JP2021102429A - Extraction method for propeller blade number characteristic based on radiation noise modulation - Google Patents

Extraction method for propeller blade number characteristic based on radiation noise modulation Download PDF

Info

Publication number
JP2021102429A
JP2021102429A JP2020127834A JP2020127834A JP2021102429A JP 2021102429 A JP2021102429 A JP 2021102429A JP 2020127834 A JP2020127834 A JP 2020127834A JP 2020127834 A JP2020127834 A JP 2020127834A JP 2021102429 A JP2021102429 A JP 2021102429A
Authority
JP
Japan
Prior art keywords
frequency
propeller
determining
modulation
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020127834A
Other languages
Japanese (ja)
Other versions
JP6836041B1 (en
Inventor
初寧
Ning Chu
王宇軒
Yuxuan Wang
童威棋
Weiqi Tong
鐘尭
Yao Zhong
呉大転
Dazhuan Wu
楊帥
Shuai Yang
黄濱
Bin Huang
武鵬
Peng Wu
曹琳琳
Linlin Cao
秦世傑
Shijie Qin
李詩▲やん▼
Shiyang Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Application granted granted Critical
Publication of JP6836041B1 publication Critical patent/JP6836041B1/en
Publication of JP2021102429A publication Critical patent/JP2021102429A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Complex Calculations (AREA)

Abstract

To provide a method for extracting characteristic amount information of a propeller axis frequency, a blade frequency, and a propeller blade number by a voice sensor for determining a vessel type in a simple operation.SOLUTION: An extraction method includes: (1) a step of collecting radiation noise signals of a vessel and acquiring a modulation spectrum diagram by Fourier transformation; (2) a step S01 of searching for a local peak in a modulation diagram and acquiring a resonance frequency in a local peak position; (3) a step S02 of determining the resonance frequency in a first local peak in the modulation diagram, determining an axis frequency, and determining the number N of the resonance frequency based on the number of local peaks; (4) a step S03 of determining a multiplication relation between the axis frequency and a blade frequency and determining other resonance frequencies; and (5) a step S04 of determining an average spectrum coherent value for each higher harmonic frequency position, a step S05 of acquiring a propeller blade number by assumption method of naive Bayes, and a step of finally determining the blade frequency.SELECTED DRAWING: Figure 1

Description

本発明は、信号の周波数成分の抽出の技術領域に関し、特に輻射ノイズ変調に基づくプロ
ペラ翼数特徴の抽出方法に関する。
The present invention relates to a technical area for extracting frequency components of a signal, and more particularly to a method for extracting propeller blade number features based on radiation noise modulation.

船舶の輻射ノイズは、回転翼(プロペラ)の回転際におけるキャビテーション・ノイズに
より引き起こされる。船舶の輻射ノイズの変調スペクトルは船舶のプロペラ翼数の特徴情
報を含む。各共振周波数と振幅の関係を分析することにより、船舶プロペラの軸周波数、
翼周波数およびプロペラ翼数の特徴量を抽出することができる。
Radiation noise of a ship is caused by cavitation noise during rotation of a rotor blade (propeller). The modulation spectrum of the ship's radiation noise includes characteristic information on the number of propeller blades of the ship. By analyzing the relationship between each resonance frequency and amplitude, the shaft frequency of the ship propeller,
The features of the blade frequency and the number of propeller blades can be extracted.

民船のプロペラの軸周波数、k翼周波数およびプロペラ翼数の特徴量情報が獲得可能であ
れば、船舶型番の判断に寄与する。海に沿っては密輸・密航などがある。音声センサーに
より船舶のノイズ情報を捕捉し、フーリエ変換により変調スペクトルを取得し、プロペラ
の軸周波数、翼周波数およびプロペラ翼数の特徴量情報を抽出できれば、監督者が船舶の
種類を判断できる。
If the feature quantity information of the propeller shaft frequency, k blade frequency, and propeller blade number of a private ship can be obtained, it will contribute to the determination of the ship model number. There are smuggling and stowaways along the sea. If the noise information of the ship is captured by the voice sensor, the modulation spectrum is acquired by the Fourier transform, and the feature quantity information of the shaft frequency, the blade frequency and the number of propeller blades of the propeller can be extracted, the supervisor can judge the type of the ship.

従来、世界では以下のような識別方法が使用されている。変調スペクトルを取得し、変調
スペクトルから幅値のピークおよびピーク位置の共振周波数を読み込む。プロペラ翼数特
徴識別規則(表1)に基づいて、変調スペクトルにおける共振周波数および振幅からプロ
ペラ翼数特徴値を抽出する。P(n)は軸周波数のn番目高調波線スペクトルの幅値を示
す。

Figure 2021102429
Conventionally, the following identification methods have been used in the world. The modulation spectrum is acquired, and the resonance frequency of the peak of the width value and the peak position is read from the modulation spectrum. Based on the propeller blade number feature identification rule (Table 1), the propeller blade number feature value is extracted from the resonance frequency and amplitude in the modulation spectrum. P (n) indicates the width value of the nth harmonic line spectrum of the axis frequency.

Figure 2021102429

ところが、船舶の構造、動作状況や環境などによっては、変調スペクトルの構成が複雑で
あり、識別規則に基づいては典型的な場合しか識別できなく、すべての変調スペクトル構
成は適用不可能である。例えば

Figure 2021102429
になった場合、表1のすべてのプロペラ翼数識別規則の条件は満たされるため、プロペラ
翼数を識別できない。 However, the configuration of the modulation spectrum is complicated depending on the structure, operating conditions, environment, etc. of the ship, and only a typical case can be identified based on the discrimination rule, and all the modulation spectrum configurations are not applicable. For example
Figure 2021102429
If, the conditions of all the propeller blade number identification rules in Table 1 are satisfied, and the propeller blade number cannot be identified.

中国特許出願201910790217.Xにおいて、回転翼特徴の抽出方法に関して、
回転翼キャビテーション後流微細特徴の多次元統計モデリング方法が開示されたが、抽出
特徴は回転翼の幾何学パラメータと動作状況の特徴に主に限り、軸周波数、翼周波数やプ
ロペラ翼数の特徴に及ばない。
Chinese patent application 2019107990217. Regarding the extraction method of rotor characteristics in X,
A multidimensional statistical modeling method for rotor cavitation wake microfeatures has been disclosed, but the extracted features are mainly limited to the geometric parameters of the rotor and the characteristics of the operating conditions, and the characteristics of the shaft frequency, blade frequency, and propeller blade number. Not as good as that.

戴衛国、邱家興様等は2015年に「ベクトル計算機に多クラス分類適用の船舶プロペラ
翼数識別への研究」が公表されている。目標船舶の輻射ノイズの包絡信号識別スペクトル
に基づいて船舶のプロペラ翼数分類を実行する実験に適応する、誤り訂正コード組合出力
のベクトル計算機に多クラス分類適用の改良アルゴリズムが提案されたが、該方法はベク
トル計算機適用の推断法を利用し、大量の既知サンプル、および変調スペクトルにおける
33次元まで多くの特徴抽出が必要であり、操作が複雑である。また、本文では軸周波数
や翼周波数の具体的識別法は提出されていなった。
In 2015, "Research on the identification of the number of ship propeller blades by applying multi-class classification to vector computers" was published by Mr. Daiei Kuni, Mr. Akira, and others. An improved algorithm for applying multiclass classification to a vector computer with an error correction code combination output, which is suitable for experiments that perform propeller blade number classification of a ship based on the entanglement signal identification spectrum of the radiation noise of the target ship, has been proposed. The method utilizes a vector computer-applied inference method and requires a large number of known samples and many feature extractions up to 33 dimensions in the modulation spectrum, which is complicated to operate. In addition, the specific identification method of the shaft frequency and the blade frequency was not submitted in the text.

従来の技術問題に対して、本発明は、輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方
法を提出する。各種類民船の輻射ノイズ変調スペクトルを分析することができ、軸周波数
、翼周波数やプロペラ翼数の特徴量の抽出に便利である。
In response to conventional technical problems, the present invention presents a method for extracting propeller blade number features based on radiation noise modulation. The radiation noise modulation spectrum of each type of private ship can be analyzed, which is convenient for extracting the features of the shaft frequency, blade frequency and the number of propeller blades.

この輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法は、下記ステップを含む。
(1)船舶の輻射ノイズ信号を採集し、フーリエ変換により変調スペクトル図を取得する

(2)変調図にローカルピークを探索し、ローカルピーク位置における共振周波数を取得
する。
(3)変調図における1番目ローカルピークの共振周波数を確定し、軸周波数を確定する
とともに、ローカルピークの数に基づいて共振周波数の数Nを確定する。
(4)軸周波数と翼周波数間の逓倍関係を確定し、他の共振周波数を確定する。
(5)各高調波周波数位置の平均スペクトルコヒーレント値を確定し、ナイーブベイズの
推断法によりプロペラ翼数を取得するとともに、最後に翼周波数を確定する。
ステップ1では、取得する変調図は循環周波数を横軸とし、平均スペクトルコヒーレント
値を縦軸とする。
The method for extracting the propeller blade number feature based on this radiation noise modulation includes the following steps.
(1) Collect the radiation noise signal of the ship and acquire the modulation spectrum diagram by Fourier transform.
(2) Search for a local peak in the modulation diagram and acquire the resonance frequency at the local peak position.
(3) The resonance frequency of the first local peak in the modulation diagram is determined, the axis frequency is determined, and the number N of the resonance frequencies is determined based on the number of local peaks.
(4) Determine the multiplication relationship between the axis frequency and the blade frequency, and determine other resonance frequencies.
(5) The average spectral coherent value of each harmonic frequency position is determined, the number of propeller blades is obtained by the naive Bayesian inference method, and finally the blade frequency is determined.
In step 1, the modulation diagram to be acquired has the circulation frequency as the horizontal axis and the average spectral coherent value as the vertical axis.

MATLABソフトウェアのfindpeaks関数により平均コヒーレント値のローカ
ルピークおよび対応の循環周波数を探索する。MATLAB中のfindpeaksツー
ルボックス関数により元の波形における波ピーク位置を探出する。まず、1番目ローカル
ピークおよびその共振周波数

Figure 2021102429
を探出する。 The findpeaks function of MATLAB software is used to search for the local peak of the average coherent value and the corresponding circulating frequency. Find the wave peak position in the original waveform with the findpeaks toolbox function in MATLAB. First, the first local peak and its resonant frequency
Figure 2021102429
To find out.

ステップ(2)では、ローカルピークを探索するときは、隣り合う両ローカルピークの共
振周波数の差が下記関係を満たす。

Figure 2021102429
ただし、
Figure 2021102429
はn番目ローカルピーク位置の循環周波数の値である。 In step (2), when searching for a local peak, the difference in resonance frequency between two adjacent local peaks satisfies the following relationship.
Figure 2021102429
However,
Figure 2021102429
Is the value of the circulation frequency at the nth local peak position.

ステップ(3)では、軸周波数を確定するときは、1番目ローカルピーク位置の共振周波
数を軸周波数とする。もし1番目ローカルピーク位置の共振周波数値が0.9Hzより小
さければ、それを除去して、2番目共振周波数を軸周波数とする。
In step (3), when determining the shaft frequency, the resonance frequency at the first local peak position is set as the shaft frequency. If the resonance frequency value at the first local peak position is smaller than 0.9 Hz, it is removed and the second resonance frequency is used as the axis frequency.

ステップ(4)では、他の共振周波数を確定する公式:

Figure 2021102429
ただし、
Figure 2021102429
はn番目共振周波数、
Figure 2021102429

Figure 2021102429
は軸周波数である。
ステップ(5)では、共振周波数によって対応の平均コヒーレント値を確定する。共振周
波数
Figure 2021102429
位置の平均コヒーレント値は
Figure 2021102429
とする。
Figure 2021102429
はn番目共振周波数位置の幅値を示す。
各共振周波数位置の平均スペクトルコヒーレント値
Figure 2021102429

Figure 2021102429
区間内の平均コヒーレント値から平均を求めて得られる。ただし、
Figure 2021102429
はサンプリング点
Figure 2021102429
前の5番目サンプリング点から
Figure 2021102429
後の5番目サンプリング点までの区間を示す。 In step (4), the formula for determining the other resonant frequencies:
Figure 2021102429
However,
Figure 2021102429
Is the nth resonance frequency,
Figure 2021102429
;
Figure 2021102429
Is the axis frequency.
In step (5), the corresponding average coherent value is determined by the resonance frequency. Resonance frequency
Figure 2021102429
The average coherent value of the position is
Figure 2021102429
And.
Figure 2021102429
Indicates the width value of the nth resonance frequency position.
Average spectral coherent value of each resonant frequency position
Figure 2021102429
Is
Figure 2021102429
It is obtained by calculating the average from the average coherent value in the section. However,
Figure 2021102429
Is the sampling point
Figure 2021102429
From the previous 5th sampling point
Figure 2021102429
The section up to the 5th sampling point after that is shown.

ステップ(5)では、ナイーブベイズの推断法に基づいて、取得の共振周波数値と対応の
平均コヒーレント値との間の関係により、該変調図はどの類型のプロペラ翼数の集合に従
属するかを確定する。最後には、プロペラ翼数を確定する。
サンプルの数が十分である場合、直接にナイーブベイズの推断法を使用してもよく、その
結果も非常に確実的である。サンプルの数量が少ない場合、表1のプロペラ翼数識別規則
における各プロペラ翼数時の幅値間の関係に基づいてアナログサンプルを生成して、判断
目標の変調図を分類してもよい。その分類結果はプロペラ翼数となる。ナイーブベイズ公
式:

Figure 2021102429
ただし、Y={
Figure 2021102429
}(Yはすべての可能のプロペラ翼数の集合、
Figure 2021102429
はその一つのプロペラ翼数、
Figure 2021102429
はプロペラ翼数が3、
Figure 2021102429
はプロペラ翼数が4、
Figure 2021102429
はプロペラ翼数が5、
Figure 2021102429
はプロペラ翼数が6、
Figure 2021102429
はプロペラ翼数が7とする)、X={
Figure 2021102429
}(Xは分類目標の変調スペクトル、
Figure 2021102429
は該変調スペクトルにおける各共振周波数位置の振幅大小関係とする)、P(X)は分類
自身の確率(定常数)、
Figure 2021102429
は各プロペラ翼数の類型
Figure 2021102429
の先験的確率、
Figure 2021102429
は所定Xの
Figure 2021102429
プロペラ翼数類型への従属確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
のX発生確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
の変調スペクトルにおける特徴
Figure 2021102429
発生の確率である。各
Figure 2021102429
を算出すると、
Figure 2021102429
が最大値であれば、Xは類型
Figure 2021102429
に従属する。 In step (5), based on the naive Bayesian inference method, the relationship between the acquired resonant frequency value and the corresponding average coherent value determines which type of propeller blade number set the modulation diagram depends on. Determine. Finally, the number of propeller blades is determined.
If the number of samples is sufficient, the naive Bayesian inference method may be used directly and the results are also very certain. When the number of samples is small, analog samples may be generated based on the relationship between the width values at the time of each propeller blade number in the propeller blade number identification rule in Table 1 to classify the modulation diagram of the judgment target. The classification result is the number of propeller blades. Naive Bayes Official:
Figure 2021102429
However, Y = {
Figure 2021102429
} (Y is the set of all possible propeller blade numbers,
Figure 2021102429
Is the number of propeller wings,
Figure 2021102429
Has 3 propeller wings,
Figure 2021102429
Has 4 propeller wings,
Figure 2021102429
Has 5 propeller wings,
Figure 2021102429
Has 6 propeller wings,
Figure 2021102429
Has 7 propeller wings), X = {
Figure 2021102429
} (X is the modulation spectrum of the classification target,
Figure 2021102429
Is the amplitude magnitude relationship of each resonance frequency position in the modulation spectrum), P (X) is the probability of the classification itself (steady number),
Figure 2021102429
Is the type of each propeller wing number
Figure 2021102429
A priori probability,
Figure 2021102429
Is a given X
Figure 2021102429
Probability of dependence on propeller wing number type,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
X occurrence probability,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Features in the modulation spectrum of
Figure 2021102429
The probability of occurrence. each
Figure 2021102429
When you calculate
Figure 2021102429
If is the maximum value, X is a type
Figure 2021102429
Subordinate to.

ナイーブベイズ推断法は、ベイズ定理(Bayes´ Theorem)に基づき、各特
徴条件は相互独立的であると考えられる。事前に提供される訓練集合サンプルによって入
力から出力までの同時確率分布を学習し、学習により得られたモデルに基づいて、分類目
標Xを入力して、後験的確率Yが最大にできる出力を求めるものである。
軸周波数およびプロペラ翼数を取得すると、翼周波数はプロペラ翼数×軸周波数である。
従来の技術に比べて、本発明は下記の効果を有している。
本発明は、ローカルピークの探索に限定条件を加味することにより、位置が近い両ローカ
ルピークを識別しないようにできる。軸周波数の確定に限定条件を加味することにより、
ノイズの影響で過低軸周波数を識別する誤り判断を避けることができる。共振周波数位置
のピークを確定するときは、一つの周波数区間内でピーク平均値を求める。プロペラ翼数
を判断するときは、ナイーブベイズの推断法を使用する。その優勢は小サンプルに適用可
能であるとともに、従来の技術に述べた従来の識別規則により解決できない問題を解決で
きる。最後に、様々な変調スペクトル構成から軸周波数、翼周波数やプロペラ翼数特徴量
を抽出することができる。
The naive Bayes inference method is based on Bayes'Theorem, and each characteristic condition is considered to be mutually independent. The joint probability distribution from input to output is learned by the training set sample provided in advance, and the classification target X is input based on the model obtained by the training, and the output that can maximize the posterior probability Y is obtained. It is what you want.
Obtaining the shaft frequency and the number of propeller blades, the blade frequency is the number of propeller blades x the shaft frequency.
Compared with the conventional technique, the present invention has the following effects.
According to the present invention, by adding a limiting condition to the search for local peaks, it is possible to prevent discrimination between two local peaks that are close to each other. By adding a limiting condition to the determination of the axis frequency,
It is possible to avoid erroneous judgment that identifies the under-axis frequency due to the influence of noise. When determining the peak at the resonance frequency position, the average peak value is obtained within one frequency section. When determining the number of propeller blades, use the naive Bayesian inference method. Its predominance is applicable to small samples and can solve problems that cannot be solved by the conventional identification rules described in the prior art. Finally, the axis frequency, blade frequency and propeller blade number features can be extracted from various modulation spectrum configurations.

輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法の模式的フローチャート図である。It is a schematic flowchart figure of the extraction method of the propeller blade number feature based on radiation noise modulation. 本発明の実施例に係る特徴抽出目標の変調スペクトルである。It is a modulation spectrum of the feature extraction target according to the Example of this invention. 本発明の実施例に係るMATLABのfindpeaks関数により得られるピークを示す図である。It is a figure which shows the peak obtained by the findpeaks function of MATLAB which concerns on Example of this invention. 本発明の実施例に係る判断により得られる軸周波数の周波数を示す図である。It is a figure which shows the frequency of the shaft frequency obtained by the judgment which concerns on embodiment of this invention. 本発明の実施例に係る最後に識別した結果図である。It is a result figure which was finally identified which concerns on Example of this invention.

以下、図面および実施例を参考しながら本発明をさらに詳しく説明する。特筆すべきのは
、実施例の作用は、本発明を容易に理解させることにあり、発明の制限としてはならない
Hereinafter, the present invention will be described in more detail with reference to the drawings and examples. It should be noted that the action of the examples is to make the invention easier to understand and not to limit the invention.

図1に示されるように、輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法は下記ステ
ップを含む。
S01:本例では、ある商船からの輻射ノイズを用いる。商船のプロペラ翼数は3、商船
のプロペラ回転数は111回転/分、翼周波数は5.55Hz、軸周波数は1.85Hz
とする。商船の輻射ノイズを短時間フーリエ変換することにより変調スペクトルを取得す
る。変調図においてローカルピーク、およびローカルピーク位置の共振周波数を探索する
As shown in FIG. 1, the method for extracting the propeller blade number feature based on the radiation noise modulation includes the following steps.
S01: In this example, radiation noise from a certain merchant ship is used. The number of propeller blades on a commercial ship is 3, the number of revolutions on a commercial ship's propeller is 111 rpm, the blade frequency is 5.55 Hz, and the shaft frequency is 1.85 Hz.
And. The modulation spectrum is acquired by performing a short-time Fourier transform on the radiation noise of a merchant ship. The resonance frequency of the local peak and the local peak position is searched for in the modulation diagram.

特徴抽出目標の変調スペクトルは図2に示される。該ステップにおいては、Matlab
中のfindpeaks関数により平均コヒーレント値のローカルピーク、および対応の
循環周波数を探索する。
隣り合う両ローカルピークの共振周波数の差は下式の関係を満たす。

Figure 2021102429
式中、
Figure 2021102429
はn番目ローカルピーク位置の循環周波数の値である。ピークの探索結果は図3に示され
る。 The modulation spectrum of the feature extraction target is shown in FIG. In that step, Matlab
The findpeaks function inside searches for the local peak of the average coherent value and the corresponding circulating frequency.
The difference in resonance frequency between two adjacent local peaks satisfies the relationship of the following equation.
Figure 2021102429
During the ceremony
Figure 2021102429
Is the value of the circulation frequency at the nth local peak position. The search result of the peak is shown in FIG.

S02:軸周波数およびその共振周波数を確定する。もし1番目ローカルピーク位置の共
振周波数値が0.9Hzより小さいければ、それを除去し、2番目共振周波数を軸周波数
とする。軸周波数は

Figure 2021102429
とする。図4に示されるように、本実施例において
Figure 2021102429
とし、1番目ローカルピーク位置の共振周波数が0.9Hz未満でないという条件を満た
し、1番目位置の共振周波数が軸周波数であり、
Figure 2021102429
となっている。ローカルピークの数により、共振周波数の数Nを確定する。本例では、7
つのピークがあるから、N=7となる。 S02: The shaft frequency and its resonance frequency are determined. If the resonance frequency value at the first local peak position is smaller than 0.9 Hz, it is removed and the second resonance frequency is used as the axis frequency. The axis frequency is
Figure 2021102429
And. As shown in FIG. 4, in this embodiment
Figure 2021102429
The condition that the resonance frequency of the first local peak position is not less than 0.9 Hz is satisfied, and the resonance frequency of the first position is the shaft frequency.
Figure 2021102429
It has become. The number N of resonance frequencies is determined by the number of local peaks. In this example, 7
Since there are two peaks, N = 7.

S03:軸周波数および翼周波数の逓倍関係により、他の共振周波数の値を確定する。
軸周波数および翼周波数は逓倍関係:

Figure 2021102429
(ただし、
Figure 2021102429
はn番目の共振周波数、
Figure 2021102429
とする)ので、
逓倍関係に基づいて、軸周波数が既定であれば、翼周波数位置の可能の共振周波数を確定
することができる。 S03: The value of another resonance frequency is determined by the multiplication relationship between the shaft frequency and the blade frequency.
Shaft frequency and blade frequency are multiplying relations:
Figure 2021102429
(However,
Figure 2021102429
Is the nth resonance frequency,
Figure 2021102429
) So
Based on the multiplication relationship, if the axis frequency is the default, the possible resonance frequency of the blade frequency position can be determined.

S04:各高調波周波数位置の平均スペクトルコヒーレント値を確定する。
誤差が存在するので、各高調波周波数位置のコヒーレント値を計算するときは、

Figure 2021102429
区間内の平均コヒーレント値の平均を求めて、
Figure 2021102429
位置の平均コヒーレント値
Figure 2021102429
を得られる。ただし
Figure 2021102429
はサンプリング点
Figure 2021102429
前の5番目サンプリング点から
Figure 2021102429
後の5番目サンプリング点までの区間を示す。 S04: The average spectral coherent value of each harmonic frequency position is determined.
Due to the error, when calculating the coherent value for each harmonic frequency position,
Figure 2021102429
Find the average of the average coherent values in the interval,
Figure 2021102429
Average coherent value of position
Figure 2021102429
Can be obtained. However,
Figure 2021102429
Is the sampling point
Figure 2021102429
From the previous 5th sampling point
Figure 2021102429
The section up to the 5th sampling point after that is shown.

S05:ナイーブベイズ推断法に基づいて、プロペラ翼数を取得する。分類問題を解決す
る。即ちナイーブベイズの推断法に基づいて、得られた共振周波数値と対応の平均コヒー
レント値間の関係により、該変調図がどの種類のプロペラ翼数の集合に従属するかを確定
する。最後には、プロペラ翼数を確定する。本例では、得られた変調図における幅値間の
関係は

Figure 2021102429
ある。ナイーブベイズの推断法に基づくナイーブベイズの公式:
Figure 2021102429
本例では、Y={
Figure 2021102429
}(Yはすべての可能のプロペラ翼数の集合、
Figure 2021102429
はその一つのプロペラ翼数、
Figure 2021102429
はプロペラ翼数が3、
Figure 2021102429
はプロペラ翼数が4、
Figure 2021102429
はプロペラ翼数が5、
Figure 2021102429
はプロペラ翼数が6、
Figure 2021102429
はプロペラ翼数が7である)、X={
Figure 2021102429
}(Xは分類目標の変調スペクトル、
Figure 2021102429
は該変調スペクトルにおける各共振周波数位置の振幅の大小関係である。またP(X)は
分類自身の確率である(定乗数)。
Figure 2021102429
は各プロペラ翼数類型の先験的確率、即ち
Figure 2021102429
の確率である。
Figure 2021102429
は所定Xの
Figure 2021102429
プロペラ翼数類型への従属確率である。
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
のXの発生確率である。
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
の変調スペクトルにおける特徴
Figure 2021102429
発生の確率である。各
Figure 2021102429
を計算すると、
Figure 2021102429
が最大値であれば、Xが類型
Figure 2021102429
に従属すると思われる。 S05: Obtain the number of propeller blades based on the naive Bayesian inference method. Solve the classification problem. That is, based on the naive Bayesian inference method, the relationship between the obtained resonance frequency value and the corresponding average coherent value determines which type of set of propeller blades the modulation diagram depends on. Finally, the number of propeller blades is determined. In this example, the relationship between the width values in the obtained modulation diagram is
Figure 2021102429
is there. Naive Bayes formula based on Naive Bayes inference:
Figure 2021102429
In this example, Y = {
Figure 2021102429
} (Y is the set of all possible propeller blade numbers,
Figure 2021102429
Is the number of propeller wings,
Figure 2021102429
Has 3 propeller wings,
Figure 2021102429
Has 4 propeller wings,
Figure 2021102429
Has 5 propeller wings,
Figure 2021102429
Has 6 propeller wings,
Figure 2021102429
Has 7 propeller wings), X = {
Figure 2021102429
} (X is the modulation spectrum of the classification target,
Figure 2021102429
Is the magnitude relationship of the amplitude of each resonance frequency position in the modulation spectrum. Further, P (X) is the probability of the classification itself (constant multiplier).
Figure 2021102429
Is the a priori probability of each propeller wing number type, i.e.
Figure 2021102429
Probability of.
Figure 2021102429
Is a given X
Figure 2021102429
It is the probability of dependence on the propeller wing number type.
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Is the probability of occurrence of X.
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Features in the modulation spectrum of
Figure 2021102429
The probability of occurrence. each
Figure 2021102429
When you calculate
Figure 2021102429
If is the maximum value, then X is the type
Figure 2021102429
Seems to be subordinate to.

プロペラ翼数の変調図の大量サンプルが既知であり、或いは表1の規則により模擬したサ
ンプルによれば

Figure 2021102429
が既定量であるから、
Figure 2021102429
を算出できる。本例では、得られる変調図における幅値間の関係は
Figure 2021102429
がある。該変調図における振幅間の関係はXのある特徴
Figure 2021102429
により示される。最後に計算により
Figure 2021102429
が最大値となる。したがって、プロペラ翼数が3であると確定できる。最後に翼周波数は
プロペラ翼数×軸周波数となっており、即ち翼周波数は5.565Hzとなる。最後の識
別結果は図5に示される。 A large number of samples of propeller blade number modulation diagrams are known, or according to the samples simulated according to the rules in Table 1.
Figure 2021102429
Is the default amount
Figure 2021102429
Can be calculated. In this example, the relationship between the width values in the resulting modulation diagram is
Figure 2021102429
There is. The relationship between the amplitudes in the modulation diagram is a characteristic of X
Figure 2021102429
Indicated by. Finally by calculation
Figure 2021102429
Is the maximum value. Therefore, it can be determined that the number of propeller blades is 3. Finally, the blade frequency is the number of propeller blades × the axis frequency, that is, the blade frequency is 5.565 Hz. The final identification result is shown in FIG.

上記の実施例の説明は、本発明の方法およびその精神を理解するためのものである。当業
者にとって、本発明の原理から逸脱することなく、本発明をいくつかの改良および修正を
加えて実施することもでき、これらの改良および修正はすべて本発明の保護範囲に含まれ
ることは言うまでもない。
The description of the above examples is for understanding the method of the present invention and its spirit. It goes without saying that those skilled in the art may also implement the invention with some modifications and modifications without departing from the principles of the invention, all of which are within the scope of protection of the invention. No.

本発明は、信号の周波数成分の抽出の技術領域に関し、特に輻射ノイズ変調に基づくプロ
ペラ翼数特徴の抽出方法に関する。
The present invention relates to a technical area for extracting frequency components of a signal, and more particularly to a method for extracting propeller blade number features based on radiation noise modulation.

船舶の輻射ノイズは、回転翼(プロペラ)の回転際におけるキャビテーション・ノイズに
より引き起こされる。船舶の輻射ノイズの変調スペクトルは船舶のプロペラ翼数の特徴情
報を含む。各共振周波数と振幅の関係を分析することにより、船舶プロペラの軸周波数、
翼周波数およびプロペラ翼数の特徴量を抽出することができる。
Radiation noise of a ship is caused by cavitation noise during rotation of a rotor blade (propeller). The modulation spectrum of the radiant noise of the ship includes the characteristic information of the number of propeller blades of the ship. By analyzing the relationship between each resonance frequency and amplitude, the shaft frequency of the ship propeller,
The features of the blade frequency and the number of propeller blades can be extracted.

民船のプロペラの軸周波数、k翼周波数およびプロペラ翼数の特徴量情報が獲得可能であ
れば、船舶型番の判断に寄与する。海に沿っては密輸・密航などがある。音声センサーに
より船舶のノイズ情報を捕捉し、フーリエ変換により変調スペクトルを取得し、プロペラ
の軸周波数、翼周波数およびプロペラ翼数の特徴量情報を抽出できれば、監督者が船舶の
種類を判断できる。
If the feature quantity information of the propeller shaft frequency, k blade frequency, and propeller blade number of a private ship can be obtained, it will contribute to the determination of the ship model number. There are smuggling and stowaways along the sea. If the noise information of the ship is captured by the voice sensor, the modulation spectrum is acquired by the Fourier transform, and the feature quantity information of the shaft frequency, the blade frequency and the number of propeller blades of the propeller can be extracted, the supervisor can judge the type of the ship.

従来、世界では以下のような識別方法が使用されている。変調スペクトルを取得し、変調
スペクトルから幅値のピークおよびピーク位置の共振周波数を読み込む。プロペラ翼数特
徴識別規則(表1)に基づいて、変調スペクトルにおける共振周波数および振幅からプロ
ペラ翼数特徴値を抽出する。P(n)は軸周波数のn番目高調波線スペクトルの幅値を示
す。

Figure 2021102429
Conventionally, the following identification methods have been used in the world. The modulation spectrum is acquired, and the resonance frequency of the peak of the width value and the peak position is read from the modulation spectrum. Based on the propeller blade number feature identification rule (Table 1), the propeller blade number feature value is extracted from the resonance frequency and amplitude in the modulation spectrum. P (n) indicates the width value of the nth harmonic line spectrum of the axis frequency.

Figure 2021102429

ところが、船舶の構造、動作状況や環境などによっては、変調スペクトルの構成が複雑で
あり、識別規則に基づいては典型的な場合しか識別できなく、すべての変調スペクトル構
成は適用不可能である。例えば

Figure 2021102429
になった場合、表1のすべてのプロペラ翼数識別規則の条件は満たされるため、プロペラ
翼数を識別できない。 However, the configuration of the modulation spectrum is complicated depending on the structure, operating conditions, environment, etc. of the ship, and only a typical case can be identified based on the discrimination rule, and all the modulation spectrum configurations are not applicable. For example
Figure 2021102429
If, the conditions of all the propeller blade number identification rules in Table 1 are satisfied, and the propeller blade number cannot be identified.

中国特許出願201910790217.Xにおいて、回転翼特徴の抽出方法に関して、
回転翼キャビテーション後流微細特徴の多次元統計モデリング方法が開示されたが、抽出
特徴は回転翼の幾何学パラメータと動作状況の特徴に主に限り、軸周波数、翼周波数やプ
ロペラ翼数の特徴に及ばない。
Chinese patent application 2019107990217. Regarding the extraction method of rotor characteristics in X,
A multidimensional statistical modeling method for rotor cavitation wake microfeatures has been disclosed, but the extracted features are mainly limited to the geometric parameters of the rotor and the characteristics of the operating conditions, and the characteristics of the shaft frequency, blade frequency, and propeller blade number. Not as good as that.

戴衛国、邱家興様等は2015年に「ベクトル計算機に多クラス分類適用の船舶プロペラ
翼数識別への研究」が公表されている。目標船舶の輻射ノイズの包絡信号識別スペクトル
に基づいて船舶のプロペラ翼数分類を実行する実験に適応する、誤り訂正コード組合出力
のベクトル計算機に多クラス分類適用の改良アルゴリズムが提案されたが、該方法はベク
トル計算機適用の推断法を利用し、大量の既知サンプル、および変調スペクトルにおける
33次元まで多くの特徴抽出が必要であり、操作が複雑である。また、本文では軸周波数
や翼周波数の具体的識別法は提出されていなった。
In 2015, "Research on the identification of the number of ship propeller blades by applying multi-class classification to vector computers" was published by Mr. Daiei Kuni, Mr. Akira, and others. An improved algorithm for applying multiclass classification to a vector computer with an error correction code combination output, which is suitable for experiments that perform propeller blade number classification of a ship based on the entanglement signal identification spectrum of the radiation noise of the target ship, has been proposed. The method utilizes a vector computer-applied inference method and requires a large number of known samples and many feature extractions up to 33 dimensions in the modulation spectrum, which is complicated to operate. In addition, the specific identification method of the shaft frequency and the blade frequency was not submitted in the text.

従来の技術問題に対して、本発明は、輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方
法を提出する。各種類民船の輻射ノイズ変調スペクトルを分析することができ、軸周波数
、翼周波数やプロペラ翼数の特徴量の抽出に便利である。
In response to conventional technical problems, the present invention presents a method for extracting propeller blade number features based on radiation noise modulation. The radiation noise modulation spectrum of each type of private ship can be analyzed, which is convenient for extracting the features of the shaft frequency, blade frequency and the number of propeller blades.

この輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法は、下記ステップを含む。
(1)船舶の輻射ノイズ信号を採集し、フーリエ変換により変調スペクトル図を取得する

(2)変調スペクトル図にローカルピークを探索し、ローカルピーク位置における共振周
波数を取得する。
(3)変調スペクトル図における1番目ローカルピークの共振周波数を確定し、軸周波数
を確定するとともに、ローカルピークの数に基づいて共振周波数の数Nを確定する。
(4)軸周波数と翼周波数間の逓倍関係を確定し、他の共振周波数を確定する。
(5)各共振周波数位置の平均スペクトルコヒーレント値を確定し、ナイーブベイズの推
断法によりプロペラ翼数を取得するとともに、最後に翼周波数を確定する。
ステップ1では、取得する変調スペクトル図は循環周波数を横軸とし、平均スペクトルコ
ヒーレント値を縦軸とする。
The method for extracting the propeller blade number feature based on this radiation noise modulation includes the following steps.
(1) Collect the radiation noise signal of the ship and acquire the modulation spectrum diagram by Fourier transform.
(2) The local peak is searched for in the modulation spectrum diagram, and the resonance frequency at the local peak position is acquired.
(3) The resonance frequency of the first local peak in the modulation spectrum diagram is determined, the axis frequency is determined, and the number N of the resonance frequencies is determined based on the number of local peaks.
(4) Determine the multiplication relationship between the axis frequency and the blade frequency, and determine other resonance frequencies.
(5) The average spectral coherent value of each resonance frequency position is determined, the number of propeller blades is obtained by the naive Bayesian inference method, and finally the blade frequency is determined.
In step 1, the modulation spectrum diagram to be acquired has the circulation frequency as the horizontal axis and the average spectrum coherent value as the vertical axis.

MATLAB(登録商標)ソフトウェアのfindpeaks関数により平均コヒーレン
ト値のローカルピークおよび対応の循環周波数を探索する。MATLAB(登録商標)
のfindpeaksツールボックス関数により元の波形における波ピーク位置を探出す
る。まず、1番目ローカルピークおよびその共振周波数

Figure 2021102429
を探出する。 The MATLAB (TM) software findpeaks function of searching for a local peak and a corresponding cyclic frequency of average coherent values. To Sagude wave peak position in the original waveform by findpeaks toolbox function in MATLAB (registered trademark). First, the first local peak and its resonant frequency
Figure 2021102429
To find out.

ステップ(2)では、ローカルピークを探索するときは、隣り合う両ローカルピークの共
振周波数の差が下記関係を満たす。

Figure 2021102429
ただし、
Figure 2021102429
はn番目ローカルピーク位置の循環周波数の値である。 In step (2), when searching for a local peak, the difference in resonance frequency between two adjacent local peaks satisfies the following relationship.
Figure 2021102429
However,
Figure 2021102429
Is the value of the circulation frequency at the nth local peak position.

ステップ(3)では、軸周波数を確定するときは、1番目ローカルピーク位置の共振周波
数を軸周波数とする。もし1番目ローカルピーク位置の共振周波数値が0.9Hzより小
さければ、それを除去して、2番目共振周波数を軸周波数とする。
In step (3), when determining the shaft frequency, the resonance frequency at the first local peak position is set as the shaft frequency. If the resonance frequency value at the first local peak position is smaller than 0.9 Hz, it is removed and the second resonance frequency is used as the axis frequency.

ステップ(4)では、他の共振周波数を確定する公式:

Figure 2021102429
ただし、
Figure 2021102429
はn番目共振周波数、
Figure 2021102429

Figure 2021102429
は軸周波数である。
ステップ(5)では、共振周波数によって対応の平均コヒーレント値を確定する。共振周
波数
Figure 2021102429
位置の平均コヒーレント値は
Figure 2021102429
とする。
Figure 2021102429
はn番目共振周波数位置の幅値を示す。
各共振周波数位置の平均スペクトルコヒーレント値
Figure 2021102429

Figure 2021102429
区間内の平均コヒーレント値から平均を求めて得られる。ただし、
Figure 2021102429
はサンプリング点
Figure 2021102429
前の5番目サンプリング点から
Figure 2021102429
後の5番目サンプリング点までの区間を示す。 In step (4), the formula for determining the other resonant frequencies:
Figure 2021102429
However,
Figure 2021102429
Is the nth resonance frequency,
Figure 2021102429
;
Figure 2021102429
Is the axis frequency.
In step (5), the corresponding average coherent value is determined by the resonance frequency. Resonance frequency
Figure 2021102429
The average coherent value of the position is
Figure 2021102429
And.
Figure 2021102429
Indicates the width value of the nth resonance frequency position.
Average spectral coherent value of each resonant frequency position
Figure 2021102429
Is
Figure 2021102429
It is obtained by calculating the average from the average coherent value in the section. However,
Figure 2021102429
Is the sampling point
Figure 2021102429
From the previous 5th sampling point
Figure 2021102429
The section up to the 5th sampling point after that is shown.

ステップ(5)では、ナイーブベイズの推断法に基づいて、取得の共振周波数値と対応の
平均コヒーレント値との間の関係により、該変調スペクトル図はどの類型のプロペラ翼数
の集合に従属するかを確定する。最後には、プロペラ翼数を確定する。
サンプルの数が十分である場合、直接にナイーブベイズの推断法を使用してもよく、その
結果も非常に確実的である。サンプルの数量が少ない場合、表1のプロペラ翼数識別規則
における各プロペラ翼数時の幅値間の関係に基づいてアナログサンプルを生成して、判断
目標の変調スペクトル図を分類してもよい。その分類結果はプロペラ翼数となる。ナイー
ブベイズ公式:

Figure 2021102429
ただし、Y={
Figure 2021102429
}(Yはすべての可能のプロペラ翼数の集合、
Figure 2021102429
はその一つのプロペラ翼数、
Figure 2021102429
はプロペラ翼数が3、
Figure 2021102429
はプロペラ翼数が4、
Figure 2021102429
はプロペラ翼数が5、
Figure 2021102429
はプロペラ翼数が6、
Figure 2021102429
はプロペラ翼数が7とする)、X={
Figure 2021102429
}(Xは分類目標の変調スペクトル、
Figure 2021102429
は該変調スペクトルにおける各共振周波数位置の振幅大小関係とする)、P(X)は分類
自身の確率(定常数)、
Figure 2021102429
は各プロペラ翼数の類型
Figure 2021102429
の先験的確率、
Figure 2021102429
は所定Xの
Figure 2021102429
プロペラ翼数類型への従属確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
のX発生確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
の変調スペクトルにおける特徴
Figure 2021102429
発生の確率である。各
Figure 2021102429
を算出すると、
Figure 2021102429
が最大値であれば、Xは類型
Figure 2021102429
に従属する。 In step (5), based on naive Bayes inferred method, the relationship between the resonance frequency value of the acquired and the average coherent values of corresponding, or the modulation spectrum diagram is dependent on a set of propeller speed wing which type To confirm. Finally, the number of propeller blades is determined.
If the number of samples is sufficient, the naive Bayesian inference method may be used directly and the results are also very certain. When the number of samples is small, analog samples may be generated based on the relationship between the width values at each propeller blade number in the propeller blade number identification rule in Table 1 to classify the modulation spectrum diagram of the judgment target. The classification result is the number of propeller blades. Naive Bayes Official:
Figure 2021102429
However, Y = {
Figure 2021102429
} (Y is the set of all possible propeller blade numbers,
Figure 2021102429
Is the number of propeller wings,
Figure 2021102429
Has 3 propeller wings,
Figure 2021102429
Has 4 propeller wings,
Figure 2021102429
Has 5 propeller wings,
Figure 2021102429
Has 6 propeller wings,
Figure 2021102429
Has 7 propeller wings), X = {
Figure 2021102429
} (X is the modulation spectrum of the classification target,
Figure 2021102429
Is the amplitude magnitude relationship of each resonance frequency position in the modulation spectrum), P (X) is the probability of the classification itself (steady number),
Figure 2021102429
Is the type of each propeller wing number
Figure 2021102429
A priori probability,
Figure 2021102429
Is a given X
Figure 2021102429
Probability of dependence on propeller wing number type,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
X occurrence probability,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Features in the modulation spectrum of
Figure 2021102429
The probability of occurrence. each
Figure 2021102429
When you calculate
Figure 2021102429
If is the maximum value, X is a type
Figure 2021102429
Subordinate to.

ナイーブベイズ推断法は、ベイズ定理(Bayes´ Theorem)に基づき、各特
徴条件は相互独立的であると考えられる。事前に提供される訓練集合サンプルによって入
力から出力までの同時確率分布を学習し、学習により得られたモデルに基づいて、分類目
標Xを入力して、後験的確率Yが最大にできる出力を求めるものである。
軸周波数およびプロペラ翼数を取得すると、翼周波数はプロペラ翼数×軸周波数である。
従来の技術に比べて、本発明は下記の効果を有している。
本発明は、ローカルピークの探索に限定条件を加味することにより、位置が近い両ローカ
ルピークを識別しないようにできる。軸周波数の確定に限定条件を加味することにより、
ノイズの影響で過低軸周波数を識別する誤り判断を避けることができる。共振周波数位置
のピークを確定するときは、一つの周波数区間内でピーク平均値を求める。プロペラ翼数
を判断するときは、ナイーブベイズの推断法を使用する。その優勢は小サンプルに適用可
能であるとともに、従来の技術に述べた従来の識別規則により解決できない問題を解決で
きる。最後に、様々な変調スペクトル構成から軸周波数、翼周波数やプロペラ翼数特徴量
を抽出することができる。
The naive Bayes inference method is based on Bayes'Theorem, and each characteristic condition is considered to be mutually independent. The joint probability distribution from input to output is learned by the training set sample provided in advance, and the classification target X is input based on the model obtained by the training, and the output that can maximize the posterior probability Y is obtained. It is what you want.
Obtaining the shaft frequency and the number of propeller blades, the blade frequency is the number of propeller blades x the shaft frequency.
Compared with the conventional technique, the present invention has the following effects.
According to the present invention, by adding a limiting condition to the search for local peaks, it is possible to prevent discrimination between two local peaks that are close to each other. By adding a limiting condition to the determination of the axis frequency,
It is possible to avoid erroneous judgment that identifies the under-axis frequency due to the influence of noise. When determining the peak at the resonance frequency position, the average peak value is obtained within one frequency section. When determining the number of propeller blades, use the naive Bayesian inference method. Its predominance is applicable to small samples and can solve problems that cannot be solved by the conventional identification rules described in the prior art. Finally, the axis frequency, blade frequency and propeller blade number features can be extracted from various modulation spectrum configurations.

輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法の模式的フローチャート図である。It is a schematic flowchart figure of the extraction method of the propeller blade number feature based on radiation noise modulation. 本発明の実施例に係る特徴抽出目標の変調スペクトルである。It is a modulation spectrum of the feature extraction target according to the Example of this invention. 本発明の実施例に係るMATLAB(登録商標)のfindpeaks関数により得られるピークを示す図である。It is a figure which shows the peak obtained by the findpeaks function of MATLAB (registered trademark) which concerns on Example of this invention. 本発明の実施例に係る判断により得られる軸周波数の周波数を示す図である。It is a figure which shows the frequency of the shaft frequency obtained by the judgment which concerns on embodiment of this invention. 本発明の実施例に係る最後に識別した結果図である。It is a result figure which was finally identified which concerns on Example of this invention.

以下、図面および実施例を参考しながら本発明をさらに詳しく説明する。特筆すべきのは
、実施例の作用は、本発明を容易に理解させることにあり、発明の制限としてはならない
Hereinafter, the present invention will be described in more detail with reference to the drawings and examples. It should be noted that the action of the examples is to make the invention easier to understand and not to limit the invention.

図1に示されるように、輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法は下記ステ
ップを含む。
S01:本例では、ある商船からの輻射ノイズを用いる。商船のプロペラ翼数は3、商船
のプロペラ回転数は111回転/分、翼周波数は5.55Hz、軸周波数は1.85Hz
とする。商船の輻射ノイズを短時間フーリエ変換することにより変調スペクトルを取得す
る。変調スペクトル図においてローカルピーク、およびローカルピーク位置の共振周波数
を探索する。
As shown in FIG. 1, the method for extracting the propeller blade number feature based on the radiation noise modulation includes the following steps.
S01: In this example, radiation noise from a certain merchant ship is used. The number of propeller blades on a commercial ship is 3, the number of revolutions on a commercial ship's propeller is 111 rpm, the blade frequency is 5.55 Hz, and the shaft frequency is 1.85 Hz.
And. The modulation spectrum is acquired by performing a short-time Fourier transform on the radiation noise of a merchant ship. The resonance frequency of the local peak and the local peak position is searched for in the modulation spectrum diagram.

特徴抽出目標の変調スペクトルは図2に示される。該ステップにおいては、Matlab
中のfindpeaks関数により平均コヒーレント値のローカルピーク、および対応の
循環周波数を探索する。
隣り合う両ローカルピークの共振周波数の差は下式の関係を満たす。

Figure 2021102429
式中、
Figure 2021102429
はn番目ローカルピーク位置の循環周波数の値である。ピークの探索結果は図3に示され
る。 The modulation spectrum of the feature extraction target is shown in FIG. In that step, Matlab
The findpeaks function inside searches for the local peak of the average coherent value and the corresponding circulating frequency.
The difference in resonance frequency between two adjacent local peaks satisfies the relationship of the following equation.
Figure 2021102429
During the ceremony
Figure 2021102429
Is the value of the circulation frequency at the nth local peak position. The search result of the peak is shown in FIG.

S02:軸周波数およびその共振周波数を確定する。もし1番目ローカルピーク位置の共
振周波数値が0.9Hzより小さいければ、それを除去し、2番目共振周波数を軸周波数
とする。軸周波数は

Figure 2021102429
とする。図4に示されるように、本実施例において
Figure 2021102429
とし、1番目ローカルピーク位置の共振周波数が0.9Hz未満でないという条件を満た
し、1番目位置の共振周波数が軸周波数であり、
Figure 2021102429
となっている。ローカルピークの数により、共振周波数の数Nを確定する。本例では、7
つのピークがあるから、N=7となる。 S02: The shaft frequency and its resonance frequency are determined. If the resonance frequency value at the first local peak position is smaller than 0.9 Hz, it is removed and the second resonance frequency is used as the axis frequency. The axis frequency is
Figure 2021102429
And. As shown in FIG. 4, in this embodiment
Figure 2021102429
The condition that the resonance frequency of the first local peak position is not less than 0.9 Hz is satisfied, and the resonance frequency of the first position is the shaft frequency.
Figure 2021102429
It has become. The number N of resonance frequencies is determined by the number of local peaks. In this example, 7
Since there are two peaks, N = 7.

S03:軸周波数および翼周波数の逓倍関係により、他の共振周波数の値を確定する。
軸周波数および翼周波数は逓倍関係:

Figure 2021102429
(ただし、
Figure 2021102429
はn番目の共振周波数、
Figure 2021102429
とする)ので、
逓倍関係に基づいて、軸周波数が既定であれば、翼周波数位置の可能の共振周波数を確定
することができる。 S03: The value of another resonance frequency is determined by the multiplication relationship between the shaft frequency and the blade frequency.
Shaft frequency and blade frequency are multiplying relations:
Figure 2021102429
(However,
Figure 2021102429
Is the nth resonance frequency,
Figure 2021102429
) So
Based on the multiplication relationship, if the axis frequency is the default, the possible resonance frequency of the blade frequency position can be determined.

S04:各共振周波数位置の平均スペクトルコヒーレント値を確定する。
誤差が存在するので、各共振周波数位置のコヒーレント値を計算するときは、

Figure 2021102429
区間内の平均コヒーレント値の平均を求めて、
Figure 2021102429
位置の平均コヒーレント値
Figure 2021102429
を得られる。ただし
Figure 2021102429
はサンプリング点
Figure 2021102429
前の5番目サンプリング点から
Figure 2021102429
後の5番目サンプリング点までの区間を示す。 S04: The average spectral coherent value of each resonance frequency position is determined.
There is an error, so when calculating the coherent value for each resonant frequency position,
Figure 2021102429
Find the average of the average coherent values in the interval,
Figure 2021102429
Average coherent value of position
Figure 2021102429
Can be obtained. However,
Figure 2021102429
Is the sampling point
Figure 2021102429
From the previous 5th sampling point
Figure 2021102429
The section up to the 5th sampling point after that is shown.

S05:ナイーブベイズ推断法に基づいて、プロペラ翼数を取得する。分類問題を解決す
る。即ちナイーブベイズの推断法に基づいて、得られた共振周波数値と対応の平均コヒー
レント値間の関係により、該変調スペクトル図がどの種類のプロペラ翼数の集合に従属す
るかを確定する。最後には、プロペラ翼数を確定する。本例では、得られた変調スペクト
ル図における幅値間の関係は

Figure 2021102429
ある。ナイーブベイズの推断法に基づくナイーブベイズの公式:
Figure 2021102429
本例では、Y={
Figure 2021102429
}(Yはすべての可能のプロペラ翼数の集合、
Figure 2021102429
はその一つのプロペラ翼数、
Figure 2021102429
はプロペラ翼数が3、
Figure 2021102429
はプロペラ翼数が4、
Figure 2021102429
はプロペラ翼数が5、
Figure 2021102429
はプロペラ翼数が6、
Figure 2021102429
はプロペラ翼数が7である)、X={
Figure 2021102429
}(Xは分類目標の変調スペクトル、
Figure 2021102429
は該変調スペクトルにおける各共振周波数位置の振幅の大小関係である。またP(X)は
分類自身の確率である(定乗数)。
Figure 2021102429
は各プロペラ翼数類型の先験的確率、即ち
Figure 2021102429
の確率である。
Figure 2021102429
は所定Xの
Figure 2021102429
プロペラ翼数類型への従属確率である。
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
のXの発生確率である。
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
の変調スペクトルにおける特徴
Figure 2021102429
発生の確率である。各
Figure 2021102429
を計算すると、
Figure 2021102429
が最大値であれば、Xが類型
Figure 2021102429
に従属すると思われる。 S05: Obtain the number of propeller blades based on the naive Bayesian inference method. Solve the classification problem. That based on naive Bayes inferred method, the relationship between the obtained resonance frequency value and the corresponding average coherent values, to determine whether the modulation spectrum diagram is dependent on which set of types of propeller speed blades. Finally, the number of propeller blades is determined. In this example, the resulting modulation spectrum
The relationship between width values in the figure
Figure 2021102429
is there. Naive Bayes formula based on Naive Bayes inference:
Figure 2021102429
In this example, Y = {
Figure 2021102429
} (Y is the set of all possible propeller blade numbers,
Figure 2021102429
Is the number of propeller wings,
Figure 2021102429
Has 3 propeller wings,
Figure 2021102429
Has 4 propeller wings,
Figure 2021102429
Has 5 propeller wings,
Figure 2021102429
Has 6 propeller wings,
Figure 2021102429
Has 7 propeller wings), X = {
Figure 2021102429
} (X is the modulation spectrum of the classification target,
Figure 2021102429
Is the magnitude relationship of the amplitude of each resonance frequency position in the modulation spectrum. Further, P (X) is the probability of the classification itself (constant multiplier).
Figure 2021102429
Is the a priori probability of each propeller wing number type, i.e.
Figure 2021102429
Probability of.
Figure 2021102429
Is a given X
Figure 2021102429
It is the probability of dependence on the propeller wing number type.
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Is the probability of occurrence of X.
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Features in the modulation spectrum of
Figure 2021102429
The probability of occurrence. each
Figure 2021102429
When you calculate
Figure 2021102429
If is the maximum value, then X is the type
Figure 2021102429
Seems to be subordinate to.

プロペラ翼数の変調スペクトル図の大量サンプルが既知であり、或いは表1の規則により
模擬したサンプルによれば

Figure 2021102429
が既定量であるから、
Figure 2021102429
を算出できる。本例では、得られる変調スペクトル図における幅値間の関係は
Figure 2021102429
がある。該変調スペクトル図における振幅間の関係はXのある特徴
Figure 2021102429
により示される。最後に計算により
Figure 2021102429
が最大値となる。したがって、プロペラ翼数が3であると確定できる。最後に翼周波数は
プロペラ翼数×軸周波数となっており、即ち翼周波数は5.565Hzとなる。最後の識
別結果は図5に示される。 A large number of samples of the propeller blade number modulation spectrum diagram are known, or according to the samples simulated according to the rules in Table 1.
Figure 2021102429
Is the default amount
Figure 2021102429
Can be calculated. In this example, the relationship between the width values in the resulting modulation spectrum diagram is
Figure 2021102429
There is. Wherein the relationship between the amplitudes in the modulation spectrum diagram with X
Figure 2021102429
Indicated by. Finally by calculation
Figure 2021102429
Is the maximum value. Therefore, it can be determined that the number of propeller blades is 3. Finally, the blade frequency is the number of propeller blades × the axis frequency, that is, the blade frequency is 5.565 Hz. The final identification result is shown in FIG.

上記の実施例の説明は、本発明の方法およびその精神を理解するためのものである。当業
者にとって、本発明の原理から逸脱することなく、本発明をいくつかの改良および修正を
加えて実施することもでき、これらの改良および修正はすべて本発明の保護範囲に含まれ
ることは言うまでもない。
The description of the above examples is for understanding the method of the present invention and its spirit. It goes without saying that those skilled in the art may also implement the invention with some modifications and modifications without departing from the principles of the invention, all of which are within the scope of protection of the invention. No.

Claims (4)

輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法であって、
(1)船舶の輻射ノイズ信号を採集し、フーリエ変換により変調スペクトル図を取得す
るステップと、
(2)変調図にローカルピークを探索し、ローカルピーク位置における共振周波数を取
得するステップと、
(3)変調図における1番目ローカルピークの共振周波数を確定し、軸周波数を確定す
るとともに、ローカルピークの数に基づいて共振周波数の数Nを確定するステップと、
(4)軸周波数と翼周波数間の逓倍関係を確定し、他の共振周波数を確定するステップ
と、
(5)各高調波周波数位置の平均スペクトルコヒーレント値を確定し、ナイーブベイズ
の推断法によりプロペラ翼数を取得するとともに、最後に翼周波数を確定するステップと
、を含み、
ステップ(2)では、ローカルピークを探索するときは、隣り合う両ローカルピークの
共振周波数の差が下記関係を満たし、
Figure 2021102429
ただし、
Figure 2021102429
はn番目ローカルピーク位置の循環周波数の値であり、
ステップ(3)では、軸周波数を確定するときは、1番目ローカルピーク位置の共振周
波数を軸周波数とし、1番目ローカルピーク位置の共振周波数値が0.9Hzより小さけ
れば、それを除去して、2番目共振周波数を軸周波数とする、
ことを特徴とする輻射ノイズ変調に基づくプロペラ翼数特徴の抽出方法。
A method for extracting propeller blade number characteristics based on radiation noise modulation.
(1) A step of collecting a ship's radiation noise signal and acquiring a modulation spectrum diagram by Fourier transform.
(2) The step of searching for a local peak in the modulation diagram and acquiring the resonance frequency at the local peak position,
(3) A step of determining the resonance frequency of the first local peak in the modulation diagram, determining the axis frequency, and determining the number N of the resonance frequencies based on the number of local peaks.
(4) The step of determining the multiplication relationship between the axis frequency and the blade frequency and determining the other resonance frequencies,
(5) Includes a step of determining the average spectral coherent value of each harmonic frequency position, obtaining the number of propeller blades by the naive Bayesian inference method, and finally determining the blade frequency.
In step (2), when searching for a local peak, the difference in resonance frequency between two adjacent local peaks satisfies the following relationship.
Figure 2021102429
However,
Figure 2021102429
Is the value of the circulation frequency at the nth local peak position,
In step (3), when determining the shaft frequency, the resonance frequency at the first local peak position is set as the shaft frequency, and if the resonance frequency value at the first local peak position is smaller than 0.9 Hz, it is removed. The second resonance frequency is the axis frequency,
A method for extracting propeller blade number characteristics based on radiation noise modulation.
ステップ(4)では、他の共振周波数を確定する公式は、
Figure 2021102429
であり、ただし、
Figure 2021102429
はn番目共振周波数、
Figure 2021102429

Figure 2021102429
は軸周波数である、ことを特徴とする請求項1に記載の輻射ノイズ変調に基づくプロペラ
翼数特徴の抽出方法。
In step (4), the formula for determining the other resonance frequencies is
Figure 2021102429
However,
Figure 2021102429
Is the nth resonance frequency,
Figure 2021102429
;
Figure 2021102429
The method for extracting a propeller blade number feature based on the radiation noise modulation according to claim 1, wherein is an axial frequency.
各共振周波数位置の平均スペクトルコヒーレント値
Figure 2021102429

Figure 2021102429
区間内の平均コヒーレント値から平均を求めて得られ、ただし、
Figure 2021102429
はサンプリング点
Figure 2021102429
前の5番目サンプリング点から
Figure 2021102429
後の5番目サンプリング点までの区間を示す、ことを特徴とする請求項1に記載の輻射ノ
イズ変調に基づくプロペラ翼数特徴の抽出方法。
Average spectral coherent value of each resonant frequency position
Figure 2021102429
Is
Figure 2021102429
Obtained by calculating the average from the average coherent value within the interval, however
Figure 2021102429
Is the sampling point
Figure 2021102429
From the previous 5th sampling point
Figure 2021102429
The method for extracting a propeller blade number feature based on the radiation noise modulation according to claim 1, wherein the section up to the fifth sampling point is shown later.
ステップ(5)では、ナイーブベイズの推断法に基づいて、取得の共振周波数値と対応の
平均コヒーレント値との間の関係により、該変調図はどの類型のプロペラ翼数の集合に従
属するかを確定し、最後にはプロペラ翼数を確定し、
ナイーブベイズ公式は、
Figure 2021102429
であり、ただし、Y={
Figure 2021102429
}(Yはすべての可能のプロペラ翼数の集合、
Figure 2021102429
はその一つのプロペラ翼数、
Figure 2021102429
はプロペラ翼数が3、
Figure 2021102429
はプロペラ翼数が4、
Figure 2021102429
はプロペラ翼数が5、
Figure 2021102429
はプロペラ翼数が6、
Figure 2021102429
はプロペラ翼数が7とする)、X={
Figure 2021102429
}(Xは分類目標の変調スペクトル、
Figure 2021102429
は該変調スペクトルにおける各共振周波数位置の振幅大小関係とする)、P(X)は分類
自身の確率(定常数)、
Figure 2021102429
は各プロペラ翼数の類型
Figure 2021102429
の先験的確率、
Figure 2021102429
は所定Xの
Figure 2021102429
プロペラ翼数類型への従属確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
のX発生確率、
Figure 2021102429
はプロペラ翼数類型
Figure 2021102429
の変調スペクトルにおける特徴
Figure 2021102429
発生の確率であり、各
Figure 2021102429
を算出すると、
Figure 2021102429
が最大値であれば、Xは類型
Figure 2021102429
に従属する、ことを特徴とする請求項1に記載の輻射ノイズ変調に基づくプロペラ翼数特
徴の抽出方法。
In step (5), based on the naive Bayesian inference method, the relationship between the acquired resonance frequency value and the corresponding average coherent value determines which type of propeller blade number set the modulation diagram depends on. Confirm, finally confirm the number of propeller wings,
Naive Bayes official is
Figure 2021102429
However, Y = {
Figure 2021102429
} (Y is the set of all possible propeller blade numbers,
Figure 2021102429
Is the number of propeller wings,
Figure 2021102429
Has 3 propeller wings,
Figure 2021102429
Has 4 propeller wings,
Figure 2021102429
Has 5 propeller wings,
Figure 2021102429
Has 6 propeller wings,
Figure 2021102429
Has 7 propeller wings), X = {
Figure 2021102429
} (X is the modulation spectrum of the classification target,
Figure 2021102429
Is the amplitude magnitude relationship of each resonance frequency position in the modulation spectrum), P (X) is the probability of the classification itself (steady number),
Figure 2021102429
Is the type of each propeller wing number
Figure 2021102429
A priori probability,
Figure 2021102429
Is a given X
Figure 2021102429
Probability of dependence on propeller wing number type,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
X occurrence probability,
Figure 2021102429
Is a propeller wing number type
Figure 2021102429
Features in the modulation spectrum of
Figure 2021102429
Probability of occurrence, each
Figure 2021102429
When you calculate
Figure 2021102429
If is the maximum value, X is a type
Figure 2021102429
The method for extracting a propeller blade number feature based on the radiation noise modulation according to claim 1, wherein the propeller blade number feature is dependent on the above.
JP2020127834A 2019-12-24 2020-07-29 Extraction method of propeller blade number characteristics based on radiation noise modulation Active JP6836041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911347560.3 2019-12-24
CN201911347560.3A CN111160207B (en) 2019-12-24 2019-12-24 Paddle number feature extraction method based on radiation noise modulation

Publications (2)

Publication Number Publication Date
JP6836041B1 JP6836041B1 (en) 2021-02-24
JP2021102429A true JP2021102429A (en) 2021-07-15

Family

ID=70558386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020127834A Active JP6836041B1 (en) 2019-12-24 2020-07-29 Extraction method of propeller blade number characteristics based on radiation noise modulation

Country Status (2)

Country Link
JP (1) JP6836041B1 (en)
CN (1) CN111160207B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166253A (en) * 2022-01-29 2022-11-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Container stacking processing methods, devices, equipment, storage media, and products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118133135A (en) * 2023-10-20 2024-06-04 中国人民解放军91977部队 Method and device for identifying target in water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478043B1 (en) * 2002-06-05 2009-01-13 Verizon Corporate Services Group, Inc. Estimation of speech spectral parameters in the presence of noise
DE102012015638A1 (en) * 2012-08-07 2014-02-13 Atlas Elektronik Gmbh Method and device for classifying watercraft
CN104091085B (en) * 2014-07-18 2017-03-08 安徽工业大学 The cavitation noise feature assessment method being calculated based on screw current pressure fluctuation
CN105300513A (en) * 2015-11-20 2016-02-03 天津大学 Method and device for identifying resonance frequency multiplication number of blade vibration of multiple tip timing sensors
CN108921014B (en) * 2018-05-21 2021-05-14 西北工业大学 Propeller shaft frequency searching method based on improved noise envelope signal identification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166253A (en) * 2022-01-29 2022-11-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Container stacking processing methods, devices, equipment, storage media, and products
JP7532456B2 (en) 2022-01-29 2024-08-13 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド CONTAINER STACKING METHOD, APPARATUS, STORAGE MEDIUM, AND PRODUCT

Also Published As

Publication number Publication date
JP6836041B1 (en) 2021-02-24
CN111160207A (en) 2020-05-15
CN111160207B (en) 2023-08-15

Similar Documents

Publication Publication Date Title
JP6836041B1 (en) Extraction method of propeller blade number characteristics based on radiation noise modulation
CN106017926A (en) Rolling bearing fault diagnosis method based on variational mode decomposition
CN109975780B (en) Helicopter model identification algorithm based on pulse Doppler radar time domain echo
CN103245937A (en) Micro moving target feature extracting method based on micro Doppler effect
JPWO2018159337A1 (en) Profile generation device, attack detection device, profile generation method, and profile generation program
Tang et al. A robust deep learning network for low-speed machinery fault diagnosis based on multikernel and RPCA
CN110855374B (en) Underwater sound target radiation noise modulation feature extraction method
Zhu et al. Automatic recognition of radar signals based on time-frequency image character
CN103344947A (en) Micro-motion target characteristic extraction method based on micro-Doppler effect
CN109840495A (en) A kind of axis frequency line enhancement method under Low SNR
CN112394642A (en) Robot milling chatter identification method based on super-parameter optimization
CN109973251A (en) A kind of blind source separation method for solid propellant rocket vibration signal noise reduction
Zhao et al. Evaluation of supervised machine learning techniques for dynamic malware detection
Sahu et al. Kernel K-means clustering for phishing website and malware categorization
Chen et al. Image feature extraction based on HOG and its application to fault diagnosis for rotating machinery
CN105631869B (en) A kind of tube dividing method, device and equipment
US6876944B2 (en) Motor speed estimation for stabilized motor control
CN113177514B (en) Unmanned aerial vehicle signal detection method and device and computer readable storage medium
Reddy et al. Reducing runtime values in minimum spanning tree based clustering by visual access tendency
CN112329626A (en) Modulation and deep learning fused equipment fault diagnosis method, system and medium
Zhang et al. Low speed bearing fault diagnosis based on EMD-CIIT histogram entropy and KFCM clustering
JP2020095458A (en) Detection device, detection method, and detection program
Valentina et al. Features Extraction Based on Probability Weighting for Fake News Classification on Social Media
Ceyhan et al. Measuring The Robustness of AI Models Against Adversarial Attacks: Thyroid Ultrasound Images Case Study
US20240086769A1 (en) Computer-implemented method and device for determining a prediction for a variable of a technical system, using a machine learning model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201231

R150 Certificate of patent or registration of utility model

Ref document number: 6836041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150