JP2021103365A - Image processing device - Google Patents

Image processing device Download PDF

Info

Publication number
JP2021103365A
JP2021103365A JP2019233403A JP2019233403A JP2021103365A JP 2021103365 A JP2021103365 A JP 2021103365A JP 2019233403 A JP2019233403 A JP 2019233403A JP 2019233403 A JP2019233403 A JP 2019233403A JP 2021103365 A JP2021103365 A JP 2021103365A
Authority
JP
Japan
Prior art keywords
image
output
conversion unit
input
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019233403A
Other languages
Japanese (ja)
Other versions
JP7456153B2 (en
Inventor
恭佑 河野
Kyosuke Kono
恭佑 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019233403A priority Critical patent/JP7456153B2/en
Publication of JP2021103365A publication Critical patent/JP2021103365A/en
Application granted granted Critical
Publication of JP7456153B2 publication Critical patent/JP7456153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

To provide an image processing device etc. which can draw a course line while suppressing an increase in memory capacity of a display device.SOLUTION: An image processing device has: a first conversion unit which performs a first strain correction on each pixel in a first image region of an input image to create an image, and performs a correction on each pixel in the image on which the first strain correction is performed to output it as an image; a second conversion unit which performs a second strain correction on each pixel in a second image region of the input image to output it as an image; a third conversion unit which performs a third strain correction on each pixel in a third image region of the input image to output it as an image; and a synthesis unit which generates and outputs an output image by the image from the first conversion unit, the image from the second conversion unit, and the image from the third conversion unit. In the output image, the image from the third conversion unit is arranged between the image from the first conversion unit and the image from the second conversion unit. The image from the first conversion unit is the image having only a distortion aberration, or having no distortion.SELECTED DRAWING: Figure 19

Description

本発明は、画像処理装置に関する。 The present invention relates to an image processing apparatus.

例えば、魚眼レンズを用いた車載用カメラで撮像された被写体の画像から湾曲収差を補正するように画像変換して出力する画像処理装置がある(例えば特許文献1)。 For example, there is an image processing device that converts and outputs an image of a subject captured by an in-vehicle camera using a fisheye lens so as to correct distortion (for example, Patent Document 1).

このような画像処理装置では、魚眼レンズの光軸に向かう直線状の被写体と、縦方向に直線の被写体とを出力画像内でほぼ直線状となるように入力画像全体を画像変換する。また、画像処理装置では、横方向に直線の被写体を、出力画像の中央部分、及び同中央部分と左右に連なる左側部分と右側部分とでほぼ直線状に、また、出力画像の中央部分と、左側部分及び右側部分との境目付近で屈曲するように入力画像全体を画像変換する。その結果、画像処理装置は利用者に違和感を与えない広角画像が見易い出力画像を提供している。 In such an image processing device, the entire input image is image-converted so that the linear subject toward the optical axis of the fisheye lens and the linear subject in the vertical direction are substantially linear in the output image. Further, in the image processing device, a subject that is straight in the horizontal direction is substantially linear in the central portion of the output image and the left and right portions that are connected to the central portion on the left and right, and the central portion of the output image. The entire input image is image-converted so as to bend near the boundary between the left side portion and the right side portion. As a result, the image processing device provides an output image in which a wide-angle image that does not give a sense of discomfort to the user is easy to see.

また、上記のような画像処理装置から出力された出力画像を入力とした表示装置において車両が進行する方向に進路線を重畳して表示する技術が知られている(例えば特許文献2)。 Further, there is known a technique of superimposing and displaying a traveling route in a direction in which a vehicle travels in a display device that inputs an output image output from an image processing device as described above (for example, Patent Document 2).

特開2008−311890号公報Japanese Unexamined Patent Publication No. 2008-31890 特開平11−334470号公報Japanese Unexamined Patent Publication No. 11-334470

このような表示装置では一般的に進路線のデータに対し、魚眼レンズの湾曲収差や他の画像変換処理によって変形した画像に合致するように、進路線のデータに対して画像変換を行い、画像処理装置が出力した画像内に実際に車両が進む進路を重畳して表示させる。そのため上述した進路線のデータに対する画像変換処理は、画像処理装置内で行う車載カメラで撮像された画像に対する画像変換処理と同様な画像変換処理となる。 In such a display device, the image of the advance line is generally converted into an image so as to match the distortion of the fisheye lens or the image deformed by other image conversion processes. The course on which the vehicle actually travels is superimposed and displayed on the image output by the device. Therefore, the image conversion process for the above-mentioned advance route data is the same image conversion process as the image conversion process for the image captured by the in-vehicle camera performed in the image processing device.

より具体的には表示装置側において、例えば表示装置の出力画像の出力座標(X,Y)毎に、予め記憶された進路線のデータを入力とした入力座標(x,y)を対応づけるテーブルを使用し、出力座標(X,Y)の画素の輝度と色の情報を、入力座標(x,y)の画素の輝度と色の情報を参照(転写)し生成する画像変換処理を行うことが考えられる。このような処理においては一般的に出力座標に対し、その座標に対応する入力座標をデーブル化した変換データを予め記憶させておき、そのデーブルに従って変換処理を行う。 More specifically, on the display device side, for example, for each output coordinate (X, Y) of the output image of the display device, a table that associates the input coordinates (x, y) with the input of the advance route data stored in advance. Is used to perform image conversion processing that generates (transferred) the brightness and color information of the pixels of the output coordinates (X, Y) by referring to (transferring) the brightness and color information of the pixels of the input coordinates (x, y). Can be considered. In such processing, generally, conversion data in which the input coordinates corresponding to the coordinates are converted into a table is stored in advance for the output coordinates, and the conversion processing is performed according to the table.

しかし、このようなデーブル化した変換データは出力画像の画素数分の入力座標(x,y)が必要となり、近年の表示装置の高画素化の流れに合わせその容量が大きくなりメモリのコストアップを招くという問題があった。 However, such tableized conversion data requires input coordinates (x, y) for the number of pixels of the output image, and the capacity increases in line with the recent trend toward higher pixel counts in display devices, resulting in an increase in memory cost. There was a problem of inviting.

本発明ではこのような問題に鑑み、表示装置のメモリの増大を抑えつつ進路線を重畳することができる画像処理装置等を提供することを目的とする。 In view of such a problem, it is an object of the present invention to provide an image processing device or the like capable of superimposing advance routes while suppressing an increase in the memory of the display device.

一つの態様の画像処理装置は、入力画像を画像変換し出力画像を出力する。画像処理装置は、第1の変換部と、第2の変換部と、第3の変換部と、合成部とを有する。第1の変換部は、入力画像の第1の画像領域内の画素毎に第1の歪補正を施し画像とし、当該第1の歪補正が施された画像内の画素毎に補正を施し画像として出力する。第2の変換部は、入力画像の第2の画像領域内の画素毎に第2の歪補正を施し画像として出力する。第3の変換部は、入力画像の第3の画像領域内の画素毎に第3の歪補正を施し画像として出力する。合成部は、第1の変換部からの画像出力と、第2の変換部からの画像出力と、第3の変換部からの画像出力とから出力画像を生成し出力する。出力画像は、第1の変換部からの出力された画像と第2の変換部からの出力された画像との間に第3の変換部からの出力された画像が配置され、第1の変換部からの出力された画像は歪曲収差のみを持つ、又は、歪みを持たない画像である。 The image processing apparatus of one aspect converts the input image into an image and outputs the output image. The image processing apparatus includes a first conversion unit, a second conversion unit, a third conversion unit, and a composition unit. The first conversion unit performs the first distortion correction for each pixel in the first image region of the input image to obtain an image, and corrects each pixel in the image to which the first distortion correction is applied to obtain the image. Output as. The second conversion unit performs a second distortion correction for each pixel in the second image area of the input image and outputs the image as an image. The third conversion unit performs a third distortion correction for each pixel in the third image region of the input image and outputs the image as an image. The compositing unit generates and outputs an output image from the image output from the first conversion unit, the image output from the second conversion unit, and the image output from the third conversion unit. In the output image, the image output from the third conversion unit is arranged between the image output from the first conversion unit and the image output from the second conversion unit, and the first conversion is performed. The image output from the unit is an image having only distortion or no distortion.

本発明によれば、表示装置のメモリ容量の増大を抑えつつ進路線を描画できる。 According to the present invention, it is possible to draw a traveling route while suppressing an increase in the memory capacity of the display device.

図1は、前提技術の画像表示システムのハードウェア構成の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the hardware configuration of the image display system of the prerequisite technology. 図2は、前提技術の撮像装置の機能構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the functional configuration of the imaging device of the prerequisite technology. 図3は、撮像装置で撮像した画像を表示装置に表示させた画像の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of an image in which an image captured by the imaging device is displayed on the display device. 図4は、第1の変換テーブルのテーブル構成の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the table configuration of the first conversion table. 図5は、実像高と理想像高との関係の一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of the relationship between the real image height and the ideal image height. 図6は、第1の変換部の第1の歪補正前後の画像の一例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of an image before and after the first distortion correction of the first conversion unit. 図7Aは、画像変換モデルの一例を示す説明図である。FIG. 7A is an explanatory diagram showing an example of an image conversion model. 図7Bは、第2の変換テーブルのテーブル構成の一例を示す説明図である。FIG. 7B is an explanatory diagram showing an example of the table configuration of the second conversion table. 図8は、第2の変換部の第2の歪補正前後の画像の一例を示す説明図である。FIG. 8 is an explanatory diagram showing an example of an image before and after the second distortion correction of the second conversion unit. 図9Aは、第1の歪補正後の画像の一例を示す説明図である。FIG. 9A is an explanatory diagram showing an example of the image after the first distortion correction. 図9Bは、第1の歪補正後の画像内の第1の画像領域と第1の画像領域以外の画像領域とを明暗で表現した説明図である。FIG. 9B is an explanatory diagram showing the first image region and the image region other than the first image region in the image after the first distortion correction in light and dark. 図9Cは、前提技術の第1の画像領域と、第2の画像領域と、第3の画像領域とを明暗で表現した説明図である。FIG. 9C is an explanatory diagram showing the first image region, the second image region, and the third image region of the prerequisite technology in light and dark. 図10は、割合テーブルのテーブル構成の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of the table configuration of the ratio table. 図11は、第3の歪を補正する第3の入力座標を算出する際の算出方法の一例を示す説明図である。FIG. 11 is an explanatory diagram showing an example of a calculation method when calculating the third input coordinates for correcting the third distortion. 図12は、第3の変換テーブルのテーブル構成の一例を示す説明図である。FIG. 12 is an explanatory diagram showing an example of the table configuration of the third conversion table. 図13は、出力画像の一例を示す説明図である。FIG. 13 is an explanatory diagram showing an example of an output image. 図14は、前提技術の撮像装置で撮像した入力画像(原画像)の一例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of an input image (original image) captured by the imaging device of the prerequisite technology. 図15は、第1の歪補正後の画像の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of the image after the first distortion correction. 図16は、第2の歪補正後の画像の一例を示す説明図である。FIG. 16 is an explanatory diagram showing an example of the image after the second distortion correction. 図17は、前提技術の第1の画像領域と、第2の画像領域と、第3の画像領域とを明暗で表現した説明図である。FIG. 17 is an explanatory diagram showing the first image region, the second image region, and the third image region of the prerequisite technology in light and dark. 図18は、前提技術での視認性の良くない出力画像の一例を示す説明図である。FIG. 18 is an explanatory diagram showing an example of an output image having poor visibility in the prerequisite technique. 図19は、実施例1の撮像装置の機能構成の一例を示すブロック図である。FIG. 19 is a block diagram showing an example of the functional configuration of the image pickup apparatus of the first embodiment. 図20は、第1の歪補正後の画像の一例を示す説明図である。FIG. 20 is an explanatory diagram showing an example of the image after the first distortion correction. 図21は、実施例1の第1αの画像領域と、第2αの画像領域と、第3αの画像領域とを明暗で表現した説明図である。FIG. 21 is an explanatory diagram showing the image region of the first α, the image region of the second α, and the image region of the third α of the first embodiment in light and dark. 図22は、撮像装置で撮像した際の出力画像の一例を示す説明図である。FIG. 22 is an explanatory diagram showing an example of an output image when the image is captured by the imaging device. 図23は、実施例2の第1の歪補正と異なる歪補正後の第1βの画像領域を含む画像の一例を示す説明図である。FIG. 23 is an explanatory diagram showing an example of an image including the image region of the first β after the distortion correction, which is different from the first distortion correction of the second embodiment. 図24は、第1の歪補正と異なる歪補正後の第1βの画像領域と、第2αの画像領域と、第3αの画像領域とを明暗で表現した説明図である。FIG. 24 is an explanatory diagram showing the image region of the first β after the distortion correction different from the first distortion correction, the image region of the second α, and the image region of the third α in light and dark. 図25は、第1の歪補正と異なる歪補正後の第1αの画像領域を含む出力画像の一例を示す説明図である。FIG. 25 is an explanatory diagram showing an example of an output image including the image region of the first α after distortion correction different from that of the first distortion correction.

以下、図面に基づいて、本願の開示する画像処理装置の実施例を詳細に説明する。尚、各実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。 Hereinafter, examples of the image processing apparatus disclosed in the present application will be described in detail with reference to the drawings. The disclosed technology is not limited by each embodiment. In addition, the examples shown below may be appropriately combined as long as they do not cause a contradiction.

図1は、前提技術の画像表示システム1のハードウェア構成の一例を示す説明図である。図1に示す画像表示システム1は、撮像装置2と、ナビゲーション装置3と、表示装置4とを有する。撮像装置2は、レンズ11と、撮像素子12と、画像処理プロセッサ13と、ROM(Read Only Memory)14と、RAM(Radom Access Memory)15とを有する。撮像装置2は、例えば、車両後部のナンバープレート付近に配置されたカメラ装置である。レンズ11は、例えば、魚眼レンズである。撮像素子12は、レンズ11を通じて車両後方の特定範囲の画像を撮像するCMOS(Complementary Metal Oxide Semiconductor)センサである。画像処理プロセッサ13は、撮像装置2内部の画像処理を実行する画像処理装置である。ROM14は、各種プログラム等の情報を格納する。RAM15は、各種情報を記憶する。 FIG. 1 is an explanatory diagram showing an example of the hardware configuration of the image display system 1 of the prerequisite technology. The image display system 1 shown in FIG. 1 includes an image pickup device 2, a navigation device 3, and a display device 4. The image pickup apparatus 2 includes a lens 11, an image pickup element 12, an image processing processor 13, a ROM (Read Only Memory) 14, and a RAM (Radom Access Memory) 15. The image pickup device 2 is, for example, a camera device arranged near the license plate at the rear of the vehicle. The lens 11 is, for example, a fisheye lens. The image sensor 12 is a CMOS (Complementary Metal Oxide Semiconductor) sensor that captures an image of a specific range behind the vehicle through the lens 11. The image processing processor 13 is an image processing device that executes image processing inside the image pickup device 2. The ROM 14 stores information such as various programs. The RAM 15 stores various information.

ナビゲーション装置3は、地図情報等の案内情報を表示装置に出力すると共に、撮像装置2からの出力画像に進路線50を描画し、進路線50を描画した出力画像を表示装置4に出力する。表示装置4は、例えば、運転席の正面パネルに配置され、例えば、ナビゲーション装置3からの出力画像や地図情報を表示出力するモニタ装置である。尚、ナビゲーション装置3は、画像の歪み補正後の出力画像に合致するように画像変換された進路線50を描画する設定としている。 The navigation device 3 outputs guidance information such as map information to the display device, draws the advance route 50 on the output image from the image pickup device 2, and outputs the output image on which the advance route 50 is drawn to the display device 4. The display device 4 is, for example, a monitor device arranged on the front panel of the driver's seat and displaying, for example, an output image or map information from the navigation device 3. The navigation device 3 is set to draw the route 50 whose image has been converted so as to match the output image after distortion correction of the image.

図2は、前提技術の撮像装置2の構成の一例を示す説明図である。図2に示す撮像装置2は、制御部20及び記憶部30を備える。制御部20は図1での画像処理プロセッサ13に対応し、記憶部30は図1でのROM14に対応する。制御部20は、第1の変換部21と、第2の変換部22と、算出部23と、第3の変換部24と、合成部25と有する。記憶部30は、第1の変換テーブル31と、第2の変換テーブル32と、割合テーブル33と、第3の変換テーブル34とを有する。 FIG. 2 is an explanatory diagram showing an example of the configuration of the imaging device 2 of the prerequisite technology. The image pickup apparatus 2 shown in FIG. 2 includes a control unit 20 and a storage unit 30. The control unit 20 corresponds to the image processor 13 in FIG. 1, and the storage unit 30 corresponds to the ROM 14 in FIG. The control unit 20 includes a first conversion unit 21, a second conversion unit 22, a calculation unit 23, a third conversion unit 24, and a synthesis unit 25. The storage unit 30 has a first conversion table 31, a second conversion table 32, a ratio table 33, and a third conversion table 34.

図3は、撮像装置2で撮像した画像を表示装置4に表示させた一例を示す説明図である。図3に示す入力画像40は、第1の画像領域41と、第2の画像領域42と、第3の画像領域43とを有する。画像処理プロセッサ13は、入力画像内の第1の画像領域41、第2の画像領域42及び第3の画像領域43を識別する。すなわち、画像処理プロセッサ13は、入力画像内の各画素値を入力座標で識別し、第1の画像領域41内の各画素値を第1の入力座標、第2の画像領域42内の各画素値を第2の入力座標、第3の画像領域43内の各画素値の第3の入力座標で識別する。 FIG. 3 is an explanatory diagram showing an example in which an image captured by the image pickup device 2 is displayed on the display device 4. The input image 40 shown in FIG. 3 has a first image area 41, a second image area 42, and a third image area 43. The image processor 13 identifies the first image area 41, the second image area 42, and the third image area 43 in the input image. That is, the image processing processor 13 identifies each pixel value in the input image by the input coordinates, and each pixel value in the first image area 41 is the first input coordinate, and each pixel in the second image area 42. The values are identified by the second input coordinates and the third input coordinates of each pixel value in the third image area 43.

破線L1で囲まれた第1の画像領域41は、例えば、入力画像内の中央部分の画像領域に相当し、例えば、歪曲収差のみを持つ、又は、歪を持たないように、歪を補正(第1の歪み補正)する対象領域であって、ハンドル回転等の舵角に応じて変化する進路線を描画するための画像領域である。一点鎖線L2と点線L3とに囲まれた第2の画像領域42は、例えば、前述の特許文献1に示すような直線の物体を直線で表示し利用者に違和感を与えない歪補正(第2の歪み補正)する画像領域である。この部分は歪曲収差を持たない。破線L1と一点鎖線L2とに囲まれた第3の画像領域43は、第1の歪補正と第2の歪補正とを加重平均する第3の歪補正を行う画像領域である。加重平均については後述する。 The first image region 41 surrounded by the broken line L1 corresponds to, for example, the image region of the central portion in the input image, and for example, the distortion is corrected so as to have only distortion or no distortion ( This is an image area for drawing a traveling line that changes according to a steering angle such as steering wheel rotation, which is a target area to be subjected to (first distortion correction). The second image region 42 surrounded by the alternate long and short dash line L2 and the dotted line L3 displays, for example, a straight line object as shown in Patent Document 1 described above as a straight line and does not give a sense of discomfort to the user (second). This is the image area to be corrected for distortion. This part has no distortion. The third image region 43 surrounded by the broken line L1 and the alternate long and short dash line L2 is an image region for performing a third distortion correction that weighted averages the first distortion correction and the second distortion correction. The weighted average will be described later.

第1の変換部21は、入力画像40の第1の画像領域41内の画素毎に第1の歪補正を施し出力する変換部である。尚、第1の画像領域41内の画素は、例えば、第1の入力座標の画素値とも言える。第1の変換部21は、例えば、第1の変換テーブル31を参照し、入力画像40内の第1の画像領域41内の歪を補正した第1の入力座標の画素値を出力画像内の出力座標の画素値として出力する。図4は、第1の変換テーブル31のテーブル構成の一例を示す説明図である。第1の変換テーブル31は、出力画像の出力座標毎に、入力画像内の歪を補正した画素値の第1の入力座標を対応付けて管理するテーブルである。第1の変換部21は、出力画像の第1の画像領域41内の出力座標毎の画素値を合成部25に出力する。 The first conversion unit 21 is a conversion unit that performs the first distortion correction for each pixel in the first image area 41 of the input image 40 and outputs the output. The pixels in the first image area 41 can be said to be, for example, the pixel values of the first input coordinates. The first conversion unit 21 refers to, for example, the first conversion table 31 and outputs the pixel value of the first input coordinate in the output image after correcting the distortion in the first image area 41 in the input image 40. Output as the pixel value of the output coordinates. FIG. 4 is an explanatory diagram showing an example of the table configuration of the first conversion table 31. The first conversion table 31 is a table that manages the first input coordinates of the pixel values corrected for distortion in the input image in association with each output coordinate of the output image. The first conversion unit 21 outputs the pixel values for each output coordinate in the first image area 41 of the output image to the synthesis unit 25.

ここでナビゲーション装置3が進路線50を画像の歪み補正後の出力画像に合致するように画像変換する動作について説明する。例えば第1の画像領域41の画像は歪曲収差を有するとした場合、ナビゲーション装置3は進路線50のデータに対し同じ前述の歪曲収差と同じ収差を持つように画像変換を行う。歪曲収差があると実像高と理想像高が異なる。図5は、実像高と理想像高との関係の一例を示す説明図である。ナビゲーション装置3は、理想像高の極座標(R,φ)の画素値を実像高の極座標(r、φ)に画像変換する。この変換は図5の線L上の任意の画素を同じ線L上の別な箇所に移動させる変換であり、この変換テーブルは出力画像の出力座標(X,Y)毎に、入力画像の入力座標(x,y)を対応づけた変換テーブルと比較しデータのサイズが小さい。尚、第1の画像領域41の画像は歪みのないものであってもよい。このとき画像内の極座標(R,φ)の画素値から極座標(r、φ)の画素値への変換においては前述のような画素の移動は発生しないため変換テーブルは不要となる。 Here, an operation in which the navigation device 3 converts the traveling route 50 into an image so as to match the output image after distortion correction of the image will be described. For example, assuming that the image in the first image region 41 has distortion, the navigation device 3 performs image conversion on the data of the route 50 so as to have the same aberration as the above-mentioned distortion. When there is distortion, the real image height and the ideal image height are different. FIG. 5 is an explanatory diagram showing an example of the relationship between the real image height and the ideal image height. The navigation device 3 converts the pixel value of the polar coordinates (R, φ) of the ideal image height into the polar coordinates (r, φ) of the real image height. This conversion is a conversion that moves an arbitrary pixel on the line L of FIG. 5 to another place on the same line L, and this conversion table inputs an input image for each output coordinate (X, Y) of the output image. The size of the data is smaller than that of the conversion table associated with the coordinates (x, y). The image in the first image area 41 may be undistorted. At this time, in the conversion from the pixel value of the polar coordinates (R, φ) in the image to the pixel value of the polar coordinates (r, φ), the above-mentioned pixel movement does not occur, so that the conversion table becomes unnecessary.

第2の変換部22は、入力画像40の第2の画像領域42内の画素毎に第2の歪補正を施し出力する変換部である。尚、第2の画像領域42内の画素は、例えば、第2の入力座標の画素値と言える。第2の変換部22は、例えば、第2の変換テーブル32を参照し、入力画像40内の第2の画像領域42内の歪を補正した第2の入力座標の画素値を出力画像内の第2の出力座標の画素値として出力する。第2の変換テーブル32は、第2の画像領域42内の第2の入力座標毎に、第2の歪を補正した画素値の第2の入力座標を対応付けて管理するテーブルである。第2の変換部22は、出力画像の第2の画像領域42内の出力座標毎の画素値を合成部25に出力する。 The second conversion unit 22 is a conversion unit that applies and outputs a second distortion correction for each pixel in the second image region 42 of the input image 40. The pixels in the second image area 42 can be said to be, for example, the pixel values of the second input coordinates. The second conversion unit 22 refers to, for example, the second conversion table 32, and calculates the pixel value of the second input coordinates in the output image after correcting the distortion in the second image area 42 in the input image 40. It is output as the pixel value of the second output coordinate. The second conversion table 32 is a table that manages the second input coordinates of the pixel values corrected for the second distortion in association with each other for each of the second input coordinates in the second image area 42. The second conversion unit 22 outputs the pixel values for each output coordinate in the second image area 42 of the output image to the synthesis unit 25.

算出部23は、入力画像41内の第3の画像領域43内の歪を補正した画素値の出力座標毎に、第3の画像領域43内の出力座標から直近の第1の画像領域41内の出力座標までの第1の距離と、第3の画像領域43内の出力座標から直近の第2の画像領域42内の出力座標までの第2の距離との比率を算出する。更に、算出部23は、その比率を割合として、出力座標毎に割合テーブル33内に記憶する。算出部23は、入力画像41の画素毎に第1の歪補正を施して得られた出力と第2の歪補正を施して得られた出力とを入力とし、それらを加重平均して出力する。算出部23は、例えば、割合テーブル33を参照し、出力座標毎の割合(第1の距離:第2の距離)に応じて第1の入力座標及び第2の入力座標を補正する。算出部23は、割合補正後の第1の入力座標及び割合補正後の第2の入力座標同士を加算することで出力画像の第3の入力座標を算出する。 The calculation unit 23 is in the first image area 41 closest to the output coordinates in the third image area 43 for each output coordinate of the pixel value corrected for distortion in the third image area 43 in the input image 41. The ratio of the first distance to the output coordinates of the above and the second distance from the output coordinates in the third image area 43 to the output coordinates in the nearest second image area 42 is calculated. Further, the calculation unit 23 stores the ratio as a ratio in the ratio table 33 for each output coordinate. The calculation unit 23 takes the output obtained by performing the first distortion correction for each pixel of the input image 41 and the output obtained by performing the second distortion correction as inputs, and outputs them by weighted averaging. .. For example, the calculation unit 23 refers to the ratio table 33 and corrects the first input coordinate and the second input coordinate according to the ratio for each output coordinate (first distance: second distance). The calculation unit 23 calculates the third input coordinate of the output image by adding the first input coordinate after the ratio correction and the second input coordinate after the ratio correction.

算出部23は、出力座標毎に、第3の入力座標を第3の変換テーブル34に記憶する。第3の変換部24は、入力画像の第3の画像領域43内の画素毎に第3の歪補正を施し出力する変換部である。尚、第3の画像領域43内の画素は、例えば、第3の入力座標の画素値と言える。第3の変換部24は、例えば、第3の変換テーブル34を参照し、入力画像40内の第3の画像領域43内の歪を補正した第3の入力座標の画素値を第3の画像領域43内の出力座標の画素値として出力する。第3の変換部24は、第3の画像領域43内の出力座標毎の画素値を合成部25に出力する。 The calculation unit 23 stores the third input coordinates in the third conversion table 34 for each output coordinate. The third conversion unit 24 is a conversion unit that applies and outputs a third distortion correction for each pixel in the third image region 43 of the input image. The pixels in the third image area 43 can be said to be, for example, the pixel values of the third input coordinates. The third conversion unit 24 refers to, for example, the third conversion table 34, and sets the pixel value of the third input coordinate in which the distortion in the third image region 43 in the input image 40 is corrected as the third image. It is output as a pixel value of the output coordinates in the area 43. The third conversion unit 24 outputs the pixel values for each output coordinate in the third image area 43 to the synthesis unit 25.

図6は、第1の変換部21の第1の歪補正前後の画像の一例を示す説明図である。第1の変換部21は、第1の変換テーブル31を参照し、出力座標毎に、歪を補正した第1の入力座標の画素値を出力座標の画素値として出力する。第1の変換部21は、第1の画像領域41内の出力座標の画素値を合成部25に出力する。その結果、第1の変換部21は、図6に示すように第1の歪補正前の画像を第1の歪補正後の画像として出力できる。第1の変換部21は、例えば、入力画像内の入力座標β1の画素値を出力画像内の出力座標α1の画素値として、入力画像内の入力座標β3の画素値を出力画像内の出力座標α3の画素値として出力する。尚、説明の便宜上、図6の例では、入力画像内の全ての第1の入力座標の画素値を出力座標の画素値として出力する場合を例示した。しかしながら、実際には、第1の変換部21は、入力画像内の第1の画像領域41内の歪を補正した第1の入力座標の画素値を第1の画像領域41内の出力座標の画素値として合成部25に出力するものである。 FIG. 6 is an explanatory diagram showing an example of images before and after the first distortion correction of the first conversion unit 21. The first conversion unit 21 refers to the first conversion table 31 and outputs the pixel value of the first input coordinate corrected for distortion as the pixel value of the output coordinate for each output coordinate. The first conversion unit 21 outputs the pixel values of the output coordinates in the first image area 41 to the synthesis unit 25. As a result, the first conversion unit 21 can output the image before the first distortion correction as the image after the first distortion correction as shown in FIG. The first conversion unit 21 uses, for example, the pixel value of the input coordinate β1 in the input image as the pixel value of the output coordinate α1 in the output image, and the pixel value of the input coordinate β3 in the input image as the output coordinate in the output image. It is output as a pixel value of α3. For convenience of explanation, in the example of FIG. 6, the case where the pixel values of all the first input coordinates in the input image are output as the pixel values of the output coordinates is illustrated. However, in reality, the first conversion unit 21 uses the pixel value of the first input coordinate corrected for the distortion in the first image area 41 in the input image as the output coordinate in the first image area 41. It is output to the compositing unit 25 as a pixel value.

図7Aは、画像変換モデルの一例を示す説明図である。図7Aに示す画像変換モデルは、円形の平面からなる入力画像51と、レンズ11と対応して被写体が映し出される半球状の仮想物体面52と、湾曲収差を補正する補正面53と、画像変換される表示面54とを順に並べて構成する。レンズ11の光軸と対応する仮想光軸zは、入力画像51の中央に位置する光軸原点0からこれらの面の中央を直角に挿通する。補正面53は、中央に配置された中央面53Aと、同中央面53Aの左右にそれぞれ配置された左側面53B及び右側面53Cとで構成され、同左側面53Bと右側面53Cとは光軸原点に向かって屈曲して構成する。仮想光軸z方向の補正面53に投射された仮想物体面52上の画像は、表示面54へ正射影方式で投射され、投射された表示面54の画像を出力画像とする。 FIG. 7A is an explanatory diagram showing an example of an image conversion model. The image conversion model shown in FIG. 7A includes an input image 51 formed of a circular plane, a hemispherical virtual object surface 52 on which a subject is projected corresponding to the lens 11, a correction surface 53 for correcting distortion, and image conversion. The display surface 54 to be displayed is arranged in order. The virtual optical axis z corresponding to the optical axis of the lens 11 passes through the center of these surfaces at a right angle from the optical axis origin 0 located at the center of the input image 51. The correction surface 53 is composed of a central surface 53A arranged in the center and a left side surface 53B and a right side surface 53C arranged on the left and right sides of the central surface 53A, respectively. The left side surface 53B and the right side surface 53C are the origins of the optical axis. It is constructed by bending toward. The image on the virtual object surface 52 projected on the correction surface 53 in the virtual optical axis z direction is projected onto the display surface 54 by an orthographic projection method, and the projected image of the display surface 54 is used as an output image.

画像変換モデルでは、表示面54の画素位置を補正面53の画素位置に変換し、補正面53の画素位置を仮想物体面52の半球面の極座標に変換し、最終的に入力画像51の画素位置へ変換する。画像変換モデルでは、表示面54の画素位置毎に入力画像51の画素位置を変換し、これら表示面54の画素位置毎に入力画像51の画素位置を格納する。すなわち、第2の変換テーブル32は、出力座標毎に歪を補正した画素値の第2の入力座標を管理する。 In the image conversion model, the pixel position of the display surface 54 is converted to the pixel position of the correction surface 53, the pixel position of the correction surface 53 is converted to the polar coordinates of the hemisphere of the virtual object surface 52, and finally the pixels of the input image 51. Convert to position. In the image conversion model, the pixel position of the input image 51 is converted for each pixel position of the display surface 54, and the pixel position of the input image 51 is stored for each pixel position of the display surface 54. That is, the second conversion table 32 manages the second input coordinates of the pixel value corrected for distortion for each output coordinate.

図7Bは、第2の変換テーブル32のテーブル構成の一例を示す説明図である。図7Bに示す第2の変換テーブル32は、出力座標と、第2の入力座標とを対応付けて管理している。出力座標は、出力画像の画素値を出力する座標である。第2の入力座標は、出力座標毎に歪を補正した画素値を入力する座標である。尚、第2の変換テーブル32内の出力座標毎に第2の歪を補正した画素値の入力座標を算出する上での原理は、本出願人が特許文献1(特開2008−311890号公報)で提案している。尚、ここでは特許文献1で示す技術を適用したが、これに限定されず、広角レンズに起因する歪みを補正する公知の技術が用いられてもよい。 FIG. 7B is an explanatory diagram showing an example of the table configuration of the second conversion table 32. The second conversion table 32 shown in FIG. 7B manages the output coordinates and the second input coordinates in association with each other. The output coordinates are the coordinates for outputting the pixel value of the output image. The second input coordinate is a coordinate for inputting a pixel value corrected for distortion for each output coordinate. The principle for calculating the input coordinates of the pixel value corrected for the second distortion for each output coordinate in the second conversion table 32 is based on the principle of Patent Document 1 (Japanese Patent Laid-Open No. 2008-31890). ) Proposed. Although the technique shown in Patent Document 1 is applied here, the technique is not limited to this, and a known technique for correcting distortion caused by a wide-angle lens may be used.

図8は、第2の変換部22の第2の歪補正前後の画像の一例を示す説明図である。第2の変換部22は、第2の変換テーブル32を参照し、出力座標毎に、第2の歪を補正した第2の入力座標の画素値を出力座標の画素値として出力する。第2の変換部22は、例えば、図8に示すように、入力画像内の入力座標β5の画素値を出力画像内の出力座標α5の画素値として、入力画像内の入力座標β6の画素値を出力画像内の出力座標α6の画素値として出力する。第2の変換部22は、第2の画像領域42内の各出力座標の画素値を合成部25に出力する。その結果、第2の変換部22は、第2の歪補正前の画像を第2の歪補正後の画像として出力する。尚、説明の便宜上、図8の例では、入力画像内の全ての第2の入力座標の画素値を出力座標の画素値として出力する場合を例示した。しかしながら、第2の変換部22は、実際には、入力画像内の第2の画像領域42内の第2の歪を補正した第2の入力座標の画素値を第2の画像領域42内の出力座標の画素値として合成部25に出力するものである。 FIG. 8 is an explanatory diagram showing an example of images before and after the second distortion correction of the second conversion unit 22. The second conversion unit 22 refers to the second conversion table 32, and outputs the pixel value of the second input coordinate corrected for the second distortion as the pixel value of the output coordinate for each output coordinate. For example, as shown in FIG. 8, the second conversion unit 22 uses the pixel value of the input coordinate β5 in the input image as the pixel value of the output coordinate α5 in the output image, and sets the pixel value of the input coordinate β6 in the input image as the pixel value. Is output as the pixel value of the output coordinate α6 in the output image. The second conversion unit 22 outputs the pixel values of the output coordinates in the second image area 42 to the synthesis unit 25. As a result, the second conversion unit 22 outputs the image before the second distortion correction as the image after the second distortion correction. For convenience of explanation, in the example of FIG. 8, a case where all the pixel values of the second input coordinates in the input image are output as the pixel values of the output coordinates is illustrated. However, the second conversion unit 22 actually sets the pixel value of the second input coordinate in the second image region 42 after correcting the second distortion in the second image region 42 in the input image. It is output to the compositing unit 25 as a pixel value of the output coordinates.

図9Aは、第1の歪補正後の出力画像の一例を示す説明図である。図9Aに示す出力画像の中央部分には、第1の画像領域41がある。図9Bは、第1の歪補正後の出力画像内の第1の画像領域41と、第1の画像領域41以外の画像領域とを明暗で表現した説明図である。出力画像内の第1の画像領域41は、図9Bに示すように白地で表現できる。出力画像内の第1の画像領域41以外の画像領域は、第2の画像領域42及び第3の画像領域43であって、図9Bに示すように黒地で表現できる。図9Cは、出力画像内の第1の画像領域41と、第2の画像領域42と、第3の画像領域43と明暗で表現した説明図である。図9Cに示す出力画像は、第1の画像領域41は白地、第2の画像領域42は黒地、第1の画像領域41と第2の画像領域42との境界である第3の画像領域43はグラデーションで表現できる。白地は、輝度が100%であるため、第1の画像領域41であることを示し、黒字は、輝度が0%であるため、第2の画像領域42であることを示し、明暗が白である100%未満、かつ、黒である0%を超えている部分は、第3の画像領域43であることを示している。この明暗は第1の歪補正により出力される出力座標と画像と第2の歪補正により出力される出力座標とを加重平均し新たな出力座標とする第3の歪補正における加重平均の割合を示している。 FIG. 9A is an explanatory diagram showing an example of the output image after the first distortion correction. There is a first image region 41 in the central portion of the output image shown in FIG. 9A. FIG. 9B is an explanatory diagram showing the first image region 41 in the output image after the first distortion correction and the image regions other than the first image region 41 in light and dark. The first image area 41 in the output image can be represented by a white background as shown in FIG. 9B. The image areas other than the first image area 41 in the output image are the second image area 42 and the third image area 43, and can be represented by a black background as shown in FIG. 9B. FIG. 9C is an explanatory diagram showing the first image area 41, the second image area 42, and the third image area 43 in the output image in light and dark. In the output image shown in FIG. 9C, the first image area 41 is a white background, the second image area 42 is a black background, and the third image area 43 is the boundary between the first image area 41 and the second image area 42. Can be expressed by gradation. A white background indicates that it is the first image area 41 because the brightness is 100%, and a black character indicates that it is the second image area 42 because the brightness is 0%. A portion of less than 100% and more than 0%, which is black, indicates a third image region 43. This lightness and darkness is the ratio of the weighted average in the third distortion correction, which is a new output coordinate by weighted averaging the output coordinates output by the first distortion correction and the image and the output coordinates output by the second distortion correction. Shown.

ここで前述の加重平均について詳述する。第3の画像領域43内の出力座標毎の割合は、第3の画像領域43内の出力座標から直近の第1の画像領域41内の出力座標までの第1の距離と、当該第3の画像領域43内の出力座標から直近の第2の画像領域42内の第2の出力座標までの第2の距離との比率に応じた割合である。算出部23は、例えば、出力座標に対する第1の距離と第2の距離との割合が5:5の場合、出力座標の割合として50%を算出する。また、算出部23は、例えば、出力座標に対する第1の距離と第2の距離との割合が7:3の場合、出力座標の割合として70%を算出する。また、算出部23は、例えば、出力座標に対する第1の距離と第2の距離との比率が3:7の場合、出力座標の割合として30%を算出する。尚、第3の画像領域43内の出力座標の割合Xは、0%<X<100%である。 Here, the weighted average described above will be described in detail. The ratio of each output coordinate in the third image area 43 is the first distance from the output coordinate in the third image area 43 to the output coordinate in the nearest first image area 41 and the third image area 43. It is a ratio according to the ratio from the output coordinates in the image area 43 to the second output coordinates in the nearest second image area 42. For example, when the ratio of the first distance to the second distance to the output coordinates is 5: 5, the calculation unit 23 calculates 50% as the ratio of the output coordinates. Further, for example, when the ratio of the first distance to the second distance to the output coordinates is 7: 3, the calculation unit 23 calculates 70% as the ratio of the output coordinates. Further, for example, when the ratio of the first distance to the second distance to the output coordinates is 3: 7, the calculation unit 23 calculates 30% as the ratio of the output coordinates. The ratio X of the output coordinates in the third image area 43 is 0% <X <100%.

また、算出部23は、第1の画像領域41内の出力座標の場合、出力座標に対する第1の距離と第2の距離との比率が10:0となるため、出力座標の割合として100%を算出する。尚、第1の画像領域41内の出力座標の割合は、100%となる。また、算出部23は、第2の画像領域42内の出力座標の場合、出力座標に対する第1の距離と第2の距離との比率が0:10となるため、出力座標の割合として0%を算出する。尚、第2の画像領域42内の出力座標の割合は、0%となる。そして、算出部23は、出力座標毎の割合を算出した場合、出力座標毎に割合を割合テーブル33内に記憶する。 Further, in the case of the output coordinates in the first image area 41, the calculation unit 23 has a ratio of the first distance to the second distance to the output coordinates of 10: 0, so that the ratio of the output coordinates is 100%. Is calculated. The ratio of the output coordinates in the first image area 41 is 100%. Further, in the case of the output coordinates in the second image area 42, the calculation unit 23 has a ratio of the first distance to the second distance to the output coordinates of 0:10, so that the ratio of the output coordinates is 0%. Is calculated. The ratio of the output coordinates in the second image area 42 is 0%. Then, when the calculation unit 23 calculates the ratio for each output coordinate, the calculation unit 23 stores the ratio for each output coordinate in the ratio table 33.

図10は、割合テーブル33のテーブル構成の一例を示す説明図である。図10に示す割合テーブル33は、出力画像内の出力座標毎に割合を対応付けて管理している。割合は、第3の歪を補正した画素値の第3の入力座標を算出する際に使用する、出力座標毎の第1の入力座標及び第2の入力座標の加重平均の割合である。 FIG. 10 is an explanatory diagram showing an example of the table configuration of the ratio table 33. The ratio table 33 shown in FIG. 10 manages the ratios for each output coordinate in the output image in association with each other. The ratio is the ratio of the weighted average of the first input coordinate and the second input coordinate for each output coordinate used when calculating the third input coordinate of the pixel value corrected for the third distortion.

算出部23は、例えば、第1の歪を補正した画素値の第1の入力座標をf(x,y)で算出する。算出部23は、例えば、第2の歪を補正した画素値の第2の入力座標をg(x,y)で算出する。図11は、第3の歪を補正する第3の入力座標を算出する際の算出方法の一例を示す説明図である。図12は、第3の変換テーブル34のテーブル構成の一例を示す説明図である。算出部23は加重平均処理を行う。より詳細には図11に示すように、出力座標の割合をn%とした場合、第1の入力座標f(x,y)×n%で第1の入力座標を割合補正する。更に、算出部23は、第2の入力座標g(x,y)×(100%−n%)で第2の入力座標を割合補正する。更に、算出部23は、割合補正後の第1の入力座標と割合補正後の第2の入力座標とを加算して第3の入力座標を出力座標毎に算出する。つまり、算出部23は、f(x,y)×n%+g(x,y)×(100%−n%)の(数式1)で第3の入力座標を出力座標毎に算出する。算出部23は、割合テーブル33内の出力座標に対応する割合を参照し、例えば、出力座標の割合が50%の場合、出力座標に対応する第1の入力座標の50%と、出力座標に対応する第2の入力座標の50%とを加算する。そして、算出部23は、その加算値を第3の入力座標として算出し、図12に示すように、出力座標に対応する第3の入力座標を第3の変換テーブル34内に記憶する。 The calculation unit 23 calculates, for example, the first input coordinates of the pixel value corrected for the first distortion by f (x, y). The calculation unit 23 calculates, for example, the second input coordinates of the pixel value corrected for the second distortion by g (x, y). FIG. 11 is an explanatory diagram showing an example of a calculation method when calculating the third input coordinates for correcting the third distortion. FIG. 12 is an explanatory diagram showing an example of the table configuration of the third conversion table 34. The calculation unit 23 performs a weighted average processing. More specifically, as shown in FIG. 11, when the ratio of the output coordinates is n%, the ratio of the first input coordinates is corrected by the first input coordinates f (x, y) × n%. Further, the calculation unit 23 proportion-corrects the second input coordinate with the second input coordinate g (x, y) × (100% −n%). Further, the calculation unit 23 adds the first input coordinate after the ratio correction and the second input coordinate after the ratio correction to calculate the third input coordinate for each output coordinate. That is, the calculation unit 23 calculates the third input coordinate for each output coordinate by (Formula 1) of f (x, y) × n% + g (x, y) × (100% −n%). The calculation unit 23 refers to the ratio corresponding to the output coordinates in the ratio table 33, and for example, when the ratio of the output coordinates is 50%, the output coordinates are set to 50% of the first input coordinates corresponding to the output coordinates. Add 50% of the corresponding second input coordinates. Then, the calculation unit 23 calculates the added value as the third input coordinate, and stores the third input coordinate corresponding to the output coordinate in the third conversion table 34 as shown in FIG.

算出部23は、例えば、出力座標の割合が70%の場合、出力座標に対応する第1の入力座標の70%と、出力座標に対応する第2の入力座標の30%とを加算する。そして、算出部23は、その加算値を出力座標の第3の入力座標として算出し、図12に示すように出力座標に対応する第3の入力座標を第3の変換テーブル34内に記憶する。 For example, when the ratio of the output coordinates is 70%, the calculation unit 23 adds 70% of the first input coordinates corresponding to the output coordinates and 30% of the second input coordinates corresponding to the output coordinates. Then, the calculation unit 23 calculates the added value as the third input coordinate of the output coordinate, and stores the third input coordinate corresponding to the output coordinate in the third conversion table 34 as shown in FIG. ..

算出部23は、例えば、出力座標の割合が30%の場合、出力座標に対応する第1の入力座標の30%と、出力座標に対応する第2の入力座標の70%とを加算する。そして、算出部23は、その加算値を出力座標の第3の入力座標として算出し、図12に示すように出力座標に対応する第3の入力座標を第3の変換テーブル34内に記憶する。 For example, when the ratio of the output coordinates is 30%, the calculation unit 23 adds 30% of the first input coordinates corresponding to the output coordinates and 70% of the second input coordinates corresponding to the output coordinates. Then, the calculation unit 23 calculates the added value as the third input coordinate of the output coordinate, and stores the third input coordinate corresponding to the output coordinate in the third conversion table 34 as shown in FIG. ..

第3の変換部24は、第3の変換テーブル34を参照し、第3の画像領域43内の第3の歪を補正した第3の入力座標の画素値を第3の画像領域43内の出力座標の画素値として合成部25に出力する。 The third conversion unit 24 refers to the third conversion table 34, and sets the pixel value of the third input coordinate in the third image area 43 after correcting the third distortion in the third image area 43. It is output to the compositing unit 25 as a pixel value of the output coordinates.

つまり、第1の変換部21は、入力画像内の第1の画像領域41内の歪を補正した第1の入力座標の画素値を第1の画像領域41内の出力座標の画素値として合成部25に出力する。第2の変換部22は、入力画像内の第2の画像領域42内の歪を補正した第2の入力座標の画素値を第2の画像領域42内の出力座標の画素値として合成部25に出力する。第3の変換部24は、入力画像内の第3の画像領域43内の歪を補正した第3の入力座標の画素値を第3の画像領域43内の出力座標の画素値として合成部25に出力する。 That is, the first conversion unit 21 synthesizes the pixel value of the first input coordinate corrected for the distortion in the first image area 41 in the input image as the pixel value of the output coordinate in the first image area 41. Output to unit 25. The second conversion unit 22 uses the pixel value of the second input coordinate corrected for the distortion in the second image area 42 in the input image as the pixel value of the output coordinate in the second image area 42 as the composition unit 25. Output to. The third conversion unit 24 uses the pixel value of the third input coordinate corrected for distortion in the third image area 43 in the input image as the pixel value of the output coordinate in the third image area 43 as the composition unit 25. Output to.

合成部25は、第1の変換部21からの第1の画像領域41内の出力座標の画素値と、第2の変換部22からの第2の画像領域42内の出力座標の画素値と、第3の変換部24からの第3の画像領域43内の出力座標の画素値とを合成した出力画像をナビゲーション装置3に出力する。図13は、出力画像の一例を示す説明図である。尚、出力画像は、図13に示すように第1の歪を補正した第1の画像領域41と、第2の歪を補正した第2の画像領域42と、第3の歪を補正した第3の画像領域43とを含む画像である。出力画像は、例えば、第1の画像領域41と第2の画像領域42との間に第3の画像領域43が配置されることになる。 The compositing unit 25 includes the pixel values of the output coordinates in the first image area 41 from the first conversion unit 21 and the pixel values of the output coordinates in the second image area 42 from the second conversion unit 22. , The output image obtained by combining the pixel values of the output coordinates in the third image area 43 from the third conversion unit 24 is output to the navigation device 3. FIG. 13 is an explanatory diagram showing an example of an output image. As shown in FIG. 13, the output image has a first image region 41 corrected for the first distortion, a second image region 42 corrected for the second distortion, and a third image corrected for the third distortion. It is an image including the image area 43 of 3. In the output image, for example, a third image area 43 is arranged between the first image area 41 and the second image area 42.

そして、ナビゲーション装置3は、合成部25からの出力画像内の第1の画像領域41上のエリアに進路線50を描画し、図13に示すように、描画後の出力画像を表示装置4に出力する。尚、進路線50は、例えば、横幅が車幅程度の範囲、かつ、奥行きを2メートルの範囲とする。 Then, the navigation device 3 draws the advance route 50 in the area on the first image area 41 in the output image from the compositing unit 25, and as shown in FIG. 13, displays the drawn output image on the display device 4. Output. The traveling route 50 has, for example, a width of about the width of a vehicle and a depth of 2 meters.

次に前提技術の画像表示システム1の動作について説明する。尚、説明の便宜上、第1の変換テーブル31、第2の変換テーブル32、第3の変換テーブル34及び割合テーブル33の内容は事前に記憶されているものとする。 Next, the operation of the image display system 1 of the prerequisite technology will be described. For convenience of explanation, it is assumed that the contents of the first conversion table 31, the second conversion table 32, the third conversion table 34, and the ratio table 33 are stored in advance.

第1の変換部21は、第1の変換テーブル31を参照し、撮像素子12にて撮像された入力画像内の第1の画像領域41内の出力座標毎に、第1の歪を補正した第1の入力座標の画素値を第1の画像領域41内の出力座標の画素値として合成部25に出力する。第2の変換部22は、第2の変換テーブル32を参照し、撮像素子12にて撮像された入力画像内の第2の画像領域42内の出力座標毎に、第2の歪を補正した第2の入力座標の画素値を第2の画像領域42内の出力座標の画素値として合成部25に出力する。第3の変換部24は、第3の変換テーブル34を参照し、撮像素子12にて撮像された入力画像内の第3の画像領域43内の出力座標毎に、第3の歪を補正した第3の入力座標の画素値を第3の画像領域43内の出力座標の画素値として合成部25に出力する。 The first conversion unit 21 referred to the first conversion table 31 and corrected the first distortion for each output coordinate in the first image region 41 in the input image captured by the image sensor 12. The pixel value of the first input coordinate is output to the compositing unit 25 as the pixel value of the output coordinate in the first image area 41. The second conversion unit 22 referred to the second conversion table 32 and corrected the second distortion for each output coordinate in the second image region 42 in the input image captured by the image sensor 12. The pixel value of the second input coordinate is output to the compositing unit 25 as the pixel value of the output coordinate in the second image area 42. The third conversion unit 24 referred to the third conversion table 34 and corrected the third distortion for each output coordinate in the third image region 43 in the input image captured by the image sensor 12. The pixel value of the third input coordinate is output to the compositing unit 25 as the pixel value of the output coordinate in the third image area 43.

合成部25は、第1の変換部21からの第1の画像領域41内の出力座標の画素値と、第2の変換部22からの第2の画像領域42内の出力座標の画素値と、第3の変換部24からの第3の画像領域43内の出力座標の画素値とを合成して出力画像を生成する。合成部25は、生成した出力画像をナビゲーション装置3に出力する。ナビゲーション装置3は、合成部25からの出力画像内の第1の画像領域41のエリアに進路線50を描画し、進路線50を描画した出力画像を表示装置4に出力する。進路線50の生成にあたっては第1の画像領域41に適用されている第1の歪み補正と同じ補正処理を進路線50の元データに対し行う。その結果、利用者は、進路線50は出力画像上を車両がどのように進むかを出力画像上に重畳表示することができる。 The compositing unit 25 includes the pixel values of the output coordinates in the first image area 41 from the first conversion unit 21 and the pixel values of the output coordinates in the second image area 42 from the second conversion unit 22. , The pixel value of the output coordinates in the third image area 43 from the third conversion unit 24 is combined to generate an output image. The compositing unit 25 outputs the generated output image to the navigation device 3. The navigation device 3 draws the advance line 50 in the area of the first image area 41 in the output image from the compositing unit 25, and outputs the output image in which the advance line 50 is drawn to the display device 4. In generating the advance route 50, the same correction process as the first distortion correction applied to the first image area 41 is performed on the original data of the advance route 50. As a result, the user can superimpose and display on the output image how the vehicle travels on the output image of the route 50.

ナビゲーション装置3は、前述の通り歪曲収差のみを持つ、又は、歪を持たないような第1の歪み補正の画像部分において、進路線のデータに対し同様な画像変換を行なった進路線を重畳する。前述の通り、この画像変換を行うための変換テーブルは容量の小さいメモリに格納が可能なため、メモリ容量を小さくすることができる。メモリ容量増大に伴うコストアップは抑制される。 As described above, the navigation device 3 superimposes the forward route obtained by performing the same image conversion on the forward route data in the image portion of the first distortion correction having only distortion aberration or no distortion as described above. .. As described above, since the conversion table for performing this image conversion can be stored in a memory having a small capacity, the memory capacity can be reduced. The cost increase due to the increase in memory capacity is suppressed.

表示装置4では、実際に車両に搭載された撮像装置2のレンズ11の歪曲収差の画像に合致するように、実際に車両が進む進路線50のデータに対して画像変換処理を実行し、第1の画像領域41上に進路線50を描画して表示する。撮像装置2のレンズ11は、例えば、魚眼レンズであるため、撮像装置2で撮像する画像は、画角が水平180度以上の視野の歪曲収差の画像となる。しかしながら、ナビゲーション装置3では、進路線50が描画できるように、魚眼レンズではなく、従来のレンズで撮像した水平140度程度の視野の歪曲収差の画像に対応している。つまり、進路線50を描画する第1の画像領域41は、画角が水平140度程度の視野の歪曲収差の画像である。従って、魚眼レンズで撮像した画像と、ナビゲーション装置3で進路線50を描画可能にする画像とは、画角差によって歪曲収差の画像が異なることになる。 The display device 4 executes image conversion processing on the data of the traveling route 50 in which the vehicle actually travels so as to match the image of the distortion of the lens 11 of the image pickup device 2 actually mounted on the vehicle. The traveling route 50 is drawn and displayed on the image area 41 of 1. Since the lens 11 of the image pickup device 2 is, for example, a fisheye lens, the image captured by the image pickup device 2 is an image of distortion in a field of view having an angle of view of 180 degrees or more horizontally. However, the navigation device 3 corresponds to an image of distortion aberration in a field of view of about 140 degrees horizontally captured by a conventional lens instead of a fisheye lens so that the advance line 50 can be drawn. That is, the first image region 41 on which the advance line 50 is drawn is an image of distortion aberration in a field of view having an angle of view of about 140 degrees horizontally. Therefore, the image of the distortion aberration differs depending on the angle of view difference between the image captured by the fisheye lens and the image that enables the navigation device 3 to draw the advance line 50.

図14は、前提技術の撮像装置2で撮像した入力画像(原画像)の一例を示す説明図である。図14に示す画像は、撮像装置2のレンズ11である魚眼レンズで撮像した画像の一例であって、進路線50を描画するための所定画像領域Sを含む画像である。尚、図14に示す所定画像領域Sは、説明の便宜上、実際に地面に描かれた範囲であって、車両後端から奥行き50cmの線と、奥行き100cmの線と、奥行き200cmの線と、車幅を示す線とを含むものとする。 FIG. 14 is an explanatory diagram showing an example of an input image (original image) captured by the imaging device 2 of the prerequisite technology. The image shown in FIG. 14 is an example of an image captured by the fisheye lens which is the lens 11 of the image pickup apparatus 2, and is an image including a predetermined image region S for drawing the advance route 50. The predetermined image area S shown in FIG. 14 is a range actually drawn on the ground for convenience of explanation, and includes a line having a depth of 50 cm, a line having a depth of 100 cm, and a line having a depth of 200 cm from the rear end of the vehicle. It shall include a line indicating the vehicle width.

図15は、第1の歪補正後の画像の一例を示す説明図である。図15に示す画像は、図14に示す原画像内の画素毎に、第1の変換部21で第1の歪補正の画像処理を実行した画像である。図16は、第2の歪補正後の画像の一例を示す説明図である。図16に示す画像は、図14に示す原画像内の画素毎に、第2の変換部22で第2の歪補正の画像処理を実行した画像である。 FIG. 15 is an explanatory diagram showing an example of the image after the first distortion correction. The image shown in FIG. 15 is an image in which the image processing of the first distortion correction is executed by the first conversion unit 21 for each pixel in the original image shown in FIG. FIG. 16 is an explanatory diagram showing an example of the image after the second distortion correction. The image shown in FIG. 16 is an image in which the image processing of the second distortion correction is executed by the second conversion unit 22 for each pixel in the original image shown in FIG.

図17は、前提技術の第1の画像領域41と、第2の画像領域42と、第3の画像領域43とを明暗で表現した説明図である。図17に示す画像では、第1の画像領域41は白地、第2の画像領域42は黒地、第1の画像領域41と第2の画像領域42との境界である第3の画像領域43はグラデーションで表現した。白地は、輝度が100%であるため、第1の画像領域41であることを示す。黒地は、輝度が0%であるため、第2の画像領域42であることを示す。明暗が白である100%未満、かつ、黒である0%を超えている部分は、第3の画像領域43であることを示している。この明暗は第1の歪補正により出力される出力座標と画像と第2の歪補正により出力される出力座標とを加重平均し新たな出力座標とする第3の歪補正における加重平均の割合を示している。撮像装置2は、図17に示す明暗の割合に応じた割合テーブル33から第3の変換テーブル34を生成することになる。そして、撮像装置2は、第3の変換テーブル34を参照して、第1の画像領域41、第2の画像領域42及び第3の画像領域43内の画素毎に歪補正を実行する。 FIG. 17 is an explanatory diagram showing the first image region 41, the second image region 42, and the third image region 43 of the prerequisite technology in light and dark. In the image shown in FIG. 17, the first image area 41 is a white background, the second image area 42 is a black background, and the third image area 43, which is the boundary between the first image area 41 and the second image area 42, is Expressed in gradation. The white background indicates that it is the first image region 41 because the brightness is 100%. The black background indicates that it is the second image region 42 because the brightness is 0%. A portion where the light and darkness is less than 100% white and more than 0% black indicates that the third image region 43 is present. This lightness and darkness is the ratio of the weighted average in the third distortion correction, which is a new output coordinate by weighted averaging the output coordinates output by the first distortion correction and the image and the output coordinates output by the second distortion correction. Shown. The image pickup apparatus 2 will generate a third conversion table 34 from the ratio table 33 according to the ratio of light and dark shown in FIG. Then, the image pickup apparatus 2 refers to the third conversion table 34 and executes distortion correction for each pixel in the first image area 41, the second image area 42, and the third image area 43.

図18は、前提技術での視認性の良くない出力画像の一例を示す説明図である。図18に示す出力画像は、第1の変換部21からの第1の画像領域41内の出力座標の画素値と、第2の変換部22からの第2の画像領域42内の出力座標の画素値と、第3の変換部24からの第3の画像領域43内の出力座標の画素値とを合成した出力画像である。 FIG. 18 is an explanatory diagram showing an example of an output image having poor visibility in the prerequisite technique. The output image shown in FIG. 18 is the pixel value of the output coordinates in the first image area 41 from the first conversion unit 21 and the output coordinates in the second image area 42 from the second conversion unit 22. This is an output image obtained by synthesizing the pixel values and the pixel values of the output coordinates in the third image area 43 from the third conversion unit 24.

しかしながら、撮像装置2では、進路線50を描画する第1の画像領域41に従来のレンズの歪曲収差を残しながら、当該第1の画像領域41以外の領域(第2の画像領域42及び第3の画像領域43)に画像変換処理を実行したとする。この場合、第1の画像領域41は、ナビゲーション装置3で進路線50を描画可能にするように水平140度程度の視野の歪曲収差の画像となる。これに対して、第1の画像領域41以外の画像は、水平180度以上の視野の歪曲収差の画像となる。第1の画像領域41と第1の画像領域41以外の領域とでは画角差が生じる。従って、第1の画像領域41と、当該第1の画像領域41以外の領域(第2の画像領域42及び第3の画像領域43)との境界線付近では極端な歪みの変化が生じる。つまり、第1の画像領域41内の消失点付近の直線は、直線状ではなく歪んだ状態となる。その結果、境界線付近での極端な歪みの変化で画像の視認性が低下する。 However, in the image pickup apparatus 2, the regions other than the first image region 41 (second image regions 42 and third) while leaving the distortion of the conventional lens in the first image region 41 for drawing the traveling path 50. It is assumed that the image conversion process is executed in the image area 43) of. In this case, the first image area 41 is an image of distortion aberration in a field of view of about 140 degrees horizontally so that the navigation device 3 can draw the advance line 50. On the other hand, the image other than the first image region 41 is an image of distortion aberration in a field of view of 180 degrees or more horizontally. An angle of view difference occurs between the first image area 41 and the area other than the first image area 41. Therefore, an extreme change in distortion occurs in the vicinity of the boundary line between the first image region 41 and the region other than the first image region 41 (second image region 42 and third image region 43). That is, the straight line near the vanishing point in the first image area 41 is not a straight line but a distorted state. As a result, the visibility of the image is reduced due to the extreme change in distortion near the boundary line.

そこで、例えば、画像視認性の向上が図れる画像表示システム1を提供すべく、その実施の形態につき、実施例1として以下に説明する。尚、前提技術と同一の構成には、同一符号を付すことで、その重複する構成及び動作の説明については省略する。 Therefore, for example, in order to provide an image display system 1 capable of improving image visibility, an embodiment thereof will be described below as Example 1. The same configurations as those of the prerequisite technology are designated by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.

図19は、実施例1の撮像装置2Aの構成の一例を示す説明図である。図19に示す撮像装置2A内の制御部20は、第1の変換部21、第2の変換部22、算出部23、第3の変換部24及び合成部25を有する。撮像装置2A内の記憶部30は、第1の変換テーブル31、ディストーションテーブル31A、第2の変換テーブル32、割合テーブル33及び第3の変換テーブル34を有する。 FIG. 19 is an explanatory diagram showing an example of the configuration of the image pickup apparatus 2A of the first embodiment. The control unit 20 in the image pickup apparatus 2A shown in FIG. 19 includes a first conversion unit 21, a second conversion unit 22, a calculation unit 23, a third conversion unit 24, and a synthesis unit 25. The storage unit 30 in the image pickup apparatus 2A has a first conversion table 31, a distortion table 31A, a second conversion table 32, a ratio table 33, and a third conversion table 34.

第1の変換テーブル31は、例えば、原画像内の第1の画像領域41を補正し、補正後の第1αの画像領域41α内の画素値毎の入力座標及び出力座標を管理する変換テーブルである。補正後の第1αの画像領域41αは、図14に示す原画像から第1の画像領域41の範囲を縮小及び、上方向へ移動、図20に示すように、例えば、横に82.5%、縦に92.8%に縮小し、上方向に20ドット分移動した補正後の画像である。補正後の画像は、第1αの画像領域41αと、第2αの画像領域42αと、第3αの画像領域43αとを有する。その結果、第1αの画像領域41αと、第1αの画像領域41α以外の画像領域との間の境界線付近の画像の視認性が向上する。すなわち、第1αの画像領域41αは、境界線付近の画像の視認性が向上するように原画像から第1の画像領域41の範囲を補正する。 The first conversion table 31 is, for example, a conversion table that corrects the first image area 41 in the original image and manages the input coordinates and the output coordinates for each pixel value in the corrected image area 41α of the first α. is there. The corrected image region 41α of the first α reduces the range of the first image region 41 from the original image shown in FIG. 14 and moves upward, for example, 82.5% laterally as shown in FIG. This is a corrected image that has been reduced to 92.8% vertically and moved upward by 20 dots. The corrected image has a first α image region 41α, a second α image region 42α, and a third α image region 43α. As a result, the visibility of the image near the boundary line between the image region 41α of the first α and the image region other than the image region 41α of the first α is improved. That is, the image region 41α of the first α corrects the range of the first image region 41 from the original image so that the visibility of the image near the boundary line is improved.

割合テーブル33は、第1αの画像領域41α、第2αの画像領域42α及び第3αの画像領域43α内の画素毎の割合を定めたテーブルである。尚、割合は、第3の歪を補正した画素値の第3の入力座標を算出する際に使用する、出力座標毎の第1の入力座標及び第2の入力座標の加重平均の割合である。つまり、割合テーブル33は、第1αの画像領域41αを含む画像内の出力座標毎の第1の入力座標及び第2の入力座標の加重平均の割合を定めたものである。 The ratio table 33 is a table in which the ratio of each pixel in the image region 41α of the first α, the image region 42α of the second α, and the image region 43α of the third α is determined. The ratio is the ratio of the weighted average of the first input coordinate and the second input coordinate for each output coordinate used when calculating the third input coordinate of the pixel value corrected for the third distortion. .. That is, the ratio table 33 defines the ratio of the weighted average of the first input coordinates and the second input coordinates for each output coordinate in the image including the image region 41α of the first α.

算出部23は、第1の変換テーブル31を参照して、例えば、第1の歪を補正した画素値の第1の入力座標をf(x,y)で算出する。算出部23は、第2の変換テーブル32を参照して、例えば、第2の歪を補正した画素値の第2の入力座標をg(x,y)で算出する。算出部23は、割合テーブル33を参照して、例えば、第3の歪を補正した画素値の第3の入力座標を(数式1)で算出する。算出部23は、加重平均処理を行う。算出部23は、図15に示すように、割合テーブル33を参照し、出力座標の割合をn%とした場合、第1の入力座標f(x,y)×n%で第1の入力座標を割合補正する。更に、算出部23は、割合テーブル33を参照し、第2の入力座標g(x,y)×(100%−n%)で第2の入力座標を割合補正する。更に、算出部23は、割合補正後の第1の入力座標と割合補正後の第2の入力座標とを加算して第3の入力座標を出力座標毎に算出する。つまり、算出部23は、割合テーブル33を参照して、f(x,y)×n%+g(x,y)×(100%−n%)の(数式1)で第3の入力座標を出力座標毎に算出する。算出部23は、割合テーブル33内の出力座標に対応する割合を参照し、例えば、出力座標の割合が50%の場合、出力座標に対応する第1の入力座標の50%と、出力座標に対応する第2の入力座標の50%とを加算する。そして、算出部23は、その加算値を第3の入力座標として算出し、出力座標に対応する第3の入力座標を第3の変換テーブル34内に記憶することになる。 The calculation unit 23 refers to the first conversion table 31, and calculates, for example, the first input coordinates of the pixel value corrected for the first distortion by f (x, y). The calculation unit 23 refers to the second conversion table 32, and calculates, for example, the second input coordinates of the pixel value corrected for the second distortion by g (x, y). The calculation unit 23 refers to the ratio table 33 and calculates, for example, the third input coordinates of the pixel value corrected for the third distortion by (Equation formula 1). The calculation unit 23 performs a weighted average processing. As shown in FIG. 15, the calculation unit 23 refers to the ratio table 33, and when the ratio of the output coordinates is n%, the first input coordinates f (x, y) × n% are the first input coordinates. Percentage correction. Further, the calculation unit 23 refers to the ratio table 33 and corrects the ratio of the second input coordinate with the second input coordinate g (x, y) × (100% −n%). Further, the calculation unit 23 adds the first input coordinate after the ratio correction and the second input coordinate after the ratio correction to calculate the third input coordinate for each output coordinate. That is, the calculation unit 23 refers to the ratio table 33 and uses (formula 1) of f (x, y) × n% + g (x, y) × (100% −n%) to obtain the third input coordinate. Calculated for each output coordinate. The calculation unit 23 refers to the ratio corresponding to the output coordinates in the ratio table 33, and for example, when the ratio of the output coordinates is 50%, the output coordinates are set to 50% of the first input coordinates corresponding to the output coordinates. Add 50% of the corresponding second input coordinates. Then, the calculation unit 23 calculates the added value as the third input coordinate, and stores the third input coordinate corresponding to the output coordinate in the third conversion table 34.

図20は、第1の歪補正後の画像の一例を示す説明図である。図20に示す画像は、撮像装置2Aで撮像した原画像の第1の歪補正後の画像上の第1の画像領域41を補正した第1αの画像領域41αを含む画像である。第1の変換部21は、撮像装置2Aで撮像した原画像から第1の歪補正の処理を実行する。更に、第1の変換部21は、第1の歪補正後の原画像から第1の歪補正後の第1の画像領域41を補正して第1αの画像領域41αを得る。尚、第1αの画像領域41αは、例えば、第1の画像領域41の範囲を横に82.5%、縦に92.8%に縮小し、上方向に20ドット分移動した画像である。第1の画像領域41の縮小率、移動方向については、第1αの画像領域41αとの境界部分の見た目の不連続感が少なくなるように設計時に任意に調整する。第1の画像領域41の縮小率は100%以上の拡大としてもよいし、移動方向は上方向に限るものではなく、横や下、あるいは斜め方向のように、設計時に定めた所定の方向であればよい。 FIG. 20 is an explanatory diagram showing an example of the image after the first distortion correction. The image shown in FIG. 20 is an image including the image region 41α of the first α corrected for the first image region 41 on the image after the first distortion correction of the original image captured by the image pickup apparatus 2A. The first conversion unit 21 executes the first distortion correction process from the original image captured by the image pickup apparatus 2A. Further, the first conversion unit 21 corrects the first image region 41 after the first distortion correction from the original image after the first distortion correction to obtain the first image region 41α. The image region 41α of the first α is, for example, an image in which the range of the first image region 41 is reduced to 82.5% in the horizontal direction and 92.8% in the vertical direction and moved upward by 20 dots. The reduction ratio and the moving direction of the first image region 41 are arbitrarily adjusted at the time of design so as to reduce the visual discontinuity of the boundary portion with the image region 41α of the first α. The reduction ratio of the first image area 41 may be 100% or more, and the moving direction is not limited to the upward direction, but in a predetermined direction determined at the time of design, such as a horizontal direction, a downward direction, or an oblique direction. All you need is.

図21は、実施例1の第1αの画像領域41αと、第2αの画像領域42αと、第3αの画像領域43αとを明暗で表現した説明図である。図21に示す画像内の第1αの画像領域41αは白地、第2αの画像領域42αは黒地、第1αの画像領域41αと第2αの画像領域42αとの境界である第3αの画像領域43αはグラデーションで表現した。白地は、輝度が100%であるため、第1αの画像領域41αであることを示す。黒地は、輝度が0%であるため、第2αの画像領域42αであることを示す。明暗が白である100%未満、かつ、黒である0%を超えている部分は、第3αの画像領域43αであることを示している。この明暗は第1の歪補正により出力される出力座標と画像と第2の歪補正により出力される出力座標とを加重平均して新たな出力座標とする第3の歪補正における加重平均の割合を示している。 FIG. 21 is an explanatory diagram showing the image region 41α of the first α, the image region 42α of the second α, and the image region 43α of the third α in light and dark according to the first embodiment. In the image shown in FIG. 21, the first α image region 41α is a white background, the second α image region 42α is a black background, and the third α image region 43α, which is the boundary between the first α image region 41α and the second α image region 42α, is Expressed in gradation. The white background indicates that the image region 41α is the first α because the brightness is 100%. The black background indicates that the image region 42α is the second α because the brightness is 0%. The portion where the light and darkness is less than 100% white and exceeds 0% black indicates that the image region 43α of the third α. This lightness and darkness is the ratio of the weighted average in the third distortion correction to obtain a new output coordinate by weighted averaging the output coordinates output by the first distortion correction and the image and the output coordinates output by the second distortion correction. Is shown.

第1の変換部21は、第1の変換テーブル31を参照し、入力画像内の第1αの画像領域41α内の第1の歪を補正した第1の入力座標の画素値を第1αの画像領域41α内の出力座標の画素値として合成部25に出力する。第2の変換部22は、第2の変換テーブル32を参照し、入力画像内の第2αの画像領域42α内の第2の歪を補正した第2の入力座標の画素値を第2αの画像領域42α内の出力座標の画素値として合成部25に出力する。第3の変換部24は、第3の変換テーブル34を参照して、入力画像内の第3αの画像領域43α内の第3の歪を補正した第3の入力座標の画素値を第3αの画像領域43α内の出力座標の画素値として合成部25に出力する。 The first conversion unit 21 refers to the first conversion table 31, and sets the pixel value of the first input coordinate in the image region 41α of the first α in the input image as the image of the first α. It is output to the compositing unit 25 as a pixel value of the output coordinates in the region 41α. The second conversion unit 22 refers to the second conversion table 32, and sets the pixel value of the second input coordinates in the image region 42α of the second α in the input image as the image of the second α. It is output to the compositing unit 25 as a pixel value of the output coordinates in the region 42α. The third conversion unit 24 refers to the third conversion table 34 and sets the pixel value of the third input coordinate in the image region 43α of the third α in the input image as the third α. It is output to the compositing unit 25 as a pixel value of the output coordinates in the image area 43α.

合成部25は、第1の変換部21からの第1αの画像領域41α内の出力座標の画素値と、第2の変換部22からの第2αの画像領域42α内の出力座標の画素値と、第3の変換部24からの第3αの画像領域43α内の出力座標の画素値とを合成した出力画像をナビゲーション装置3に出力する。 The compositing unit 25 includes the pixel values of the output coordinates in the image region 41α of the first α from the first conversion unit 21 and the pixel values of the output coordinates in the image region 42α of the second α from the second conversion unit 22. , The output image obtained by combining the pixel values of the output coordinates in the image region 43α of the third α from the third conversion unit 24 is output to the navigation device 3.

図22は、撮像装置2Aで撮像した際の出力画像の一例を示す説明図である。尚、出力画像は、図22に示すように第1の歪を補正した第1αの画像領域41αと、第2の歪を補正した第2αの画像領域42αと、第3の歪を補正した第3αの画像領域43αとを含む画像である。出力画像は、例えば、第1αの画像領域41Aと第2αの画像領域42αとの間に第3αの画像領域43αが配置されることになる。合成部25は、入力画像を取得した場合でも、視認性の優れた出力画像を円滑に出力できる。図22に示す画像内の第1αの画像領域41α内の消失点付近の直線は、図18に比較して、ほぼ真っ直ぐな直線状態となる。その結果、境界線付近での歪みの変化が少なく、画像の視認性が向上する。そして、ナビゲーション装置3は、撮像した画像でも、合成部25からの出力画像内の第1αの画像領域41α上の範囲に進路線50を描画し、図22に示すように、描画後の出力画像を表示装置4に出力する。尚、ナビゲーション装置3は、実際の歪曲収差を有するレンズ画像と異なるものの、例えば、横方向82.5%、縦方向92.8%、上方向20ドット分移動等の補正量を用いて画面座標を修正して第1αの画像領域41α上に進路線50を描画する。 FIG. 22 is an explanatory diagram showing an example of an output image when the image pickup device 2A captures the image. As shown in FIG. 22, the output image has a first distortion-corrected image region 41α, a second distortion-corrected second α image region 42α, and a third distortion-corrected third image region. It is an image including the image region 43α of 3α. In the output image, for example, the image region 43α of the third α is arranged between the image region 41A of the first α and the image region 42α of the second α. Even when the input image is acquired, the compositing unit 25 can smoothly output an output image having excellent visibility. The straight line near the vanishing point in the image region 41α of the first α in the image shown in FIG. 22 is in a substantially straight straight line state as compared with FIG. As a result, there is little change in distortion near the boundary line, and the visibility of the image is improved. Then, the navigation device 3 draws the advance line 50 in the range on the image region 41α of the first α in the output image from the compositing unit 25 even in the captured image, and as shown in FIG. 22, the output image after drawing. Is output to the display device 4. Although the navigation device 3 is different from the lens image having the actual distortion, the screen coordinates are used, for example, by using correction amounts such as 82.5% in the horizontal direction, 92.8% in the vertical direction, and 20 dots in the upward direction. Is modified to draw the advance line 50 on the image area 41α of the first α.

実施例1の撮像装置2Aでは、第1の画像領域41の範囲を補正した補正後の第1αの画像領域41αを基本にして第2αの画像領域42α及び第3αの画像領域43αを特定する。更に、撮像装置2Aは、第1αの画像領域41α、第2αの画像領域42α及び第3αの画像領域43α内の画素毎の第1の入力座標及び第2の入力座標の割合を示す割合テーブル33を生成する。更に、撮像装置2Aは、割合テーブル33に基づき、第3の変換テーブル34を生成する。そして、撮像装置2Aは、第3の変換テーブル34を参照し、歪み補正の画像変換処理を実行する。その結果、撮像装置2Aは、第1の画像領域41と第1の画像領域41以外の画像領域とで画角差が生じた場合でも、撮像した入力画像から速やかに第1の歪補正、第2の歪補正及び第3の歪補正を円滑に実現できる。つまり、見やすい歪み補正としては不十分なレンズ自体の歪みだけを補正する部分を最小化でき、自然に見える領域が増えることで視認性を良好に保つことができる。 In the image pickup apparatus 2A of the first embodiment, the image region 42α of the second α and the image region 43α of the third α are specified based on the image region 41α of the first α after the correction of the range of the first image region 41. Further, the image pickup apparatus 2A is a ratio table 33 showing the ratio of the first input coordinates and the second input coordinates for each pixel in the image region 41α of the first α, the image region 42α of the second α, and the image region 43α of the third α. To generate. Further, the image pickup apparatus 2A generates a third conversion table 34 based on the ratio table 33. Then, the image pickup apparatus 2A refers to the third conversion table 34 and executes the image conversion process of distortion correction. As a result, the image pickup apparatus 2A promptly corrects the first distortion from the captured input image even when the angle of view difference occurs between the first image area 41 and the image areas other than the first image area 41. The second distortion correction and the third distortion correction can be smoothly realized. That is, it is possible to minimize the portion that corrects only the distortion of the lens itself, which is insufficient for easy-to-see distortion correction, and it is possible to maintain good visibility by increasing the area that looks natural.

つまり、撮像装置2Aでは、第1の画像領域41を補正した補正後の第1αの画像領域41αに基づき、第3の変換テーブル34を生成する。その結果、画角差が生じた場合でも、第1αの画像領域41αと第1αの画像領域41α以外の画像領域との境界線付近の画像の消失点付近の直線がほぼ真っ直ぐになる。従って、境界線付近の視認性が向上するため、視認性の良好が出力画像を出力できる。しかも、表示装置4では、出力座標と入力座標とを対応付けるテーブルが不要になるため、メモリ容量が小さくして製品のコストアップを抑制できる。 That is, the image pickup apparatus 2A generates the third conversion table 34 based on the corrected image region 41α of the first α after correcting the first image region 41. As a result, even when the angle of view difference occurs, the straight line near the vanishing point of the image near the boundary line between the image region 41α of the first α and the image region other than the image region 41α of the first α becomes substantially straight. Therefore, since the visibility near the boundary line is improved, the output image can be output with good visibility. Moreover, since the display device 4 does not require a table for associating the output coordinates with the input coordinates, the memory capacity can be reduced and the cost increase of the product can be suppressed.

尚、実施例1の撮像装置2Aでは、第1の画像領域41の範囲を補正する例として上方向に移動する場合を例示したが、上方向に限定されるものではなく、例えば、上下方向や左右方向等に適宜変更可能である。更に、撮像装置2Aでは、第1の画像領域41の範囲を縮小して移動する場合を例示したが、縮小や移動の何れか一方のみを実行しても良く、適宜変更可能である。また、撮像装置2Aでは、第1の画像領域41の範囲を拡大しても良く、また、拡大して移動しても良く、適宜変更可能である。また、撮像装置2Aでは、第1の画像領域41と第1の画像領域41以外の画像領域との境界線付近の画像の視認性が向上するように、第1の画像領域41の範囲を横方向に拡大して縦方向に縮小するように補正しても良く、適宜変更可能である。 In the image pickup apparatus 2A of the first embodiment, the case of moving upward is illustrated as an example of correcting the range of the first image region 41, but the case is not limited to the upward direction, and for example, the vertical direction or It can be changed in the left-right direction as appropriate. Further, in the image pickup apparatus 2A, the case where the range of the first image region 41 is reduced and moved is illustrated, but only one of the reduction and the movement may be executed, which can be changed as appropriate. Further, in the image pickup apparatus 2A, the range of the first image region 41 may be expanded or expanded and moved, and can be changed as appropriate. Further, in the image pickup apparatus 2A, the range of the first image area 41 is laterally extended so that the visibility of the image near the boundary line between the first image area 41 and the image area other than the first image area 41 is improved. It may be corrected so as to expand in the direction and decrease in the vertical direction, and can be changed as appropriate.

撮像装置2Aでは、第1の画像領域41の範囲を補正する場合を例示したが、例えば、第1の歪補正と異なる歪曲収差を残す第4の歪補正を施した画像に第1の画像領域41を置き換えても良く、その実施の形態につき、実施例2として以下に説明する。尚、実施例1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 In the image pickup apparatus 2A, the case where the range of the first image region 41 is corrected has been illustrated. For example, the first image region is obtained by applying the fourth distortion correction that leaves a distortion aberration different from that of the first distortion correction. 41 may be replaced, and the embodiment thereof will be described below as Example 2. By assigning the same reference numerals to the same configurations as in the first embodiment, the description of the overlapping configurations and operations will be omitted.

第1の変換部21は、原画像の第1の画像領域41の第1の歪補正と異なる歪曲収差を残す第4の歪補正を施した画像である第1βの画像領域41βを生成する。図23は、実施例2の第1の歪補正と異なる歪補正後の第1βの画像領域41βを含む画像の一例を示す説明図である。更に、第1の変換部21は、第1βの画像領域41βを、例えば、縦方向に1.5倍に拡大、上方向に137ドット分移動する補正する。第1の変換部21は、第1の画像領域41を補正後の第1βの画像領域41βに置き換える。図23に示す画像は、補正後の第1βの画像領域41βを含む画像である。 The first conversion unit 21 generates the image region 41β of the first β, which is an image subjected to the fourth distortion correction that leaves a distortion aberration different from that of the first distortion correction of the first image region 41 of the original image. FIG. 23 is an explanatory diagram showing an example of an image including the image region 41β of the first β after the distortion correction, which is different from the first distortion correction of the second embodiment. Further, the first conversion unit 21 corrects the image region 41β of the first β, for example, by enlarging it by 1.5 times in the vertical direction and moving it by 137 dots in the upward direction. The first conversion unit 21 replaces the first image region 41 with the corrected image region 41β of the first β. The image shown in FIG. 23 is an image including the corrected image region 41β of the first β.

図24は、第1の歪補正と異なる歪補正後の第1βの画像領域41βと、第2αの画像領域42αと、第3αの画像領域43αとを明暗で表現した説明図である。図24に示す画像内の第1βの画像領域41βは白地、第2αの画像領域42αは黒地、第1βの画像領域41βと第2αの画像領域42αとの境界である第3αの画像領域43αはグラデーションで表現した。白地は、輝度が100%であるため、第1βの画像領域41βであることを示す。黒地は、輝度が0%であるため、第2αの画像領域42αであることを示す。明暗が白である100%未満、かつ、黒である0%を超えている部分は、第3αの画像領域43αであることを示している。この明暗は第1の歪補正により出力される出力座標と画像と第2の歪補正により出力される出力座標とを入力とし、その入力を加重平均して新たな出力座標とする第3の歪補正における加重平均の割合を示している。 FIG. 24 is an explanatory diagram showing the image region 41β of the first β after the distortion correction different from the first distortion correction, the image region 42α of the second α, and the image region 43α of the third α in light and dark. In the image shown in FIG. 24, the first β image region 41β is a white background, the second α image region 42α is a black background, and the third α image region 43α, which is the boundary between the first β image region 41β and the second α image region 42α, is Expressed in gradation. The white background indicates that the image region is 41β of the first β because the brightness is 100%. The black background indicates that the image region 42α is the second α because the brightness is 0%. The portion where the light and darkness is less than 100% white and exceeds 0% black indicates that the image region 43α of the third α. This light and darkness uses the output coordinates output by the first distortion correction, the image, and the output coordinates output by the second distortion correction as inputs, and the inputs are weighted and averaged to obtain new output coordinates. It shows the percentage of the weighted average in the correction.

第1の変換部21は、第4の歪補正を施した第1βの画像領域41β内の入力座標の画素値を第1βの画像領域41β内の出力座標の画素値として合成部25に出力する。第2の変換部22は、第2の変換テーブル32を参照し、入力画像内の第2αの画像領域42α内の第2の歪を補正した第2の入力座標の画素値を第2αの画像領域42α内の出力座標の画素値として合成部25に出力する。第3の変換部24は、第3の変換テーブル34を参照して、入力画像内の第3αの画像領域43α内の第3の歪を補正した第3の入力座標の画素値を第3αの画像領域43α内の出力座標の画素値として合成部25に出力する。 The first conversion unit 21 outputs the pixel value of the input coordinate in the image region 41β of the first β subjected to the fourth distortion correction to the synthesis unit 25 as the pixel value of the output coordinate in the image region 41β of the first β. .. The second conversion unit 22 refers to the second conversion table 32, and sets the pixel value of the second input coordinates in the image region 42α of the second α in the input image as the image of the second α. It is output to the compositing unit 25 as a pixel value of the output coordinates in the region 42α. The third conversion unit 24 refers to the third conversion table 34 and sets the pixel value of the third input coordinate in the image region 43α of the third α in the input image as the third α. It is output to the compositing unit 25 as a pixel value of the output coordinates in the image area 43α.

合成部25は、第1の変換部21からの第1βの画像領域41β内の出力座標の画素値と、第2の変換部22からの第2αの画像領域42α内の出力座標の画素値と、第3の変換部24からの第3αの画像領域43α内の出力座標の画素値とを合成した出力画像をナビゲーション装置3に出力する。 The compositing unit 25 includes the pixel values of the output coordinates in the image region 41β of the first β from the first conversion unit 21 and the pixel values of the output coordinates in the image region 42α of the second α from the second conversion unit 22. , The output image obtained by combining the pixel values of the output coordinates in the image region 43α of the third α from the third conversion unit 24 is output to the navigation device 3.

図25は、撮像装置2Aで撮像した際の出力画像の一例を示す説明図である。尚、出力画像は、図25に示すように第1βの画像領域41βと、第2の歪を補正した第2αの画像領域42αと、第3の歪を補正した第3αの画像領域43αとを含む画像である。出力画像は、例えば、第1βの画像領域41βと第2αの画像領域42αとの間に第3αの画像領域43αが配置されることになる。合成部25は、視認性の優れた出力画像を円滑に出力できる。図25に示す画像内の第1βの画像領域41β内の消失点付近の直線は、図18に比較して、ほぼ真っ直ぐな直線状態となる。その結果、境界線付近での歪みの変化が少なく、画像の視認性が向上する。そして、ナビゲーション装置3は、撮像した画像でも、合成部25からの出力画像内の第1βの画像領域41β上に進路線50を描画し、図25に示すように、描画後の出力画像を表示装置4に出力する。 FIG. 25 is an explanatory diagram showing an example of an output image when the image pickup device 2A captures the image. As shown in FIG. 25, the output image includes an image region 41β of the first β, an image region 42α of the second α corrected for the second distortion, and an image region 43α of the third α corrected for the third distortion. It is an image including. In the output image, for example, the image region 43α of the third α is arranged between the image region 41β of the first β and the image region 42α of the second α. The compositing unit 25 can smoothly output an output image having excellent visibility. The straight line near the vanishing point in the image region 41β of the first β in the image shown in FIG. 25 is in a substantially straight straight line state as compared with FIG. As a result, there is little change in distortion near the boundary line, and the visibility of the image is improved. Then, the navigation device 3 draws the advance line 50 on the image region 41β of the first β in the output image from the compositing unit 25 even in the captured image, and displays the output image after drawing as shown in FIG. 25. Output to device 4.

実施例2の撮像装置2Aでは、第1の歪補正と異なる第4の歪補正の第1βの画像領域41βを生成し、第1の画像領域41を第1βの画像領域41βに置き換える。更に、撮像装置2Aは、第1βの画像領域41βを基本にして第2αの画像領域42α及び第3αの画像領域43αを特定する。更に、撮像装置2Aは、第1βの画像領域41β、第2αの画像領域42α及び第3αの画像領域43α内の画素毎の第1の入力座標及び第2の入力座標の割合を示す割合テーブル33を生成する。更に、撮像装置2Aは、割合テーブル33に基づき、第3の変換テーブル34を生成する。そして、撮像装置2Aは、第3の変換テーブル34を参照し、歪み補正の画像変換処理を実行する。その結果、撮像装置2Aは、第1の画像領域41と第1の画像領域41以外の画像領域とで画角差が生じた場合でも、撮像した入力画像から速やかに第1の歪補正、第2の歪補正及び第3の歪補正を円滑に実現できる。つまり、見やすい歪み補正としては不十分なレンズ自体の歪みだけを補正する部分を最小化でき、自然に見える領域が増えることで視認性を良好に保つことができる。 In the image pickup apparatus 2A of the second embodiment, the image region 41β of the first β of the fourth distortion correction different from the first distortion correction is generated, and the first image region 41 is replaced with the image region 41β of the first β. Further, the image pickup apparatus 2A identifies the image region 42α of the second α and the image region 43α of the third α based on the image region 41β of the first β. Further, the image pickup apparatus 2A is a ratio table 33 showing the ratio of the first input coordinates and the second input coordinates for each pixel in the image region 41β of the first β, the image region 42α of the second α, and the image region 43α of the third α. To generate. Further, the image pickup apparatus 2A generates a third conversion table 34 based on the ratio table 33. Then, the image pickup apparatus 2A refers to the third conversion table 34 and executes the image conversion process of distortion correction. As a result, the image pickup apparatus 2A promptly corrects the first distortion from the captured input image even when the angle of view difference occurs between the first image area 41 and the image areas other than the first image area 41. The second distortion correction and the third distortion correction can be smoothly realized. That is, it is possible to minimize the portion that corrects only the distortion of the lens itself, which is insufficient for easy-to-see distortion correction, and it is possible to maintain good visibility by increasing the area that looks natural.

つまり、撮像装置2Aでは、第1の歪補正と異なる第4の歪補正の第1βの画像領域41βに基づき、第3の変換テーブル34を生成する。その結果、画角差が生じた場合でも、第1βの画像領域41βと第1βの画像領域41β以外の画像領域との境界線付近の画像の消失点付近の直線がほぼ真っ直ぐになる。従って、境界線付近の視認性が向上するため、視認性の良好な出力画像を出力できる。しかも、表示装置4では、出力座標と入力座標とを対応付けるテーブルが不要になるため、メモリ容量が小さくして製品のコストアップを抑制できる。 That is, the image pickup apparatus 2A generates the third conversion table 34 based on the image region 41β of the first β of the fourth distortion correction different from the first distortion correction. As a result, even when the angle of view difference occurs, the straight line near the vanishing point of the image near the boundary line between the image region 41β of the first β and the image region other than the image region 41β of the first β becomes substantially straight. Therefore, since the visibility near the boundary line is improved, it is possible to output an output image with good visibility. Moreover, since the display device 4 does not require a table for associating the output coordinates with the input coordinates, the memory capacity can be reduced and the cost increase of the product can be suppressed.

撮像装置2Aでは、例えば、縦列駐車中であることを認識し、全く異なる位置に描画される進路線50に対応する場合にも適用可能である。 The image pickup apparatus 2A can also be applied to, for example, the case of recognizing that the vehicle is parallel parked and corresponding to the advance route 50 drawn at a completely different position.

撮像装置2(2A)では、撮像装置2(2A)内のRAM15に第3の変換テーブル34等の記憶部30を格納した。しかしながら、RAM15に限定されるものではなく、例えば、撮像装置2(2A)と外部接続可能な図示せぬ記憶装置に格納しても良く、適宜変更可能である。 In the image pickup apparatus 2 (2A), the storage unit 30 such as the third conversion table 34 is stored in the RAM 15 in the image pickup apparatus 2 (2A). However, it is not limited to the RAM 15, and may be stored in, for example, a storage device (not shown) that can be externally connected to the image pickup device 2 (2A), and can be changed as appropriate.

撮像装置2(2A)は、図14に示す記憶部30内に各種テーブルを内蔵したが、事前に第3の変換テーブル34のテーブル内容が格納されている場合には、記憶部30内に第3の変換テーブル34のみの内蔵でも良く、適宜変更可能である。 The image pickup apparatus 2 (2A) has various tables built in the storage unit 30 shown in FIG. 14, but if the table contents of the third conversion table 34 are stored in advance, the image pickup device 2 (2A) has the table contents in the storage unit 30. Only the conversion table 34 of 3 may be built-in and can be changed as appropriate.

撮像装置2(2A)では、第1の変換テーブル31、第2の変換テーブル32、第3の変換テーブル34及び割合テーブル33を使用した。しかしながら、出力座標毎に、第1の歪を補正した画素値の第1の入力座標を算出するための関数f、第2の歪を補正した画素値の第2の入力座標を算出するための関数g、第3の歪を補正した画素値の入力座標を算出する(数式1)を記憶しても良い。 In the image pickup apparatus 2 (2A), the first conversion table 31, the second conversion table 32, the third conversion table 34, and the ratio table 33 were used. However, for each output coordinate, a function f for calculating the first input coordinate of the pixel value corrected with the first distortion, and a second input coordinate of the pixel value corrected with the second distortion are calculated. The function g and the input coordinates of the pixel value corrected for the third distortion may be stored (Formula 1).

この場合、撮像装置2(2A)では、第1の変換テーブル31、第2の変換テーブル32、第3の変換テーブル34及び割合テーブル33を準備しなくても、関数f、関数g及び数式1で、第1の歪補正、第2の歪補正及び第3の歪補正を施した画素値の入力座標を算出する。そして、撮像装置2(2A)は、第1の歪を補正した第1αの画像領域41α内の出力座標の画素値と、第2の歪を補正した第2αの画像領域42α内の出力座標の画素値と、第3の歪を補正した第3αの画像領域43α内の出力座標の画素値とを含む出力画像をナビゲーション装置3に出力する。 In this case, in the image pickup apparatus 2 (2A), the function f, the function g, and the equation 1 do not need to prepare the first conversion table 31, the second conversion table 32, the third conversion table 34, and the ratio table 33. Then, the input coordinates of the pixel values subjected to the first distortion correction, the second distortion correction, and the third distortion correction are calculated. Then, the image pickup apparatus 2 (2A) has the pixel values of the output coordinates in the image region 41α of the first α corrected for the first distortion and the output coordinates in the image region 42α of the second α corrected for the second distortion. An output image including the pixel value and the pixel value of the output coordinates in the image region 43α of the third α corrected for the third distortion is output to the navigation device 3.

尚、上記実施例では、撮像装置2(2A)内のRAM15等に入力画像を記憶したが、撮像装置2(2A)と接続する外部の記憶装置に入力画像を記憶しても良く、適宜変更可能である。 In the above embodiment, the input image is stored in the RAM 15 or the like in the image pickup device 2 (2A), but the input image may be stored in an external storage device connected to the image pickup device 2 (2A). It is possible.

上記実施例では、例えば、第2の歪補正を特許文献1により歪み補正とし説明したが、これらの歪に限定されるものではなく、利用者が見易い他の補正方法を採用してもよい。 In the above embodiment, for example, the second distortion correction has been described as distortion correction according to Patent Document 1, but the distortion is not limited to these distortions, and other correction methods that are easy for the user to see may be adopted.

上記実施例では、第1の画像領域41(第1αの画像領域41α)内の第1の歪補正、第2の画像領域42(第2αの画像領域42α)内の第2の歪補正、第3の画像領域43(第3αの画像領域43α)内の第3の歪補正を実行する歪補正処理(画像処理)を撮像装置2(2A)内の画像処理プロセッサ13で実行した。しかしながら、撮像装置2(2A)と接続する外部装置、例えば、ナビゲーション装置3に歪補正処理を実行しても良く、適宜変更可能である。 In the above embodiment, the first distortion correction in the first image area 41 (the image area 41α of the first α), the second distortion correction in the second image area 42 (the image area 42α of the second α), and the second. The image processing processor 13 in the image pickup apparatus 2 (2A) executed the distortion correction process (image processing) for executing the third distortion correction in the image area 43 (image area 43α of the third α) of 3. However, the distortion correction process may be executed on an external device connected to the image pickup device 2 (2A), for example, the navigation device 3, and can be changed as appropriate.

上記実施例では、第1の変換部21で第1の歪補正、第2の変換部22で第2の歪補正、第3の変換部24で第3の歪補正を実行した。しかしながら、これら第1の歪補正、第2の歪補正及び第3の歪補正を順不同で順次実行、若しくは並列に実行しても良く、適宜変更可能である。 In the above embodiment, the first conversion unit 21 executes the first distortion correction, the second conversion unit 22 performs the second distortion correction, and the third conversion unit 24 executes the third distortion correction. However, the first distortion correction, the second distortion correction, and the third distortion correction may be executed sequentially in no particular order or in parallel, and can be changed as appropriate.

上記実施例のナビゲーション装置3は、撮像装置2(2A)内のディストーションテーブル31Aを使用して第1αの画像領域41αのエリアに進路線50を描画した。しかしながら、ナビゲーション装置3内に第1の変換テーブル31を別途設けても良く、適宜変更可能である。 The navigation device 3 of the above embodiment uses the distortion table 31A in the image pickup device 2 (2A) to draw the advance line 50 in the area of the image region 41α of the first α. However, the first conversion table 31 may be separately provided in the navigation device 3, and can be changed as appropriate.

上記実施例では、第1の歪を補正した第1の画像領域41(第1αの画像領域41α)を含む出力画像に進路線50を描画したが、進路線50に限定されるものではなく、例えば、固定の進路線等の線を描画しても良く、適宜変更可能である。 In the above embodiment, the advance line 50 is drawn on the output image including the first image area 41 (the image area 41α of the first α) in which the first distortion is corrected, but the advance line 50 is not limited to the advance line 50. For example, a line such as a fixed route may be drawn and can be changed as appropriate.

2A 撮像装置
13 画像処理プロセッサ
21 第1の変換部
22 第2の変換部
23 算出部
24 第3の変換部
25 合成部
31 第1の変換テーブル
32 第2の変換テーブル
33 割合テーブル
34 第3の変換テーブル
2A Imaging device 13 Image processing processor 21 First conversion unit 22 Second conversion unit 23 Calculation unit 24 Third conversion unit 25 Synthesis unit 31 First conversion table 32 Second conversion table 33 Ratio table 34 Third Conversion table

Claims (8)

入力画像を画像変換し出力画像を出力する画像処理装置であって、
前記入力画像の第1の画像領域内の画素毎に第1の歪補正を施し画像とし、当該第1の歪補正が施された画像内の画素毎に補正を施し画像として出力する第1の変換部と、
前記入力画像の第2の画像領域内の画素毎に第2の歪補正を施し画像として出力する第2の変換部と、
前記入力画像の第3の画像領域内の画素毎に第3の歪補正を施し画像として出力する第3の変換部と、
前記第1の変換部からの画像出力と、前記第2の変換部からの画像出力と、前記第3の変換部からの画像出力とから前記出力画像を生成し出力する合成部と、
を有し、
前記出力画像は、前記第1の変換部からの出力された画像と前記第2の変換部からの出力された画像との間に前記第3の変換部からの出力された画像が配置され、前記第1の変換部からの出力された画像は歪曲収差のみを持つ、又は、歪みを持たない画像であることを特徴とする画像処理装置。
An image processing device that converts an input image into an image and outputs an output image.
A first distortion correction is applied to each pixel in the first image region of the input image to obtain an image, and each pixel in the image to which the first distortion correction is applied is corrected and output as an image. Conversion part and
A second conversion unit that performs a second distortion correction for each pixel in the second image area of the input image and outputs the image as an image.
A third conversion unit that performs a third distortion correction for each pixel in the third image area of the input image and outputs the image as an image.
An image output from the first conversion unit, an image output from the second conversion unit, and a composition unit that generates and outputs the output image from the image output from the third conversion unit.
Have,
In the output image, the image output from the third conversion unit is arranged between the image output from the first conversion unit and the image output from the second conversion unit. An image processing apparatus characterized in that the image output from the first conversion unit is an image having only distortion or no distortion.
前記第1の変換部は、
前記第1の画像領域内の消失点付近の直線が直線状になるように前記画像内の画素を補正することを特徴とする請求項1に記載の画像処理装置。
The first conversion unit is
The image processing apparatus according to claim 1, wherein the pixels in the image are corrected so that the straight line near the vanishing point in the first image region becomes a straight line.
前記第1の変換部は、
前記第1の歪補正が施された前記画像を拡大又は縮小するように補正することを特徴とする請求項1又は2に記載の画像処理装置。
The first conversion unit is
The image processing apparatus according to claim 1 or 2, wherein the image to which the first distortion correction has been applied is corrected so as to be enlarged or reduced.
前記第1の変換部は、
前記第1の歪補正が施された前記画像を所定方向に移動するように補正することを特徴とする請求項1又は2に記載の画像処理装置。
The first conversion unit is
The image processing apparatus according to claim 1 or 2, wherein the image to which the first distortion correction has been applied is corrected so as to move in a predetermined direction.
前記入力画像は、被写体と、前記被写体からの光を集光するレンズと、前記集光された光が結像する撮像素子とから生成され、
前記第1の変換部は、
前記第1の画像領域を前記レンズの第1の歪補正と異なる歪曲収差を残す第4の歪補正を施した画像に置き換えるように補正することを特徴とする請求項1又は2に記載の画像処理装置。
The input image is generated from a subject, a lens that collects light from the subject, and an image sensor that forms an image of the collected light.
The first conversion unit is
The image according to claim 1 or 2, wherein the first image region is corrected so as to replace the image with a fourth distortion correction that leaves a distortion aberration different from that of the first distortion correction of the lens. Processing equipment.
前記入力画像は、被写体と、被写体からの光を集光するレンズと、前記集光された光が結像する撮像素子とから生成され、
前記第2の変換部は、
前記レンズの光軸に向かう直線状の前記被写体と、縦方向に直線の前記被写体とを前記出力画像内でほぼ直線状となり、かつ、横方向に直線の前記被写体を、前記出力画像の中央部分、及び同中央部分と左右に連なる左側部分と右側部分とでほぼ直線状に、また、前記出力画像の中央部分と、左側部分及び右側部分との境目付近で屈曲するように歪補正すること特徴とする請求項1又は2に記載の画像処理装置。
The input image is generated from a subject, a lens that collects light from the subject, and an image sensor that forms an image of the collected light.
The second conversion unit is
The subject that is linear toward the optical axis of the lens and the subject that is linear in the vertical direction are substantially linear in the output image, and the subject that is linear in the horizontal direction is the central portion of the output image. , And the left side portion and the right side portion connected to the left and right sides of the center portion are substantially linear, and the distortion is corrected so as to bend near the boundary between the center portion of the output image and the left side portion and the right side portion. The image processing apparatus according to claim 1 or 2.
前記第3の変換部は、
前記入力画像の画素毎に前記第1の歪補正を施し得られた出力と前記第2の歪補正を施し得られた出力とを加重平均し出力することを特徴とする請求項1又は2に記載の画像処理装置。
The third conversion unit is
The first or second claim is characterized in that the output obtained by applying the first distortion correction and the output obtained by applying the second distortion correction are weighted averaged and output for each pixel of the input image. The image processing apparatus described.
前記第1の画像領域内に進路線を描画することを特徴とする請求項1又は2に記載の画像処理装置。 The image processing apparatus according to claim 1 or 2, wherein a route is drawn in the first image area.
JP2019233403A 2019-12-24 2019-12-24 Image processing device Active JP7456153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019233403A JP7456153B2 (en) 2019-12-24 2019-12-24 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233403A JP7456153B2 (en) 2019-12-24 2019-12-24 Image processing device

Publications (2)

Publication Number Publication Date
JP2021103365A true JP2021103365A (en) 2021-07-15
JP7456153B2 JP7456153B2 (en) 2024-03-27

Family

ID=76755119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233403A Active JP7456153B2 (en) 2019-12-24 2019-12-24 Image processing device

Country Status (1)

Country Link
JP (1) JP7456153B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661829B2 (en) 2007-06-14 2011-03-30 株式会社富士通ゼネラル Image data conversion device and camera device provided with the same
JP2010109483A (en) 2008-10-28 2010-05-13 Honda Motor Co Ltd Vehicle-surroundings displaying method
JP7081265B2 (en) 2018-03-29 2022-06-07 株式会社富士通ゼネラル Image processing equipment

Also Published As

Publication number Publication date
JP7456153B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP4874280B2 (en) Image processing apparatus and method, driving support system, and vehicle
JP4975592B2 (en) Imaging device
JP6569742B2 (en) Projection system, image processing apparatus, projection method, and program
JP3871614B2 (en) Driving assistance device
KR100966288B1 (en) Around image generating method and apparatus
JP4257356B2 (en) Image generating apparatus and image generating method
JP4104631B2 (en) Driving support device
WO2009116327A1 (en) Image processing device and method, driving support system, and vehicle
JP4560716B2 (en) Vehicle periphery monitoring system
JP4976685B2 (en) Image processing device
US9852494B2 (en) Overhead image generation apparatus
JP7081265B2 (en) Image processing equipment
JPWO2008087707A1 (en) VEHICLE IMAGE PROCESSING DEVICE AND VEHICLE IMAGE PROCESSING PROGRAM
JP5555101B2 (en) Image correction apparatus, corrected image generation method, and corrected image generation program
US20100245607A1 (en) Video processing apparatus
KR20100081964A (en) Around image generating method and apparatus
JP2011105306A (en) Display device for vehicle
JP2009075646A (en) Video display system and parameter generation method of same
JP2020052671A (en) Display control device, vehicle, and display control method
JP4934579B2 (en) Driving assistance device
JP7456153B2 (en) Image processing device
JP2019149143A (en) Image synthesizing device and control method
US20220222947A1 (en) Method for generating an image of vehicle surroundings, and apparatus for generating an image of vehicle surroundings
JP5049304B2 (en) Device for displaying an image around a vehicle
JP2021068055A (en) Image processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R151 Written notification of patent or utility model registration

Ref document number: 7456153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151