JP2021104190A - Space adjustment device and space adjustment method - Google Patents

Space adjustment device and space adjustment method Download PDF

Info

Publication number
JP2021104190A
JP2021104190A JP2019236632A JP2019236632A JP2021104190A JP 2021104190 A JP2021104190 A JP 2021104190A JP 2019236632 A JP2019236632 A JP 2019236632A JP 2019236632 A JP2019236632 A JP 2019236632A JP 2021104190 A JP2021104190 A JP 2021104190A
Authority
JP
Japan
Prior art keywords
plant
space
volatile component
volatile
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019236632A
Other languages
Japanese (ja)
Inventor
隆 嶋村
Takashi Shimamura
隆 嶋村
正美 山本
Masami Yamamoto
正美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019236632A priority Critical patent/JP2021104190A/en
Publication of JP2021104190A publication Critical patent/JP2021104190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

To provide a device and a method which adjust an environment in a space so as to reduce mental stress even in a narrow space such as an office, a house and the like and improve intellectual productivity of a person or enhance a relaxation effect.SOLUTION: A space adjustment device 1 includes plants 14 including a first plant that emits a first volatile component acting on a γ-aminobutyric acidergic (GABA) nerve receptor existing in olfaction.SELECTED DRAWING: Figure 1

Description

本発明は、人間の生活空間等の空間の環境を調節する空間調節装置および空間調節方法に関する。 The present invention relates to a space adjusting device and a space adjusting method for adjusting a space environment such as a human living space.

人間の生活空間等の空間の環境を調節する方法がこれまでに検討され、例えば、特許文献1には、「生体植物の放出成分を利用した生活環境の改善方法」として、植物の放出成分含有空気を建造物内の人間生活空間に供給することによって、都市の建造物内において自然の森林と同様の空気浄化作用を行わせることができる方法が開示されている。 Methods for adjusting the environment of a space such as a human living space have been studied so far. For example, Patent Document 1 contains a plant-released component as a "method for improving a living environment using a living plant-released component". A method is disclosed in which air can be supplied to a human living space in a building to have an air purification effect similar to that of a natural forest in an urban building.

特許文献1と同様に空気浄化を目的とした技術として、特許文献2には、「生体植物の放出成分を利用した生活環境の改善方法および装置」、特許文献3には、「揮発性成分発生用植物の培養容器」、特許文献4には、「植物の揮発性成分発生用インテリア装置」、特許文献5には、「生体植物の揮発性成分発生促進装置」、および特許文献6には、「生体植物による揮発性成分発生の促進装置」が開示されている。 Similar to Patent Document 1, as a technique for air purification, Patent Document 2 describes "methods and devices for improving living environment using released components of living plants", and Patent Document 3 describes "generation of volatile components". "Culturing container for plants", Patent Document 4 refers to "interior device for generating volatile components of plants", Patent Document 5 refers to "device for promoting the generation of volatile components of living plants", and Patent Document 6 describes it. "A device for promoting the generation of volatile components by living plants" is disclosed.

特許文献1〜6には、植物として、森林に植生されるような樹木を用いることが開示され、特許文献1,2には、トドマツ、ヒノキ、スギ、イチョウ等の樹木を用いることが開示されている。 Patent Documents 1 to 6 disclose that trees such as those planted in forests are used as plants, and Patent Documents 1 and 2 disclose that trees such as Abies sachalinensis, Japanese cypress, Sugi, and Ginkgo are used. ing.

特許文献7には、「樹木の揮発性成分発生促進装置」として、樹木収容々器の底部に設けた植木鉢載置装置と、この樹木収容々器の内部に空気を供給する吸気孔と、この樹木収容々器の内部の樹木から開放される揮発性成分を含有する空気を生活空間に排気する排気装置と、植木鉢に給水する給水装置からなり、植木鉢載置装置の複数箇所に配置された植木鉢は水平回転可能に構成され、これにより接触した樹木の枝葉に大きな機械的刺激を与えるように構成されている、樹木の揮発性成分発生促進装置が開示され、樹木としてヒノキを用いることが開示されている。 In Patent Document 7, as a "tree volatile component generation promoting device", a plant pot mounting device provided at the bottom of the tree container, an intake hole for supplying air to the inside of the tree container, and the intake hole thereof. It consists of an exhaust device that exhausts air containing volatile components released from the trees inside the tree container to the living space and a water supply device that supplies water to the plant pot, and the plant pots are arranged at multiple locations in the plant pot mounting device. Discloses a tree volatile component generation promoter, which is configured to be horizontally rotatable and thereby to give a large mechanical stimulus to the branches and leaves of the tree in contact with it, and to use hinoki as the tree. ing.

特許文献1〜6で開示されている従来技術は、いずれも生体植物から放出される成分で室内の空気を浄化することが目的であって、トドマツ、ヒノキ、スギ、イチョウ等の樹木では、ヒトの精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるような効果は得られない。また、オフィスや家屋の室内空間でトドマツ、ヒノキ、スギ、イチョウ等の樹木を用いると、植物設置のためのスペース確保が必要になる。 The prior arts disclosed in Patent Documents 1 to 6 are all aimed at purifying the indoor air with components released from living plants, and in trees such as Abies sachalinensis, Japanese cypress, Sugi, and Ginkgo, humans. It does not have the effect of reducing the mental stress of Japanese cypress and increasing the intellectual productivity of humans or the relaxing effect. In addition, if trees such as Abies sachalinensis, Japanese cypress, Sugi, and Ginkgo are used in the indoor space of an office or a house, it is necessary to secure a space for plant installation.

特許文献7で開示されている従来技術は、植木鉢に植栽する樹木を回転させて葉の機械的刺激で揮発性成分の発生を促進させているが、蘚苔類に代表されるような背丈の小さい植物、または葉同士の機械的接触が困難である植物については、効力を発揮することはできない。 In the prior art disclosed in Patent Document 7, the tree to be planted in the flowerpot is rotated to promote the generation of volatile components by mechanical stimulation of the leaves, but the height is typified by bryophytes. It cannot be effective for small plants or plants for which mechanical contact between leaves is difficult.

特開平2−289258号公報Japanese Unexamined Patent Publication No. 2-289258 特開平6−147547号公報Japanese Unexamined Patent Publication No. 6-147547 実全平3−000644号公報Jitsuzenpei No. 3-000644 実全平3−000745号公報Jitsuzenpei No. 3-000745 実全平2−091555号公報Jitsuzenpei 2-091555 特開平3−201913号公報Japanese Unexamined Patent Publication No. 3-201913 実公平7−001950号公報Jitsufuku No. 7-001950

本発明は、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節する装置および方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention is a device for adjusting the environment of a space so as to reduce mental stress, increase human intellectual productivity, or enhance a relaxing effect even in a small space such as an office or a house. And aims to provide a method.

本発明は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を有する、空間調節装置である。 The present invention is a spatial regulator having a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell.

前記空間調節装置において、さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを有することが好ましい。 In the space regulator, a second plant that releases a second volatile component that acts on the sympathetic nerve receptors present in the sense of smell, and a third volatile substance that acts on the parasympathetic nerve receptors present in the sense of smell. It is preferable to have at least one of the third plants that release the component.

前記空間調節装置において、前記空間調節装置は、前記第1の植物と前記第2の植物と前記第3の植物とを有し、前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替える切替手段を備えることが好ましい。 In the space control device, the space control device has the first plant, the second plant, and the third plant, and the first volatile component from the first plant and the first plant. A switching means for switching between the release of the second volatile component from the second plant and the release of the first volatile component from the first plant and the third volatile component from the third plant. It is preferable to prepare.

前記空間調節装置において、前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことが好ましい。 In the space adjusting device, it is preferable that the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.

前記空間調節装置において、前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことが好ましい。 In the space control device, the terpenes preferably contain at least one of monoterpenes and sesquiterpenes.

前記空間調節装置において、前記揮発性成分のそれぞれの放出量は、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節されることが好ましい。 In the space control device, the amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, and the light irradiated to the plant. It is preferably adjusted by at least one of the color tone of the plant, the humidity of the cultivation environment of the plant, and the temperature of the cultivation environment of the plant.

前記空間調節装置において、前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであることが好ましく、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることが好ましい。 In the space control device, the first plant and, if present, the third plant are preferably at least one of moss, angiosperms, and gymnosperms, respectively, if present. The second plant is preferably at least one of gymnosperms and angiosperms.

本発明は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を用いる、空間調節方法である。 The present invention is a spatial regulation method using a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell.

前記空間調節方法において、さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを用いることが好ましい。 In the space regulation method, a second plant that releases a second volatile component that acts on the sympathetic nerve receptor present in the sense of smell, and a third volatile substance that acts on the parasympathetic nerve receptor present in the sense of smell. It is preferable to use at least one of the third plants that release the component.

前記空間調節方法において、前記第1の植物と前記第2の植物と前記第3の植物とを用い、前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替えることが好ましい。 In the space adjustment method, the first plant, the second plant, and the third plant are used, and the first volatile component from the first plant and the second from the second plant are used. It is preferable to switch between the release of the volatile component of the above and the release of the first volatile component from the first plant and the third volatile component from the third plant.

前記空間調節方法において、前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことが好ましい。 In the space adjusting method, it is preferable that the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.

前記空間調節方法において、前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことが好ましい。 In the space adjustment method, it is preferable that the terpenes contain at least one of monoterpenes and sesquiterpenes.

前記空間調節方法において、前記揮発性成分のそれぞれの放出量を、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節することが好ましい。 In the space adjustment method, the amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, and the light irradiated to the plant. It is preferable to adjust by at least one of the color tone of the plant, the humidity of the cultivation environment of the plant, and the temperature of the cultivation environment of the plant.

前記空間調節方法において、前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであることが好ましく、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることが好ましい。 In the space regulation method, the first plant and, if present, the third plant are preferably at least one of moss, angiosperms, and gymnosperms, respectively, if present. The second plant is preferably at least one of gymnosperms and angiosperms.

本発明により、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節する装置および方法を提供することができる。 According to the present invention, a device for adjusting the environment of a space so as to reduce mental stress, increase human intellectual productivity, or enhance a relaxing effect even in a small space such as an office or a house. And methods can be provided.

本発明の実施形態に係る空間調節装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the space adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空間調節装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the space adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空間調節装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the space adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る空間調節装置において、装置下部の取り出しの一例を示す概略図である。It is the schematic which shows an example of taking out the lower part of the space adjustment device which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る空間調節装置は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を有する。本発明の実施形態に係る空間調節装置は、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物と、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つと、を有していてもよい。 The spatial regulator according to an embodiment of the present invention has a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell. The space regulator according to the embodiment of the present invention exists in the sense of smell and a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell. At least one of a second plant that releases a second volatile component that acts on sympathetic nerve receptors and a third plant that releases a third volatile component that acts on parasympathetic nerve receptors present in the sense of smell. And may have.

本実施形態に係る空間調節装置は、例えば、植物を植栽するための植物植栽手段と、枠材で形成され、植物植栽手段を有する植物植栽空間を外気と隔離するための隔離手段と、植物植栽空間に外気を取り入れるための外気吸入手段と、植物の揮発性成分を排出するための揮発性成分排出手段と、を備える。 The space adjusting device according to the present embodiment is, for example, a plant planting means for planting a plant and an isolation means for separating a plant planting space formed of a frame material and having the plant planting means from the outside air. It is provided with an outside air inhaling means for taking in outside air into the plant planting space and a volatile component discharging means for discharging the volatile components of the plant.

本実施形態に係る空間調節装置の一例の概略を図1に示し、その構成について説明する。本実施形態に係る空間調節装置は、これらの構成に限定されるものではない。 An outline of an example of the space adjusting device according to the present embodiment is shown in FIG. 1, and the configuration thereof will be described. The space adjusting device according to the present embodiment is not limited to these configurations.

図1に示す空間調節装置1は、壁型の装置である。枠材66で形成された植物植栽空間60内に、植物を植栽するための植物植栽手段として、装置の底面に対して略垂直方向に、植物設置台10を備え、この植物設置台10内に栽培床12が設置され、この栽培床12に植物14が植栽されている。植物植栽空間60を外気と隔離するための隔離手段として、装置の前面に透明のアクリル板やガラス板等の透明板16が設置されている。植物植栽空間60に外気の空気を取り入れるための外気吸入手段として、吸入口18と、植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファン20および排気口22とが設置されている。植物14に可視光等の光を照射する光照射手段として、全灌防水LED(RGB)24が植物植栽空間60内の例えば上下左右部にそれぞれ設置されている。 The space adjusting device 1 shown in FIG. 1 is a wall-type device. As a plant planting means for planting a plant in the plant planting space 60 formed by the frame material 66, a plant installation table 10 is provided in a direction substantially perpendicular to the bottom surface of the device, and the plant installation table 10 is provided. A cultivation floor 12 is installed in the cultivation floor 12, and a plant 14 is planted on the cultivation floor 12. As a means for isolating the plant planting space 60 from the outside air, a transparent plate 16 such as a transparent acrylic plate or a glass plate is installed on the front surface of the apparatus. An intake port 18 is installed as an outside air intake means for taking in outside air into the plant planting space 60, and an exhaust fan 20 and an exhaust port 22 are installed as volatile component discharge means for discharging the volatile components of the plant. Has been done. As a light irradiation means for irradiating the plant 14 with light such as visible light, a total irrigation waterproof LED (RGB) 24 is installed, for example, in the upper, lower, left and right portions in the plant planting space 60.

空間調節装置1は、植物植栽空間60の温度を調整する温度調整手段として、加温器26と、植物植栽空間60の温度を測定する温度測定手段および植物植栽空間60の湿度を測定する湿度測定手段として、温湿度センサ28と、植物14に水を供給する水供給手段として、水タンク30と、植物14に窒素化合物を供給する窒素化合物供給手段として、液肥タンク32とを備えてもよい。植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録し、制御する制御手段として、データ記録・調節器54を備えてもよい。 As a temperature adjusting means for adjusting the temperature of the plant planting space 60, the space adjusting device 1 measures the temperature of the warmer 26, the temperature measuring means for measuring the temperature of the plant planting space 60, and the humidity of the plant planting space 60. A temperature / humidity sensor 28 is provided as a humidity measuring means, a water tank 30 is provided as a water supply means for supplying water to the plant 14, and a liquid fertilizer tank 32 is provided as a nitrogen compound supply means for supplying the nitrogen compound to the plant 14. May be good. Data recording as a control means for recording and controlling data such as temperature and humidity of the plant planting space 60, water content supplied to the cultivation floor 12, nitrogen compound amount, illuminance and color tone by the total irrigation waterproof LED (RGB) 24. -A controller 54 may be provided.

例えば、水タンク30に貯留された水および液肥タンク32に貯留された窒素化合物等を含む液肥が配管等を通して栽培床12に供給され、全灌防水LED(RGB)24によって植物14に可視光等の光が照射され、植物14が栽培される。必要に応じて加温器26によって植物植栽空間60の温度が所定の温度に調整されてもよい。栽培床12からの排水は、配管等を通して排水タンク50で回収される。加湿は、栽培床12に供給される給水で確保することができるが、植物14から放出される揮発性成分の拡散効率を上げるために、水タンク30から供給される水を霧化する霧化手段として霧発生器を設けてもよい。空間調節装置1からの漏水を防止するための漏水防止手段として、水タンク30、液肥タンク32、排水タンク50を収容する防水容器52を設置してもよい。植物14が放出する揮発性成分中の有効成分の効果を助長するような補助成分を外部の空間へ噴霧する補助成分供給手段として噴霧器56と、噴霧した補助成分を排気する補助成分排気手段として排気ファン58とを設置してもよい。空間調節装置1に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。 For example, water stored in the water tank 30 and liquid fertilizer containing nitrogen compounds stored in the liquid fertilizer tank 32 are supplied to the cultivation floor 12 through pipes and the like, and visible light or the like is transmitted to the plant 14 by the total irrigation waterproof LED (RGB) 24. The plant 14 is cultivated by being irradiated with the light of. If necessary, the temperature of the plant planting space 60 may be adjusted to a predetermined temperature by the warmer 26. The drainage from the cultivation floor 12 is collected in the drainage tank 50 through pipes and the like. Humidification can be ensured by the water supply supplied to the cultivation floor 12, but in order to increase the diffusion efficiency of the volatile components released from the plant 14, the water supplied from the water tank 30 is atomized. A fog generator may be provided as a means. As a water leakage prevention means for preventing water leakage from the space adjustment device 1, a waterproof container 52 accommodating the water tank 30, the liquid fertilizer tank 32, and the drainage tank 50 may be installed. A sprayer 56 as an auxiliary component supply means for spraying an auxiliary component that promotes the effect of the active ingredient in the volatile component released by the plant 14 into an external space, and an exhaust as an auxiliary component exhaust means for exhausting the sprayed auxiliary component. A fan 58 may be installed. When a plant is installed in the space adjusting device 1, for example, the transparent plate 16 may be removed and the plant may be installed.

空間調節装置1において、吸入口18から外気の空気が植物植栽空間60内へ取り入れられ、植物設置台10内の栽培床12に植栽された植物14から放出される揮発性成分が排気ファン20によって排気口22から空間調節装置1が設置された空間へ放出され、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境が調節される。 In the space control device 1, the outside air is taken into the plant planting space 60 from the suction port 18, and the volatile component released from the plant 14 planted on the cultivation floor 12 in the plant installation table 10 is an exhaust fan. 20 releases the space adjusting device 1 from the exhaust port 22 to the space in which the space adjusting device 1 is installed, so that the space environment can reduce mental stress, increase human intellectual productivity, or enhance the relaxing effect. Be adjusted.

栽培床12としては、水や液肥を含浸可能であり、植物14を植栽できるものであればよく、特に制限はないが、例えばスポンジ状の樹脂等を用いることができ、スポンジ内の水分保持量や流れ等に応じて、例えば、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリプロピレン系樹脂、フェノール系樹脂、およびポリアミド系樹脂を用いればよい。 The cultivation bed 12 may be impregnated with water or liquid fertilizer and may be capable of planting the plant 14, and is not particularly limited. For example, a sponge-like resin or the like can be used to retain water in the sponge. Depending on the amount and flow, for example, polyacrylic resin, polyurethane resin, polyamide resin, polyester resin, polyvinyl alcohol resin, polyvinylidene chloride resin, polypropylene resin, phenol resin, and polyamide resin Should be used.

植物14としては、リナロール、メントール、ミルテノール、およびベルベノール等のヒト等の嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用してγ−アミノ酪酸(GABA)作動性神経を刺激しうる揮発性成分(第1の揮発性成分)を放出する植物(第1の植物)を用いることができる。リモネン、シネオール、オイデスモール、およびグアイオール等のヒト等の嗅覚に存在する交感神経受容体に作用して交感神経を刺激しうる揮発性成分(第2の揮発性成分)を放出する植物(第2の植物)、およびα−ピネン、δ−カジネン、およびセドロール等のヒト等の嗅覚に存在する副交感神経受容体(例えば、ムスカリン受容体)に作用して副交感神経を刺激しうる揮発性成分(第3の揮発性成分)を放出する植物(第3の植物)のうち少なくとも1つをさらに用いてもよい。 Plant 14 acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell of humans such as linalol, menthol, myltenol, and berbenol to produce γ-aminobutyric acid (GABA) -operated nerves. A plant (first plant) that releases a stimulating volatile component (first volatile component) can be used. A plant that releases volatile components (second volatile components) that can stimulate sympathetic nerves by acting on sympathetic nerve receptors present in the sense of smell of humans such as limonene, cineol, eudesmol, and guaiol (second volatile component). Plants), and volatile components that can stimulate parasympathetic nerves by acting on parasympathetic nerve receptors (eg, muscarinic receptors) present in the sense of smell of humans such as α-pinene, δ-cadinene, and sedrol. At least one of the plants (third plants) that release the volatile component of 3) may be further used.

例えば、第1の植物を栽培床12に植栽すればよい。また、例えば、第1の植物と第2の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。第1の植物と第3の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。第1の植物と第2の植物と第3の植物とを栽培床12に区分けして、または区分けせずに植栽してもよい。 For example, the first plant may be planted on the cultivation floor 12. Further, for example, the first plant and the second plant may be divided into cultivation beds 12 or planted without division. The first plant and the third plant may be divided into cultivation beds 12 or planted without division. The first plant, the second plant, and the third plant may be divided into cultivation beds 12 or planted without division.

第1の植物を用いることによって、空間を活性化または沈静化することができる。例えば、第1の植物を用いることによって、精神的ストレスを低減させるとともに、知的生産性を高める空間(例えば、「仕事モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性を高めることができる。または、第1の植物を用いることによって、精神的ストレスを低減させるとともに、リラックス効果を高める空間(例えば、「休憩モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激することによって、精神的ストレスを低減させるとともに、リラックス効果を高めることができる。 By using the first plant, the space can be activated or calmed down. For example, by using the first plant, it is possible to provide a space (for example, referred to as a "work mode space") that reduces mental stress and enhances intellectual productivity. The first volatile components such as volatile organic compounds such as terpenes (linalool, menthol, myrtenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. By acting on and stimulating GABAergic nerves, mental stress can be reduced and intellectual productivity can be increased. Alternatively, by using the first plant, it is possible to provide a space (referred to as, for example, a "rest mode space") that reduces mental stress and enhances the relaxing effect. The first volatile components such as volatile organic compounds such as terpenes (linalool, menthol, myrtenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. By stimulating GABAergic nerves, it is possible to reduce mental stress and enhance the relaxing effect.

第1の植物と第2の植物と第3の植物とを所定の組み合わせで組み合わせて用いることによって、空間をより活性化または沈静化することができる。例えば、第1の植物と第2の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、知的生産性をより高める空間(例えば、「仕事モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(リモネン、シネオール、オイデスモール、グアイオール等)等の揮発性有機化合物等の第2の揮発性成分が、嗅覚に存在する交感神経受容体に作用し、交感神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性をより高めることができる。 By using the first plant, the second plant, and the third plant in combination in a predetermined combination, the space can be further activated or calmed down. For example, by using the first plant and the second plant in combination, it is possible to provide a space (for example, referred to as a "work mode space") that reduces mental stress and further enhances intellectual productivity. Can be done. The first volatile components such as volatile organic compounds such as terpenes (linarol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. A second volatile component such as volatile organic compounds such as terpenes (limonen, cineole, eudesmol, guayol, etc.) released from plants is present in the sense of smell as well as stimulating GABAergic nerves. By acting on the sympathetic nerve receptors and stimulating the sympathetic nerves, mental stress can be reduced and intellectual productivity can be further increased.

例えば、第1の植物と第3の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、リラックス効果をより高める空間(例えば、「休憩モード空間」と呼ぶ)を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(α−ピネン、δ−カジネン、セドロール等)等の揮発性有機化合物等の第3の揮発性成分が、嗅覚に存在する副交感神経受容体に作用し、副交感神経を刺激することによって、精神的ストレスを低減させるとともに、リラックス効果をより高めることができる。 For example, by using the first plant and the third plant in combination, it is possible to provide a space (for example, referred to as a "rest mode space") that reduces mental stress and further enhances the relaxing effect. .. The first volatile components such as volatile organic compounds such as terpenes (linarol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. Along with stimulating GABAergic nerves, a third volatile component such as volatile organic compounds such as terpenes (α-pinene, δ-cadinene, sedrol, etc.) released from plants becomes the sense of smell. By acting on existing parasympathetic receptors and stimulating the parasympathetic nerves, mental stress can be reduced and the relaxing effect can be further enhanced.

第1の植物と第2の植物と第3の植物とを組み合わせて用いることによって、精神的ストレスを低減させるとともに、知的生産性をより高め、リラックス効果をより高める空間を提供することができる。植物から放出されるテルペン類(リナロール、メントール、ミルテノール、ベルベノール等)等の揮発性有機化合物等の第1の揮発性成分が、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用し、GABA作動性神経を刺激するとともに、植物から放出されるテルペン類(リモネン、シネオール、オイデスモール、グアイオール等)の第2の揮発性成分が、嗅覚に存在する交感神経受容体に作用し、交感神経を刺激し、植物から放出されるテルペン類(α−ピネン、δ−カジネン、セドロール等)等の揮発性有機化合物等の第3の揮発性成分が、嗅覚に存在する副交感神経受容体に作用し、副交感神経を刺激することによって、精神的ストレスを低減させるとともに、知的生産性をより高め、リラックス効果をより高めることができる。 By using the first plant, the second plant, and the third plant in combination, it is possible to provide a space that reduces mental stress, enhances intellectual productivity, and enhances the relaxing effect. .. The first volatile components such as volatile organic compounds such as terpenes (linalol, menthol, myltenol, velbenol, etc.) released from plants are γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. Along with stimulating GABAergic nerves, the second volatile components of terpenes (limonen, cineole, eudesmol, guayol, etc.) released from plants act on sympathetic receptors present in the sense of smell. However, a third volatile component such as a volatile organic compound such as terpenes (α-pinene, δ-cadinene, sedrol, etc.) released from plants that stimulates the sympathetic nerve is a parasympathetic nerve receptor present in the sense of smell. By acting on the body and stimulating parasympathetic nerves, it is possible to reduce mental stress, increase intellectual productivity, and enhance the relaxing effect.

従来技術のトドマツ、ヒノキ、スギ、イチョウ等の樹木では、嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する揮発性成分を放出しないので、ヒトの精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるような効果は得られない。 Prior art trees such as Todomatsu, Hinoki, Sugi, and Ginkgo do not release volatile components that act on γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell, thus reducing human mental stress. At the same time, it does not have the effect of increasing human intellectual productivity or enhancing the relaxing effect.

空間調節装置1において、植物14から放出される揮発性成分のそれぞれの放出量は、例えば、植物14に与えられる水分量、植物14に与えられる窒素量、植物14に照射される光の照度、植物14に照射される光の色調、植物14の栽培環境の湿度、および植物14の栽培環境の温度のうち少なくとも1つにより調節されればよい。 In the space control device 1, the amount of each volatile component released from the plant 14 is, for example, the amount of water given to the plant 14, the amount of nitrogen given to the plant 14, the illuminance of the light applied to the plant 14, and the like. It may be adjusted by at least one of the color tone of the light applied to the plant 14, the humidity of the cultivation environment of the plant 14, and the temperature of the cultivation environment of the plant 14.

例えば、植物14から放出される揮発性成分の放出量は、全灌防水LED(RGB)24による照度や色調、加温器26、温湿度センサ28による植物植栽空間60の温度や湿度、水タンク30から供給される給水量や栽培床12の水分含量、液肥タンク32から供給される窒素化合物供給量や栽培床12に含まれる窒素量によって調節することができる。なお、例えば、水タンク30からの栽培床12への給水量は、水中ポンプ34,36と調節バルブ38,40によって調節され、液肥タンク32からの栽培床12への窒素化合物供給量は、水中ポンプ42,44と調節バルブ46,48によって調節される。データ記録・調節器54は、植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録することができ、これらのうち少なくとも1つを用いて、植物植栽空間60の温度、湿度、栽培床12へ供給する水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等を調節してもよい。また、水タンク30からの栽培床12への給水、液肥タンク32からの栽培床12への窒素化合物供給、全灌防水LED(RGB)24の点灯等は、タイマーで時間設定を行い、制御してもよい。 For example, the amount of volatile components released from the plant 14 is the illuminance and color tone of the fully irrigated waterproof LED (RGB) 24, the temperature and humidity of the plant planting space 60 by the warmer 26 and the temperature / humidity sensor 28, and water. It can be adjusted by the amount of water supplied from the tank 30, the water content of the cultivation bed 12, the amount of the nitrogen compound supplied from the liquid fertilizer tank 32, and the amount of nitrogen contained in the cultivation bed 12. For example, the amount of water supplied from the water tank 30 to the cultivation floor 12 is adjusted by the submersible pumps 34 and 36 and the adjustment valves 38 and 40, and the amount of nitrogen compound supplied from the liquid fertilizer tank 32 to the cultivation floor 12 is underwater. It is regulated by pumps 42, 44 and regulating valves 46, 48. The data recording / regulator 54 records data such as the temperature and humidity of the plant planting space 60, the amount of water supplied to the cultivation floor 12, the amount of nitrogen compounds, the illuminance by the total irrigation waterproof LED (RGB) 24, and the color tone. Using at least one of these, the temperature and humidity of the plant planting space 60, the amount of water supplied to the cultivation floor 12, the amount of nitrogen compounds, the illuminance by the total irrigation waterproof LED (RGB) 24, the color tone, etc. You may adjust. Further, water supply from the water tank 30 to the cultivation floor 12, supply of nitrogen compounds from the liquid fertilizer tank 32 to the cultivation floor 12, lighting of the total irrigation waterproof LED (RGB) 24, etc. are controlled by setting the time with a timer. You may.

光照射手段としては、レッド(R)、グリーン(G)、ブルー(B)の光を含む可視光(400〜800nm)を照射することができるものであればよく、特に制限はないが、例えば、全灌防水LED(RGB)24、収穫ACE(光合成補光用植物栽培LED照明器)、および、Derlights 30W(植物育成LEDライト)等を用いることができる。光照射手段として、紫外光、および赤外光等を照射することができるものを併用してもよい。可視光に紫外光を併用すると、植物に付着している微生物等を殺菌することができる。 The light irradiation means may be any one capable of irradiating visible light (400 to 800 nm) including red (R), green (G), and blue (B) light, and is not particularly limited, but for example. , Total irrigation waterproof LED (RGB) 24, Harvest ACE (plant cultivation LED illuminator for photosynthetic supplementation), Derlights 30W (plant growth LED light) and the like can be used. As the light irradiation means, those capable of irradiating ultraviolet light, infrared light, or the like may be used in combination. When ultraviolet light is used in combination with visible light, microorganisms and the like attached to plants can be sterilized.

温度調整手段としては、植物植栽空間60の温度を調整することができるものであればよく、特に制限はないが、例えば、加温器26、冷却器等を用いることができる。加温器26としては、セラミックヒーター等の電気ファンヒーター、スチームラジエーター、輻射線加熱器等を用いることができる。 The temperature adjusting means may be any one capable of adjusting the temperature of the plant planting space 60, and is not particularly limited, but for example, a warmer 26, a cooler, or the like can be used. As the warmer 26, an electric fan heater such as a ceramic heater, a steam radiator, a radiant ray heater, or the like can be used.

液肥としては、硝酸等の窒素化合物を含む水溶液等が挙げられる。液肥には窒素化合物の他に、リン酸、カリウム等を含んでもよい。 Examples of the liquid fertilizer include an aqueous solution containing a nitrogen compound such as nitric acid. The liquid fertilizer may contain phosphoric acid, potassium and the like in addition to the nitrogen compound.

補助成分としては、例えば、植物14が放出する揮発性成分中の有効成分の効果を助長する効果を有する助長成分等が挙げられる。補助成分としては、例えば、レモングラス等の芳香性成分、ゲラニオール、ゲラニアール、ネラール等が挙げられる。 Examples of the auxiliary component include a promoting component having an effect of promoting the effect of the active ingredient in the volatile component released by the plant 14. Examples of the auxiliary component include aromatic components such as lemongrass, geraniol, geranial, and neral.

本実施形態に係る空間調節装置の他の例の概略を図2に示す。図2に示す空間調節装置3は、図1に示す空間調節装置1の構成に、植物植栽空間60内を2つ以上の区分に区分けする区分手段として、仕切り板62をさらに有し、この仕切り板62によって植物植栽空間60内の左右の空間が仕切られている。 FIG. 2 shows an outline of another example of the space adjusting device according to the present embodiment. The space adjusting device 3 shown in FIG. 2 further includes a partition plate 62 as a dividing means for dividing the plant planting space 60 into two or more divisions in the configuration of the space adjusting device 1 shown in FIG. The left and right spaces in the plant planting space 60 are partitioned by the partition plate 62.

例えば、仕切り板62によって植物植栽空間60内を2つの空間に区分けし、上記第1の植物と上記第2の植物とを用い、植物植栽空間60の左区域に第1の植物、右区域に第2の植物を植栽することによって、GABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出とを切り替えて調節することができる。また、上記第1の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第1の植物、右区域に第3の植物を植栽することによって、GABA作動性神経作用空間からの第1の揮発性成分の放出と、副交感神経作用空間からの第3の揮発性成分の放出とを切り替えて調節することができる。 For example, the inside of the plant planting space 60 is divided into two spaces by a partition plate 62, and the first plant and the second plant are used, and the first plant and the right are in the left area of the plant planting space 60. By planting a second plant in the area, the release of the first volatile component from the GABAergic neuroactive space and the release of the second volatile component from the sympathetic space are switched and regulated. can do. Further, by using the first plant and the third plant and planting the first plant in the left area and the third plant in the right area of the plant planting space 60, GABAergic nerve action The release of the first volatile component from the space and the release of the third volatile component from the parasympathetic space can be switched and regulated.

これらの場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域および右区域にそれぞれに設置して、上記第1の植物からの第1の揮発性成分の放出と、上記第2の植物からの第2の揮発性成分の放出とを切り替えてもよい。また、上記第1の植物からの第1の揮発性成分の放出と、上記第3の植物からの第3の揮発性成分の放出とを切り替えてもよい。 In these cases, exhaust fans and exhaust ports are installed in the left area and the right area, respectively, as volatile component discharging means for discharging the volatile components of each plant from each space of the plant planting space 60. The release of the first volatile component from the first plant and the release of the second volatile component from the second plant may be switched. Further, the release of the first volatile component from the first plant and the release of the third volatile component from the third plant may be switched.

例えば、仕切り板62によって植物植栽空間60内を2つの空間に区分けし、上記第1の植物と上記第2の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第1の植物および第3の植物、右区域に第1の植物および第2の植物を植栽することによって、副交感神経作用空間からの第3の揮発性成分の放出およびGABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出およびGABA作動性神経作用空間からの第1の揮発性成分の放出とを切り替えて調節することができる。 For example, the inside of the plant planting space 60 is divided into two spaces by a partition plate 62, and the first plant, the second plant, and the third plant are used in the left area of the plant planting space 60. By planting the first and third plants, the first and second plants in the right area, the release of the third volatile component from the parasympathetic space and the GABAergic nerve space. To switch and regulate the release of the first volatile component from, the release of the second volatile component from the sympathetic nerve action space, and the release of the first volatile component from the GABAergic nerve action space. Can be done.

この場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域および右区域にそれぞれに設置して、上記第1の植物および上記第2の植物からの揮発性成分の放出(例えば、「仕事モード」と呼ぶ)と、上記第1の植物および上記第3の植物からの揮発性成分の放出(例えば、「休憩モード」と呼ぶ)とを切り替えてもよい。 In this case, as a volatile component discharging means for discharging the volatile component of each plant from each space of the plant planting space 60, an exhaust fan and an exhaust port are installed in the left area and the right area, respectively, and the above-mentioned first Release of volatile components from 1 plant and 2nd plant (eg, referred to as "work mode") and release of volatile components from 1st plant and 3rd plant (eg, "work mode"). It may be switched between "rest mode").

例えば、仕切り板62によって植物植栽空間60内を3つの空間に区分けし、上記第1の植物と上記第2の植物と上記第3の植物とを用い、植物植栽空間60の左区域に第3の植物、中区域に第1の植物、右区域に第2の植物を植栽することによって、副交感神経作用空間からの第3の揮発性成分の放出と、GABA作動性神経作用空間からの第1の揮発性成分の放出と、交感神経作用空間からの第2の揮発性成分の放出とを切り替えて調節することができる。 For example, the inside of the plant planting space 60 is divided into three spaces by a partition plate 62, and the first plant, the second plant, and the third plant are used in the left area of the plant planting space 60. By planting a third plant, a first plant in the middle area, and a second plant in the right area, the release of the third volatile component from the parasympathetic space and from the GABAergic space. The release of the first volatile component and the release of the second volatile component from the sympathetic space can be switched and regulated.

この場合、植物植栽空間60の各空間から各植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファンおよび排気口を左区域、中区域および右区域にそれぞれに設置して、上記第1の植物からの第1の揮発性成分の放出と、上記第2の植物からの第2の揮発性成分の放出と、上記第3の植物からの第3の揮発性成分の放出とを切り替えてもよい。 In this case, exhaust fans and exhaust ports are installed in the left area, the middle area, and the right area, respectively, as volatile component discharging means for discharging the volatile components of each plant from each space of the plant planting space 60. , Release of the first volatile component from the first plant, release of the second volatile component from the second plant, and release of the third volatile component from the third plant. You may switch between.

これらによって、精神的ストレスを低減しながらの交感神経作用空間や精神的ストレスを低減しながらの副交感神経作用空間をつくることができる。 As a result, it is possible to create a sympathetic nerve action space while reducing psychological stress and a parasympathetic nerve action space while reducing psychological stress.

切替手段は、例えば制御装置を用いて各排気ファンおよび各排気口の動作を制御して上記第1の植物、第2の植物、第3の植物からの揮発性成分の放出を切り替えればよい。 The switching means may switch the release of the volatile components from the first plant, the second plant, and the third plant by controlling the operation of each exhaust fan and each exhaust port by using, for example, a control device.

図3に示す空間調節装置5は、テーブル型の装置である。空間調節装置5は、例えば、テーブル部68と、植物植栽部70とを有する。植物植栽部70は、枠材66で形成された植物植栽空間60内に、植物を植栽するための植物植栽手段として、装置の上面に対して略平行方向に、植物設置台10を備え、この植物設置台10内に栽培床12が設置され、この栽培床12に植物14が植栽されている。植物植栽空間60を外気と隔離するための隔離手段として、装置の上面に透明のアクリル板やガラス板等の透明板16が設置されている。植物植栽空間60に外気の空気を取り入れるための外気吸入手段として、吸入口18と、植物の揮発性成分を排出するための揮発性成分排出手段として、排気ファン20および排気口22とが設置されている。植物14に可視光等の光を照射する光照射手段として、全灌防水LED(RGB)24が植物植栽空間60内の例えば上部に設置されている。 The space adjusting device 5 shown in FIG. 3 is a table type device. The space adjusting device 5 has, for example, a table portion 68 and a plant planting portion 70. The plant planting unit 70 serves as a plant planting means for planting a plant in the plant planting space 60 formed of the frame member 66 in a direction substantially parallel to the upper surface of the apparatus, and the plant installation table 10 A cultivation floor 12 is installed in the plant installation table 10, and a plant 14 is planted on the cultivation floor 12. As a means for isolating the plant planting space 60 from the outside air, a transparent plate 16 such as a transparent acrylic plate or a glass plate is installed on the upper surface of the apparatus. An intake port 18 is installed as an outside air intake means for taking in outside air into the plant planting space 60, and an exhaust fan 20 and an exhaust port 22 are installed as volatile component discharge means for discharging the volatile components of the plant. Has been done. As a light irradiation means for irradiating the plant 14 with light such as visible light, a fully irrigated waterproof LED (RGB) 24 is installed, for example, in the upper part of the plant planting space 60.

空間調節装置5は、植物植栽空間60の温度を調整する温度調整手段として、加温器26と、植物植栽空間60の温度を測定する温度測定手段および植物植栽空間60の湿度を測定する湿度測定手段として、温湿度センサ28と、植物14に水を供給する水供給手段として、水タンク30と、植物14に窒素化合物を供給する窒素化合物供給手段として、液肥タンク32とを備えてもよい。植物植栽空間60の温度、湿度、栽培床12へ供給した水分量、窒素化合物量、全灌防水LED(RGB)24による照度、色調等のデータを記録し、制御する制御手段として、データ記録・調節器54を備えてもよい。 The space adjusting device 5 measures the temperature of the warmer 26, the temperature measuring means for measuring the temperature of the planting space 60, and the humidity of the planting space 60 as the temperature adjusting means for adjusting the temperature of the planting space 60. A temperature / humidity sensor 28 is provided as a humidity measuring means, a water tank 30 is provided as a water supply means for supplying water to the plant 14, and a liquid fertilizer tank 32 is provided as a nitrogen compound supply means for supplying the nitrogen compound to the plant 14. May be good. Data recording as a control means for recording and controlling data such as temperature and humidity of the plant planting space 60, water content supplied to the cultivation floor 12, nitrogen compound amount, illuminance and color tone by the total irrigation waterproof LED (RGB) 24. -A controller 54 may be provided.

例えば、水タンク30に貯留された水および液肥タンク32に貯留された窒素化合物等を含む液肥が配管等を通して栽培床12に供給され、全灌防水LED(RGB)24によって植物14に可視光等の光が照射され、植物14が栽培される。必要に応じて加温器26によって植物植栽空間60の温度が所定の温度に調整されてもよい。栽培床12からの排水は、配管等を通して排水タンク50で回収される。加湿は、栽培床12に供給される給水で確保することができるが、植物14から放出される揮発性成分の拡散効率を上げるために、水タンク30から供給される水を霧化する霧化手段として霧発生器を設けてもよい。空間調節装置5からの漏水を防止するための漏水防止手段として、水タンク30、液肥タンク32、排水タンク50を収容する防水容器52を設置してもよい。例えば植物14が放出する揮発性成分中の有効成分の効果を助長するような補助成分を外部の空間へ噴霧する補助成分供給手段として噴霧器と、噴霧した補助成分を排気する補助成分排気手段として排気ファンとを設置してもよい。また、給水口64を設けてもよく、ここを開けると、水タンク30と液肥を含む液肥タンク32に水や液肥を補給できるとともに、排水タンク50の水の排水処理を行うことができる。空間調節装置5に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。 For example, water stored in the water tank 30 and liquid fertilizer containing nitrogen compounds stored in the liquid fertilizer tank 32 are supplied to the cultivation floor 12 through pipes and the like, and visible light or the like is transmitted to the plant 14 by the total irrigation waterproof LED (RGB) 24. The plant 14 is cultivated by being irradiated with the light of. If necessary, the temperature of the plant planting space 60 may be adjusted to a predetermined temperature by the warmer 26. The drainage from the cultivation floor 12 is collected in the drainage tank 50 through pipes and the like. Humidification can be ensured by the water supply supplied to the cultivation floor 12, but in order to increase the diffusion efficiency of the volatile components released from the plant 14, the water supplied from the water tank 30 is atomized. A fog generator may be provided as a means. As a water leakage prevention means for preventing water leakage from the space adjusting device 5, a waterproof container 52 accommodating the water tank 30, the liquid fertilizer tank 32, and the drainage tank 50 may be installed. For example, an atomizer as an auxiliary component supply means for spraying an auxiliary component that promotes the effect of the active ingredient in the volatile component released by the plant 14 into an external space, and an exhaust as an auxiliary component exhaust means for exhausting the sprayed auxiliary component. A fan may be installed. Further, a water supply port 64 may be provided, and when the water supply port 64 is opened, water or liquid fertilizer can be replenished to the water tank 30 and the liquid fertilizer tank 32 containing the liquid fertilizer, and the water in the drainage tank 50 can be treated as drainage. When a plant is installed in the space adjusting device 5, for example, the transparent plate 16 may be removed and the plant may be installed.

空間調節装置5において、吸入口18から外気の空気が植物植栽空間60内へ取り入れられ、植物設置台10内の栽培床12に植栽された植物14から放出される揮発性成分が排気ファン20によって排気口22から空間調節装置5が設置された空間へ放出され、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境が調節される。 In the space adjusting device 5, the outside air is taken into the plant planting space 60 from the suction port 18, and the volatile component released from the plant 14 planted on the cultivation floor 12 in the plant setting table 10 is an exhaust fan. 20 releases the space from the exhaust port 22 to the space where the space control device 5 is installed, so that the space environment can reduce mental stress, increase human intellectual productivity, or enhance the relaxing effect. Be adjusted.

栽培床12としては、水や液肥を含浸可能であり、植物14を植栽できるものであればよく、特に制限はないが、例えばスポンジ状の樹脂等を用いることができ、スポンジ内の水分保持量や流れ等に応じて、例えば、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリプロピレン系樹脂、およびフェノール系樹脂を用いればよい。また、栽培床12として、土壌を用いてもよい。 The cultivation bed 12 may be impregnated with water or liquid fertilizer and may be capable of planting the plant 14, and is not particularly limited. For example, a sponge-like resin or the like can be used to retain water in the sponge. For example, a polyacrylic resin, a polyurethane resin, a polyamide resin, a polyester resin, a polyvinyl alcohol resin, a polyvinylidene chloride resin, a polypropylene resin, and a phenol resin may be used depending on the amount and flow. .. Further, soil may be used as the cultivation bed 12.

植物14は、上記第1の植物を用いることができ、上記第2の植物および上記第3の植物のうち少なくとも1つをさらに用いてもよい。 As the plant 14, the first plant can be used, and at least one of the second plant and the third plant may be further used.

空間調節装置5において、空間調節装置1,3と同様にして、植物14から放出される揮発性成分のそれぞれの放出量は、例えば、植物14に与えられる水分量、植物14に与えられる窒素量、植物14に照射される光の照度、植物14に照射される光の色調、植物14の栽培環境の湿度、および植物14の栽培環境の温度のうち少なくとも1つにより調節されればよい。 In the space control device 5, similarly to the space control devices 1 and 3, the amount of each volatile component released from the plant 14 is, for example, the amount of water given to the plant 14 and the amount of nitrogen given to the plant 14. , The illuminance of the light shining on the plant 14, the color tone of the light shining on the plant 14, the humidity of the cultivation environment of the plant 14, and the temperature of the cultivation environment of the plant 14 may be adjusted by at least one of them.

空間調節装置5に植物を設置する場合、例えば、透明板16を取り外して、植物を設置すればよい。また、図4に示すように、空間調節装置5の下部の植物植栽部70をスライドしてテーブル部68から取り出すことができるようにしてもよい。 When a plant is installed in the space adjusting device 5, for example, the transparent plate 16 may be removed and the plant may be installed. Further, as shown in FIG. 4, the plant planting portion 70 at the lower part of the space adjusting device 5 may be slid so that it can be taken out from the table portion 68.

本実施形態に係る空間調節装置および空間調節方法は、人間等の生活空間等の環境を調節するために用いることができ、例えば、家屋、オフィス、車両、学習室、図書室等において用いることができる。 The space adjusting device and the space adjusting method according to the present embodiment can be used to adjust the environment such as a living space of a human being, and can be used, for example, in a house, an office, a vehicle, a study room, a library, or the like. can.

以下、本実施形態に係る空間調節装置および空間調節方法で用いられる植物を例示する。 Hereinafter, the plants used in the space adjusting device and the space adjusting method according to the present embodiment will be illustrated.

植物14としては、例えば、蘚苔類、被子植物類、裸子植物類等が挙げられるが、これらに限定されるものではない。蘚苔類、被子植物類、および、芯材や辺材より小さく切断加工等された裸子植物類は、背丈が小さく、植物設置のためのスペースが小さいため装置を小型化可能である等の点で好ましく、蘚苔類は、低照度で栽培可能である、耐乾燥性に優れる等の点でより好ましい。上記第1の植物および上記第3の植物としては、それぞれ下記に示される蘚苔類、被子植物類、および裸子植物類の中から1つまたは複数を選択すればよい。上記第2の植物としては、下記に示される蘚苔類および被子植物類の中から1つまたは複数を選択すればよい。 Examples of the plant 14 include, but are not limited to, bryophytes, angiosperms, gymnosperms and the like. Bryophytes, angiosperms, and gymnosperms that have been cut smaller than the core material and sapwood are short in height and the space for plant installation is small, so the equipment can be miniaturized. Preferably, bryophytes are more preferable in that they can be cultivated in low light and have excellent drought resistance. As the first plant and the third plant, one or more may be selected from the bryophytes, angiosperms, and gymnosperms shown below, respectively. As the second plant, one or more may be selected from the bryophytes and angiosperms shown below.

上記第1の植物、上記第2の植物および上記第3の植物が放出する揮発性成分のそれぞれが、テルペン類を含むことが好ましく、テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことがより好ましい。 It is preferable that each of the volatile components released by the first plant, the second plant and the third plant contains terpenes, and the terpenes contain at least one of monoterpenes and sesquiterpenes. It is more preferable to include it.

ヒト等の嗅覚に存在する交感神経受容体に作用する第2の揮発性成分として、例えば、1,8−シネオール、リモネン、オイデスモール、グアイオール等が挙げられる。 Examples of the second volatile component acting on the sympathetic nerve receptor present in the sense of smell of humans and the like include 1,8-cineole, limonene, eudesmol, guaiol and the like.

1,8−シネオールを放出する蘚苔類として、例えば、Asterella africana(下記参考文献(1)参照、以下同じ)、Chandonanthus hirtellus(2)等が挙げられる。 Examples of bryophytes that release 1,8-cineole include Asterella africana (see reference (1) below, the same applies hereinafter), Chandonanthus hirtellus (2), and the like.

リモネンを放出する蘚苔類として、例えば、Asterella africana(1)、Barbilophozia floerkei(3)、Bazzania harpago(4)、Bazzania praerupta(5)、Conocephalum conicum(4)、Conocephalum japonicum(2)、Chandonanthus hirtellus(6,4)、Drepanolejeunea madagascariensis(4)、Marchantia paleacea(6)、Homalia trichomanoides(8)、Mnium hornum(8)、Mnium marginatum(8)、Plagiomnium undulatum(8)、Plagiothecium undulatum(8)、Anthoceros caucasicus(9)等が挙げられる。 Examples of limonene-releasing mosses include Asterella africana (1), Barbilophozia floerkei (3), Bazzania harpago (4), Bazzania praerupta (5), Conocephalum conicum (4), Conocephalum japonicum (2), Chandonanthus hirtellus (6). , 4), Drepanolejeunea madagascariensis (4), Marchantia paleacea (6), Homalia trichomanoides (8), Mnium hornum (8), Mnium marginatum (8), Plagiomnium undulatum (8), Plagiothecium undulatum (8), Anthoceros cauc ) Etc. can be mentioned.

オイデスモールを放出する蘚苔類として、例えば、Marchantia polymorpha(10)、Porella perrottetiana(11)、Lunularia cruciate(12)、Marchantia pileata(12,13)、Marchesinia mackaii(14)、Trichocolea pluma(15)等が挙げられる。 Examples of liverworts that release eudesmol include Marchantia polymorpha (10), Porella perrottetiana (11), Lunularia cruciate (12), Marchantia pileata (12, 13), Marchsinia mackaii (14), Trichocolea pluma (15), etc. Can be mentioned.

グアイオールを放出する蘚苔類は知られていないが、グアイオールの類似化合物である5−グアイエン−11−オールを放出する蘚苔類として、例えば、Anthoceros caucasicus(9)、Unidentified Jungermannia sp.(15)、Lophozia ventricosa(29)、Bazzania trilobata(35)、Calypogeia muelleriana(36),(37)、Jackiella javanica(38)等が挙げられる。 The bryophytes that release guaiol are not known, but bryophytes that release 5-guaien-11-ol, which is a similar compound of guaiol, include, for example, Anthoceros caucasicus (9), Unified Jungermannia sp. Examples thereof include ventricosa (29), Bazzania trilobata (35), Calypogeia muelleriana (36), (37), Jackiella javanica (38) and the like.

1,8−シネオールを放出する被子植物類として、例えば、Phlomis regelii(39)、Thymus mastichina(40)、Lavandula stoechas(41)、Ajania fruticulosa(42)、Tanacetum vulgare(43)、Anemopsis californica(44)、Cenchrus echinatus(45)、Rosmarinus officinalis(46)、Santolina chamaecyparissus(47)、Salvia apiana(48)、Melaleuca alternifolia(103)、Eucalyptus gunnii(104)、Citrus aurantifolia(105)等が挙げられる。 Angiosperms that release 1,8-cineole include, for example, Phlomis regelii (39), Thymus mastichina (40), Lavandula stoechas (41), Ajania fruticulosa (42), Tanacetum vulgare (43), Anemopsis californica (44). , Cenchrus echinatus (45), Rosmarinus officinalis (46), Santalina chamaecyparissus (47), Salvia apiana (48), Melaleuca alternifolia (103), Eucalyptus gunnii (104), Citrus aurantifolia (105) and the like.

リモネンを放出する被子植物類として、例えば、Mentha piperita(49)、Mentha Spicta(50)、Thymus capitatus(51)、Phlomis regelii(39)、Mentha longifolia(52)、Dracocephalum foetidum(53)等が挙げられる。 Examples of angiosperms that release limonene include Mentha piperita (49), Mentha Spicta (50), Thymus capitatus (51), Phlomis regelii (39), Mentha longifolia (52), Dracocephalum foetidum (53) and the like. ..

オイデスモールを放出する被子植物類として、例えば、Atractylodes lancea(54)、Anthemis malampodina(55)、Anthemis scrobicularis(55)、Santolina chamaecyparissus(56)、Ajuga comata Stapf(57)、Teucrium ramosissimum(58)、Grindelia integrifolia(59)等が挙げられる。 As angiosperms that release Eudesmol, for example, Atractylodes lancea (54), Anthemis malampodina (55), Anthemis scrobicularis (55), Santolina chamaecyparissus (56), Ajuga comata Stapf (57), Teucrium ramosissimum (58), Grindelia Integrifolia (59) and the like can be mentioned.

グアイオールを放出する被子植物類として、例えば、Salvia elegans(48)、Teucrium polium(60)、Achillea millefolium(61)、Valeriana jatamansi(62)、Croton micans(63)、Amsonia illustris(64)等が挙げられる。 Examples of angiosperms that release guaiol include Salvia elegans (48), Teucrium polium (60), Achillea millefolium (61), Valeriana jatamansi (62), Croton micans (63), Amsonia illustris (64) and the like. ..

ヒト等の嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分として、例えば、リナロール、メントール、ミルテノール、およびベルベノール等が挙げられる。 Examples of the first volatile component acting on the γ-aminobutyric acid (GABA) -operated nerve receptor present in the sense of smell of humans and the like include linalool, menthol, myrtenol, verbenol and the like.

リナロールを放出する蘚苔類として、例えば、Asterella africana(16)、Chandonanthus hirtellus(4,16)、Plagiochila bifaria(2)、Radula carringtonii(17)、Trichocolea pluma(15)等が挙げられる。 Examples of linalool-releasing bryophytes include Asterella africana (16), Chandonanthus hirtellus (4,16), Plagiochila bifaria (2), Radula carringtonii (17), Trichocolea pluma (15) and the like.

ミルテノールを放出する蘚苔類として、例えば、Asterella africana(1)およびHomalia trichomanoides(8)等が挙げられる。 Examples of bryophytes that release myrtenol include Asterella africana (1) and Homalia trichomanoides (8).

ベルベノールを放出する蘚苔類として、例えば、Lepidolaena clavigera(18,19)等が挙げられる。 Examples of bryophytes that release verbenol include Lepidolaena clavigera (18, 19).

リナロールを放出する被子植物類として、例えば、Thymus zygis(65)、Ajuga turkestanica(39)、Thymus mastichina(40)、Myrtus communis(66)、Aloysia triphylla(67)、Lavandula latifolia(68)、Lavandula angustifolia(68)、Thapsia garganica(69)、Myrtus communis(70)、Thymus vulgaris(71)、Lavandula x intermedia(72)、Ocimum basilicum(73)等が挙げられる。 As angiosperms that release linalool, for example, Thymus zygis (65), Ajuga turkestanica (39), Thymus mastichina (40), Myrtus communis (66), Aloysia triphylla (67), Lavandula latifolia (68), Lavandula angustifolia ( 68), Thapsia garganica (69), Myrtus communis (70), Thymus vulgaris (71), Lavandula x intermedia (72), Occimum basilicum (73) and the like.

メントールを放出する被子植物類として、例えば、Mentha piperita(49)、Mentha x piperita(74)、Mentha haplocalyx(75)、Mentha arvensis(76)等が挙げられる。 Examples of angiosperms that release menthol include Mentha piperita (49), Mentha x piperita (74), Mentha haplocalyx (75), and Mentha arvensis (76).

ミルテノールを放出する被子植物類として、例えば、Ajania fruticulosa(42)、Tanacetum vulgare(43)、Alchemilla xanthochlora(77)、Lavandula stoechas(41)、Myrtus communis(66)、Salvia multicaulis(78)、Tanacetum vulgare(79)等が挙げられる。 Angiosperms that release myrtenol include, for example, Ajania fruticulosa (42), Tanacetum vulgare (43), Alchemilla xanthochlora (77), Lavandula stoechas (41), Myrtus communis (66), Salvia multicaulis (78), Tanacetum vulgare. (79) and the like.

ベルベノールを放出する被子植物類として、例えば、Cytisus scoparius(80)、Dracocephalum fruticulosum(53)、Rosmarinus officinalis(81)、Artemisia santolina(82)、Mentha longifolia(52)、Tanacetum vulgare(83)、Artemisia sieberi(84)、Micromeria cristata(85)、Ajania nematoloba(86)等が挙げられる。 As angiosperms that release berbenol, for example, Cytisus scoparius (80), Dracocephalum fruticulosum (53), Rosmarinus officinalis (81), Artemisia santolina (82), Mentha longifolia (52), Tanacetum vulgare (83), Artemisia sieberi ( 84), Micromeria cristata (85), Ajania nematoloba (86) and the like.

リナロールを放出する裸子植物類として、例えば、Sabina chinensis(イブキ)(137)、Juniperus communis(セイヨウネズ)(118)、Tetraclinis articulata(138)、Cupressus lusitanica(139)、Cedrus deodara(ヒマラヤスギ)(140)等が挙げられる。 Gymnosperms that release linarol include, for example, Sabina chinensis (137), Juniperus communis (118), Tetraclinis articulata (138), Cupressus lusitanica (139), Cedrus deodara (140). And so on.

ミルテノールを放出する裸子植物類として、例えば、Taxus baccata(ヨーロッパイチイ)(142)、Chamecyparis formosensis (タイワンベニヒノキ)(126)、Chamecyparis obtusa (ヒノキ)(126)等が挙げられる。 Examples of gymnosperms that release myrtenol include Taxus baccata (European Yew) (142), Chamecyparis formosensis (Taiwan Benihinoki) (126), and Chamecyparis obtusa (Hinoki) (126).

ベルベノールを放出する裸子植物類として、例えば、Juniperus phoenicea(141)等が挙げられる。 Examples of gymnosperms that release verbenol include Juniperus phoenicea (141) and the like.

ヒト等の嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分として、例えば、α−ピネン、δ−カジネン、およびセドロール等が挙げられる。 Examples of the third volatile component acting on the parasympathetic nerve receptor present in the sense of smell of humans and the like include α-pinene, δ-cadinene, and cedrol.

α−ピネンを放出する蘚苔類として、例えば、Asterella africana(1)、Asterella venosa(20)、Barbilophozia floerkei(3)、Bazzania japonica(21)、Corsinia coriandrina(10,22)、Dendromastigophora flagellifera(12)、Frullania falciloba(23)、Frullania pycnantha(23)、Frullania spinifera(23)、Jungermannia truncata(13)、Lophozia ventricosa(24)、Lunularia cruciata(10)、Marsupella alpina(25)、Marsupella emarginata(25)、Marchantia paleacea var. diptera(26)、Plagiochila bifaria(27)、Plagiochila maderensis(27)、Plagiochila retrorsa(27)、Plagiochila stricta(27)、Radula aquilegia(17)、Radula boryana(2)、Radula complanata(17)、Radula holtii(17)、Radula lindenbergiana(17)、Radula nudicaulis(17)、Radula wichurae(17)、Saccogyna viticulosa(28)、Trichocolea pluma(15)、Homalia trichomanoides(8)、Mnium hornum(8)、Mnium marginatum(8)、Plagiomnium undulatum(8)、Plagiothecium undulatum(8)、Anthoceros caucasicus(9)等が挙げられる。 Examples of bryophytes that release α-pinene include Asterella africana (1), Asterella venosa (20), Barbilophozia floerkei (3), Bazzania japonica (21), Corsinia coriandrina (10,22), Dendromastigophora flagellifera (12), Frullania falciloba (23), Frullania pycnantha (23), Frullania spinifera (23), Jungermannia truncata (13), Lophozia ventricosa (24), Lunularia cruciata (10), Marsupella alpina (25), Marsupella emarginata (25), Marchant pale var. diptera (26), Plagiochila bifaria (27), Plagiochila maderensis (27), Plagiochila retrorsa (27), Plagiochila stricta (27), Radula aquilegia (17), Radula boryana (2), Radula complanata (17), Radula holtii (17), Radula lindenbergiana (17), Radula nudicaulis (17), Radula wichurae (17), Saccogyna viticulosa (28), Trichocolea pluma (15), Homalia trichomanoides (8), Mnium hornum (8), Mnium marginatum ( 8), Plagiomnium undulatum (8), Plagiothecium undulatum (8), Anthoceros caucasicus (9) and the like.

δ−カジネンを放出する蘚苔類として、例えば、Drepanolejeunea madagascariensis(6)、Lepidozia vitrea(29)、Lophozia ventricosa(24)、Marchesinia mackaii(14)、Marsupella emarginata(25)、Plagiochila bifaria(27)、Plagiochila maderensis(27)、Plagiochila retrorsa(27)、Plagiochila stricta(27)、Radula carringtonii(17)、Scapania undulata(1)、Mnium hornum(8)、Preissia quadrata(30)、Calypogeia muelleriana(31)、Marchantia emarginata subsp.tosana(32)等が挙げられる。 Examples of bryophytes that release δ-cadinene include Drepanolejeunea madagascariensis (6), Lepidozia vitrea (29), Lophozia ventricosa (24), Marchesinia mackaii (14), Marsupella emarginata (25), Plagiochila bifaria (27), Plagiochila made. (27), Plagiochila retrorsa (27), Plagiochila stricta (27), Radula carringtonii (17), Scapania undulata (1), Mnium hornum (8), Preissia quadrata (30), Calypogeia muelleriana (31), Marchantia emarginata subsp. Examples include tosana (32).

セドロールを放出する蘚苔類として、例えば、Tritomaria quinquedentata(33)、Porella navicularis(34)等が挙げられる。 Examples of bryophytes that release cedrol include Tritomaria quinquedentata (33) and Porella navicularis (34).

α−ピネンを放出する被子植物類として、例えば、Anthemis melampodina(9)、Elionurus tristis(87)、Hyptis suaveolens(88)、Plectranthus barbatus(89)等が挙げられる。 Examples of angiosperms that release α-pinene include Anthemis melampodina (9), Elionurus tristis (87), Hyptis suaveolens (88), and Plectranthus barbatus (89).

δ−カジネンを放出する被子植物類として、例えば、Teucrium ramosissimum(90)、Pallenis spinose(91)、Beta vulgaris(92)、Helichrysum genus(93)、Smyrnium cordifolium(94)、Achillea aucheri(95)、Helichrysum microphyllum(96)等が挙げられる。 Angiosperms that release δ-cadinene include, for example, Teucrium ramosissimum (90), Palalenis spinose (91), Beta vulgaris (92), Helichrysum genus (93), Smyrnium cordifolium (94), Achillea aucheri (95), Helichrysum. Examples thereof include microphyllum (96).

セドロールを放出する被子植物類として、例えば、Croton limae(97)、Trachydium roylei(98)、Pyrolae herba(99)、Artemisia annua(100)、Chamomilla recutita(101)、Valeriana fauriei(102)等が挙げられる。 Examples of angiosperms that release cedrol include Croton limae (97), Trachydium roylei (98), Pyrolae herba (99), Artemisia annua (100), Chamomile recutita (101), Valeriana fauriei (102) and the like. ..

α−ピネンを放出する裸子植物類として、例えば、Cryptomeria japonica(スギ)(106)、Chamaecyparis obtuse(ヒノキ)(107)、Chamaecyparis pisifera(サワラ)(108)、Abies firma(モミ)(109)、Pinus thunbergii(クロマツ)(110)、Pinus densiflora(アカマツ)(111)、Picea jezoensis(エゾマツ)(112)、Abies sachalinensis(トドマツ)(109)、Myroxylon peruiferum(113)、Populus nigra(セイヨウハコヤナギ)(114)、Populus trichocarpa(ブラックコットンウッド)(114)、Schinus molle(コショウボク)(115)、Syzygium paniculatum (116)、Boswellia carteri(ボスウェリア・サクラ)(117)、Juniperus communis(セイヨウネズ)(118)、Juniperus scopulorum(コロラドビャクシン)(119)、Cupressus sempervirens(ホソイトスギ)(120)、Thuja orientalis(コノテガシワ)(121)、Platycladus orientalis(122)、Juniperus excelsa(123)等が挙げられる。 Naked plants that release α-pinen include, for example, Cryptomeria japonica (106), Chamaecyparis obtuse (cypress) (107), Chamaecyparis pisifera (sawara) (108), Abies firma (fir) (109), Pinus. thunbergii (110), Pinus densiflora (red pine) (111), Picea jezoensis (112), Abies sachalinensis (109), Myroxylon peruiferum (113), Populus nigra (114) , Populus trichocarpa (black cottonwood) (114), Schinus molle (115), Syzygium paniculatum (116), Boswellia carteri (117), Juniperus communis (118), Juniperus scopulorum (Colorado juniper) (119), Cupressus sempervirens (Hinoki cypress) (120), Thuja orientalis (121), Platycladus orientalis (122), Juniperus excelsa (123) and the like.

δ−カジネンを放出する裸子植物類として、例えば、Juniperus chinensis(イブキ)(118)、Pinus heldreichii(ボスニアマツ)(124)、Pilgerodendron uviferum(125)、Chamecyparis obtuse(ヒノキ)(126,127)、Thujopsis dolabrata(アスナロ)(127)、Pinus peuce(128)、Cryptomeria japonica(スギ)(127,129,130)、Cupressus atlantica(131)が挙げられる。 Naked plants that release δ-kajinen include, for example, Juniperus chinensis (118), Pinus heldreichii (124), Pilgerodendron uviferum (125), Chamecyparis obtuse (Hinoki) (126,127), Thujopsis. Examples thereof include dolabrata (127), Pinus peuce (128), Cryptomeria japonica (Sugi) (127,129,130) and Cupressus atlantica (131).

セドロールを放出する裸子植物類として、例えば、Platycladus orientalis (コノテガシワ)(132)、Juniperus virginiana(エンピツビャクシン)(133)、Thuja occidentalis(ニオイヒバ)(134)、Cupressus sempervirens(ホソイトスギ)(120、135)、Cunninghamia lanceolate(コウヨウザン)(136)、Thuja orientalis (コノテガシワ)(121)、Abies kawakamii(122)、Cupressus funebris(シダレイトスギ)(118)が挙げられる。 Examples of nude plants that release sedrol include Platycladus orientalis (132), Juniperus virginiana (133), Thuja occidentalis (134), Cupressus sempervirens (120, 135). Cunninghamia lanceolate (136), Thuja orientalis (121), Abies kawakamii (122), Cupressus funebris (118).

これらの蘚苔類、被子植物類、および、芯材や辺材より小さく切断加工等された裸子植物類等は、トドマツ、ヒノキ、スギ、イチョウ等の樹木に比べて、背丈が小さく、植物設置のためのスペースが小さいため、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節することができる。 These moss, undergrowth plants, and gymnosperms that have been cut and processed smaller than the core and sapwood are shorter than trees such as Abies sachalinensis, cypress, sugi, and ginkgo, and are installed in plants. Because the space for the space is small, even in a small space such as an office or a house, the environment of the space can be reduced so that mental stress can be reduced, human intellectual productivity can be increased, or the relaxing effect can be enhanced. Can be adjusted.

[参考文献]
(1)Figueiredo AC, Barroso JG, Pedro LG, Fontinha SS, Sim-Sim M, Sergio C, Luis L,Scheffer JJC (2006) Asterella africana (Mont.) A. Evans Grown on Madeira and in Mainland Portugal: Morphological Data and Composition of the Essential Oil. Flavour Fragr J 21: 534
(2)Figueiredo AC, Garcia C, Sim-Sim M, Sergio C, Pedro LG, Barroso JG (2010) Volatiles from Plicanthus hirtellus (F. Weber) R.M. Schust. and Radula boryana (F. Weber) Nees (Hepaticae) Grown in Sao Tome e Principe Archipelago. Flavour Fragr J 25: 219
(3)Adio AM, Konig WA (2007)Sesquiterpenoids and Norsesquiterpenoids from Three Liverworts. Tetrahedron Asymm 18: 1693
(4)Ludwiczuk A, Asakawa Y (2010) Chemosystematics of Selected Liverworts Collected in Borneo. Tropical Bryology 31: 33
(5)Toyota M, Saito T, Matsunami J, Asakawa Y (1997) A Comparative Study on Three Chemotypes of the Liverwort Conocephalum conicum Using Volatile Constituents. Phytochemistry 44: 1265
(6)Gauvin-Bialecki A, Ah-Peng C, Smadja J, Strasberg D (2010) Fragrant Volatile Compounds in the Liverwort Drepanolejeunea madagascariensis (Steph.)Grolle: Approach by HSSPME Technique. Chem Biodivers 7: 639
(7)Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(8)Saritas Y, Mekem Sonwa M, Iznaguen H, Konig WA, Muhle H, Mues R (2001) Volatile Constituents in Mosses (Musci). Phytochemistry 57: 443
(9)Mekem Sonwa M, Konig WA (2003)Chemical Constituents of the Essential Oil of the Hornwort Anthoceros caucasicus. Flavour Frag J 18: 286
(10)Asakawa Y, Toyota M, Baser KHC, von Reus SH, Konig WA, Erol B, Ozenoglu H, Gokler I (2007) Volatile Components of Turkish Liverworts. 51st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics. Nagahama, Japan, Symposium Papers, p 263
(11)Toyota M, Yonehara Y, Horibe I, Minagawa K, Asakawa Y (1999) A Revision of a Positive Sign of the Optical Rotation and Its Maximum Value of a-Eudesmol. Phytochemistry 52: 689
(12)Asakawa Y, Toyota M, Nakaishi E, Tada Y (1996)Distribution of Terpenoids and Aromatic Compounds in New Zealand Liverworts. J Hattori Bot Lab 80: 271
(13)Nagashima F, Kondoh M, Uematsu T, Nishiyama A, Saito S, Sato M, Asakawa Y (2002) Cytotoxic and Apoptosis-Inducing ent-Kaurane-type Diterpenoids from the Japanese Liverwort Jungermannia trunctata Nees. Chem Pharm Bull 50: 808
(14)Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Santos PAG, Fontinha SS, Schripsema J, Deans SG, Scheffer JJC (2002) Composition of the Essential Oil from the Marchesinia mackaii (Hook.) S.F. Gray Grown in Portugal. J Essent Oil Res 14: 439
(15)Ludwiczuk A, Komala I, Pham A, Bianchini J-P, Raharivelomanana P, Asakawa Y (2009) Volatile Components from Selected Tahitian Liverworts. Nat Prod Commum 4: 1387
(16)Komala I, Ito T, Nagashima F, Yagi Y, Kawahata M, Yamaguchi K, Asakawa Y (2010) Zierane Sesquiterpene Lactone, Cembrane and Fusicoccane Diterpenoids, from the Tahithian Liverwort Chendonanthus hirtellus. Phytochemistry 71: 1387
(17)Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Esquivel MG, Fintinha S, Luis L, Martins S, Lobo C, Stech M (2009) Liverwort Radula Species from Portugal: Chemotaxonomical Evaluation of Volatiles Composition. Flavour Fragr J 24: 316
(18)Perry NB, Burgess EJ, Foster LM, Gerard PJ (2003)Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera . Tetrahedron Lett 44 : 1651
(19)Perry NB, Burgess EJ, Foster LM, Gerard PJ, Toyota M, Asakawa Y (2008) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera . 2. Structures, Artifacts and Activity. J Nat Prod 71 : 258
(20)Ludwiczuk A, Nagashima F, Gradstein SR, Asakawa Y (2008) Volatile Components from the Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts. Nat Prod Commun 3: 133
[References]
(1) Figueiredo AC, Barroso JG, Pedro LG, Fontinha SS, Sim-Sim M, Sergio C, Luis L, Scheffer JJC (2006) Asterella africana (Mont.) A. Evans Grown on Madeira and in Mainland Portugal: Morphological Data and Composition of the Essential Oil. Flavor Fragr J 21: 534
(2) Figueiredo AC, Garcia C, Sim-Sim M, Sergio C, Pedro LG, Barroso JG (2010) Volatiles from Plicanthus hirtellus (F. Weber) RM Schust. And Radula boryana (F. Weber) Nees (Hepaticae) Grown in Sao Tome e Principe Archipelago. Flavor Fragr J 25: 219
(3) Adio AM, Konig WA (2007) Sesquiterpenoids and Norsesquiterpenoids from Three Liverworts. Tetrahedron Asymm 18: 1693
(4) Ludwiczuk A, Asakawa Y (2010) Chemosystematics of Selected Liverworts Collected in Borneo. Tropical Bryology 31:33
(5) Toyota M, Saito T, Matsunami J, Asakawa Y (1997) A Comparative Study on Three Chemotypes of the Liverwort Conocephalum conicum Using Volatile Constituents. Phytochemistry 44: 1265
(6) Gauvin-Bialecki A, Ah-Peng C, Smadja J, Strasberg D (2010) Fragrant Volatile Compounds in the Liverwort Drepanolejeunea madagascariensis (Steph.) Grolle: Approach by HSSPME Technique. Chem Biodivers 7: 639
(7) Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(8) Saritas Y, Mekem Sonwa M, Iznaguen H, Konig WA, Muhle H, Mues R (2001) Volatile Constituents in Mosses (Musci). Phytochemistry 57: 443
(9) Mekem Sonwa M, Konig WA (2003) Chemical Constituents of the Essential Oil of the Hornwort Anthoceros caucasicus. Flavor Frag J 18: 286
(10) Asakawa Y, Toyota M, Baser KHC, von Reus SH, Konig WA, Erol B, Ozenoglu H, Gokler I (2007) Volatile Components of Turkish Liverworts. 51st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics. Nagahama, Japan, Symposium Papers, p 263
(11) Toyota M, Yonehara Y, Horibe I, Minagawa K, Asakawa Y (1999) A Revision of a Positive Sign of the Optical Rotation and Its Maximum Value of a-Eudesmol. Phytochemistry 52: 689
(12) Asakawa Y, Toyota M, Nakaishi E, Tada Y (1996) Distribution of Terpenoids and Aromatic Compounds in New Zealand Liverworts. J Hattori Bot Lab 80: 271
(13) Nagashima F, Kondoh M, Uematsu T, Nishiyama A, Saito S, Sato M, Asakawa Y (2002) Cytotoxic and Apoptosis-Inducing ent-Kaurane-type Diterpenoids from the Japanese Liverwort Jungermannia trunctata Nees. Chem Pharm Bull 50: 808
(14) Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Santos PAG, Fontinha SS, Schripsema J, Deans SG, Scheffer JJC (2002) Composition of the Essential Oil from the Marchesinia mackaii (Hook.) SF Gray Grown in Portugal. J Essent Oil Res 14: 439
(15) Ludwiczuk A, Komala I, Pham A, Bianchini JP, Raharivelomanana P, Asakawa Y (2009) Volatile Components from Selected Tahitian Liverworts. Nat Prod Commum 4: 1387
(16) Komala I, Ito T, Nagashima F, Yagi Y, Kawahata M, Yamaguchi K, Asakawa Y (2010) Zierane Sesquiterpene Lactone, Cembrane and Fusicoccane Diterpenoids, from the Tahithian Liverwort Chendonanthus hirtellus. Phytochemistry 71: 1387
(17) Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Esquivel MG, Fintinha S, Luis L, Martins S, Lobo C, Stech M (2009) Liverwort Radula Species from Portugal: Chemotaxonomical Evaluation of Volatiles Composition. Flavor Fragr J 24: 316
(18) Perry NB, Burgess EJ, Foster LM, Gerard PJ (2003) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera. Tetrahedron Lett 44: 1651
(19) Perry NB, Burgess EJ, Foster LM, Gerard PJ, Toyota M, Asakawa Y (2008) Insect Antifeedant Sesquiterpene Acetals from the Liverwort Lepidolaena clavigera. 2. Structures, Artifacts and Activity. J Nat Prod 71: 258
(20) Ludwiczuk A, Nagashima F, Gradstein SR, Asakawa Y (2008) Volatile Components from the Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts. Nat Prod Commun 3: 133

(21)Lu R, Paul C, Basar S, Konig WA, Hashimoto T, Asakawa Y (2003) Sesquiterpene Constituents from the Liverwort Bazzania japonica. Phytochemistry 63: 581
(22)von Reub SH, Konig WA (2005)Olefinic Isothiocyanates and Iminodithiocarbonates from the Liverwort Corsinia coriandrina. Eur J Org Chem: 1184
(23)Asakawa Y, Toyota M, von Konrad M, Braggins JE (2003)Volatile Components of Selected Species of the Liverwort Genera Frullania and Schusterella (Frullaniaceae)from New Zealand, Australia and South America: A Chemosystematic Approach. Phytochemistry 62:439
(24)Lu R, Paul C, Basar S, Konig WA (2005) Sesquiterpene Constituents of the Liverwort Lophozia ventricosa. Tetrahedron Asymm 16: 883
(25)Adio AM, Paul C, Kloth P, Konig WA (2004) Sesquiterpenes of the Liverwort Scapania undulata. Phytochemistry 65: 199
(26)Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(27)Figueiredo AC, Sim-Sim M, Costa MM, Barroso JG, Pedro LG, Esquivel MG, Gutierres F, Lobo C, Fontinha S (2005) Comparison of the Essential Oil Composition of Four Plagiochila species: P. bifaria, P. maderensis, P. retrorsa and P. stricta. Flavour Fragr J 20: 703
(28)Hackl T, Konig WA, Muhle H (2004) Isogermacrene A, a Proposed Intermediate I Sesquiterpene Biosynthesis. Phytochemistry 65: 2261
(29)Paul C, Konig WA, Wu C-L (2001) Sesquiterpenoid Constituents of the Liverworts Lepidozia fauriana and Lepidozia vitrea. Phytochemistry 58: 789
(30)Konig WA, Bulow N, Fricke C, Melching S, Rieck A, Muhle H (1996) The Sesquiterpene Constituents of the Liverwort Preissia quadrata. Phytochemistry 43: 629
(31)Warmers U, Wihstutz K, Bulow N, Fricke C, Konig WA (1998) Sesquiterpene Constituents of the Liverworts Calypogeia muelleriana. Phytochemistry 49: 1723
(32)Hosoda A (2003) Phytochemical Study on the Chemical Constituents of Some New Zealand and Japanese Liverworts. Master’s Thesis, Tokushima Bunri University, Japan, pp 75
(33)Warmers U, Konig WA (1999) (-)-7-epi-Isojunenol and (+)-7-epi-Junenol, Constituents of the Liverwort Tritomaria quinquedentata. Phytochemistry 52: 1519
(34)Bungert M, Gabler J, Adam K-P, Zapp J, Becker H (1998) Pinguisane Sesquiterpenes from the Liverwort Porella navicularis. Phytochemistry 49: 1079
(35)Warmers, U., Konig, W. A. (1999) Sesquiterpene constituents of the liverwort Bazzania trilobata, Phytochemistry 52: 99
(36)Shi, D., Han, L., Sun, J. (2007) Sesquiterpenes and their derivatives from marine green alga Chaetomorpha basiretorsa. CHINESE TRADITIONAL AND HERBAL DRUGS 38: 496
(37)Melching, S., Warmers, U., Konig, W. A., Muhle, H. (1999) Two aromadendrane type alcohols from the liverwort Conocephalum conicum. Phytochemistry 51: 277
(38)Nagashima, F., Wakayama, K., Ioka, Y., Asakawa, Y. (2008) New ent-verticillane diterpenoids from the Japanese liverwort Jackiella javanica. Chemical and Pharmaceutical Bulletin 56: 1184
(39)Mamadalieva, N. Z., Youssef, F. S., Ashour, M. L., Sasmakov, S. A., Tiezzi, A., Azimova, S. S. (2019) Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Nat Prod Res 33: 2394
(40)Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS One 13: e0190790
(21) Lu R, Paul C, Basar S, Konig WA, Hashimoto T, Asakawa Y (2003) Sesquiterpene Constituents from the Liverwort Bazzania japonica. Phytochemistry 63: 581
(22) von Reub SH, Konig WA (2005) Olefinic Isothiocyanates and Iminodithiocarbonates from the Liverwort Corsinia coriandrina. Eur J Org Chem: 1184
(23) Asakawa Y, Toyota M, von Konrad M, Braggins JE (2003) Volatile Components of Selected Species of the Liverwort Genera Frullania and Schusterella (Frullaniaceae) from New Zealand, Australia and South America: A Chemosystematic Approach. Phytochemistry 62: 439
(24) Lu R, Paul C, Basar S, Konig WA (2005) Sesquiterpene Constituents of the Liverwort Lophozia ventricosa. Tetrahedron Asymm 16: 883
(25) Adio AM, Paul C, Kloth P, Konig WA (2004) Sesquiterpenes of the Liverwort Scapania undulata. Phytochemistry 65: 199
(26) Toyota M, Konoshima M, Nagashima F, Hirata S, Asakawa Y (1997) Butenolides from Marchantia paleacea subspecies diptera. Phytochemistry 46: 293
(27) Figueiredo AC, Sim-Sim M, Costa MM, Barroso JG, Pedro LG, Esquivel MG, Gutierres F, Lobo C, Fontinha S (2005) Comparison of the Essential Oil Composition of Four Plagiochila species: P. bifaria, P . maderensis, P. retrorsa and P. stricta. Flavor Fragr J 20: 703
(28) Hackl T, Konig WA, Muhle H (2004) Isogermacrene A, a Proposed Intermediate I Sesquiterpene Biosynthesis. Phytochemistry 65: 2261
(29) Paul C, Konig WA, Wu CL (2001) Sesquiterpenoid Constituents of the Liverworts Lepidozia fauriana and Lepidozia vitrea. Phytochemistry 58: 789
(30) Konig WA, Bulow N, Fricke C, Melching S, Rieck A, Muhle H (1996) The Sesquiterpene Constituents of the Liverwort Preissia quadrata. Phytochemistry 43: 629
(31) Warmers U, Wihstutz K, Bulow N, Fricke C, Konig WA (1998) Sesquiterpene Constituents of the Liverworts Calypogeia muelleriana. Phytochemistry 49: 1723
(32) Hosoda A (2003) Phytochemical Study on the Chemical Constituents of Some New Zealand and Japanese Liverworts. Master's Thesis, Tokushima Bunri University, Japan, pp 75
(33) Warmers U, Konig WA (1999) (-)-7-epi-Isojunenol and (+)-7-epi-Junenol, Constituents of the Liverwort Tritomaria quinquedentata. Phytochemistry 52: 1519
(34) Bungert M, Gabler J, Adam KP, Zapp J, Becker H (1998) Pinguisane Sesquiterpenes from the Liverwort Porella navicularis. Phytochemistry 49: 1079
(35) Warmers, U., Konig, WA (1999) Sesquiterpene constituents of the liverwort Bazzania trilobata, Phytochemistry 52: 99
(36) Shi, D., Han, L., Sun, J. (2007) Sesquiterpenes and their derivatives from marine green alga Chaetomorpha basiretorsa. CHINESE TRADITIONAL AND HERBAL DRUGS 38: 496
(37) Melching, S., Warmers, U., Konig, WA, Muhle, H. (1999) Two aromadendrane type alcohols from the liverwort Conocephalum conicum. Phytochemistry 51: 277
(38) Nagashima, F., Wakayama, K., Ioka, Y., Asakawa, Y. (2008) New ent-verticillane diterpenoids from the Japanese liverwort Jackiella javanica. Chemical and Pharmaceutical Bulletin 56: 1184
(39) Mamadalieva, NZ, Youssef, FS, Ashour, ML, Sasmakov, SA, Tiezzi, A., Azimova, SS (2019) Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Nat Prod Res 33: 2394
(40) Cutillas, AB, Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS One 13: e0190790

(41)Giray, E. S., Kirici, S., Kaya, D. A., Turk, M., Sonmez, O., Inan, M. (2008) Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas. Talanta 74: 930-5
(42)Liang, J. Y., Guo, S. S., You, C. X., Zhang, W. J., Wang, C.F., Geng, Z.F., Deng, Z. W., Du, S. S., Zhang, J. (2016) Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil. Chem Biodivers 13: 1053
(43)Piras, A., Falconieri, D., Bagdonaite, E., Maxia, A., Goncalves, M. J., Cavaleiro, C., Salgueiro, L., Porcedda, S. (2014) Chemical composition and antifungal activity of supercritical extract and essential oil of Tanacetum vulgare growing wild in Lithuania. Nat Prod Res 28: 1906
(44)Medina-Holguin, A. L., Holguin, F. O., Micheletto, S., Goehle, S., Simon, J. A., O'Connell, M. A. (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69: 919
(45)Elshamy, A. I., Abd-ElGawad, A. M., El Gendy, A. E. G., Assaeed, A. M. (2019) Chemical Characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chem Biodivers 16: e1900051
(46)Borges, R. S., Ortiz, B. L. S., Pereira, A. C. M., Keita, H., Carvalho, J. C. T. (2019) Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol 229: 29
(47)Grosso, C., Figueiredo, A. C., Burillo, J., Mainar, A.M., Urieta, J.S., Barroso, J. G., Coelho, J. A., Palavra, A. M. (2009) Supercritical fluid extraction of the volatile oil from Santolina chamaecyparissus. J Sep Sci 32: 3215
(48)Ali, A., Tabanca, N., Demirci, B., Blythe, E. K., Ali, Z., Baser, K. H., Khan, I. A. (2015) Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem 63: 447
(49)Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha x piperita L. J Sci Food Agric 95: 621
(50)Govindarajan, M., Sivakumar, R., Rajeswari, M., Yogalakshmi, K. (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110: 2023
(51)Hizem, A., Lundstrom-Stadelmann, B., M'Rad, S., Souiai, S., Ben Jannet, H., Flamini, G., Ascrizzi, R., Ghedira, K., Babba, H., Hemphill, A. (2019) Activity of Thymus capitatus essential oil components against in vitro cultured Echinococcus multilocularis metacestodes and germinal layer cells. Parasitology 146: 956
(52)Khani, A., Asghari, J. (2012) Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J Insect Sci 12: 73
(53)Ozek, G., Tabanca, N., Radwan, M. M., Shatar, S., Altantsetseg, A., Baatar, D., Baser, K. H. C., Becnel, J. J., Ozek, T. (2016) Preparative Capillary GC for Characterization of Five Dracocephalum Essential Oils from Mongolia, and their Mosquito Larvicidal Activity. Nat Prod Commun 11: 1541
(54)Guo, S. S., Wang, Y., Pang, X., Geng, Z.F., Cao, J.Q., Du, S. S. (2019) Seven herbs against the stored product insect: Toxicity evidence and the active sesquiterpenes from Atractylodes lancea. Ecotoxicol Environ Saf 169: 807-813
(55)Yusufoglu, H. S., Tabanca, N., Bernier, U. R., Li, A. Y., Salkini, M. A., Alqasoumi, S. I., Demirci, B. (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26: 860
(56)Salah-Fatnassi, K. B. H., Hassayoun, F., Cheraif, I., Khan, S., Jannet, H. B., Hammami, M., Aouni, M., Harzallah-Skhiri, F. (2017) Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi journal of biological sciences 24: 875
(57)Karami, A. (2017) Essential oil composition of Ajuga comata Stapf. from Southern Zagros, Iran. Nat Prod Res 31: 359
(58)Ben Sghaier, M., Mousslim, M., Pagano, A., Ammari, Y., Luis, J., Kovacic, H. (2016) beta-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell. Environ Toxicol Pharmacol 46: 227
(59)Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzinska, E., Olszewska, M. A., Kicel, A. (2019) Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Nat Prod Res 33:1535
(60)Hassan, M. M., Muhtadi, F., J., Al-Badr, A. A. (1979) GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 68: 800
(41) Giray, ES, Kirici, S., Kaya, DA, Turk, M., Sonmez, O., Inan, M. (2008) Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas. Talanta 74: 930-5
(42) Liang, JY, Guo, SS, You, CX, Zhang, WJ, Wang, CF, Geng, ZF, Deng, ZW, Du, SS, Zhang, J. (2016) Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil. Chem Biodivers 13: 1053
(43) Piras, A., Falconieri, D., Bagdonaite, E., Maxia, A., Goncalves, MJ, Cavaleiro, C., Salgueiro, L., Porcedda, S. (2014) Chemical composition and antifungal activity of supercritical extract and essential oil of Tanacetum vulgare growing wild in Lithuania. Nat Prod Res 28: 1906
(44) Medina-Holguin, AL, Holguin, FO, Micheletto, S., Goehle, S., Simon, JA, O'Connell, MA (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69 : 919
(45) Elshamy, AI, Abd-ElGawad, AM, El Gendy, AEG, Assaeed, AM (2019) Chemical characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chem Biodivers 16: e1900051
(46) Borges, RS, Ortiz, BLS, Pereira, ACM, Keita, H., Carvalho, JCT (2019) Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol 229: 29
(47) Grosso, C., Figueiredo, AC, Burillo, J., Mainar, AM, Urieta, JS, Barroso, JG, Coelho, JA, Palavra, AM (2009) Supercritical fluid extraction of the volatile oil from Santolina chamaecyparissus. J Sep Sci 32: 3215
(48) Ali, A., Tabanca, N., Demirci, B., Blythe, EK, Ali, Z., Baser, KH, Khan, IA (2015) Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem 63: 447
(49) Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha x piperita L. J Sci Food Agric 95: 621
(50) Govindarajan, M., Sivakumar, R., Rajeswari, M., Yogalakshmi, K. (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) Against three mosquito species. Parasitol Res 110: 2023
(51) Hizem, A., Lundstrom-Stadelmann, B., M'Rad, S., Souiai, S., Ben Jannet, H., Flamini, G., Ascrizzi, R., Ghedira, K., Babba, H., Hemphill, A. (2019) Activity of Thymus capitatus essential oil components against in vitro cultured Echinococcus multilocularis metacestodes and germinal layer cells. Parasitology 146: 956
(52) Khani, A., Asghari, J. (2012) Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J Insect Sci 12: 73
(53) Ozek, G., Tabanca, N., Radwan, MM, Shatar, S., Altantsetseg, A., Baatar, D., Baser, KHC, Becnel, JJ, Ozek, T. (2016) Preparative Capillary GC for TEXT of Five Dracocephalum Essential Oils from Mongolia, and their Mosquito Larvicidal Activity. Nat Prod Commun 11: 1541
(54) Guo, SS, Wang, Y., Pang, X., Geng, ZF, Cao, JQ, Du, SS (2019) Seven herbs against the stored product insect: Toxicity evidence and the active sesquiterpenes from Atractylodes lancea. Ecotoxicol Environ Saf 169: 807-813
(55) Yusufoglu, HS, Tabanca, N., Bernier, UR, Li, AY, Salkini, MA, Alqasoumi, SI, Demirci, B. (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26: 860
(56) Salah-Fatnassi, KBH, Hassayoun, F., Cheraif, I., Khan, S., Jannet, HB, Hammami, M., Aouni, M., Harzallah-Skhiri, F. (2017) Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi journal of biological sciences 24: 875
(57) Karami, A. (2017) Essential oil composition of Ajuga comata Stapf. From Southern Zagros, Iran. Nat Prod Res 31: 359
(58) Ben Sghaier, M., Mousslim, M., Pagano, A., Ammari, Y., Luis, J., Kovacic, H. (2016) beta-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cells. Environ Toxicol Pharmacol 46: 227
(59) Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzinska, E., Olszewska, MA, Kicel, A. (2019) Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Nat Prod Res 33: 1535
(60) Hassan, MM, Muhtadi, F., J., Al-Badr, AA (1979) GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 68: 800

(61)Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019) The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiol Biochem 142: 43
(62)Verma, R. S., Verma, R. K., Padalia, R. C., Chauhan, A., Singh, A., Singh, H. P. (2011) Chemical diversity in the essential oil of Indian valerian (Valeriana jatamansi Jones). Chem Biodivers 8: 1921
(63)Neves, I. A., da Camara, C. A. (2011). Acaricidal activity against Tetranychus urticae and essential oil composition of four Croton species from Caatinga biome in northeastern Brazil. Nat Prod Commun 6: 893
(64)London, A., Veres, K., Szabo, K., Haznagy-Radnai, E., Mathe, I. (2011) Analysis of the essential oil of Amsonia illustris. Nat Prod Commun 6: 235
(65)Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thyme essential oils from Spain: Aromatic profile ascertained by GC-MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J Food Drug Anal 26: 529
(66)Sacchetti, G., Muzzoli, M., Statti, G. A. Conforti, F., Bianchi, A., Agrimonti, C., Ballero, M., Poli, F. (2007) Intra-specific biodiversity of Italian myrtle (Myrtus communis) through chemical markers profile and biological activities of leaf methanolic extracts. Nat Prod Res 2l: 167
(67)de Souza, R. C., da Costa, M. M., Baldisserotto, B., Heinzmann, B. M., Schmidt, D., Caron, B. O., Copatti, C. E. (2017) Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp. Microb Pathog l13: 29
(68)Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2016) Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Med 82: 163
(69)Hassen, I., M'Rabet, Y., Belgacem, C., Kesraoui, O., Casabianca, H., Hosni, K. (2015) Chemodiversity of volatile oils in Thapsia garganica L. (Apiaceae). Chem Biodivers 12: 637
(70)Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., Ercisli, S. (2016) Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers 13: 77
(71)Houicher, A., Hechachna, H., Teldji, H., Ozogul, F. (2016) In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat Food Nutr Agric 8; 99
(72)Ortiz de Elguea-Culebras, G., Sanchez-Vioque, R., Berruga, M. I., Herraiz-Penalver, D., Gonzalez-Coloma, A., Andres, M. F., Santana-Meridas, O. (2018) Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula x intermedia var. Super, and Santolina chamaecyparissus. Chem Biodivers 15:
(73)Pirmoradi, M. R., Moghaddam, M., Farhadi, N. (2013) Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran. Chem Biodivers 10: 1361
(74)Sgorbini, B., Cagliero, C., Pagani, A., Sganzerla, M., Boggia, L., Bicchi, C., Rubiolo, P. (2015) Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & L.M.Perry). Phytochemistry 117: 296
(75)Xu, Y. M., Yue, W., Sang, M. R., Wu, D. W., Liu, C. C., Zhao, L. L., Wu, Q. N. (2017) [Analysis on quality and differences of Mentha haplocalyx from different regions]. Zhongguo Zhong Yao Za Zhi 42: 3391
(76)Bose, S. K., Yadav, R. K., Mishra, S., Sangwan, R. S., Singh, A. K., Mishra, B., Srivastava, A. K., Sangwan, N. S. (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66: 150
(77)Falchero, L., Coppa, M., Fossi, A., Lombardi, G., Ramella, D., Tava, A. (2009) Essential oil composition of lady's mantle (Alchemilla xanthochlora Rothm.) growing wild in Alpine pastures. Nat Prod Res 23: 1367
(78)Senatore, F., Arnold, N. A., Piozzi, F. (2004) Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. J Chromatogr A 1052: 237
(79)Hethelyi, E., Tetenyi, P., Dabi, E., Danos, B. (1987) The role of mass spectrometry in medicinal plant research. Biomed Environ Mass Spectrom 14: 627
(80)Pardo-Muras, M., Puig, C. G., Lopez-Nogueira, A., Cavaleiro, C., Pedrol, N. (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13: e0205997
(61) Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019) The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes / phenylpropanoids in yarrow (Achillea millefolium). Plant Physiol Biochem 142: 43
(62) Verma, RS, Verma, RK, Padalia, RC, Chauhan, A., Singh, A., Singh, HP (2011) Chemical diversity in the essential oil of Indian valerian (Valeriana jatamansi Jones). Chem Biodivers 8: 1921
(63) Neves, IA, da Camara, CA (2011). Acaricidal activity against Tetranychus urticae and essential oil composition of four Croton species from Caatinga biome in northeastern Brazil. Nat Prod Commun 6: 893
(64) London, A., Veres, K., Szabo, K., Haznagy-Radnai, E., Mathe, I. (2011) Analysis of the essential oil of Amsonia illustris. Nat Prod Commun 6: 235
(65) Cutillas, AB, Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2018) Thyme essential oils from Spain: Aromatic profile ascertained by GC-MS, and their antioxidant, anti -lipoxygenase and antimicrobial activities. J Food Drug Anal 26: 529
(66) Sacchetti, G., Muzzoli, M., Statti, GA Conforti, F., Bianchi, A., Agrimonti, C., Ballero, M., Poli, F. (2007) Intra-specific biodiversity of Italian myrtle (Myrtus communis) through chemical markers profile and biological activities of leaf methanolic extracts. Nat Prod Res 2l: 167
(67) de Souza, RC, da Costa, MM, Baldisserotto, B., Heinzmann, BM, Schmidt, D., Caron, BO, Copatti, CE (2017) Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp. Microb Pathog l13: 29
(68) Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. (2016) Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Med 82: 163
(69) Hassen, I., M'Rabet, Y., Belgacem, C., Kesraoui, O., Casabianca, H., Hosni, K. (2015) Chemodiversity of volatile oils in Thapsia garganica L. (Apiaceae). Chem Biodivers 12: 637
(70) Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., Ercisli, S. (2016) Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers 13:77
(71) Houicher, A., Hechachna, H., Teldji, H., Ozogul, F. (2016) In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat Food Nutr Agric 8; 99
(72) Ortiz de Elguea-Culebras, G., Sanchez-Vioque, R., Berruga, MI, Herraiz-Penalver, D., Gonzalez-Coloma, A., Andres, MF, Santana-Meridas, O. (2018) Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula x intermedia var. Super, and Santolina chamaecyparissus. Chem Biodivers 15:
(73) Pirmoradi, MR, Moghaddam, M., Farhadi, N. (2013) Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran. Chem Biodivers 10: 1361
(74) Sgorbini, B., Cagliero, C., Pagani, A., Sganzerla, M., Boggia, L., Bicchi, C., Rubiolo, P. (2015) Determination of free and glucosidically-bound volatiles in plants . Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & LMPerry). Phytochemistry 117: 296
(75) Xu, YM, Yue, W., Sang, MR, Wu, DW, Liu, CC, Zhao, LL, Wu, QN (2017) [Analysis on quality and differences of Mentha haplocalyx from different regions]. Zhongguo Zhong Yao Za Zhi 42: 3391
(76) Bose, SK, Yadav, RK, Mishra, S., Sangwan, RS, Singh, AK, Mishra, B., Srivastava, AK, Sangwan, NS (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66: 150
(77) Falchero, L., Coppa, M., Fossi, A., Lombardi, G., Ramella, D., Tava, A. (2009) Essential oil composition of lady's mantle (Alchemilla xanthochlora Rothm.) Growing wild in Alpine pastures. Nat Prod Res 23: 1367
(78) Senatore, F., Arnold, NA, Piozzi, F. (2004) Chemical composition of the essential oil of Salvia multicaulis Vahl. Var. Simplicifolia Boiss. Growing wild in Lebanon. J Chromatogr A 1052: 237
(79) Hethelyi, E., Tetenyi, P., Dabi, E., Danos, B. (1987) The role of mass spectrometry in medicinal plant research. Biomed Environ Mass Spectrom 14: 627
(80) Pardo-Muras, M., Puig, CG, Lopez-Nogueira, A., Cavaleiro, C., Pedrol, N. (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13: e0205997

(81)Zhang, Z., Bian, L., Sun, X., Luo, Z., Xin, Z., Luo, F., Chen, Z. (2015) Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Manag Sci 71: 96
(82)Gohari, A. R., Kurepaz-Mahmoodabadi, M., Saeidnia, S. (2013) Volatile oil of Artemisia santolina decreased morphine withdrawal jumping in mice. Pharmacognosy Res 5: 118
(83)Palsson, K., Jaenson, T. G., Baeckstrom, P., Borg-Karlson, A. K. (2OO8) Tick repellent substances in the essential oil of Tanacetum vulgare. J Med Entomol 45: 88
(84)Farzaneh, M., Ahmadzadeh, M., Hadian, J., Tehrani, A. S. (2006) Chemical composition and antifungal activity of the essential oils of three species of Artemisia on some soil-borne phytopathogens. Commun Agric Appl Biol Sci 71: 1327
(85)Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, K. H. (2001) Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J Agric Food Chem 49: 4300
(86)Li, Y., Yan, S. S., Wang, J.J., Li, L. Y., Zhang, J., Wang, K., Liang, J.Y. (2018) Insecticidal Activities and Chemical Composition of the Essential Oils of Ajania nitida and Ajania nematoloba from China. J Oleo Sci 67: 1571
(87)Garcia, G. P., Sutour, S., Rabehaja, D., Tissandie, L., Filippi, J. J., Tomi, F. (2019) Essential oil of the malagasy grass Elionurus tristis Hack. contains several undescribed sesquiterpenoids. Phytochemistry 162: 29
(88)Sharma, A., Singh, H. P., Batish, D. R., Kohli, R. K. (2019) Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf 171: 863
(89)Mothana, R. A., Khaled, J. M., Noman, O. M., Kumar, A., Alajmi, M. F., Al-Rehaily, A. J., Kurkcuoglu, M. (2018) Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement Altern Med 18: 237
(90)Ghazouani, N., Sifaoui, I., Bachrouch, O., Abderrabba, M., J, E. P., Lorenzo-Morales, J. (2017) Essential oil composition and anti Acanthamoeba studies of Teucrium ramosissimum. Exp Parasitol 183: 207
(91)Al-Qudah, M. A., Saleh, A. M., Alhawsawi, N. L., Al-Jaber, H. I., Rizvi, S. A., Afifi, F. U. (2017) Composition, Antioxidant, and Cytotoxic Activities of the Essential Oils from Fresh and Air-Dried Aerial Parts of Pallenis spinosa. Chem Biodivers 14:
(92)Zardi-Bergaoui, A., Ben Nejma, A., Harzallah-Skhiri, F., Flamini, G., Ascrizzi, R., Ben Jannet, H. (2017) Chemical Composition and Biological Studies of the Essential Oil from Aerial Parts of Beta vulgaris subsp. maritima (L.) Arcang. Growing in Tunisia. Chem Biodivers 14:
(93)Giovanelli, S., De Leo, M., Cervelli, C., Ruffoni, B., Ciccarelli, D., Pistelli, L. (2018) Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy. Chem Biodivers 15: e1700545
(94)Abbasi, N., Mohammadpour, S., Karimi, E., Aidy, A., Karimi, P., Azizi, M., Asadollahi, K. (2017) Protective effects of Smyrnium cordifolium boiss essential oil on pentylenetetrazol-induced seizures in mice: involvement of benzodiazepine and opioid antagonists. J Biol Regul Homeost Agents 31: 683
(95)Afshari, M., Rahimmalek, M. (2018) Variation in Essential Oil Composition, Bioactive Compounds, Anatomical and Antioxidant Activity of Achillea aucheri, an Endemic Species of Iran, at Different Phenological Stages. Chem Biodivers 15: el800319
(96)Ornano, L., Venditti, A., Sanna, C., Ballero, M., Maggi, F., Lupidi, G., Bramucci, M., Quassinti, L., Bianco, A. (2015) Chemical composition and biological activity of the essential oil from Helichrysum microphyllum Cambess. ssp. tyrrhenicum Bacch., Brullo e Giusso growing in La Maddalena Archipelago, Sardinia. J Oleo Sci 64: 19
(97)Leite, T. R., Silva, M., Santos, A., Coutinho, H. D. M., Duarte, A. E., Costa, J. (2017) Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm Biol 55: 2015
(98)Wang, Y. T., Zhu, L., Zeng, D., Long, W., Zhu, S. M. (2016) Chemical composition and anti-inflammatory activities of essential oil from Trachydium roylei. J Food Drug Anal 24: 602
(99)Cai, L., Ye, H., Li, X., Lin, Y., Yu, F., Chen, J., Li, H., Liu, X. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42: 1452
(100)Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A., Brodelius, P. E. (2012) Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant Cell Rep 31: 1309
(81) Zhang, Z., Bian, L., Sun, X., Luo, Z., Xin, Z., Luo, F., Chen, Z. (2015) Electrophysiological and behavioral responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Manag Sci 71: 96
(82) Gohari, AR, Kurepaz-Mahmoodabadi, M., Saeidnia, S. (2013) Volatile oil of Artemisia santolina decreased morphine withdrawal jumping in mice. Pharmacognosy Res 5: 118
(83) Palsson, K., Jaenson, TG, Baeckstrom, P., Borg-Karlson, AK (2OO8) Tick repellent substances in the essential oil of Tanacetum vulgare. J Med Entomol 45: 88
(84) Farzaneh, M., Ahmadzadeh, M., Hadian, J., Tehrani, AS (2006) Chemical composition and antifungal activity of the essential oils of three species of Artemisia on some soil-borne phytopathogens. Commun Agric Appl Biol Sci 71: 1327
(85) Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, KH (2001) Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. Phrygia and the enantiomeric distribution of borneol. J Agric Food Chem 49: 4300
(86) Li, Y., Yan, SS, Wang, JJ, Li, LY, Zhang, J., Wang, K., Liang, JY (2018) Insecticidal Activities and Chemical Composition of the Essential Oils of Ajania nitida and Ajania nematoloba from China. J Oleo Sci 67: 1571
(87) Garcia, GP, Sutour, S., Rabehaja, D., Tissandie, L., Filippi, JJ, Tomi, F. (2019) Essential oil of the malagasy grass Elionurus tristis Hack. Contains several undescribed sesquiterpenoids. Phytochemistry 162 : 29
(88) Sharma, A., Singh, HP, Batish, DR, Kohli, RK (2019) Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf 171: 863
(89) Mothana, RA, Khaled, JM, Noman, OM, Kumar, A., Alajmi, MF, Al-Rehaily, AJ, Kurkcuoglu, M. (2018) Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement Altern Med 18: 237
(90) Ghazouani, N., Sifaoui, I., Bachrouch, O., Abderrabba, M., J, EP, Lorenzo-Morales, J. (2017) Essential oil composition and anti-Acanthamoeba studies of Teucrium ramosissimum. Exp Parasitol 183 : 207
(91) Al-Qudah, MA, Saleh, AM, Alhawsawi, NL, Al-Jaber, HI, Rizvi, SA, Afifi, FU (2017) Composition, Antioxidant, and Cytotoxic Activities of the Essential Oils from Fresh and Air-Dried Aerial Parts of Pallenis spinosa. Chem Biodivers 14:
(92) Zardi-Bergaoui, A., Ben Nejma, A., Harzallah-Skhiri, F., Flamini, G., Ascrizzi, R., Ben Jannet, H. (2017) Chemical Composition and Biological Studies of the Essential Oil from Aerial Parts of Beta vulgaris subsp. Maritima (L.) Arcang. Growing in Tunisia. Chem Biodivers 14:
(93) Giovanelli, S., De Leo, M., Cervelli, C., Ruffoni, B., Ciccarelli, D., Pistelli, L. (2018) Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy. Chem Biodivers 15: e1700545
(94) Abbasi, N., Mohammadpour, S., Karimi, E., Aidy, A., Karimi, P., Azizi, M., Asadollahi, K. (2017) Protective effects of Smyrnium cordifolium boiss essential oil on pentylenetetrazol -induced seizures in mice: involvement of benzodiazepine and opioid antagonists. J Biol Regul Homeost Agents 31: 683
(95) Afshari, M., Rahimmalek, M. (2018) Variation in Essential Oil Composition, Bioactive Compounds, Anatomical and Antioxidant Activity of Achillea aucheri, an Endemic Species of Iran, at Different Phenological Stages. Chem Biodivers 15: el800319
(96) Ornano, L., Venditti, A., Sanna, C., Ballero, M., Maggi, F., Lupidi, G., Bramucci, M., Quassinti, L., Bianco, A. (2015) Chemical composition and biological activity of the essential oil from Helichrysum microphyllum Cambess. Ssp. Tyrrenicum Bacch., Brullo e Giusso growing in La Maddalena Archipelago, Sardinia. J Oleo Sci 64: 19
(97) Leite, TR, Silva, M., Santos, A., Coutinho, HDM, Duarte, AE, Costa, J. (2017) Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm Biol 55: 2015
(98) Wang, YT, Zhu, L., Zeng, D., Long, W., Zhu, SM (2016) Chemical composition and anti-inflammatory activities of essential oil from Trachydium roylei. J Food Drug Anal 24: 602
(99) Cai, L., Ye, H., Li, X., Lin, Y., Yu, F., Chen, J., Li, H., Liu, X. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42: 1452
(100) Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A., Brodelius, PE (2012) Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant Cell Rep 31: 1309

(101)Szoke, E., Maday, E., Tyihak, E., Kuzovkina, I. N., Lemberkovics, E. (2004) New terpenoids in cultivated and wild chamomile (in vivo and in vitro). J Chromatogr B Analyt Technol Biomed Life Sci 800: 231
(102)Chung, I. M., Kim, E. H., Moon, H. I. (2011) Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L. Immunopharmacol Immunotoxicol 33: 107
(103)Sharifi-Rad, J., Salehi, B., Varoni, E. M., Sharopov, F., Yousaf, Z., Ayatollahi, S. A., Kobarfard, F., Sharifi-Rad, M., Afdjei, M. H., Sharifi-Rad, M., Iriti, M. (2017) Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother Res. 31: 1475
(104)Lucia, A., Licastro, S., Zerba, E., Gonzalez Audino, P., Masuh, H. (2009) Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol 100: 6083
(105)Chaiyana, W., Okonogi, S. (2012) Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 19: 836
(106)Garcia, G., Garcia, A., Gibernau, M., Bighelli, A., Tomi, F. (2017) Chemical compositions of essential oils of five introduced conifers in Corsica. Nat Prod Res 31: 1697
(107)Katoh, S., Noda, A., Furuno, T. (2006) Tree-to-tree and clone-to-clone variations of monoterpenes emitted from needles of hinoki (Chamaecyparis obtusa). Journal of wood science 52: 84
(108)Yatagai, M., Sato, T., Takahashi, T. (1985) Terpenes of leaf oils from Cupressaceae. Biochemical systematics and ecology 13: 377
(109)Satou, T., Matsuura, M., Takahashi, M., Murakami, S., Hayashi, S., Sadamoto, K., Koike, K. (2011) Components of essential oils extracted from leaves and shoots of abies species in Japan. Chem Biodivers 8: 1132
(110)KURODA, K. (1989) Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Japanese Journal of Phytopathology 55: 170
(111)Lim, J. H., Kim, J. C., Kim, K. J., Son, Y. S., Sunwoo, Y., Han, J. S. (2008) Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 73: 470
(112)Xiao-shuang, S. (2009) Relationship between Volatile Matters from Picea jezoensis and Endangerments of Monochamus urussovi [J]. Journal of Anhui Agricultural Sciences 26:
(113)Pereira, R., Pereira, A. L., Ferreira, M. M., Fontenelle, R. O. S., Saker-Sampaio, S., Santos, H. S., Bandeira, P. N., Vasconcelos, M. A., Queiroz, J. A. N., Braz-Filho, R., Teixeira, E. H. (2019) Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4', 6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum L.f. An Acad Bras Cienc 91: e20180204
(114)Lackus, N. D., Lackner, S., Gershenzon, J., Unsicker, S. B., Kollner, T. G. (2018) The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 8: 17936
(115)do Prado, A. C., Garces, H. G., Bagagli, E., Rall, V. L. M., Furlanetto, A., Fernandes Junior, A., Furtado, F. B. (2019) Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties. J Appl Microbiol 126: 516
(116)Okoh, S. O., Okoh, O. O., Okoh, A. I. (2019) Seasonal variation of volatile oil composition and antioxidant property of aerial parts of Syzygium paniculatum Gaertn. grown in the Eastern Cape, South Africa. Nat Prod Res 33: 2276
(117)Ljaljevic Grbic, M., Unkovic, N., Dimkic, I., Janackovic, P., Gavrilovic, M., Stanojevic, O., Stupar, M., Vujisic, L., Jelikic, A., Stankovic, S., Vukojevic, J. (2018) Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients? J Ethnopharmacol 219: 1
(118)Carroll, J. F., Tabanca, N., Kramer, M., Elejalde, N. M., Wedge, D. E., Bernier, U. R., Coy, M., Becnel, J. J., Demirci, B., Baser, K. H., Zhang, J., Zhang, S. (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol 36: 258
(119)Zheljazkov, V. D., Astatkie, T., Jeliazkova, E. A., Schlegel, V. (2012) Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J Oleo Sci 61: 537
(120)El Hamrouni-Aschi, K., Khouja, M. L., Boussaid, M., Akrimi, N., Toumi, L. (2013) Essential-oil composition of the Tunisian endemic cypress (Cupressus sempervirens L. var. numidica TRAB.). Chem Biodivers 10: 989
(101) Szoke, E., Maday, E., Tyihak, E., Kuzovkina, IN, Lemberkovics, E. (2004) New terpenoids in cultivated and wild chamomile (in vivo and in vitro). J Chromatogr B Analyt Technol Biomed Life Sci 800: 231
(102) Chung, IM, Kim, EH, Moon, HI (2011) Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L. Immunopharmacol Immunotoxicol 33: 107
(103) Sharifi-Rad, J., Salehi, B., Varoni, EM, Sharopov, F., Yousaf, Z., Ayatollahi, SA, Kobarfard, F., Sharifi-Rad, M., Afdjei, MH, Sharifi -Rad, M., Iriti, M. (2017) Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother Res. 31: 1475
(104) Lucia, A., Licastro, S., Zerba, E., Gonzalez Audino, P., Masuh, H. (2009) Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol 100: 6083
(105) Chaiyana, W., Okonogi, S. (2012) Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 19: 836
(106) Garcia, G., Garcia, A., Gibernau, M., Bighelli, A., Tomi, F. (2017) Chemical compositions of essential oils of five introduced conifers in Corsica. Nat Prod Res 31: 1697
(107) Katoh, S., Noda, A., Furuno, T. (2006) Tree-to-tree and clone-to-clone variations of monoterpenes emitted from needles of hinoki (Chamaecyparis obtusa). Journal of wood science 52: 84
(108) Yatagai, M., Sato, T., Takahashi, T. (1985) Terpenes of leaf oils from Cupressaceae. Biochemical systematics and ecology 13: 377
(109) Satou, T., Matsuura, M., Takahashi, M., Murakami, S., Hayashi, S., Sadamoto, K., Koike, K. (2011) Components of essential oils extracted from leaves and shoots of abies species in Japan. Chem Biodivers 8: 1132
(110) KURODA, K. (1989) Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Japanese Journal of Phytopathology 55: 170
(111) Lim, JH, Kim, JC, Kim, KJ, Son, YS, Sunwoo, Y., Han, JS (2008) Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 73: 470
(112) Xiao-shuang, S. (2009) Relationship between Volatile Matters from Picea jezoensis and Endangerments of Monochamus urussovi [J]. Journal of Anhui Agricultural Sciences 26:
(113) Pereira, R., Pereira, AL, Ferreira, MM, Fontenelle, ROS, Saker-Sampaio, S., Santos, HS, Bandeira, PN, Vasconcelos, MA, Queiroz, JAN, Braz-Filho, R., Teixeira, EH (2019) Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4', 6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum Lf An Acad Bras Cienc 91: e20180204
(114) Lackus, ND, Lackner, S., Gershenzon, J., Unsicker, SB, Kollner, TG (2018) The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 8: 17936
(115) do Prado, AC, Garces, HG, Bagagli, E., Rall, VLM, Furlanetto, A., Fernandes Junior, A., Furtado, FB (2019) Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties. J Appl Microbiol 126: 516
(116) Okoh, SO, Okoh, OO, Okoh, AI (2019) Seasonal variation of volatile oil composition and antioxidant property of aerial parts of Syzygium paniculatum Gaertn. Grow in the Eastern Cape, South Africa. Nat Prod Res 33: 2276
(117) Ljaljevic Grbic, M., Unkovic, N., Dimkic, I., Janackovic, P., Gavrilovic, M., Stanojevic, O., Stupar, M., Vujisic, L., Jelikic, A., Stankovic , S., Vukojevic, J. (2018) Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients? J Ethnopharmacol 219: 1
(118) Carroll, JF, Tabanca, N., Kramer, M., Elejalde, NM, Wedge, DE, Bernier, UR, Coy, M., Becnel, JJ, Demirci, B., Baser, KH, Zhang, J ., Zhang, S. (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. 36: 258
(119) Zheljazkov, VD, Astatkie, T., Jeliazkova, EA, Schlegel, V. (2012) Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J Oleo Sci 61: 537
(120) El Hamrouni-Aschi, K., Khouja, ML, Boussaid, M., Akrimi, N., Toumi, L. (2013) Essential-oil composition of the Tunisian endemic cypress (Cupressus sempervirens L. var. .). Chem Biodivers 10: 989

(121)Guleria, S., Kumar, A., Tiku, A. K. (2008) Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z Naturforsch C J Biosci 63: 211
(122)Rehman, R., Hanif, M. A., Zahid, M., Qadri, R. W. K. (2019) Reporting effective extraction methodology and chemical characterization of bioactive components of under explored Platycladus orientalis (L.) Franco from semi-arid climate. Nat Prod Res 33: 1237
(123)I, B. S., Shiwakoti, S., C, L. C., V, D. Z., Astatkie, T., Schlegel, V., Radoukova, T. (2019) Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 24:
(124)Nikolic, B., Ristic, M., Bojovic, S., Krivosej, Z., Matevski, V., Marin, P. D. (2015) Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains Osljak and Galicica. Chem Biodivers 12: 295
(125)Espinoza, J., Urzua, A., Tampe, J., Parra, L., Quiroz, A. (2016) Repellent Activity of the Essential Oil from the Heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae). Molecules 21: 533
(126)Chen, C. J., Kumar, K. J., Chen, Y. T., Tsao, N. W., Chien, S. C., Chang, S. T., Chu, F. H., Wang, S. Y. (2015) Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States. Nat Prod Commun 10: 1305
(127)Takao, Y., Kuriyama, I., Yamada, T., Mizoguchi, H., Yoshida, H., Mizushina, Y. (2012) Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol Med Rep 5: 1163
(128)Karapandzova, M., Stefkova, G., Cvetkovikj, I., Trajkovska-Dokik, E., Kaftandzieva, A., Kulevanova, S. (2014) Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia. Nat Prod Commun 9: 1623
(129)Moiteiro, C., Esteves, T., Ramalho, L., Rojas, R., Alvarez, S., Zacchino, S., Braganca, H. (2013) Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat Prod Commun 8: 1785
(130)Cheng, S. S., Lin, H. Y., Chang, S. T. (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J Agric Food Chem 53: 614
(131)Arjouni, M. Y., Bahri, F., Romane, A., El Fels, M. A. (2011) Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica. Nat Prod Commun 6: 1519
(132)Zhang, Y., Han, L., Chen, S. S., Guan, J., Qu, F. Z., Zhao, Y. Q. (2016) Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed Pharmacother 83: 641
(133)Zhang, K., Yao, L. (2018) The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol Behav 189: 50
(134)Qureshi, M. N., Siddique, M., Rahman, I. U., Kanwal, F. (2016) Short Communication: Evaluation of the chemical composition of essential oil of Thuja occidentalis leaves grown in Peshawar, Pakistan by gas chromatography mass spectrometry. Pak J Pharm Sci 29: 2105
(135)Mohamed, A. A., Behiry, S. I., Younes, H. A., Ashmawy, N. A., Salem, M. Z. M., Marquez-Molina, O., Barbabosa-Pilego, A. (2019) Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb Pathog 135: 103604
(136)Su, Y. C., Hsu, K. P., Wang, E. I., Ho, C. L. (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat Prod Commun 7: 1245
(137)Gu, D., Fang, C., Yang, J., Li, M., Liu, H., Yang, Y. (2018) Chemical composition and alpha-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves. Nat Prod Res 32: 711
(138)Djouahri, A., Saka, B., Boudarene, L., Baaliouamer, A. (2016) Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time. Chem Biodivers 13: 1691
(139)Teke, G. N., Elisee, K. N., Roger, K. J. (2013) Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. leaves from Cameroon. BMC Complement Altern Med 13: 130
(140)Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., He, Q. (2012) Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77: C824
(141)Medini, H., Elaissi, A., Larbi Khouja, M., Piras, A., Porcedda, S., Falconieri, D., Marongiu, B., Chemli, R. (2011) Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Nat Prod Res 25: 1695
(142)Stefanovic, M., Ristic, M., Popovic, Z., Matic, R., Nikolic, B., Vidakovic, V., Obratov-Petkovic, D.,Bojovic, S. (2016) Chemical Composition and Interpopulation Variability of Essential Oils of Taxus baccata L. from Serbia. Chem Biodivers 13: 943
(121) Guleria, S., Kumar, A., Tiku, AK (2008) Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z Naturforsch CJ Biosci 63: 211
(122) Rehman, R., Hanif, MA, Zahid, M., Qadri, RWK (2019) Reporting effective extraction methodology and chemical characterization of bioactive components of under explored Platycladus orientalis (L.) Franco from semi-arid climate. Nat Prod Res 33: 1237
(123) I, BS, Shiwakoti, S., C, LC, V, DZ, Astatkie, T., Schlegel, V., Radoukova, T. (2019) Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 24:
(124) Nikolic, B., Ristic, M., Bojovic, S., Krivosej, Z., Matevski, V., Marin, PD (2015) Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains Osljak and Galicica. Chem Biodivers 12: 295
(125) Espinoza, J., Urzua, A., Tampe, J., Parra, L., Quiroz, A. (2016) Repellent Activity of the Essential Oil from the Heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae). Molecules 21: 533
(126) Chen, CJ, Kumar, KJ, Chen, YT, Tsao, NW, Chien, SC, Chang, ST, Chu, FH, Wang, SY (2015) Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States. Nat Prod Commun 10: 1305
(127) Takao, Y., Kuriyama, I., Yamada, T., Mizoguchi, H., Yoshida, H., Mizushina, Y. (2012) Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol Med Rep 5: 1163
(128) Karapandzova, M., Stefkova, G., Cvetkovikj, I., Trajkovska-Dokik, E., Kaftandzieva, A., Kulevanova, S. (2014) Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (2014) Pinaceae) growing wild in R. Macedonia. Nat Prod Commun 9: 1623
(129) Moiteiro, C., Esteves, T., Ramalho, L., Rojas, R., Alvarez, S., Zacchino, S., Braganca, H. (2013) Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat Prod Commun 8: 1785
(130) Cheng, SS, Lin, HY, Chang, ST (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J Agric Food Chem 53: 614
(131) Arjouni, MY, Bahri, F., Romane, A., El Fels, MA (2011) Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica. Nat Prod Commun 6: 1519
(132) Zhang, Y., Han, L., Chen, SS, Guan, J., Qu, FZ, Zhao, YQ (2016) Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed Pharmacother 83: 641
(133) Zhang, K., Yao, L. (2018) The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol Behav 189: 50
(134) Qureshi, MN, Siddique, M., Rahman, IU, Kanwal, F. (2016) Short Communication: Evaluation of the chemical composition of essential oil of Thuja occidentalis leaves grown in Peshawar, Pakistan by gas chromatography mass spectrometry. Pak J Pharm Sci 29: 2105
(135) Mohamed, AA, Behiry, SI, Younes, HA, Ashmawy, NA, Salem, MZM, Marquez-Molina, O., Barbabosa-Pilego, A. (2019) Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb Pathog 135: 103604
(136) Su, YC, Hsu, KP, Wang, EI, Ho, CL (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. Konishii from Taiwan. Nat Prod Commun 7: 1245
(137) Gu, D., Fang, C., Yang, J., Li, M., Liu, H., Yang, Y. (2018) Chemical composition and alpha-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves. Nat Prod Res 32: 711
(138) Djouahri, A., Saka, B., Boudarene, L., Baaliouamer, A. (2016) Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time. Chem Biodivers 13: 1691
(139) Teke, GN, Elisee, KN, Roger, KJ (2013) Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. Leaves from Cameroon. BMC Complement Altern Med 13: 130
(140) Zeng, WC, Zhang, Z., Gao, H., Jia, LR, He, Q. (2012) Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77: C824
(141) Medini, H., Elaissi, A., Larbi Khouja, M., Piras, A., Porcedda, S., Falconieri, D., Marongiu, B., Chemli, R. (2011) Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Nat Prod Res 25: 1695
(142) Stefanovic, M., Ristic, M., Popovic, Z., Matic, R., Nikolic, B., Vidakovic, V., Obratov-Petkovic, D., Bojovic, S. (2016) Chemical Composition and Interpopulation Variability of Essential Oils of Taxus baccata L. from Serbia. Chem Biodivers 13: 943

このように、本実施形態に係る空間調節装置によって、オフィスや家屋等の狭い空間であっても、精神的ストレスを低減させるとともに、ヒトの知的生産性を高める、またはリラックス効果を高めることができるように空間の環境を調節することができる。 As described above, the space adjusting device according to the present embodiment can reduce mental stress, enhance human intellectual productivity, or enhance the relaxing effect even in a narrow space such as an office or a house. The environment of the space can be adjusted as much as possible.

1,3,5 空間調節装置、10 植物設置台、12 栽培床、14 植物、16 透明板、18 吸入口、20,58 排気ファン、22 排気口、24 全灌防水LED(RGB)、26 加温器、28 温湿度センサ、30 水タンク、32 液肥タンク、34,36,42,44 水中ポンプ、38,40,46,48 調節バルブ、50 排水タンク、52 防水容器、54 データ記録・調節器、56 噴霧器、60 植物植栽空間、62 仕切り板、64 給水口、66 枠材、68 テーブル部、70 植物植栽部。 1,3,5 Space control device, 10 Plant stand, 12 Cultivation floor, 14 Plants, 16 Transparent board, 18 Suction port, 20,58 Exhaust fan, 22 Exhaust port, 24 Total irrigation waterproof LED (RGB), 26 Heater, 28 temperature / humidity sensor, 30 water tank, 32 liquid fertilizer tank, 34,36,42,44 submersible pump, 38,40,46,48 control valve, 50 drainage tank, 52 waterproof container, 54 data recorder / controller , 56 sprayer, 60 plant planting space, 62 partition board, 64 water supply port, 66 frame material, 68 table part, 70 plant planting part.

Claims (14)

嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を有することを特徴とする空間調節装置。 A spatial regulator characterized by having a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated neuroreceptors present in the sense of smell. さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを有することを特徴とする空間調節装置。 Furthermore, a second plant that releases a second volatile component that acts on the sympathetic nerve receptors present in the sense of smell, and a third plant that releases a third volatile component that acts on the parasympathetic nerve receptors present in the sense of smell. A space regulator characterized by having at least one of the plants of. 請求項2に記載の空間調節装置であって、
前記空間調節装置は、前記第1の植物と前記第2の植物と前記第3の植物とを有し、
前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替える切替手段を備えることを特徴とする空間調節装置。
The space adjusting device according to claim 2.
The space control device has the first plant, the second plant, and the third plant.
Release of the first volatile component from the first plant and the second volatile component from the second plant, and the first volatile component from the first plant and the third plant. A space adjusting device comprising a switching means for switching between the release of a third volatile component from and the release of a third volatile component.
請求項1〜3のいずれか1項に記載の空間調節装置であって、
前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことを特徴とする空間調節装置。
The space adjusting device according to any one of claims 1 to 3.
A space adjusting device, wherein the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
請求項4に記載の空間調節装置であって、
前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことを特徴とする空間調節装置。
The space adjusting device according to claim 4.
A space adjusting device, wherein the terpenes include at least one of a monoterpene and a sesquiterpene.
請求項1〜5のいずれか1項に記載の空間調節装置であって、
前記揮発性成分のそれぞれの放出量は、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節されることを特徴とする空間調節装置。
The space adjusting device according to any one of claims 1 to 5.
The amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, the color tone of the light irradiated to the plant, and the color tone of the light of the plant. A space adjusting device characterized in that it is regulated by at least one of the humidity of the cultivation environment and the temperature of the cultivation environment of the plant.
請求項1〜6のいずれか1項に記載の空間調節装置であって、
前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであり、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることを特徴とする空間調節装置。
The space adjusting device according to any one of claims 1 to 6.
The first plant and, if present, the third plant are at least one of bryophytes, angiosperms, and angiosperms, respectively, and the second plant, if present, is bryophytes. A space regulator characterized by being at least one of species and angiosperms.
嗅覚に存在するγ−アミノ酪酸(GABA)作動性神経受容体に作用する第1の揮発性成分を放出させる第1の植物を用いることを特徴とする空間調節方法。 A spatial regulation method comprising a first plant that releases a first volatile component that acts on γ-aminobutyric acid (GABA) -operated nerve receptors present in the sense of smell. さらに、嗅覚に存在する交感神経受容体に作用する第2の揮発性成分を放出させる第2の植物、および嗅覚に存在する副交感神経受容体に作用する第3の揮発性成分を放出させる第3の植物のうち少なくとも1つを用いることを特徴とする空間調節方法。 Furthermore, a second plant that releases a second volatile component that acts on the sympathetic nerve receptors present in the sense of smell, and a third plant that releases a third volatile component that acts on the parasympathetic nerve receptors present in the sense of smell. A space regulation method characterized by using at least one of the plants of. 請求項9に記載の空間調節方法であって、
前記第1の植物と前記第2の植物と前記第3の植物とを用い、
前記第1の植物からの第1の揮発性成分および前記第2の植物からの第2の揮発性成分の放出と、前記第1の植物からの第1の揮発性成分および前記第3の植物からの第3の揮発性成分の放出とを切り替えることを特徴とする空間調節方法。
The space adjustment method according to claim 9.
Using the first plant, the second plant, and the third plant,
Release of the first volatile component from the first plant and the second volatile component from the second plant, and the first volatile component from the first plant and the third plant. A space conditioning method characterized by switching between the release of a third volatile component from.
請求項8〜10のいずれか1項に記載の空間調節方法であって、
前記第1の揮発性成分、存在する場合は前記第2の揮発性成分および前記第3の揮発性成分が、テルペン類を含むことを特徴とする空間調節方法。
The space adjustment method according to any one of claims 8 to 10.
A space adjusting method, wherein the first volatile component, if present, the second volatile component and the third volatile component contain terpenes.
請求項11に記載の空間調節方法であって、
前記テルペン類が、モノテルペンおよびセスキテルペンのうち少なくとも1つを含むことを特徴とする空間調節方法。
The space adjustment method according to claim 11.
A space adjustment method, wherein the terpenes contain at least one of a monoterpene and a sesquiterpene.
請求項8〜12のいずれか1項に記載の空間調節方法であって、
前記揮発性成分のそれぞれの放出量を、前記植物に与えられる水分量、前記植物に与えられる窒素量、前記植物に照射される光の照度、前記植物に照射される光の色調、前記植物の栽培環境の湿度、および前記植物の栽培環境の温度のうち少なくとも1つにより調節することを特徴とする空間調節方法。
The space adjustment method according to any one of claims 8 to 12.
The amount of each of the volatile components released is the amount of water given to the plant, the amount of nitrogen given to the plant, the illuminance of the light irradiated to the plant, the color tone of the light irradiated to the plant, and the color of the plant. A space adjustment method characterized by adjusting by at least one of the humidity of the cultivation environment and the temperature of the cultivation environment of the plant.
請求項8〜13のいずれか1項に記載の空間調節方法であって、
前記第1の植物および存在する場合は前記第3の植物は、それぞれ蘚苔類、被子植物類、および裸子植物類のうちの少なくとも1つであり、存在する場合は前記第2の植物は、蘚苔類および被子植物類のうちの少なくとも1つであることを特徴とする空間調節方法。
The space adjustment method according to any one of claims 8 to 13.
The first plant and, if present, the third plant are at least one of bryophytes, angiosperms, and angiosperms, respectively, and the second plant, if present, is bryophytes. A method of spatial regulation characterized by being at least one of a class and angiosperms.
JP2019236632A 2019-12-26 2019-12-26 Space adjustment device and space adjustment method Pending JP2021104190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236632A JP2021104190A (en) 2019-12-26 2019-12-26 Space adjustment device and space adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236632A JP2021104190A (en) 2019-12-26 2019-12-26 Space adjustment device and space adjustment method

Publications (1)

Publication Number Publication Date
JP2021104190A true JP2021104190A (en) 2021-07-26

Family

ID=76919083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236632A Pending JP2021104190A (en) 2019-12-26 2019-12-26 Space adjustment device and space adjustment method

Country Status (1)

Country Link
JP (1) JP2021104190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870195A (en) * 2022-05-09 2022-08-09 北京航空航天大学 Method for regulating emotion of personnel by using vegetable green wall

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141691A (en) * 1991-11-18 1993-06-08 Toda Constr Co Ltd Air conditioning method for phytoalexin bath
JPH06147547A (en) * 1992-11-16 1994-05-27 Shinrin Seiki Sangyo Kk Method and apparatus for improving living environment using dispersive components of living plant
JPH08182942A (en) * 1994-12-28 1996-07-16 Masayuki Makita Artificial forest bath generator
JP4288883B2 (en) * 2000-02-10 2009-07-01 花王株式会社 Autonomic nerve regulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141691A (en) * 1991-11-18 1993-06-08 Toda Constr Co Ltd Air conditioning method for phytoalexin bath
JPH06147547A (en) * 1992-11-16 1994-05-27 Shinrin Seiki Sangyo Kk Method and apparatus for improving living environment using dispersive components of living plant
JPH08182942A (en) * 1994-12-28 1996-07-16 Masayuki Makita Artificial forest bath generator
JP4288883B2 (en) * 2000-02-10 2009-07-01 花王株式会社 Autonomic nerve regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
青島 均 HITOSHI AOSHIMA HITOSHI AOSHIMA: "解ってきた香りの力 Recent Studies of Physiological Activities of Aroma", 香料 245, JPN6021052263, 31 March 2010 (2010-03-31), pages 27 - 29, ISSN: 0004672745 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870195A (en) * 2022-05-09 2022-08-09 北京航空航天大学 Method for regulating emotion of personnel by using vegetable green wall
CN114870195B (en) * 2022-05-09 2023-03-21 北京航空航天大学 Method for regulating emotion of personnel by using vegetable green wall

Similar Documents

Publication Publication Date Title
Yin et al. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum)
Gorelick et al. Chemical and physical elicitation for enhanced cannabinoid production in cannabis
Piccaglia et al. Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.)
Guedes et al. Hypericum sp.: essential oil composition and biological activities
Milenković et al. Modification of light intensity influence essential oils content, composition and antioxidant activity of thyme, marjoram and oregano
Kato-Noguchi et al. Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha
Brijwal et al. An overview on phytomedicinal approaches of Zanthoxylum armatum DC.: An important magical medicinal plant
Gupta et al. Medicinal plants under climate change: impacts on pharmaceutical properties of plants
Swamy et al. Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants
Bistgani et al. Review on ethnobotany, phytochemical, molecular and pharmacological activity of Thymus daenensis Celak.
Hong et al. Chemical composition and biological activity of essential oil of Agastache rugosa (Fisch. & CA Mey.) O. Kuntze
Bouyahya et al. Traditional use, phytochemistry, toxicology, and pharmacological properties of Lavandula dentata L.: A comprehensive review
Pluhár et al. Effects of different factors influencing the essential oil properties of Thymus vulgaris L.
JP2021104190A (en) Space adjustment device and space adjustment method
Posadino et al. Antioxidant activity of supercritical carbon dioxide extracts of Salvia desoleana on two human endothelial cell models
Hasan et al. GC-MS analysis of bio-active compounds in ethanol extract of Putranjiva roxburghii Wall. fruit peel
Khalid Growth sites and their impacts on sour orange ʽCitrus aurantium (Tournef.) ʼ essential oil
Morovati et al. Essential Oil Profile of Areal Part of Datura stramonium L. and D. innoxia from Iran
Ahmed et al. Chitosan and salty irrigation water affect morphological and physiological characteristics of rosemary herb
Panchawat et al. Medicinal Importance of Plant Metabolites
JP7247957B2 (en) Space adjustment device and space adjustment method
Guidi et al. Aromatic Plants: use and nutraceutical properties
Lone et al. Epimedium elatum (morr & decne): a therapeutic medicinal plant from northwestern himalayas of India
Dhakal et al. Chemical compositions and biological activities of the oils from the genus Taxus and factors limiting the regeneration of endangered yews: a review
Singh et al. Unravelling the impact of essential mineral nutrients on active constituents of selected medicinal and aromatic plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220601

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221220

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404