elejalde, N. M., Wedge, D. E., Bernier, U. R., Coy, M., Becnel, J. J., Demirci, B., Baser, K. H., Zhang, J., Zhang, S. (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol 36: 258
(119)Zheljazkov, V. D., Astatkie, T., Jeliazkova, E. A., Schlegel, V. (2012) Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J Oleo Sci 61: 537
(120)El Hamrouni-Aschi, K., Khouja, M. L., Boussaid, M., Akrimi, N., Toumi, L. (2013) Essential-oil composition of the Tunisian endemic cypress (Cupressus sempervirens L. var. numidica TRAB.). Chem Biodivers 10: 989
(101) Szoke, E., Maday, E., Tyihak, E., Kuzovkina, IN, Lemberkovics, E. (2004) New terpenoids in cultivated and wild chamomile (in vivo and in vitro). J Chromatogr B Analyt Technol Biomed Life Sci 800: 231
(102) Chung, IM, Kim, EH, Moon, HI (2011) Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L. Immunopharmacol Immunotoxicol 33: 107
(103) Sharifi-Rad, J., Salehi, B., Varoni, EM, Sharopov, F., Yousaf, Z., Ayatollahi, SA, Kobarfard, F., Sharifi-Rad, M., Afdjei, MH, Sharifi -Rad, M., Iriti, M. (2017) Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother Res. 31: 1475
(104) Lucia, A., Licastro, S., Zerba, E., Gonzalez Audino, P., Masuh, H. (2009) Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol 100: 6083
(105) Chaiyana, W., Okonogi, S. (2012) Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 19: 836
(106) Garcia, G., Garcia, A., Gibernau, M., Bighelli, A., Tomi, F. (2017) Chemical compositions of essential oils of five introduced conifers in Corsica. Nat Prod Res 31: 1697
(107) Katoh, S., Noda, A., Furuno, T. (2006) Tree-to-tree and clone-to-clone variations of monoterpenes emitted from needles of hinoki (Chamaecyparis obtusa). Journal of wood science 52: 84
(108) Yatagai, M., Sato, T., Takahashi, T. (1985) Terpenes of leaf oils from Cupressaceae. Biochemical systematics and ecology 13: 377
(109) Satou, T., Matsuura, M., Takahashi, M., Murakami, S., Hayashi, S., Sadamoto, K., Koike, K. (2011) Components of essential oils extracted from leaves and shoots of abies species in Japan. Chem Biodivers 8: 1132
(110) KURODA, K. (1989) Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Japanese Journal of Phytopathology 55: 170
(111) Lim, JH, Kim, JC, Kim, KJ, Son, YS, Sunwoo, Y., Han, JS (2008) Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 73: 470
(112) Xiao-shuang, S. (2009) Relationship between Volatile Matters from Picea jezoensis and Endangerments of Monochamus urussovi [J]. Journal of Anhui Agricultural Sciences 26:
(113) Pereira, R., Pereira, AL, Ferreira, MM, Fontenelle, ROS, Saker-Sampaio, S., Santos, HS, Bandeira, PN, Vasconcelos, MA, Queiroz, JAN, Braz-Filho, R., Teixeira, EH (2019) Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4', 6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum Lf An Acad Bras Cienc 91: e20180204
(114) Lackus, ND, Lackner, S., Gershenzon, J., Unsicker, SB, Kollner, TG (2018) The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 8: 17936
(115) do Prado, AC, Garces, HG, Bagagli, E., Rall, VLM, Furlanetto, A., Fernandes Junior, A., Furtado, FB (2019) Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties. J Appl Microbiol 126: 516
(116) Okoh, SO, Okoh, OO, Okoh, AI (2019) Seasonal variation of volatile oil composition and antioxidant property of aerial parts of Syzygium paniculatum Gaertn. Grow in the Eastern Cape, South Africa. Nat Prod Res 33: 2276
(117) Ljaljevic Grbic, M., Unkovic, N., Dimkic, I., Janackovic, P., Gavrilovic, M., Stanojevic, O., Stupar, M., Vujisic, L., Jelikic, A., Stankovic , S., Vukojevic, J. (2018) Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients? J Ethnopharmacol 219: 1
(118) Carroll, JF, Tabanca, N., Kramer, M., Elejalde, NM, Wedge, DE, Bernier, UR, Coy, M., Becnel, JJ, Demirci, B., Baser, KH, Zhang, J ., Zhang, S. (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. 36: 258
(119) Zheljazkov, VD, Astatkie, T., Jeliazkova, EA, Schlegel, V. (2012) Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J Oleo Sci 61: 537
(120) El Hamrouni-Aschi, K., Khouja, ML, Boussaid, M., Akrimi, N., Toumi, L. (2013) Essential-oil composition of the Tunisian endemic cypress (Cupressus sempervirens L. var. .). Chem Biodivers 10: 989
(121)Guleria, S., Kumar, A., Tiku, A. K. (2008) Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z Naturforsch C J Biosci 63: 211
(122)Rehman, R., Hanif, M. A., Zahid, M., Qadri, R. W. K. (2019) Reporting effective extraction methodology and chemical characterization of bioactive components of under explored Platycladus orientalis (L.) Franco from semi-arid climate. Nat Prod Res 33: 1237
(123)I, B. S., Shiwakoti, S., C, L. C., V, D. Z., Astatkie, T., Schlegel, V., Radoukova, T. (2019) Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 24:
(124)Nikolic, B., Ristic, M., Bojovic, S., Krivosej, Z., Matevski, V., Marin, P. D. (2015) Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains Osljak and Galicica. Chem Biodivers 12: 295
(125)Espinoza, J., Urzua, A., Tampe, J., Parra, L., Quiroz, A. (2016) Repellent Activity of the Essential Oil from the Heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae). Molecules 21: 533
(126)Chen, C. J., Kumar, K. J., Chen, Y. T., Tsao, N. W., Chien, S. C., Chang, S. T., Chu, F. H., Wang, S. Y. (2015) Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States. Nat Prod Commun 10: 1305
(127)Takao, Y., Kuriyama, I., Yamada, T., Mizoguchi, H., Yoshida, H., Mizushina, Y. (2012) Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol Med Rep 5: 1163
(128)Karapandzova, M., Stefkova, G., Cvetkovikj, I., Trajkovska-Dokik, E., Kaftandzieva, A., Kulevanova, S. (2014) Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia. Nat Prod Commun 9: 1623
(129)Moiteiro, C., Esteves, T., Ramalho, L., Rojas, R., Alvarez, S., Zacchino, S., Braganca, H. (2013) Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat Prod Commun 8: 1785
(130)Cheng, S. S., Lin, H. Y., Chang, S. T. (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J Agric Food Chem 53: 614
(131)Arjouni, M. Y., Bahri, F., Romane, A., El Fels, M. A. (2011) Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica. Nat Prod Commun 6: 1519
(132)Zhang, Y., Han, L., Chen, S. S., Guan, J., Qu, F. Z., Zhao, Y. Q. (2016) Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed Pharmacother 83: 641
(133)Zhang, K., Yao, L. (2018) The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol Behav 189: 50
(134)Qureshi, M. N., Siddique, M., Rahman, I. U., Kanwal, F. (2016) Short Communication: Evaluation of the chemical composition of essential oil of Thuja occidentalis leaves grown in Peshawar, Pakistan by gas chromatography mass spectrometry. Pak J Pharm Sci 29: 2105
(135)Mohamed, A. A., Behiry, S. I., Younes, H. A., Ashmawy, N. A., Salem, M. Z. M., Marquez-Molina, O., Barbabosa-Pilego, A. (2019) Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb Pathog 135: 103604
(136)Su, Y. C., Hsu, K. P., Wang, E. I., Ho, C. L. (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat Prod Commun 7: 1245
(137)Gu, D., Fang, C., Yang, J., Li, M., Liu, H., Yang, Y. (2018) Chemical composition and alpha-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves. Nat Prod Res 32: 711
(138)Djouahri, A., Saka, B., Boudarene, L., Baaliouamer, A. (2016) Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time. Chem Biodivers 13: 1691
(139)Teke, G. N., Elisee, K. N., Roger, K. J. (2013) Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. leaves from Cameroon. BMC Complement Altern Med 13: 130
(140)Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., He, Q. (2012) Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77: C824
(141)Medini, H., Elaissi, A., Larbi Khouja, M., Piras, A., Porcedda, S., Falconieri, D., Marongiu, B., Chemli, R. (2011) Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Nat Prod Res 25: 1695
(142)Stefanovic, M., Ristic, M., Popovic, Z., Matic, R., Nikolic, B., Vidakovic, V., Obratov-Petkovic, D.,Bojovic, S. (2016) Chemical Composition and Interpopulation Variability of Essential Oils of Taxus baccata L. from Serbia. Chem Biodivers 13: 943
(121) Guleria, S., Kumar, A., Tiku, AK (2008) Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z Naturforsch CJ Biosci 63: 211
(122) Rehman, R., Hanif, MA, Zahid, M., Qadri, RWK (2019) Reporting effective extraction methodology and chemical characterization of bioactive components of under explored Platycladus orientalis (L.) Franco from semi-arid climate. Nat Prod Res 33: 1237
(123) I, BS, Shiwakoti, S., C, LC, V, DZ, Astatkie, T., Schlegel, V., Radoukova, T. (2019) Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 24:
(124) Nikolic, B., Ristic, M., Bojovic, S., Krivosej, Z., Matevski, V., Marin, PD (2015) Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains Osljak and Galicica. Chem Biodivers 12: 295
(125) Espinoza, J., Urzua, A., Tampe, J., Parra, L., Quiroz, A. (2016) Repellent Activity of the Essential Oil from the Heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae). Molecules 21: 533
(126) Chen, CJ, Kumar, KJ, Chen, YT, Tsao, NW, Chien, SC, Chang, ST, Chu, FH, Wang, SY (2015) Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States. Nat Prod Commun 10: 1305
(127) Takao, Y., Kuriyama, I., Yamada, T., Mizoguchi, H., Yoshida, H., Mizushina, Y. (2012) Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol Med Rep 5: 1163
(128) Karapandzova, M., Stefkova, G., Cvetkovikj, I., Trajkovska-Dokik, E., Kaftandzieva, A., Kulevanova, S. (2014) Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (2014) Pinaceae) growing wild in R. Macedonia. Nat Prod Commun 9: 1623
(129) Moiteiro, C., Esteves, T., Ramalho, L., Rojas, R., Alvarez, S., Zacchino, S., Braganca, H. (2013) Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat Prod Commun 8: 1785
(130) Cheng, SS, Lin, HY, Chang, ST (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J Agric Food Chem 53: 614
(131) Arjouni, MY, Bahri, F., Romane, A., El Fels, MA (2011) Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica. Nat Prod Commun 6: 1519
(132) Zhang, Y., Han, L., Chen, SS, Guan, J., Qu, FZ, Zhao, YQ (2016) Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed Pharmacother 83: 641
(133) Zhang, K., Yao, L. (2018) The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol Behav 189: 50
(134) Qureshi, MN, Siddique, M., Rahman, IU, Kanwal, F. (2016) Short Communication: Evaluation of the chemical composition of essential oil of Thuja occidentalis leaves grown in Peshawar, Pakistan by gas chromatography mass spectrometry. Pak J Pharm Sci 29: 2105
(135) Mohamed, AA, Behiry, SI, Younes, HA, Ashmawy, NA, Salem, MZM, Marquez-Molina, O., Barbabosa-Pilego, A. (2019) Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb Pathog 135: 103604
(136) Su, YC, Hsu, KP, Wang, EI, Ho, CL (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. Konishii from Taiwan. Nat Prod Commun 7: 1245
(137) Gu, D., Fang, C., Yang, J., Li, M., Liu, H., Yang, Y. (2018) Chemical composition and alpha-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves. Nat Prod Res 32: 711
(138) Djouahri, A., Saka, B., Boudarene, L., Baaliouamer, A. (2016) Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time. Chem Biodivers 13: 1691
(139) Teke, GN, Elisee, KN, Roger, KJ (2013) Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. Leaves from Cameroon. BMC Complement Altern Med 13: 130
(140) Zeng, WC, Zhang, Z., Gao, H., Jia, LR, He, Q. (2012) Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77: C824
(141) Medini, H., Elaissi, A., Larbi Khouja, M., Piras, A., Porcedda, S., Falconieri, D., Marongiu, B., Chemli, R. (2011) Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Nat Prod Res 25: 1695
(142) Stefanovic, M., Ristic, M., Popovic, Z., Matic, R., Nikolic, B., Vidakovic, V., Obratov-Petkovic, D., Bojovic, S. (2016) Chemical Composition and Interpopulation Variability of Essential Oils of Taxus baccata L. from Serbia. Chem Biodivers 13: 943
このように、本実施形態に係る空間調節装置によって、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節することができる。 As described above, the space adjusting device according to the present embodiment can reduce mental stress, enhance human intellectual productivity, or enhance the relaxing effect even in a narrow space such as an office or a house. The environment of the space can be adjusted as much as possible.
1,3,5 空間調節装置、10 植物設置台、12 栽培床、14 植物、16 透明板、18 吸入口、20,58 排気ファン、22 排気口、24 全灌防水LED(RGB)、26 加温器、28 温湿度センサ、30 水タンク、32 液肥タンク、34,36,42,44 水中ポンプ、38,40,46,48 調節バルブ、50 排水タンク、52 防水容器、54 データ記録・調節器、56 噴霧器、60 植物植栽空間、62 仕切り板、64 給水口、66 枠材、68 テーブル部、70 植物植栽部。 1,3,5 Space control device, 10 Plant stand, 12 Cultivation floor, 14 Plants, 16 Transparent board, 18 Suction port, 20,58 Exhaust fan, 22 Exhaust port, 24 Total irrigation waterproof LED (RGB), 26 Heater, 28 temperature / humidity sensor, 30 water tank, 32 liquid fertilizer tank, 34,36,42,44 submersible pump, 38,40,46,48 control valve, 50 drainage tank, 52 waterproof container, 54 data recorder / controller , 56 sprayer, 60 plant planting space, 62 partition board, 64 water supply port, 66 frame material, 68 table part, 70 plant planting part.
Claims (14)
前記空間調節装置は、前記第1の植物と前記第2の植物と前記第3の植物とを有し、
前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替える切替手段を備えることを特徴とする空間調節装置。 The space adjusting device according to claim 2.
The space control device has the first plant, the second plant, and the third plant.
Release of the first volatile component from the first plant and the second volatile component from the second plant, and the first volatile component from the first plant and the third plant. A space adjusting device comprising a switching means for switching between the release of a third volatile component from and the release of a third volatile component.
前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことを特徴とする空間調節装置。 The space adjusting device according to any one of claims 1 to 3.
A space adjusting device, wherein the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことを特徴とする空間調節装置。 The space adjusting device according to claim 4.
A space adjusting device, wherein the terpenes include at least one of a monoterpene and a sesquiterpene.
前記揮発性成分のそれぞれの放出量は、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節されることを特徴とする空間調節装置。 The space adjusting device according to any one of claims 1 to 5.
The amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, the color tone of the light irradiated to the plant, and the color tone of the light of the plant. A space adjusting device characterized in that it is regulated by at least one of the humidity of the cultivation environment and the temperature of the cultivation environment of the plant.
前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであり、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることを特徴とする空間調節装置。 The space adjusting device according to any one of claims 1 to 6.
The first plant and, if present, the third plant are at least one of bryophytes, angiosperms, and angiosperms, respectively, and the second plant, if present, is bryophytes. A space regulator characterized by being at least one of species and angiosperms.
前記第1の植物と前記第2の植物と前記第3の植物とを用い、
前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替えることを特徴とする空間調節方法。 The space adjustment method according to claim 9.
Using the first plant, the second plant, and the third plant,
Release of the first volatile component from the first plant and the second volatile component from the second plant, and the first volatile component from the first plant and the third plant. A space conditioning method characterized by switching between the release of a third volatile component from.
前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことを特徴とする空間調節方法。 The space adjustment method according to any one of claims 8 to 10.
A space adjusting method, wherein the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことを特徴とする空間調節方法。 The space adjustment method according to claim 11.
A space adjustment method, wherein the terpenes contain at least one of a monoterpene and a sesquiterpene.
前記揮発性成分のそれぞれの放出量を、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節することを特徴とする空間調節方法。 The space adjustment method according to any one of claims 8 to 12.
The amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, the color tone of the light irradiated to the plant, and the color of the plant. A space adjustment method characterized by adjusting by at least one of the humidity of the cultivation environment and the temperature of the cultivation environment of the plant.
前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであり、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることを特徴とする空間調節方法。 The space adjustment method according to any one of claims 8 to 13.
The first plant and, if present, the third plant are at least one of bryophytes, angiosperms, and angiosperms, respectively, and the second plant, if present, is bryophytes. A method of spatial regulation characterized by being at least one of a class and angiosperms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236632A JP2021104190A (en) | 2019-12-26 | 2019-12-26 | Space adjustment device and space adjustment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236632A JP2021104190A (en) | 2019-12-26 | 2019-12-26 | Space adjustment device and space adjustment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021104190A true JP2021104190A (en) | 2021-07-26 |
Family
ID=76919083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019236632A Pending JP2021104190A (en) | 2019-12-26 | 2019-12-26 | Space adjustment device and space adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021104190A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114870195A (en) * | 2022-05-09 | 2022-08-09 | 北京航空航天大学 | Method for regulating emotion of personnel by using vegetable green wall |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05141691A (en) * | 1991-11-18 | 1993-06-08 | Toda Constr Co Ltd | Air conditioning method for phytoalexin bath |
JPH06147547A (en) * | 1992-11-16 | 1994-05-27 | Shinrin Seiki Sangyo Kk | Method and apparatus for improving living environment using dispersive components of living plant |
JPH08182942A (en) * | 1994-12-28 | 1996-07-16 | Masayuki Makita | Artificial forest bath generator |
JP4288883B2 (en) * | 2000-02-10 | 2009-07-01 | 花王株式会社 | Autonomic nerve regulator |
-
2019
- 2019-12-26 JP JP2019236632A patent/JP2021104190A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05141691A (en) * | 1991-11-18 | 1993-06-08 | Toda Constr Co Ltd | Air conditioning method for phytoalexin bath |
JPH06147547A (en) * | 1992-11-16 | 1994-05-27 | Shinrin Seiki Sangyo Kk | Method and apparatus for improving living environment using dispersive components of living plant |
JPH08182942A (en) * | 1994-12-28 | 1996-07-16 | Masayuki Makita | Artificial forest bath generator |
JP4288883B2 (en) * | 2000-02-10 | 2009-07-01 | 花王株式会社 | Autonomic nerve regulator |
Non-Patent Citations (1)
Title |
---|
青島 均 HITOSHI AOSHIMA HITOSHI AOSHIMA: "解ってきた香りの力 Recent Studies of Physiological Activities of Aroma", 香料 245, JPN6021052263, 31 March 2010 (2010-03-31), pages 27 - 29, ISSN: 0004672745 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114870195A (en) * | 2022-05-09 | 2022-08-09 | 北京航空航天大学 | Method for regulating emotion of personnel by using vegetable green wall |
CN114870195B (en) * | 2022-05-09 | 2023-03-21 | 北京航空航天大学 | Method for regulating emotion of personnel by using vegetable green wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum) | |
Gorelick et al. | Chemical and physical elicitation for enhanced cannabinoid production in cannabis | |
Piccaglia et al. | Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.) | |
Guedes et al. | Hypericum sp.: essential oil composition and biological activities | |
Milenković et al. | Modification of light intensity influence essential oils content, composition and antioxidant activity of thyme, marjoram and oregano | |
Kato-Noguchi et al. | Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha | |
Brijwal et al. | An overview on phytomedicinal approaches of Zanthoxylum armatum DC.: An important magical medicinal plant | |
Gupta et al. | Medicinal plants under climate change: impacts on pharmaceutical properties of plants | |
Swamy et al. | Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants | |
Bistgani et al. | Review on ethnobotany, phytochemical, molecular and pharmacological activity of Thymus daenensis Celak. | |
Hong et al. | Chemical composition and biological activity of essential oil of Agastache rugosa (Fisch. & CA Mey.) O. Kuntze | |
Bouyahya et al. | Traditional use, phytochemistry, toxicology, and pharmacological properties of Lavandula dentata L.: A comprehensive review | |
Pluhár et al. | Effects of different factors influencing the essential oil properties of Thymus vulgaris L. | |
JP2021104190A (en) | Space adjustment device and space adjustment method | |
Posadino et al. | Antioxidant activity of supercritical carbon dioxide extracts of Salvia desoleana on two human endothelial cell models | |
Hasan et al. | GC-MS analysis of bio-active compounds in ethanol extract of Putranjiva roxburghii Wall. fruit peel | |
Khalid | Growth sites and their impacts on sour orange ʽCitrus aurantium (Tournef.) ʼ essential oil | |
Morovati et al. | Essential Oil Profile of Areal Part of Datura stramonium L. and D. innoxia from Iran | |
Ahmed et al. | Chitosan and salty irrigation water affect morphological and physiological characteristics of rosemary herb | |
Panchawat et al. | Medicinal Importance of Plant Metabolites | |
JP7247957B2 (en) | Space adjustment device and space adjustment method | |
Guidi et al. | Aromatic Plants: use and nutraceutical properties | |
Lone et al. | Epimedium elatum (morr & decne): a therapeutic medicinal plant from northwestern himalayas of India | |
Dhakal et al. | Chemical compositions and biological activities of the oils from the genus Taxus and factors limiting the regeneration of endangered yews: a review | |
Singh et al. | Unravelling the impact of essential mineral nutrients on active constituents of selected medicinal and aromatic plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220315 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220601 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221004 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221220 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20230404 |