JP2021100758A - Oil-and-fat containing wastewater treatment method, system and apparatus - Google Patents

Oil-and-fat containing wastewater treatment method, system and apparatus Download PDF

Info

Publication number
JP2021100758A
JP2021100758A JP2021032846A JP2021032846A JP2021100758A JP 2021100758 A JP2021100758 A JP 2021100758A JP 2021032846 A JP2021032846 A JP 2021032846A JP 2021032846 A JP2021032846 A JP 2021032846A JP 2021100758 A JP2021100758 A JP 2021100758A
Authority
JP
Japan
Prior art keywords
oil
microorganisms
concentration
fat
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021032846A
Other languages
Japanese (ja)
Other versions
JP7319695B2 (en
JP2021100758A5 (en
Inventor
克敏 堀
Katsutoshi Hori
克敏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66538649&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021100758(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Publication of JP2021100758A publication Critical patent/JP2021100758A/en
Publication of JP2021100758A5 publication Critical patent/JP2021100758A5/ja
Application granted granted Critical
Publication of JP7319695B2 publication Critical patent/JP7319695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/347Use of yeasts or fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

To provide oil-and-fat containing wastewater treatment methods which effectively reduce a concentration of oil-and-fat in wastewater which continuously flows in and out and includes miscellaneous microbes, using a microbial preparation having oil and fat degradation capability, and related systems and devices.SOLUTION: The present disclosure provides oil-and-fat containing wastewater treatment methods, and related systems and devices, including a process of continuously or intermittently feeding a microbial preparation having an oil-and-fat degrading capability into an oil-and-fat degrading tank which oil-and-fat containing wastewater continuously flows in and out of, and degrading the oil-and-fat, in which an amount of the fed microbial preparation is the amount that enables microbes to settle in the oil-and-fat degrading tank, and in which microbes other than those contained in the microbial preparation are present in the oil-and-fat containing wastewater.SELECTED DRAWING: None

Description

本発明は、油脂分解能力を有する微生物製剤を用いた油脂含有排水処理方法、ならびに関連するシステムおよび装置に関するものである。 The present invention relates to a fat-containing wastewater treatment method using a microbial preparation capable of decomposing fats and oils, and related systems and devices.

微生物による油脂分解が排水処理などに利用されている。食品工場及び油脂精製工場からの排水に含まれる多量の油分は、活性汚泥処理、膜分離活性汚泥法(MBR)、嫌気消化といった種々の排水処理プロセスの処理効率を大きく低下させるおそれがある。そこで、そのような排水を排出する工場の多くは、これら処理プロセスの前処理として、加圧浮上分離装置等を設置している。 Decomposition of fats and oils by microorganisms is used for wastewater treatment. A large amount of oil contained in wastewater from food factories and oil refining factories may greatly reduce the treatment efficiency of various wastewater treatment processes such as activated sludge treatment, membrane separation activated sludge method (MBR), and anaerobic digestion. Therefore, many factories that discharge such wastewater install a pressurized flotation separation device or the like as a pretreatment for these treatment processes.

加圧浮上分離装置は油分を固液分離により取り除くものであるが、(1)回収した大量の油性汚泥は産業廃棄物として処理されねばならない、(2)油分を浮上させるために凝集剤を大量に使用するとともに曝気により気泡を送って浮力を与える必要がある、(3)悪臭の発生源であり住宅地が近接している工場では脱臭装置を設置せねばならないこともある、(4)排水量及び油分含有量の変動の影響も受けやすいため運転管理にも労力を要する、(5)その結果として、産業廃棄物処理、稼働、管理、メンテナンス等にかかる費用が大きい、などの問題が存在する。 The pressurized levitation separation device removes oil by solid-liquid separation, but (1) a large amount of recovered oily sludge must be treated as industrial waste, and (2) a large amount of flocculant is used to levitate the oil. It is necessary to send air bubbles to give buoyancy by aeration as well as to use it. (3) It may be necessary to install a deodorizing device in factories that are a source of foul odors and are close to residential areas. In addition, since it is easily affected by fluctuations in oil content, it takes labor for operation management. (5) As a result, there are problems such as high costs for industrial waste treatment, operation, management, maintenance, etc. ..

そこで、排水中の油分を分離しないで消滅させるような技術の確立が切望されている。こうした中、微生物による油脂分解技術の適用が試みられてきた。 Therefore, there is an urgent need to establish a technology that eliminates oil in wastewater without separating it. Under these circumstances, the application of oil and fat decomposition technology by microorganisms has been attempted.

そこで、本発明者は、油脂含有排水を効率的に処理する微生物として、油脂加水分解酵素であるリパーゼを分泌する新規微生物バークホルデリア・アルボリス(Burkholderia arboris)SL1B1株を報告している(特許文献1)。さらに、当該バークホルデリア・アルボリスと、リパーゼによる加水分解生成物であるグリセロールを分解する微生物(例えば、カンジダ・シリンドラセア(Candida cylindracea))とを併用することで油脂を効率的に分解することを報告している(特許文献2、非特許文献1)。また、当該バークホルデリア・アルボリスと、リパーゼは生産しないが遊離脂肪酸を分解するヤロウィア・リポリティカ(Yarrowia lipolytica)とを併用することでも油脂を効率的に分解可能であることを報告している(特許文献3)。この油脂分解能力であれば、加圧浮上分離装置を代替することが可能である。 Therefore, the present inventor has reported a novel microorganism Burkholderia arboris SL1B1 strain that secretes lipase, which is a fat hydrolase, as a microorganism that efficiently treats fat-containing wastewater (Patent Document). 1). Furthermore, it was reported that fats and oils were efficiently decomposed by using the Berkholderia arboris in combination with a microorganism that decomposes glycerol, which is a hydrolysis product of lipase (for example, Candida cylindrasea). (Patent Document 2, Non-Patent Document 1). It has also been reported that fats and oils can be efficiently decomposed by using Burkholderia alboris in combination with Yarrowia lipolytica, which does not produce lipase but decomposes free fatty acids (patented). Document 3). With this oil / fat decomposition ability, it is possible to replace the pressurized flotation separation device.

しかし、いくら分解能力の高い微生物製剤を使用したとしても、その使い方が正しくないと目的の効果を得ることはできない。実際に、実験室で分解能力が認められた微生物も、現場で使用すると効果がないということが頻繁に生じる。その主な理由は、実験室の条件と実際の現場の条件が大きく違うことである。実験室では、多くの場合、滅菌された閉鎖系に目的微生物だけが植菌され、培養される。さらに、多くの培養がバッチで行わる。バッチと連続反応では、結果は全く異なる。そこで、実験室でも連続反応を実施することがある。しかし、多くの現場では、油脂分解槽への排水の流入と流出は連続的である一方、微生物製剤の投入は連続的でなく一定間隔になされる間欠式となる。その場合、従来の連続反応器の操作論が成り立たない。 However, no matter how high the decomposition ability of the microbial preparation is used, the desired effect cannot be obtained unless the usage is correct. In fact, microorganisms that have been shown to be degradable in the laboratory often become ineffective when used in the field. The main reason is that the conditions in the laboratory and the conditions in the actual field are very different. In the laboratory, in many cases, only the target microorganism is inoculated and cultured in a sterile closed system. In addition, many cultures are performed in batches. Results are quite different for batch and continuous reactions. Therefore, a continuous reaction may be carried out in the laboratory as well. However, at many sites, the inflow and outflow of wastewater into the fat decomposition tank is continuous, while the addition of microbial preparations is not continuous but intermittent. In that case, the conventional operational theory of continuous reactors does not hold.

また、排水処理は開放系で行われるため、投入微生物以外にも雑多な微生物が無数に存在する環境であり、油脂分解微生物のような目的微生物をそのような微生物コミュニティの中に安定的に定着(対象とする環境中で、目的微生物が淘汰されずに効果的に存在する状態)させる方法論は存在していない。その上、排水は連続的に一定の滞留時間をもって流出するため、目的の投入微生物が他の無数の微生物との生存競争に打ち勝って滞留時間より速い比増殖速度で増殖できないとウォッシュアウトしてしまうことになる。そのため、期待された分解効果を得られないことが多く、環境バイオテクノロジー分野の課題となっている。 In addition, since wastewater treatment is performed in an open system, it is an environment in which innumerable miscellaneous microorganisms exist in addition to input microorganisms, and target microorganisms such as fat-decomposing microorganisms are stably established in such a microbial community. There is no methodology for (a state in which the target microorganism exists effectively without being culled in the target environment). In addition, since the wastewater continuously flows out with a constant residence time, if the target input microorganism cannot overcome the survival competition with innumerable other microorganisms and grow at a specific growth rate faster than the residence time, it will be washed out. It will be. Therefore, the expected decomposition effect is often not obtained, which is an issue in the field of environmental biotechnology.

ウォッシュアウトを避ける方法として、担体に微生物を固定する方法があるが、油が多い排水中では油が担体に付着してしまうという問題点の他、担体という新たな廃棄物の発生、担体にかかるコストといった新たな問題が生じる。 As a method of avoiding washout, there is a method of fixing microorganisms on the carrier, but in addition to the problem that the oil adheres to the carrier in the wastewater with a lot of oil, new waste called the carrier is generated and the carrier is affected. New issues such as cost arise.

さらに、これまで、微生物製剤の使い方についてはあまり注意が払われず、効果を見ながら投入量及び投入間隔を感覚的に調整していることがほとんどである。実際に、現場によって、排水量も排水中の油脂濃度も多様であるため、画一的な方法論を確立することは難しかったのも事実である。その他にも、従来技術では、広範囲の油脂濃度に同じ微生物製剤を適用することが困難であるという問題がある。特に、食品工場及び油脂精製工場などから排出される高濃度の油脂に対して微生物製剤を適用することは困難であり、適用できたとしても、10 cells/mL以上の高濃度の微生物濃度が必要である。 Furthermore, until now, little attention has been paid to how to use the microbial preparation, and in most cases, the input amount and the input interval are sensuously adjusted while observing the effect. In fact, it was difficult to establish a uniform methodology because the amount of wastewater and the concentration of fats and oils in the wastewater vary depending on the site. In addition, there is a problem that it is difficult to apply the same microbial preparation to a wide range of fat and oil concentrations in the prior art. In particular, applying the microbial formulation for high concentrations of oil discharged like from food factories and oil refineries is difficult, even applicable, high levels of microorganisms concentration of more than 10 9 cells / mL is necessary.

特開2010−227858号公報JP-A-2010-227858 特開2010−227849号公報Japanese Unexamined Patent Publication No. 2010-2278849 特開2013−146689号公報Japanese Unexamined Patent Publication No. 2013-146689

Journal of Bioscience and Biotechnology,Vol.107,No.4,401−408,2009Journal of Bioscience and Biotechnology, Vol. 107, No. 4,401-408,2009

本発明は、油脂分解能力を有する微生物製剤を用いて、連続的に流入出し、雑多な微生物が存在する排水中の油脂の濃度を効果的に低下させる油脂含有排水処理方法、ならびに関連するシステムおよび装置を提供する。 The present invention uses a microbial preparation capable of decomposing fats and oils to continuously flow in and out, and effectively reduces the concentration of fats and oils in wastewater in which miscellaneous microorganisms are present. Provide the device.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、油脂含有排水が連続的に流入出する油脂分解槽に微生物製剤を投入する場合、従来の連続培養とは根本的に異なり、投入した微生物は油脂分解槽中では必ずしも増殖する必要はなく、一定数以上存在すれば、油脂の分解は可能であるという知見を得た。 As a result of intensive research to achieve the above object, the present inventor is fundamentally different from the conventional continuous culture when the microbial preparation is put into the fat decomposition tank in which the fat-containing wastewater continuously flows in and out. It was found that the introduced microorganisms do not necessarily have to grow in the fat / oil decomposition tank, and that the fats and oils can be decomposed if they are present in a certain number or more.

本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、次の油脂含有排水処理方法、ならびに関連するシステムおよび装置を提供するものである。
項A1.油脂含有排水が連続的に流入出する油脂分解槽に、油脂分解能力を有する微生物製剤を連続的又は間欠的に投入し、油脂を分解する工程であって、該微生物製剤の投入量が、微生物が油脂分解槽に定着するのに有効な量であり、油脂含有排水には該微生物製剤に含まれる微生物以外の微生物が存在する、工程を含む、油脂含有排水処理方法。
項A2.前記油脂分解槽は担体を含まない項A1に記載の処理方法。
項A3.前記微生物製剤が、リパーゼを生産する微生物、並びに脂肪酸及び/又はグリセロールを分解する微生物からなる群から選択される少なくとも1種の微生物を含む、項A1または2に記載の処理方法。
項A4.前記微生物製剤が、バチルス属細菌、コリネバクテリウム属細菌、ロドコッカス属細菌、バークホルデリア属細菌、アシネトバクター属細菌、シュードモナス属細菌、アルカリゲネス属細菌、ロドバクター属細菌、ラルストニア属細菌、アシドボラックス属細菌、セラチア属細菌、フラボバクテリウム属細菌、カンジダ属酵母、ヤロウィア属酵母、クリプトコッカス属酵母、トリコスポロン属酵母、及びハンゼヌラ属酵母からなる群から選択される少なくとも1種の微生物を含む、項A1〜3のいずれか1項に記載の処理方法。
項A5.前記排水が平均してノルマルヘキサン抽出物300mg/L以上の濃度の油脂を含む、項A1〜4のいずれか一項に記載の処理方法。
項A6.前記微生物製剤の投入量が、油脂分解槽中の排水に対して5.0×10〜1.0×10 cells/mLとなる量である、項A1〜5のいずれか一項に記載の処理方法。
項A7.前記微生物製剤の投入量が、前記油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物1mg当たり、3.0×10〜1.0×10 cellsである、項A1〜6のいずれか一項に記載の処理方法。
項A8.前記微生物製剤の投入量が、前記油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物1mg当たり、3.0×10〜1.0×10 cellsである、項A7に記載の処理方法。
項A9.前記油脂分解槽中の油脂含有排水の溶存酸素濃度が0.05 mg/L以上である、項A1〜8のいずれか一項に記載の処理方法。
項A10.前記油脂分解槽中の油脂含有排水のpHが4.5〜9.0の範囲内である、項A1〜9のいずれか一項に記載の処理方法。
項A11.前記油脂分解槽中の油脂含有排水の温度が12〜42℃の範囲内である、項A1〜10のいずれか一項に記載の処理方法。
項A12.前記油脂分解槽の水理学的滞留時間(HRT)が1時間以上である、項A1〜11のいずれか一項に記載の処理方法。
項A13.前記油脂分解槽のHRTが12時間以上48時間以下である、項A1〜12いずれか一項に記載の処理方法。
項A14.前記油脂分解槽中の油脂含有排水のC/Nが2〜50の範囲内である、項A1〜13のいずれか一項に記載の処理方法。
項A15.前記油脂分解槽中の油脂含有排水のN/Pが1〜20の範囲内である、項A1〜14のいずれか一項に記載の処理方法。
項A16.前記油脂分解槽からの流出水中の投入微生物量が、1×10 cells/mL以下である、項A1〜15のいずれか一項に記載の処理方法。
項A17.前記油脂分解槽からの流出水中の投入微生物の濃度が、前記油脂分解槽に投入する投入時投入微生物の濃度の100倍以下である、項A1〜16のいずれか一項に記載の処理方法。
項A18.前記油脂分解槽からの流出水中の投入微生物の濃度が、前記油脂分解槽に投入する投入時投入微生物の濃度の0.1倍〜10倍である、項A17に記載の処理方法。
項A19.油脂含有排水処理のための油脂分解槽であって、
油脂分解タンクと、
ブロアと、
前記油脂分解槽中の油脂含有排水における溶存酸素濃度、温度、およびpHを検知するためのセンサーと
を備える、油脂分解槽。
項A20.項A1〜18のいずれか一項に記載の処理方法における使用のためのシステムであって、項A19に記載の油脂分解槽を備える、システム。
項A21.項A20に記載のシステムであって、
前記微生物製剤の保管槽と、
前記微生物製剤の増幅槽と、
をさらに備え、前記増幅槽において増幅された前記微生物製剤が前記油脂分解槽に投入されるように構成されている、システム。
項A22.さらに、項A1〜18のいずれか一項に記載の処理方法における前記各工程の1つまたは複数を制御または実施する実施/制御部を備える、項A21に記載のシステム。
項B1.油脂含有排水が連続的に流入出する油脂分解槽に、油脂分解能力を有する微生物製剤を連続的又は間欠的に投入し、油脂を分解する工程であって、該微生物製剤の投入量が、微生物が油脂分解槽に定着できる量であり、油脂含有排水には該微生物製剤に含まれる微生物以外の微生物が存在する、工程を含む、油脂含有排水処理方法。
項B2.前記微生物製剤が、リパーゼを生産する微生物、並びに脂肪酸及び/又はグリセロールを分解する微生物からなる群から選択される少なくとも1種の微生物を含む、項B1に記載の処理方法。
項B3.前記微生物製剤が、バチルス属細菌、コリネバクテリウム属細菌、ロドコッカス属細菌、バークホルデリア属細菌、アシネトバクター属細菌、シュードモナス属細菌、アルカリゲネス属細菌、ロドバクター属細菌、ラルストニア属細菌、アシドボラックス属細菌、セラチア属細菌、フラボバクテリウム属細菌、カンジダ属酵母、ヤロウィア属酵母、クリプトコッカス属酵母、トリコスポロン属酵母、及びハンゼヌラ属酵母からなる群から選択される少なくとも1種の微生物を含む、B項1又は2に記載の処理方法。
項B4.前記微生物製剤の投入量が、油脂分解槽中の排水に対して5.0×104〜1.0×107 cells/mLとなる量である、項B1〜3のいずれか一項に記載の処理方法。
項B5.前記油脂分解槽中の油脂含有排水の溶存酸素濃度が0.05 mg/L以上である、項B1〜4のいずれか一項に記載の処理方法。
項B6.前記油脂分解槽中の油脂含有排水のpHが4.5〜9.0の範囲内である、項B1〜5のいずれか一項に記載の処理方法。
項B7.前記油脂分解槽中の油脂含有排水の温度が12〜42℃の範囲内である、項B1〜6のいずれか一項に記載の処理方法。
項B8.前記油脂分解槽のHRTが12時間以上である、項B1〜7のいずれか一項に記載の処理方法。
項B9.前記油脂分解槽中の油脂含有排水のC/Nが2〜50の範囲内である、項B1〜8のいずれか一項に記載の処理方法。
項B10.前記油脂分解槽中の油脂含有排水のN/Pが1〜20の範囲内である、項B1〜9のいずれか一項に記載の処理方法。
The present invention has been completed by further studying based on these findings, and provides the following oil-containing wastewater treatment method, and related systems and devices.
Item A1. It is a step of continuously or intermittently adding a microbial preparation having an oil / fat decomposition ability into an oil / fat decomposition tank into which the oil / fat-containing wastewater continuously flows in and out to decompose the oil / fat. Is an amount effective for colonizing the fat / oil decomposition tank, and the fat / oil-containing wastewater contains microorganisms other than the microorganisms contained in the microbial preparation, which comprises a step of treating the fat / oil-containing wastewater.
Item A2. Item 6. The treatment method according to Item A1, wherein the oil / fat decomposition tank does not contain a carrier.
Item A3. Item 2. The treatment method according to Item A1 or 2, wherein the microbial preparation comprises at least one microorganism selected from the group consisting of a microorganism that produces lipase and a microorganism that decomposes fatty acids and / or glycerol.
Item A4. The microbial preparations include Bacillus bacterium, Corinebacterium bacterium, Rhodococcus bacterium, Burkholderia bacterium, Asinetobacter bacterium, Pseudomonas bacterium, Alkalinegenes bacterium, Rhodobacter bacterium, Larstonia bacterium, Acidborax bacterium. Items A1 to 3, which include at least one microorganism selected from the group consisting of Seratia bacterium, Flavobacterium bacterium, Candida yeast, Yarrowia yeast, Cryptococcus yeast, Tricosporone bacterium, and Hansenula bacterium. The processing method according to any one of the above.
Item A5. Item 8. The treatment method according to any one of Items A1 to 4, wherein the waste water contains fats and oils having a concentration of 300 mg / L or more of the normal hexane extract on average.
Item A6. Item 2. The item according to any one of Items A1 to 5, wherein the input amount of the microbial preparation is 5.0 × 10 4 to 1.0 × 10 7 cells / mL with respect to the wastewater in the oil / fat decomposition tank. Processing method.
Item A7. Items A1 to 6, wherein the input amount of the microbial preparation is 3.0 × 10 4 to 1.0 × 10 8 cells per 1 mg of the normal hexane extract in the oil / fat-containing wastewater flowing into the oil / fat decomposition tank. The processing method described in item 1.
Item A8. Item 2. The treatment according to Item A7 , wherein the input amount of the microbial preparation is 3.0 × 10 4 to 1.0 × 10 7 cells per 1 mg of the normal hexane extract in the oil / fat-containing wastewater flowing into the oil / fat decomposition tank. Method.
Item A9. Item 8. The treatment method according to any one of Items A1 to 8, wherein the dissolved oxygen concentration of the oil-and-fat-containing wastewater in the oil-and-fat decomposition tank is 0.05 mg / L or more.
Item A10. Item 8. The treatment method according to any one of Items A1 to 9, wherein the pH of the oil-containing wastewater in the oil-fat decomposition tank is in the range of 4.5 to 9.0.
Item A11. Item 8. The treatment method according to any one of Items A1 to 10, wherein the temperature of the oil-containing wastewater in the oil-fat decomposition tank is in the range of 12 to 42 ° C.
Item A12. Item 8. The treatment method according to any one of Items A1 to 11, wherein the hydraulic residence time (HRT) of the oil / fat decomposition tank is 1 hour or more.
Item A13. Item 6. The treatment method according to any one of Items A1 to 12, wherein the HRT of the oil / fat decomposition tank is 12 hours or more and 48 hours or less.
Item A14. Item 8. The treatment method according to any one of Items A1 to 13, wherein the C / N of the oil-containing wastewater in the oil-fat decomposition tank is in the range of 2 to 50.
Item A15. Item 8. The treatment method according to any one of Items A1 to 14, wherein the N / P of the oil-containing wastewater in the oil-and-fat decomposition tank is in the range of 1 to 20.
Item A16. Item 8. The treatment method according to any one of Items A1 to 15, wherein the amount of microorganisms input into the effluent from the oil / fat decomposition tank is 1 × 10 8 cells / mL or less.
Item A17. Item 2. The treatment method according to any one of Items A1 to 16, wherein the concentration of the input microorganisms in the effluent from the fat decomposition tank is 100 times or less the concentration of the input microorganisms charged into the oil / fat decomposition tank.
Item A18. Item 2. The treatment method according to Item A17, wherein the concentration of the input microorganisms in the effluent from the oil / fat decomposition tank is 0.1 to 10 times the concentration of the input microorganisms charged into the oil / fat decomposition tank.
Item A19. A fat decomposition tank for treating wastewater containing fats and oils.
Oil decomposition tank and
With a blower
An oil / fat decomposition tank including a sensor for detecting a dissolved oxygen concentration, a temperature, and a pH in the oil / fat-containing wastewater in the oil / fat decomposition tank.
Item A20. A system for use in the treatment method according to any one of items A1 to 18, comprising the oil / fat decomposition tank according to item A19.
Item A21. Item 2. The system according to item A20.
The storage tank for the microbial preparation and
The amplification tank of the microbial preparation and
The system is configured such that the microbial preparation amplified in the amplification tank is charged into the oil / fat decomposition tank.
Item A22. The system according to item A21, further comprising an execution / control unit that controls or executes one or more of the steps in the processing method according to any one of items A1 to 18.
Item B1. It is a step of continuously or intermittently adding a microbial preparation having an oil / fat decomposition ability into an oil / fat decomposition tank into which the oil / fat-containing wastewater continuously flows in and out to decompose the oil / fat. Is an amount that can be fixed in the fat / oil decomposition tank, and the fat / oil-containing wastewater contains microorganisms other than the microorganisms contained in the microbial preparation, which comprises a step of treating the fat / oil-containing wastewater.
Item B2. Item 6. The treatment method according to Item B1, wherein the microbial preparation comprises at least one microorganism selected from the group consisting of a microorganism that produces lipase and a microorganism that decomposes fatty acids and / or glycerol.
Item B3. The microbial preparations include Bacillus bacterium, Corinebacterium bacterium, Rhodococcus bacterium, Burkholderia bacterium, Asinetobacter bacterium, Pseudomonas bacterium, Alkalinegenes bacterium, Rhodobacter bacterium, Larstonia bacterium, Acidborax bacterium. Item B 1 or, which comprises at least one microorganism selected from the group consisting of Seratia bacterium, Flavobacterium bacterium, Candida yeast, Yarrowia yeast, Cryptococcus yeast, Tricosporone bacterium, and Hansenula bacterium. The processing method according to 2.
Item B4. Item 2. The treatment method according to any one of Items B1 to 3, wherein the amount of the microbial preparation to be added is 5.0 × 10 4 to 1.0 × 10 7 cells / mL with respect to the wastewater in the oil / fat decomposition tank.
Item B5. Item 8. The treatment method according to any one of Items B1 to 4, wherein the dissolved oxygen concentration of the oil-containing wastewater in the oil-fat decomposition tank is 0.05 mg / L or more.
Item B6. Item 8. The treatment method according to any one of Items B1 to 5, wherein the pH of the oil-containing wastewater in the oil-fat decomposition tank is in the range of 4.5 to 9.0.
Item B7. Item 8. The treatment method according to any one of Items B1 to 6, wherein the temperature of the oil-containing wastewater in the oil-and-fat decomposition tank is in the range of 12 to 42 ° C.
Item B8. Item 8. The treatment method according to any one of Items B1 to 7, wherein the HRT of the oil / fat decomposition tank is 12 hours or more.
Item B9. Item 8. The treatment method according to any one of Items B1 to 8, wherein the C / N of the oil-containing wastewater in the oil-and-fat decomposition tank is in the range of 2 to 50.
Item B10. Item 8. The treatment method according to any one of Items B1 to 9, wherein the N / P of the oil-containing wastewater in the oil-and-fat decomposition tank is in the range of 1 to 20.

本発明の方法によれば、油脂分解能力を有する微生物製剤を連続的又は間欠的に投入することで、連続的に流入出し、雑多な微生物が存在する排水中の油脂の濃度を効果的に低下させることができる。本発明では、微生物は油脂分解槽中で必ずしも増殖する必要はなく、増殖できなくても油脂を分解できるという効果を発揮することを特徴とする。 According to the method of the present invention, by continuously or intermittently adding a microbial preparation capable of decomposing fats and oils, the microbial preparations continuously flow in and out, effectively reducing the concentration of fats and oils in wastewater in which miscellaneous microorganisms are present. Can be made to. The present invention is characterized in that the microorganism does not necessarily have to grow in the fat / oil decomposition tank, and exhibits the effect of being able to decompose the fat / oil even if it cannot grow.

また、本発明では、投入微生物以外にも雑多な微生物が存在し、油脂含有排水が連続的に流入出するという投入微生物が増殖しにくいプロセスであるが、該微生物を油脂分解槽中に定着させることが可能である。 Further, in the present invention, there are miscellaneous microorganisms other than the input microorganisms, and the input microorganisms in which the wastewater containing fats and oils continuously flows in and out is a process in which the input microorganisms are difficult to grow. It is possible.

本発明の方法は、広範囲の油脂濃度に対応可能であり、また、従来より低い濃度の微生物製剤が使用可能であるのでコストの面で優れている。 The method of the present invention is excellent in terms of cost because it can handle a wide range of fat and oil concentrations and can use a microbial preparation having a lower concentration than the conventional one.

加えて、または代替的に、本発明の方法は排水中の油脂を十分に分解しつつ、分解槽からの流出水中の投入微生物量は従来より多くないため、環境によいという効果を奏し得る。 In addition, or as an alternative, the method of the present invention can sufficiently decompose fats and oils in wastewater, and the amount of microorganisms input into the effluent from the decomposition tank is not larger than before, so that it can have an effect of being good for the environment.

微生物による油脂分解における溶存酸素濃度(DO)の影響を示すグラフである。It is a graph which shows the influence of the dissolved oxygen concentration (DO) on the decomposition of fats and oils by microorganisms. 微生物による油脂分解におけるpHの影響を示すグラフである。It is a graph which shows the influence of pH in the decomposition of fats and oils by microorganisms. 微生物による油脂分解における温度の影響を示すグラフである。It is a graph which shows the influence of temperature on the decomposition of fats and oils by microorganisms. 微生物による油脂分解におけるC/Nの影響を示すグラフである。It is a graph which shows the influence of C / N on the decomposition of fats and oils by microorganisms. 微生物による油脂分解におけるN/Pの影響を示すグラフである。It is a graph which shows the influence of N / P on the decomposition of fats and oils by microorganisms. 低濃度油脂(ノルマルヘキサン値300 mg/L程度)排水における間欠式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the intermittent type addition in the low-concentration fat (normal hexane value about 300 mg / L) wastewater. 中濃度油脂(ノルマルヘキサン値3000 mg/L程度)排水における間欠式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the intermittent type addition in the wastewater of medium-concentration fats and oils (normal hexane value about 3000 mg / L). 高濃度油脂(ノルマルヘキサン値10000 mg/L程度)排水における間欠式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the intermittent type addition in the wastewater of high-concentration fats and oils (normal hexane value about 10000 mg / L). 超高濃度油脂(ノルマルヘキサン値30000 mg/L程度)排水における間欠式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the intermittent type addition in the wastewater of ultra-high concentration fats and oils (normal hexane value about 30,000 mg / L). 低濃度油脂(ノルマルヘキサン値300 mg/L程度)排水における連続式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the continuous type addition in the low-concentration fat (normal hexane value about 300 mg / L) wastewater. 中濃度油脂(ノルマルヘキサン値3000 mg/L程度)排水における連続式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the continuous addition in the wastewater of medium-concentration fat (normal hexane value about 3000 mg / L). 高濃度油脂(ノルマルヘキサン値10000 mg/L程度)排水における連続式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the continuous addition in the wastewater of high-concentration fat (normal hexane value about 10000 mg / L). 超高濃度油脂(ノルマルヘキサン値30000 mg/L程度)排水における連続式投入による投入時の投入微生物濃度の影響を示すグラフである。It is a graph which shows the influence of the addition microorganism concentration at the time of addition by the continuous type addition in the wastewater of ultra-high concentration fats and oils (normal hexane value about 30,000 mg / L). 低濃度油脂(ノルマルヘキサン値300 mg/L程度)排水における滞留時間の影響を示すグラフである。It is a graph which shows the influence of the residence time in the wastewater of low-concentration fat (normal hexane value about 300 mg / L). 中濃度油脂(ノルマルヘキサン値3000 mg/L程度)排水における滞留時間の影響を示すグラフである。It is a graph which shows the influence of the residence time in the wastewater of medium-concentration fat (normal hexane value about 3000 mg / L). 高濃度油脂(ノルマルヘキサン値10000 mg/L程度)排水における滞留時間の影響を示すグラフである。It is a graph which shows the influence of the residence time in the wastewater of high-concentration fat (normal hexane value about 10000 mg / L). 超高濃度油脂(ノルマルヘキサン値30000 mg/L程度)排水における滞留時間の影響を示すグラフである。It is a graph which shows the influence of the residence time in the wastewater of ultra-high concentration fats and oils (normal hexane value about 30,000 mg / L). 本発明の処理方法のためのシステムを示す図である。It is a figure which shows the system for the processing method of this invention.

以下、本発明について詳細に説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present invention will be described in detail. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise stated. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include the plural concept unless otherwise noted. It should also be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Thus, unless otherwise defined, all terminology and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, this specification (including definitions) takes precedence.

以下、本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。 Hereinafter, definitions and / or basic technical contents of terms particularly used in the present specification will be described as appropriate.

本明細書において「含む(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「からなる(consist of)」という意味をも包含する。 As used herein, the term "comprise" also includes the meaning of "essentially consist of" and the meaning of "consist of".

また、本明細書においてノルマルヘキサン(n−Hex)値とは、ノルマルヘキサンにより抽出される不揮発性物質の量であり、水中の油分(油脂、その加水分解産物など)の量を示す指標である。n−Hex値は、例えば、JIS K 0102に従って求めることができる。あるいは、本発明のn−Hex値は、例えば熱感応性ポリマー(例えば、ポリ(N−イソプロピルアクリルアミド)(PNIPPAm))を用いて測定される相当値であってもよい。PNIPPAm抽出物質の測定は、例えば、株式会社共立理化学研究所(東京、日本)の油分測定試薬セットのような公知のキットを使用して行い得る。 Further, in the present specification, the normal hexane (n-Hex) value is the amount of non-volatile substances extracted by normal hexane, and is an index showing the amount of oil (fat, hydrolyzate, etc.) in water. .. The n-Hex value can be determined according to, for example, JIS K 0102. Alternatively, the n-Hex value of the present invention may be an equivalent value measured using, for example, a heat-sensitive polymer (for example, poly (N-isopropylacrylamide) (PNIPPAm)). The measurement of the PNIPPAm extract can be performed using, for example, a known kit such as the oil content measurement reagent set of Kyoritsu Institute of Physical and Chemical Research (Tokyo, Japan).

本発明の油脂含有排水処理方法は、油脂含有排水が連続的に流入出する油脂分解槽に、油脂分解能力を有する微生物製剤を連続的又は間欠的に投入し、油脂を分解する工程であって、該微生物製剤の投入量が、微生物が油脂分解槽に定着できる量であり、油脂含有排水には該微生物製剤に含まれる微生物以外の微生物が存在する、工程を含むことを特徴とする。 The oil-fat-containing wastewater treatment method of the present invention is a step of continuously or intermittently injecting a microbial preparation having an oil-fat decomposition ability into an oil-fat decomposition tank into which the oil-fat-containing wastewater continuously flows in and out to decompose the oil-and-fat. The input amount of the microbial preparation is an amount that allows the microorganisms to settle in the fat / oil decomposition tank, and the fat / oil-containing wastewater includes a step in which microorganisms other than the microorganisms contained in the microbial preparation are present.

本発明は、適切なプロセス条件の下で、排水中の油脂とその加水分解産物に由来するn−Hex値を低減させる技術である。 The present invention is a technique for reducing the n-Hex value derived from fats and oils in wastewater and their hydrolyzate under appropriate process conditions.

本発明における油脂含有排水としては、油脂を含有している排水であれば特に制限されず、例えば、飲食店、病院、ホテル等の排水、家庭排水、食品加工工場、油脂加工工場等から排出される産業排水等などが挙げられる。 The oil-and-fat-containing wastewater in the present invention is not particularly limited as long as it contains oil-and-fat, and is discharged from, for example, wastewater from restaurants, hospitals, hotels, etc., domestic wastewater, food processing factories, oil-and-fat processing factories, and the like. Industrial wastewater, etc.

本発明における排水中の油脂としては、特に制限されず、例えば、植物性油脂(綿実油、菜種油、大豆油、トウモロコシ油、オリーブ油、サフラワー油、米油、ごま油、パーム油、ヤシ油、落花生油等)、動物性油脂(ラード、牛脂、乳脂肪等)、魚油、これらの油脂の加工品(マーガリン、ショートニング、バター等)などが挙げられる。 The fats and oils in the wastewater in the present invention are not particularly limited, and for example, vegetable fats and oils (cottonseed oil, rapeseed oil, soybean oil, corn oil, olive oil, safflower oil, rice oil, sesame oil, palm oil, palm oil, peanut oil). Etc.), animal fats and oils (lard, beef tallow, milk fat, etc.), fish oil, processed products of these fats and oils (margarine, shortening, butter, etc.) and the like.

本発明における油脂含有排水のn−Hex値は、特に制限されず、通常100〜40000 mg/L、好ましくは200〜30000 mg/L、より好ましくは300〜30000 mg/Lである。本発明は、平均n−Hex値300 mg/Lを超える油脂含有排水の処理に特に好ましい。好ましい実施形態においては、本発明の方法においては、処理すべき油脂含有排水のn−Hex値を測定し、その測定値に基づいて投入すべき微生物製剤量が決定され得る。本発明におけるn−Hex値の特定は、JIS K 0102に従って行ってもよいし、ポリ(N−イソプロピルアクリルアミド)(PNIPPAm))を用いて測定される相当値を用いて行ってもよい。 The n-Hex value of the oil-and-fat-containing wastewater in the present invention is not particularly limited, and is usually 100 to 40,000 mg / L, preferably 200 to 30,000 mg / L, and more preferably 300 to 30,000 mg / L. The present invention is particularly preferable for treating oil-containing wastewater having an average n-Hex value of more than 300 mg / L. In a preferred embodiment, in the method of the present invention, the n-Hex value of the oil-containing wastewater to be treated can be measured, and the amount of the microbial preparation to be added can be determined based on the measured value. The n-Hex value in the present invention may be specified according to JIS K 0102, or may be specified using an equivalent value measured using poly (N-isopropylacrylamide) (PNIPPAm)).

本発明における油脂含有排水には微生物製剤に含まれる微生物以外の微生物が存在している。本発明の方法は通常、開放系で行われるため、油脂含有排水中には雑多な微生物が存在する環境となる。油脂含有排水に存在する微生物数としては、例えば、1×10 cells/mL以上、1×10 cells/mL以上、1×10 cells/mL以上、1×10 cells/mL以上などが挙げられる。このような雑多な微生物が存在する環境は、純粋培養と違い投入した微生物製剤の微生物が増殖することが難しい環境である。 Microorganisms other than those contained in the microbial preparation are present in the oil-and-fat-containing wastewater in the present invention. Since the method of the present invention is usually carried out in an open system, it becomes an environment in which various microorganisms are present in the wastewater containing fats and oils. The number of microorganisms present in the oil-containing wastewater includes, for example, 1 × 10 6 cells / mL or more, 1 × 10 7 cells / mL or more, 1 × 10 8 cells / mL or more, and 1 × 10 9 cells / mL or more. Can be mentioned. Unlike pure culture, the environment in which such miscellaneous microorganisms are present is an environment in which it is difficult for the microorganisms of the introduced microbial preparation to grow.

本発明において、油脂含有排水は油脂分解槽へ連続的に流入出する。ここでの「連続的」とは、絶えず油脂含有排水が流入及び流出している場合だけを意味するものではなく、流入及び流出が一旦停止する期間を有する場合も包含する。本発明の「連続的」とは、バッチ処理のような、閉鎖した槽において微生物が投入され、増殖し、分解処理が行われる系は包含しないことに留意されたい。 In the present invention, the oil-and-fat-containing wastewater continuously flows into and out of the oil-and-fat decomposition tank. The term "continuous" as used herein does not mean only the case where the oil-containing wastewater is constantly flowing in and out, but also includes the case where the inflow and outflow are temporarily stopped. It should be noted that the term "continuous" in the present invention does not include systems such as batch processing in which microorganisms are introduced, proliferated, and decomposed in a closed tank.

微生物製剤としては、油脂分解能力を有するものであれば特に制限無く使用することができる。微生物製剤中の微生物としては、1種単独又は2種以上を混合して使用することができる。2種以上を混合して使用する場合は、共生可能な微生物の組み合わせを使用することが望ましい。また、微生物製剤には、油脂分解を助ける共生菌を含ませることもできる。 The microbial preparation can be used without particular limitation as long as it has the ability to decompose fats and oils. As the microorganism in the microbial preparation, one kind alone or two or more kinds can be used together. When two or more species are mixed and used, it is desirable to use a combination of microorganisms capable of coexisting with each other. In addition, the microbial preparation may contain symbiotic bacteria that assist in the decomposition of fats and oils.

微生物製剤の一例として、22〜35℃、pH = 5.5〜8.5、DO≧0.1 mg/L、バッチ培養の条件で、n−Hex値 = 10000 mg/L相当の油脂及び加水分解物産物の脂肪酸を、72時間内に、好ましくは48時間以内に、より好ましくは36時間以内に、より一層好ましくは24時間以内に80%以上分解する能力を有する微生物製剤が挙げられる。 As an example of the microbial preparation, under the conditions of 22 to 35 ° C., pH = 5.5 to 8.5, DO ≧ 0.1 mg / L, and batch culture, n-Hex value = 10000 mg / L equivalent fats and oils and hydrolysis. Examples thereof include a microbial preparation capable of decomposing the fatty acid of the decomposition product product within 72 hours, preferably within 48 hours, more preferably within 36 hours, and even more preferably within 24 hours by 80% or more.

微生物製剤には、リパーゼを生産する微生物、並びに(油脂のリパーゼによる分解産物である)脂肪酸及び/又はグリセロールを分解する微生物を好適に使用することができる。このような微生物としては、これらの性質を単独で有する微生物だけでなく、これらの性質を複数併せ持った微生物(例えば、リパーゼを生産し且つ脂肪酸を分解する微生物)を使用することもできる。 As the microbial preparation, a microorganism that produces lipase and a microorganism that decomposes fatty acids (which are decomposition products of fats and oils by lipase) and / or glycerol can be preferably used. As such a microorganism, not only a microorganism having these properties alone, but also a microorganism having a plurality of these properties (for example, a microorganism that produces lipase and decomposes fatty acids) can be used.

リパーゼを生産する微生物としては、真性細菌、酵母、糸状真菌類などが挙げられ、好ましくは真性細菌及び酵母、より好ましくは真性細菌である。真性細菌としては、例えば、バチルス(Bacillus)属細菌、コリネバクテリウム(Corynebacterium)属細菌、ロドコッカス(Rhodococcus)属細菌、バークホルデリア(Burkholderia)属細菌、アシネトバクター(Acinetobacter)属細菌、シュードモナス(Pseudomonas)属細菌、アルカリゲネス(Alcaligenes)属細菌、ロドバクター(Rhodobacter)属細菌、ラルストニア(Ralstonia)属細菌、アシドボラックス(Acidovorax)属細菌、セラチア(Serratia)属細菌、フラボバクテリウム(Flavobacterium)属細菌等を用いることができる。中でも、バークホルデリア属細菌、特にバークホルデリア・アルボリス(例えば、SL1B1株(NITE P−724)など)が好ましい。 Examples of microorganisms that produce lipase include eubacteria, yeasts, filamentous fungi and the like, preferably eubacteria and yeasts, and more preferably eubacteria. Examples of eubacteria include Bacillus bacterium, Corynebacterium bacterium, Rhodococcus bacterium, Burkholderia bacterium, Acinetobacter bacterium, and Acinetobacter bacterium. Bacteria of the genus, Alcaligenes, Bacteria of Rhodobacter, Bacteria of Ralstonia, Bacteria of Acidovorax, Bacteria of Serratia, Bacteria of Flavobacterium, etc. Can be used. Among them, Burkholderia bacteria, particularly Burkholderia arboris (for example, SL1B1 strain (NITE P-724)) are preferable.

グリセロールを分解(資化)する微生物としては、真性細菌、酵母、糸状真菌類などが挙げられ、好ましくは真性細菌及び酵母、より好ましくは酵母である。酵母としては、カンジダ(Candida)属酵母、特にカンジダ・シリンドラセア(例えば、SL1B2株(NITE P−714)など)が好ましい。 Examples of microorganisms that decompose (assimilate) glycerol include eubacteria, yeasts, filamentous fungi and the like, preferably eubacteria and yeasts, and more preferably yeasts. As the yeast, Candida genus yeast, particularly Candida silindracea (for example, SL1B2 strain (NITE P-714), etc.) is preferable.

脂肪酸を分解(資化)する微生物としては、真性細菌、酵母、糸状真菌類などが挙げられ、好ましくは真性細菌及び酵母、より好ましくは酵母である。酵母としては、ヤロウィア(Yarrowia)属酵母、クリプトコッカス(Cryptococcus)属酵母、トリコスポロン(Trichosporon)属酵母、及びハンゼヌラ(Hansenula)属酵母、特にヤロウィア・リポリティカ(例えば、1A1株(NITE BP−1167)など)が好ましい。 Examples of microorganisms that decompose (assimilate) fatty acids include eubacteria, yeasts, filamentous fungi and the like, preferably eubacteria and yeasts, and more preferably yeasts. Yeasts include Yarrowia yeast, Cryptococcus yeast, Trichosporon yeast, and Hansenula yeast, especially Yarrowia lipolytica (eg, 1A1 strain (NITE BP-167)). Is preferable.

微生物製剤を製造する際に使用する微生物の具体例としては、バークホルデリア・アルボリス、カンジダ・シリンドラセア、及びヤロウィア・リポティカが挙げられ、これらを2又は3種組み合わせて使用することが望ましい。 Specific examples of the microorganisms used in producing the microbial preparation include Burkholderia alboris, Candida silindracea, and Yarrowia lipotica, and it is desirable to use two or three of these in combination.

微生物は、公知の方法により培養することで製造することができる。微生物製剤の形態としては、例えば、液体状態、乾燥状態、ペースト状態、おがくず等の粉体・粒体に吸着させた状態が挙げられる。また、微生物製剤は、担体に固定した状態で使用することもできる。 Microorganisms can be produced by culturing by a known method. Examples of the form of the microbial preparation include a liquid state, a dry state, a paste state, and a state of being adsorbed on powder / granules such as sawdust. In addition, the microbial preparation can also be used in a state of being fixed on a carrier.

このような担体を使用することでウォッシュアウトを避けることができる。担体の材質としては、微生物を固定できるものであれば特に制限なく使用でき、例えば、炭素繊維(PAN系、ピッチ系、フェノール樹脂系等)、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリエチレングリコール樹脂、アクリル樹脂、ゼラチン、アルギン酸ナトリウム、カラギーナン、デキストリン、セラミックス、シリコン、金属、これらの複合体などが挙げられる。微生物の固定化率及び微生物の作用効率を高めるために、多孔質又は繊維状の担体を用いることが好ましい。また、ゲル状担体に微生物を包括してもよい。担体の形状は、例えば、立方体状、直方体状、円柱状、球状、円板状、シート状、膜状などが挙げられる。しかしながら、本発明の方法では、このような担体を使用しなくても十分な油脂分解効果が得られるので、担体の使用は必須ではない。 Washout can be avoided by using such a carrier. The material of the carrier is not particularly limited as long as it can fix microorganisms. For example, carbon fiber (PAN-based, pitch-based, phenol resin-based, etc.), polyethylene resin, polypropylene resin, polyurethane resin, polystyrene resin, poly Examples thereof include vinyl chloride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyethylene glycol resin, acrylic resin, gelatin, sodium alginate, carrageenan, dextrin, ceramics, silicon, metal, and composites thereof. It is preferable to use a porous or fibrous carrier in order to increase the immobilization rate of microorganisms and the efficiency of action of microorganisms. Further, the gel-like carrier may contain microorganisms. Examples of the shape of the carrier include a cube, a rectangular parallelepiped, a columnar shape, a spherical shape, a disk shape, a sheet shape, and a film shape. However, in the method of the present invention, since a sufficient oil / fat decomposition effect can be obtained without using such a carrier, the use of a carrier is not essential.

油脂分解槽への微生物製剤の投入方法は、連続式及び間欠式のいずれかである。間欠式とは、微生物製剤を定期的に投入する方式を意味する。 The method of charging the microbial preparation into the fat decomposition tank is either a continuous type or an intermittent type. The intermittent method means a method in which a microbial preparation is regularly added.

微生物製剤の油脂分解槽への投入量は、微生物が油脂分解槽に(安定的に)定着できる量である。ここで、「定着」とは、目的微生物が淘汰されずに油脂分解が可能な程度、油脂分解槽に存在する状態のことを意味する。すわなち、排水が連続的に流出する条件であっても、投入した微生物がウォッシュアウトされない状態のことである。 The amount of the microbial preparation charged into the fat decomposition tank is an amount that allows the microorganisms to (stablely) settle in the fat decomposition tank. Here, "fixation" means a state in which the target microorganism is present in the fat / oil decomposition tank to the extent that the fat / oil can be decomposed without being selected. That is, even under the condition that the wastewater continuously flows out, the introduced microorganisms are not washed out.

好ましい実施形態においては、本発明の油脂分解方法において担体を使用しない。本発明は予想外に、担体を使用することなく、処理排水の油脂含有量に応じて投入微生物量を決定し、従来より低い油脂分解槽内微生物濃度によって、ウォッシュアウトを回避しながらも排水中の油脂を十分に分解することを可能にした。ウォッシュアウトとは、連続系の流出速度に菌体増殖速度がおいつけず、濃度を維持できない現象をいう。一般的に、理想的な連続系は定常状態であり、下記式が成立する。
投入微生物量(cell/h)+微生物増殖量(cell/h)=流出微生物量(cell/h)
ここで、
投入微生物量(cell/h)=微生物製剤微生物濃度(cell/L)×微生物製剤添加速度(L/h)
微生物増殖量(cell/h)=比増殖速度(1/h)×槽内微生物濃度(cell/L)×槽容量(L)
流出微生物量(cell/h)=流出水中微生物濃度(cell/L)×排水流出速度(L/h)
である。
In a preferred embodiment, no carrier is used in the fat decomposition method of the present invention. Unexpectedly, the present invention determines the amount of microbial input according to the fat content of the treated wastewater without using a carrier, and the microbial concentration in the fat decomposition tank is lower than before, so that the wastewater is being drained while avoiding washout. It has made it possible to sufficiently decompose the fats and oils of. Washout is a phenomenon in which the outflow rate of a continuous system cannot be adjusted to the cell growth rate and the concentration cannot be maintained. In general, an ideal continuous system is in a steady state, and the following equation holds.
Input microbial amount (cell / h) + microbial growth amount (cell / h) = outflow microbial amount (cell / h)
here,
Amount of microbial preparation (cell / h) = microbial preparation microbial concentration (cell / L) x microbial preparation addition rate (L / h)
Microbial growth rate (cell / h) = specific growth rate (1 / h) x microbial concentration in the tank (cell / L) x tank capacity (L)
Outflow microbial amount (cell / h) = effluent microbial concentration (cell / L) x effluent outflow rate (L / h)
Is.

通常、投入微生物量は槽内の微生物増殖量より桁違いに低く、増殖した微生物によって排水処理を試みるのが当該分野の一般的な認識であった。しかしながら、本発明者は、微生物を増殖させることを企図せず、仮に投入した微生物が増殖しない場合でも補うことができるかを検討し、
投入微生物量=流出微生物量
で補うことを考えた。投入した微生物が増殖しない場合において、下記式が成立する。
微生物製剤中微生物濃度×微生物製剤添加量=流出水中微生物濃度×油脂分解槽体積
すなわち、
微生物製剤中微生物濃度×微生物製剤添加量/油脂分解槽体積
=投入時投入微生物濃度=流出水中微生物濃度
すなわち、投入微生物濃度が排水における油脂分解を担うことになる。当該分野では十分に油脂分解を行うためには、微生物を増殖させ、増殖した微生物によって油脂分解を達成する必要があると認識されていたが、本発明者は予想外に、投入微生物濃度によって、微生物の増殖に依存することなく油脂分解を達成することができることを見出した。もちろん、投入した微生物が増殖する場合であっても、本発明の利点は同様に享受可能である。
Usually, the amount of input microorganisms is orders of magnitude lower than the amount of microorganisms grown in the tank, and it was generally recognized in the field to try wastewater treatment with the grown microorganisms. However, the present inventor does not intend to grow the microorganisms, and examines whether the introduced microorganisms can be supplemented even if they do not grow.
We considered supplementing with the amount of input microorganisms = the amount of outflow microorganisms. The following formula holds when the introduced microorganism does not grow.
Microbial concentration in microbial preparation x amount of microbial preparation added = microbial concentration in effluent x volume of fat decomposition tank, that is,
Microbial concentration in microbial preparation x amount of microbial preparation added / volume of oil / fat decomposition tank = concentration of microbial agent added at the time of injection = concentration of microorganism in effluent That is, the concentration of microbial agent added is responsible for the decomposition of oil / fat in wastewater. In this field, it has been recognized that in order to sufficiently decompose fats and oils, it is necessary to proliferate microorganisms and achieve fats and oils decomposition by the grown microorganisms, but the present inventor unexpectedly depends on the concentration of input microorganisms. It was found that fat decomposition can be achieved without depending on the growth of microorganisms. Of course, even when the introduced microorganism grows, the advantages of the present invention can be enjoyed as well.

通常、微生物は炭素源を消費し、消費量に菌体収率を乗じた分を菌体成分に変換して増殖する。油脂分解における炭素源は油脂であるので、理論上は、油脂の分解に伴い菌体が増殖する。増殖量を決めるのが菌体収率であり、多くの場合、0.5程度であるが、環境条件によって変わる。すなわち、炭素収支で考えると、通常、分解した油脂の半分が増殖菌体となり、残りの半分が、エネルギー源として菌体細胞の維持に利用されながら二酸化炭素にまで無機化される。増殖しないということは、基本的には、見かけの菌体収率がゼロということであり、分解された油脂の全てが菌体維持に使われるか、増殖した菌体が同じ速度で死滅しているあるいは淘汰されていることになる。これは、通常では考えられない事象であり、また、排水処理の理論の基礎となる生物化学工学が教える、一般的な操作ではない。しかし、他の微生物との生存競争が厳しい場合、油脂量と投入微生物量とのバランスによって、そのような操作が可能であることを、発明者は見出した。このバランスが崩れ、油脂量に対し投入微生物量が少なすぎる場合、微生物が増殖できる余地はあるが、余分な油脂は残存する。逆に、油脂量に対し投入微生物量が多すぎる場合、菌体維持に必要な炭素源を得ることができず、微生物濃度が減少する。このような条件は、投入微生物を無駄に消費する状態を引き起こす。すなわち、雑多な微生物が存在し、生存競争の厳しい排水中の油脂量に応じた投入菌体量を見出したことが、本発明の最も重要な局面の一つである。 Normally, a microorganism consumes a carbon source, and the amount obtained by multiplying the consumption amount by the cell yield is converted into a cell component and proliferated. Since the carbon source in the decomposition of fats and oils is fats and oils, in theory, bacterial cells grow as the fats and oils are decomposed. The amount of growth is determined by the bacterial cell yield, which is about 0.5 in most cases, but varies depending on the environmental conditions. That is, in terms of carbon balance, half of the decomposed fats and oils are usually grown cells, and the other half is mineralized to carbon dioxide while being used as an energy source for maintaining the cells of the cells. Non-proliferation basically means that the apparent yield of cells is zero, and all of the decomposed fats and oils are used to maintain the cells, or the grown cells die at the same rate. It means that it is or has been weeded out. This is an unusual event and is not a common operation taught by biochemical engineering, which is the basis of wastewater treatment theory. However, the inventor has found that such an operation is possible by balancing the amount of fats and oils and the amount of input microorganisms when the competition for survival with other microorganisms is fierce. If this balance is lost and the amount of microorganisms input is too small with respect to the amount of fats and oils, there is room for microorganisms to grow, but excess fats and oils remain. On the contrary, when the amount of input microorganisms is too large with respect to the amount of fats and oils, the carbon source required for maintaining the cells cannot be obtained, and the concentration of microorganisms decreases. Such a condition causes a state in which input microorganisms are wasted. That is, one of the most important aspects of the present invention is to find the amount of input cells according to the amount of fats and oils in the wastewater in which miscellaneous microorganisms are present and the competition for survival is fierce.

微生物製剤を油脂分解槽に間欠的に投入する場合、微生物製剤の投入量は、油脂分解槽中の排水に対し、好ましくは5.0×10〜1.0×10 cells/mL、より好ましくは1.0×10〜1.0×10 cells/mL、更に好ましくは5.0×10〜5.0×10 cells/mL、最も好ましくは1.0×10〜3.0×10 cells/mLとなる量である。定期的に投入される微生物の投入間隔は、油脂分解槽における排水の滞留時間から24時間の間で設定することが望ましい。ここでの微生物製剤の投入量は、微生物製剤に最も多く含まれる種類の微生物の濃度とすることもできる。 When the microbial preparation is intermittently charged into the oil / fat decomposition tank, the amount of the microbial preparation to be added is preferably 5.0 × 10 4 to 1.0 × 10 7 cells / mL with respect to the wastewater in the oil / fat decomposition tank. It is preferably 1.0 × 10 5 to 1.0 × 10 7 cells / mL, more preferably 5.0 × 10 5 to 5.0 × 10 6 cells / mL, and most preferably 1.0 × 10 6 to 3. The amount is 0.0 × 10 6 cells / mL. It is desirable to set the charging interval of the microorganisms that are regularly charged within 24 hours from the residence time of the wastewater in the fat decomposition tank. The input amount of the microbial preparation here can also be the concentration of the type of microorganism contained most in the microbial preparation.

微生物製剤を連続的に投入する場合、次式にFX、F、IXを代入してSXを求める。 When the microbial preparation is continuously added, FX, F, and IX are substituted into the following formula to obtain SX.

微生物製剤供給速度(FX):処理排水流量(F)
=油脂分解槽流入希釈後微生物濃度(IX):供給微生物濃度(SX)
IXは、油脂分解槽中の排水に対し、好ましくは5.0×10〜1.0×10 cells/mL、より好ましくは1.0×10〜1.0×10 cells/mL、更に好ましくは5.0×10〜5.0×10 cells/mL、最も好ましくは1.0×10〜3.0×10 cells/mLとなるように計算する。また、FX:Fは典型的には1:1000であるが、これに限定されるものではない。ここでの供給微生物濃度は、微生物製剤に最も多く含まれる種類の微生物の濃度とすることもできる。
Microbial product supply rate (FX): Treated wastewater flow rate (F)
= Microbial concentration (IX) after influx dilution in oil and fat decomposition tank: Supply microbial concentration (SX)
IX, compared drainage fat splitting bath, preferably 5.0 × 10 4 ~1.0 × 10 7 cells / mL, more preferably 1.0 × 10 5 ~1.0 × 10 7 cells / mL , More preferably 5.0 × 10 5 to 5.0 × 10 6 cells / mL, and most preferably 1.0 × 10 6 to 3.0 × 10 6 cells / mL. Further, FX: F is typically 1: 1000, but is not limited to this. The concentration of the supplied microorganisms here can also be the concentration of the type of microorganism contained most in the microbial preparation.

複数種の微生物を使用する場合、油脂分解槽への投入は、各微生物を同時又は別々に行うことができる。 When a plurality of types of microorganisms are used, each microorganism can be charged into the oil / fat decomposition tank at the same time or separately.

油脂分解槽中の油脂含有排水の溶存酸素濃度(DO)は、曝気撹拌などにより通常0.05 mg/L以上、好ましくは0.1 mg/L以上、より好ましくは0.5 mg/L以上、最も好ましくは1 mg/L以上に保つことが望ましい。 The dissolved oxygen concentration (DO) of the oil-containing wastewater in the oil-fat decomposition tank is usually 0.05 mg / L or more, preferably 0.1 mg / L or more, more preferably 0.5 mg / L or more by aeration stirring or the like. Most preferably, it is preferably maintained at 1 mg / L or more.

油脂分解槽中の油脂含有排水のpHは、通常4.5〜9.0、好ましくは5.5〜8.5、より好ましくは6.0〜8.0の範囲内である。これらの範囲に入らない場合は、酸又はアルカリの添加により適宜pHの調整を行い得る。 The pH of the oil-containing wastewater in the oil-fat decomposition tank is usually in the range of 4.5 to 9.0, preferably 5.5 to 8.5, and more preferably 6.0 to 8.0. If it does not fall within these ranges, the pH can be adjusted as appropriate by adding an acid or alkali.

油脂分解槽中の油脂含有排水の温度は、通常12℃〜42℃、好ましくは15℃〜40℃、より好ましくは15〜37℃、更に好ましくは18〜37℃、最も好ましくは20〜35℃の範囲内に保つことが望ましい。これらの温度範囲に入らない場合は、加温又は冷却による温度調節を適宜行い得る。 The temperature of the oil-containing wastewater in the oil-and-fat decomposition tank is usually 12 ° C. to 42 ° C., preferably 15 ° C. to 40 ° C., more preferably 15 to 37 ° C., still more preferably 18 to 37 ° C., and most preferably 20 to 35 ° C. It is desirable to keep it within the range of. If the temperature does not fall within these temperature ranges, the temperature can be appropriately adjusted by heating or cooling.

代表的な実施形態において、本発明は、油脂分解槽のHRT (水理学的滞留時間)が1時間以上であるような油脂分解を対象とする。具体的には、油脂分解槽のHRTは、通常12時間以上、好ましくは18時間以上、より好ましくは20時間以上、更に好ましくは24時間以上である。n−Hexが10000 mg/Lを超える排水について、80%以上のn−Hex値の低減を期待する場合は、HRTを通常18時間以上、好ましくは20時間以上、より好ましくは24時間以上にする。n−Hex値が3000 mg/L以下の排水について、80%以上のn−Hex値の低減を期待する場合は、HRTを通常8時間以上、好ましくは12時間以上、より好ましくは18時間以上にする。典型的には、いずれの処理においても、HRTは48時間以内であり得る。 In a typical embodiment, the present invention targets oil and fat decomposition such that the HRT (hydraulic residence time) of the oil and fat decomposition tank is 1 hour or more. Specifically, the HRT of the oil / fat decomposition tank is usually 12 hours or more, preferably 18 hours or more, more preferably 20 hours or more, still more preferably 24 hours or more. When a reduction of 80% or more in the n-Hex value is expected for wastewater having an n-Hex of more than 10000 mg / L, the HRT is usually set to 18 hours or longer, preferably 20 hours or longer, more preferably 24 hours or longer. .. For wastewater with an n-Hex value of 3000 mg / L or less, if an 80% or more reduction in the n-Hex value is expected, the HRT is usually 8 hours or longer, preferably 12 hours or longer, more preferably 18 hours or longer. To do. Typically, for any treatment, HRT can be within 48 hours.

油脂分解槽に流入する排水中には、窒素が微生物に利用可能な形態、好ましくはアンモニウム塩、硝酸塩、硫酸塩、又は有機窒素化合物、より好ましくは硫酸アンモニウム、尿素、アミノ酸、又はペプトン、トリプトン、カザミノ酸などのペプチドを含む形態で存在していることが望ましい。必要な窒素の量はあらかじめラボスケール又はパイロットスケールの試験から推定するのが好ましく、一般的にはC/N = 2〜50の範囲(ここでのCはn−Hex由来のみの炭素を指す)であり、好ましくはC/N = 2〜30、より好ましくはC/N=2〜20の範囲である。ただし、C/Nとは、排水中に含まれるn−Hex由来炭素原子と窒素原子の重量比である。排水中の窒素が不足するため上記範囲に入らない場合、必要量の窒素を上述の形態で、好ましくは硫酸アンモニウム又は尿素の形態で添加し得る。他の実施形態では、油脂の分解に伴うpHの低下を制御することを兼ねて、pHの自動調整に合わせてアンモニアまたはその水溶液として供給することで、窒素を添加し得る。この供給は自動でも手動でもよい。 In the wastewater flowing into the fat decomposition tank, nitrogen is available in a form available to microorganisms, preferably ammonium salts, nitrates, sulfates, or organic nitrogen compounds, more preferably ammonium sulfates, ureas, amino acids, or peptones, triptons, casaminos. It is desirable that it exists in a form containing a peptide such as an acid. The amount of nitrogen required is preferably estimated in advance from lab-scale or pilot-scale tests, generally in the range C / N = 2-50 (where C refers to carbon derived only from n-Hex). C / N = 2 to 30, more preferably C / N = 2 to 20. However, C / N is the weight ratio of n-Hex-derived carbon atoms and nitrogen atoms contained in the wastewater. If the nitrogen in the wastewater is insufficient and does not fall within the above range, a required amount of nitrogen may be added in the form described above, preferably in the form of ammonium sulfate or urea. In another embodiment, nitrogen can be added by supplying as ammonia or an aqueous solution thereof in accordance with the automatic adjustment of pH, which also serves to control the decrease in pH due to the decomposition of fats and oils. This supply may be automatic or manual.

油脂分解槽に流入する排水中には、リン(P)が微生物が利用可能な形態、好ましくはリン酸塩又は核酸、より好ましくはリン酸塩の形態で存在していることが望ましい。必要なリンの量はラボスケール又はパイロットスケールの試験から推定することが望ましく、一般的には、排水中の窒素に対してN/P = 1〜20となる量である。ただし、N/Pとは、排水中に含まれる窒素原子とリン原子の重量比である。排水中のリンが不足するため上記範囲に入らない場合は、必要量のリンをリン酸塩の形態で添加し得る。この添加は自動でも手動でもよい。 It is desirable that phosphorus (P) is present in the wastewater flowing into the fat decomposition tank in a form that can be used by microorganisms, preferably in the form of phosphate or nucleic acid, and more preferably in the form of phosphate. The amount of phosphorus required should be estimated from lab-scale or pilot-scale tests and is generally such that N / P = 1-20 with respect to nitrogen in wastewater. However, N / P is a weight ratio of nitrogen atoms and phosphorus atoms contained in wastewater. If the amount of phosphorus in the wastewater is insufficient and does not fall within the above range, a required amount of phosphorus can be added in the form of a phosphate. This addition may be automatic or manual.

油脂分解槽の微生物濃度は排水中の油脂濃度に依存し、油脂濃度が高いほど菌体濃度も高く維持される。投入微生物濃度が薄いと、排水中の油脂により増殖が活発になるため、かえって微生物濃度が高くなる場合がある。逆に投入微生物量が十分であると、油脂濃度が十分に低下し、微生物量は低い濃度で維持される場合がある。 The microbial concentration in the fat decomposition tank depends on the fat concentration in the wastewater, and the higher the fat concentration, the higher the bacterial cell concentration is maintained. If the concentration of the input microorganisms is low, the growth becomes active due to the fats and oils in the wastewater, so that the concentration of microorganisms may be rather high. On the contrary, if the amount of input microorganisms is sufficient, the fat and oil concentration may be sufficiently lowered, and the amount of microorganisms may be maintained at a low concentration.

油脂分解槽が発泡する場合は、対策として、HRTを短くする、シャワリング、消泡剤添加などの消泡操作を行うことができる。ただし、消泡剤は微生物の生育を阻害するものがあるので、添加量は当該事項を考慮して設定することが望ましい。 When the oil / fat decomposition tank foams, as a countermeasure, defoaming operations such as shortening the HRT, showering, and adding a defoaming agent can be performed. However, since some antifoaming agents inhibit the growth of microorganisms, it is desirable to set the amount to be added in consideration of the relevant matters.

排水が微生物の生育を抑制するほどの塩素、抗生物質などを含む場合は、除去処理を施した後、あるいは排水処理システム全体を考慮してこれら生育抑制物質の濃度が低下した後段(例えば、調整槽の後)などに微生物製剤を投入し得る。 If the wastewater contains chlorine, antibiotics, etc. that suppress the growth of microorganisms, the latter stage (for example, adjustment) after the removal treatment or the concentration of these growth-suppressing substances is reduced in consideration of the entire wastewater treatment system. Microbial preparations can be added to (after the tank).

油脂分解槽からの流出水のn−Hex値は、流入水のn−Hex値が300 mg/L程度以下の低濃度排水の場合、好ましくは60 mg/L以下、より好ましくは30 mg/L以下である。流入水のn−Hex値が3000 mg/L程度の中濃度排水の場合、好ましくは600 mg/L以下、より好ましくは300 mg/L以下、更に好ましくは150 mg/L以下、最も好ましくは30 mg/L以下である。流入水のn−Hex値が10000 mg/L程度の高濃度排水の場合、好ましくは1000 mg/L以下、より好ましくは500 mg/L以下、更に好ましくは100 mg/L以下、最も好ましくは30 mg/L以下である。流入水のn−Hex値が30000 mg/L程度以上の高濃度排水の場合、好ましくは3000 mg/L以下、より好ましくは1000 mg/L以下、更に好ましくは300 mg/L以下である。 The n-Hex value of the effluent from the oil / fat decomposition tank is preferably 60 mg / L or less, more preferably 30 mg / L in the case of low-concentration wastewater in which the n-Hex value of the inflow water is about 300 mg / L or less. It is as follows. In the case of medium-concentration wastewater having an n-Hex value of about 3000 mg / L, the inflow water is preferably 600 mg / L or less, more preferably 300 mg / L or less, still more preferably 150 mg / L or less, and most preferably 30. It is mg / L or less. In the case of high-concentration wastewater having an n-Hex value of about 10000 mg / L, the inflow water is preferably 1000 mg / L or less, more preferably 500 mg / L or less, still more preferably 100 mg / L or less, and most preferably 30. It is mg / L or less. In the case of high-concentration wastewater having an n-Hex value of about 30,000 mg / L or more, the inflow water is preferably 3000 mg / L or less, more preferably 1000 mg / L or less, and further preferably 300 mg / L or less.

また、本発明の方法により、油脂含有排水のn−Hex値を、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、最も好ましくは99%以上低下させることができる。 Further, according to the method of the present invention, the n-Hex value of the oil-and-fat-containing wastewater can be reduced by preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and most preferably 99% or more.

その結果、多くの排水において、油脂分解槽からの流出水のn−Hex値を、多くの自治体で下水道への放流基準値となっている30 mg/L未満に下げることも可能である。この基準値を達成すると、n−Hex値だけに着目すれば、後段の活性汚泥処理などの本処理すら不要となる。 As a result, in many wastewaters, it is possible to reduce the n-Hex value of the effluent from the oil / fat decomposition tank to less than 30 mg / L, which is the standard value for discharge to the sewer in many local governments. When this reference value is achieved, if only the n-Hex value is focused on, even the main treatment such as the activated sludge treatment in the subsequent stage becomes unnecessary.

連続系での微生物による油脂分解処理のためには、微生物を十分に増殖させる必要があるというのが従来の当該分野における認識であったが、本発明者は、予想外に、従来の認識ほど微生物を増殖させることなく油脂分解が達成され得ることを発見した。これまでは投入微生物量に対して数100倍以上数1000倍以下の量まで微生物を増殖させる必要があると考えられていたが、本発明者は、投入微生物量に対して100倍以下、あるいは数10倍程度の量までしか微生物を増殖させなくても排水処理が首尾よく行われることを見出した。例えば流出水中の投入した微生物の量は、投入した量に対して、好ましくは0.01倍以上100倍以下、0.01倍以上10倍以下、0.1倍以上100倍以下、0.1倍以上10倍以下、0.5倍以上100倍以下、0.5倍以上10倍以下、1倍以上100倍以下、1倍以上10倍以下であり、好ましくは0.1倍以上10倍以下である。そのため、1つの実施形態において、油脂分解槽からの流出水中の投入した微生物の量は、1×10 cells/mL以下であり得る。これによって流出水中の微生物量が抑制され、環境への影響を低減することができた。微生物の増殖量は、餌(炭素源)である油脂の量によるので、排水中の油脂量に合わせて投入する微生物量を投入することで、微生物量をコントロールし、効率的な油脂分解が達成できる。従来、処理せねばならない油脂量に必要な微生物量に関する情報は存在しなかった。1つの実施形態において、油脂分解槽に投入される微生物製剤の量は、油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物1mg当たり、3.0×10〜1.0×10 cells、好ましくは3.0×10〜1×10cellsである。このように油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物の量に応じて投入する微生物製剤の量を決定することにより、無駄な微生物を消費することなく効率的な油脂分解が達成され得る。 It has been conventionally recognized in the art that microorganisms need to be sufficiently grown in order to decompose fats and oils by microorganisms in a continuous system, but the present inventor unexpectedly recognized that as much as the conventional recognition. It was discovered that fat decomposition can be achieved without the growth of microorganisms. Until now, it was considered necessary to grow microorganisms in an amount of several hundred times or more and several thousand times or less with respect to the amount of input microorganisms, but the present inventor has made it 100 times or less with respect to the amount of input microorganisms, or It has been found that wastewater treatment can be carried out successfully even if the microorganisms are grown only up to several tens of times the amount. For example, the amount of microorganisms added to the effluent is preferably 0.01 times or more and 100 times or less, 0.01 times or more and 10 times or less, 0.1 times or more and 100 times or less, 0.1 times the amount added. Double or more and 10 times or less, 0.5 times or more and 100 times or less, 0.5 times or more and 10 times or less, 1 time or more and 100 times or less, 1 time or more and 10 times or less, preferably 0.1 times or more and 10 times or less. Is. Therefore, in one embodiment, the amount of introduced microorganisms in the effluent from oil decomposition vessel may be less 1 × 10 8 cells / mL. As a result, the amount of microorganisms in the effluent was suppressed, and the impact on the environment could be reduced. Since the amount of growth of microorganisms depends on the amount of fats and oils that are the food (carbon source), the amount of microorganisms to be added is controlled according to the amount of fats and oils in the wastewater, and efficient fat and oil decomposition is achieved. it can. In the past, there was no information on the amount of microorganisms required for the amount of fats and oils that had to be treated. In one embodiment, the amount of the microbial preparation charged into the fat decomposition tank is 3.0 × 10 4 to 1.0 × 10 8 per 1 mg of the normal hexane extract in the oil-containing wastewater flowing into the fat decomposition tank. The cells, preferably 3.0 × 10 4 to 1 × 10 7 cells. By determining the amount of the microbial preparation to be added according to the amount of the normal hexane extract in the oil-containing wastewater flowing into the oil-and-fat decomposition tank in this way, efficient oil-and-fat decomposition is achieved without consuming unnecessary microorganisms. Can be done.

本発明の油脂含有排水処理方法は、上記工程以外にも追加の工程を含むことができる。そのような工程としては、例えば、油脂分解槽からの流出水の全部又は一部を再度油脂分解槽に戻す工程などが挙げられる。しかしながら、本発明の方法では、このような返送処理を行わなくても十分な油脂分解効果が得られるので、油脂分解槽からの流出水の全部又は一部を再度油脂分解槽に戻すことは必須ではない。 The oil-and-fat-containing wastewater treatment method of the present invention can include additional steps in addition to the above steps. Examples of such a step include a step of returning all or a part of the effluent from the oil / fat decomposition tank to the oil / fat decomposition tank again. However, in the method of the present invention, a sufficient oil / fat decomposition effect can be obtained without performing such a return treatment, so it is essential to return all or part of the effluent from the oil / fat decomposition tank to the oil / fat decomposition tank again. is not it.

通常、純粋微生物のバッチ培養では、基質の炭素源を消費しながら微生物は桁違いに増殖する。典型的には数百倍ほど増殖する。これが生物工学の常識であった。しかし、無数の種類と数の微生物が存在する排水の流れの中では、投入微生物の栄養分となる油脂が存在していても、純粋微生物のバッチ培養のように数百倍に増えることは難しい。油脂の濃度がそれほど高くない条件では、微生物濃度が減少することさえある。 Usually, in a batch culture of pure microorganisms, the microorganisms grow by orders of magnitude while consuming the carbon source of the substrate. It typically grows hundreds of times. This was common sense in biotechnology. However, in the flow of wastewater in which innumerable types and numbers of microorganisms are present, even if fats and oils that serve as nutrients for input microorganisms are present, it is difficult to increase the number by several hundred times as in batch culture of pure microorganisms. Under conditions where the concentration of fats and oils is not very high, the concentration of microorganisms may even decrease.

しかし、このような条件でも、本発明によれば、油脂の効率的分解は可能である。本発明は、いかに排水中で投入微生物を増殖させるかがポイントではなく、油脂の濃度に応じた一定濃度以上の投入微生物が排水中に存在していればよいという新しい概念に基づくものである。 However, even under such conditions, according to the present invention, efficient decomposition of fats and oils is possible. The present invention is not based on how to grow the input microorganisms in the wastewater, but based on a new concept that the input microorganisms having a certain concentration or more corresponding to the concentration of fats and oils should be present in the wastewater.

本発明の方法によれば、油脂分解能力を有する微生物製剤を油脂分解槽に連続的又は間欠的に投入することで、連続的に流入出し、雑多な微生物が存在する排水であっても、油脂の濃度を効果的に低下させることが可能である。本発明では、微生物は油脂分解槽中で必ずしも増殖する必要はなく、増殖できなくても油脂分解が可能である。 According to the method of the present invention, by continuously or intermittently putting a microbial preparation having an oil / fat decomposition ability into an oil / fat decomposition tank, it continuously flows in and out, and even if it is wastewater in which miscellaneous microorganisms are present, the oil / fat It is possible to effectively reduce the concentration of. In the present invention, the microorganism does not necessarily have to grow in the fat decomposition tank, and can decompose fats and oils even if it cannot grow.

また、本発明では、投入微生物以外にも雑多な微生物が存在し、油脂含有排水が連続的に流入出するという投入微生物が増殖しにくいプロセスであるが、該微生物がウォッシュアウトされず油脂分解槽中に定着させることが可能である。 Further, in the present invention, there are miscellaneous microorganisms other than the input microorganisms, and the input microorganisms are difficult to grow because the wastewater containing oil and fat continuously flows in and out. However, the microorganisms are not washed out and the oil and fat decomposition tank. It can be fixed inside.

本発明の方法は、広範囲の油脂濃度に対応可能であり、また、従来より低い量の微生物で効果が出るのでコストの面で優れている。 The method of the present invention is excellent in terms of cost because it can handle a wide range of fat and oil concentrations and is effective with a lower amount of microorganisms than before.

(装置およびシステム)
本発明はまた、本発明の処理方法における使用のための装置またはシステムも提供し得る。本発明の装置またはシステムは、典型的には、微生物製剤の保管槽と、微生物製剤の増幅槽と、油脂含有排水が連続的に流入出する油脂分解槽とを含み得る(図18)。
(Devices and systems)
The present invention may also provide an apparatus or system for use in the processing methods of the present invention. The apparatus or system of the present invention may typically include a storage tank for the microbial preparation, an amplification tank for the microbial preparation, and a fat decomposition tank into which the oil-containing wastewater continuously flows in and out (FIG. 18).

本発明の装置またはシステムにおける微生物製剤の保管槽は、植種源となる微生物製剤を保管する槽であり、容量30〜200 Lのタンクであるが、容量はこれに限定されるものではない。本発明の保管槽は、典型的には金属製、プラスチック製またはガラス製であるが、これに限定されるものではない。本発明の保管槽は、必要に応じて曝気のためのブロアを備え得る。図18においては、保管槽は冷蔵庫に格納されているが、必ずしもこれに限定されない。 The storage tank for the microbial preparation in the apparatus or system of the present invention is a tank for storing the microbial preparation as a seeding source and has a capacity of 30 to 200 L, but the capacity is not limited thereto. The storage tank of the present invention is typically made of metal, plastic or glass, but is not limited thereto. The storage tank of the present invention may be provided with a blower for aeration, if necessary. In FIG. 18, the storage tank is stored in the refrigerator, but is not necessarily limited to this.

好ましい実施形態において、本発明の方法においては複数種の微生物を種菌として使用し、本発明の保管槽は各種微生物を種類ごとに個別に保管するための複数の保管タンクを備えることができる。このように微生物の種類ごとに個別に保管することにより、微生物製剤中の微生物の活性を長期間保持することができる。 In a preferred embodiment, a plurality of types of microorganisms are used as inoculum in the method of the present invention, and the storage tank of the present invention can be provided with a plurality of storage tanks for individually storing various types of microorganisms. By storing each type of microorganism individually in this way, the activity of the microorganism in the microbial preparation can be maintained for a long period of time.

本発明の微生物の増幅槽は、典型的に、容積30〜1000 Lの、円筒形または角筒形で、金属製、プラスチック製またはガラス製の槽であり得る。好ましくは、増幅槽は温調器および温度計を備え、微生物培養(増幅)中の温度の制御が可能である。制御される温度は典型的には18〜35℃、好ましくは25〜33℃、より好ましくは28〜30℃である。増幅槽内に水位計や液面センサーL1を設置し、下限、上限、中位の液面の制御を可能にしてもよい。さらにこの液面センサーは発泡センサーを兼ねてもよく、あるいは別の原理で発砲を感知するシステムを設置してもよい。これら発泡を感知するシステムと連動して消泡剤を自動供給するシステムを備え得る。また、増幅槽はブロアを備え得る。 The microbial amplification tank of the present invention can typically be a cylindrical or square tubular, metal, plastic or glass tank with a volume of 30-1000 L. Preferably, the amplification tank is equipped with a thermometer and a thermometer, and can control the temperature during microbial culture (amplification). The controlled temperature is typically 18-35 ° C, preferably 25-33 ° C, more preferably 28-30 ° C. A water level gauge or a liquid level sensor L1 may be installed in the amplification tank to enable control of the lower limit, upper limit, and middle level of the liquid level. Further, this liquid level sensor may also serve as a foaming sensor, or a system for detecting firing may be installed based on another principle. A system that automatically supplies an antifoaming agent in conjunction with a system that senses foaming may be provided. Also, the amplification tank may be equipped with a blower.

本発明の増幅槽には、ポンプP1によって保管槽において保管されている微生物製剤が、ポンプP2によって栄養剤が、ポンプP3によって活性化剤が、規定された量、自動で供給され得る。 The amplification tank of the present invention can be automatically supplied with the microbial preparation stored in the storage tank by the pump P1, the nutritional supplement by the pump P2, and the activator by the pump P3 in a specified amount.

活性化剤は活性化剤タンクにおいて保管されており、活性化剤タンクは、微生物の増殖に必要な栄養素を含む無機塩類の溶液を保管する、容量が典型的には3〜100 L、好ましくは10〜50 Lのタンクで、典型的には金属製またはプラスチック製またはガラス製であり、好ましくはプラスチック製である。活性化剤タンクは、冷蔵庫に格納され得る。 The activator is stored in an activator tank, which stores a solution of inorganic salts containing nutrients necessary for microbial growth, typically 3-100 L, preferably 3-100 L. A 10-50 L tank, typically made of metal, plastic or glass, preferably plastic. The activator tank can be stored in the refrigerator.

栄養剤は栄養剤タンクにおいて保管されており、これは微生物の炭素源となる油を保管する、容量が典型的には3〜100 L、好ましくは10〜50 Lのタンクで、典型的には金属製またはプラスチック製またはガラス製であり、好ましくはプラスチック製である。栄養剤タンクは、冷蔵庫に格納され得る。 Nutrients are stored in nutrient tanks, which store oils that are the carbon source for microorganisms, typically in tanks with a capacity of 3-100 L, preferably 10-50 L, typically. It is made of metal, plastic or glass, preferably plastic. The nutrient tank can be stored in the refrigerator.

図示していないが、本発明のシステムはさらに、微生物の炭素源となる油以外の有機物またはその溶液を保管する、容量が典型的には3〜100 L、好ましくは10〜50 Lのタンクを備えてもよく、このタンクは、典型的には金属製またはプラスチック製またはガラス製であり、好ましくはプラスチック製である。このタンクは、冷蔵庫に格納され得る。 Although not shown, the system of the present invention further stores a tank of typically 3-100 L, preferably 10-50 L, for storing organic matter other than oil, which is a carbon source for microorganisms, or a solution thereof. May be provided, the tank is typically made of metal or plastic or glass, preferably plastic. This tank can be stored in the refrigerator.

培養槽および製剤タンクには、散気管または散気球、あるいはマイクロバブル・ナノバブル発生装置を設置してもよい。 The culture tank and the preparation tank may be equipped with a diffuser tube or a balloon, or a microbubble / nanobubble generator.

微生物培養槽において増殖された微生物が、ポンプP4を介して本発明の油脂分解槽に投入され、油脂分解槽において、排水中の油脂分解が行われる。本発明の油脂分解槽は、タンク、ブロア、およびセンサーL2を備え得る。油脂分解槽のセンサーL2は、温度、pH、溶存酸素濃度、発泡レベルの1または複数を検知するものであり得る。 The microorganisms grown in the microbial culture tank are put into the oil / fat decomposition tank of the present invention via the pump P4, and the oil / fat decomposition in the wastewater is performed in the oil / fat decomposition tank. The oil / fat decomposition tank of the present invention may include a tank, a blower, and a sensor L2. The sensor L2 of the fat decomposition tank can detect one or more of temperature, pH, dissolved oxygen concentration, and foaming level.

一つの実施形態では、本発明の装置またはシステムはまた、本発明の油脂含有排水処理方法を実施するコンピュータプログラム(単に「プログラム」ともいう。)、および/または、本発明の装置もしくはシステムを制御するためのプログラムを格納した実施/制御部を備え得る。本発明はまた、本発明の油脂含有排水処理方法を実施するプログラム、および/または、本発明の装置もしくはシステムを制御するためのプログラムを格納した記録媒体(例えば、CD−R、DVD、USB(フラッシュ)メモリなど)を提供する。 In one embodiment, the apparatus or system of the present invention also controls a computer program (also simply referred to as a "program") that implements the oil-containing wastewater treatment method of the present invention, and / or the apparatus or system of the present invention. It may be provided with an execution / control unit that stores a program for the operation. The present invention also contains a recording medium (eg, CD-R, DVD, USB) containing a program for implementing the oil-containing wastewater treatment method of the present invention and / or a program for controlling the apparatus or system of the present invention. Flash) provide memory, etc.).

このようなプログラムは、例えば、油脂含有排水が連続的に流入出する油脂分解槽に、油脂分解能力を有する微生物製剤を連続的又は間欠的に投入し、油脂を分解する工程を本発明の装置またはシステムに実施させ、あるいは同装置またはシステムの制御を実装するようにコードされていてもよい。本発明で用いられる実施/制御部またはプログラムは、利用される微生物製剤の投入量が、微生物が油脂分解槽に定着できる量となるように計算および/または制御するよう構成されている。この実施/制御部またはプログラムは、微生物製剤の投入量を、油脂分解槽中の排水に対して5.0×10〜1.0×10 cells/mLとなる量である、あるいは、油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物1mg当たり、例えば、3.0×10〜1.0×10 cells、好ましくは3.0×10〜1.0×10 cellsであるように本発明の装置またはシステムを制御することを実装するように構成されていてもよい。この投入量は、本明細書の記載に基づいて、実際に実施する状況に応じて適宜変動させてもよい。本発明の装置またはシステムはまた、投入量を決定するために、排水量やその排水中のノルマルヘキサン抽出物に関する値の測定を行うことができるように構成されていてもよい。 In such a program, for example, the apparatus of the present invention comprises a step of continuously or intermittently injecting a microbial preparation having an oil / fat decomposition ability into an oil / fat decomposition tank in which oil / fat-containing wastewater continuously flows in / out to decompose the oil / fat. Alternatively, it may be coded to be performed by a system or to implement control of the device or system. The implementation / control unit or program used in the present invention is configured to calculate and / or control the input amount of the microbial preparation used so as to be an amount that allows the microorganism to settle in the fat decomposition tank. This implementation / control unit or program sets the input amount of the microbial preparation to 5.0 × 10 4 to 1.0 × 10 7 cells / mL with respect to the wastewater in the oil / fat decomposition tank, or the oil / fat. For example, 3.0 × 10 4 to 1.0 × 10 8 cells, preferably 3.0 × 10 4 to 1.0 × 10 7 cells, per 1 mg of the normal hexane extract in the oil-containing wastewater flowing into the decomposition tank. It may be configured to implement controlling the device or system of the present invention. This input amount may be appropriately changed according to the actual implementation situation based on the description in the present specification. The apparatus or system of the present invention may also be configured to be able to measure the amount of wastewater and the values for the normal hexane extract in the wastewater to determine the input amount.

本発明の実施/制御部またはプログラムで実現される各種機能は、その一部または全部が手動で実現されてもよい。 Various functions realized by the implementation / control unit or the program of the present invention may be partially or wholly realized manually.

本発明の実施/制御部またはプログラムで実現される各種機能は、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。 Various functions realized by the implementation / control unit or the program of the present invention may be realized or optimized in part or in whole by artificial intelligence (AI) or machine learning.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽中の油脂含有排水の溶存酸素濃度を制御することができるように構成されていてもよい。そのような構成は、酸素濃度を制御する酸素濃度制御部を別途設けてもよく、上記実施/制御部またはプログラムによる制御によって、実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。酸素濃度は、ブロワーやコンプレッサーなどの空気供給源によって供給されるが、供給量は、溶存酸素濃度と連動して自動調整される。さらに、酸素の溶解効率を高めるため、攪拌装置などを設け、攪拌速度を溶存酸素濃度と連動するように制御してもよい。さらに、溶存酸素の変動に基づいて分解活性を間接的にモニタリングし、溶存酸素の減少がほぼない時は油分解が終了または進んでいないと判断し、投入微生物製剤量をフィードバック制御するシステムを組み込んでもよい。 In one embodiment, the apparatus or system of the present invention may also be configured to be able to control the dissolved oxygen concentration of the oil-containing wastewater in the oil-fat decomposition tank. Such a configuration may be provided separately with an oxygen concentration control unit for controlling the oxygen concentration, may be realized by the above-mentioned implementation / control unit or control by a program, and a part or all thereof may be realized manually. In some cases, some or all of them may be realized or optimized by artificial intelligence (AI) or machine learning. The oxygen concentration is supplied by an air supply source such as a blower or a compressor, and the supply amount is automatically adjusted in conjunction with the dissolved oxygen concentration. Further, in order to increase the dissolution efficiency of oxygen, a stirring device or the like may be provided to control the stirring speed so as to be linked with the dissolved oxygen concentration. Furthermore, a system is incorporated that indirectly monitors the decomposition activity based on the fluctuation of dissolved oxygen, determines that oil decomposition has been completed or has not progressed when there is almost no decrease in dissolved oxygen, and controls the input microbial preparation amount by feedback. It may be.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽中の油脂含有排水のpHを制御するように構成されていてもよい。そのような構成は、pHを制御するpH制御部を別途設けてもよく、上記実施/制御部またはプログラムによる制御によって、実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。pHの制御は、当該分野で公知の任意の手段や手法によって実現することができ、例えば、適量の酸やアルカリを加えることによって実現することができる。したがって、pHの制御のために、pHを測定し、その測定値やその他のパラメータ(例えば、容積など)に基づいて、投入すべき酸および/またはアルカリの量を計算し、計算結果に基づいて酸および/またはアルカリを投入することによって実現することができる。好ましい実施形態において、図18に示すように、油脂分解槽は、pHが設定範囲外になったときに自動でpH調整を行うpH調整タンクを備え得る。1つの実施形態において、pH調整タンクは、pHが設定範囲外になったときに自動で、例えばポンプP6を介して2N硫酸又は2N水酸化ナトリウム水溶液などを油脂分解槽に自動添加し、油脂分解槽内のpHを設定範囲内に調整し得る。あるいは、水酸化ナトリウムに代えて、アンモニアまたはその水溶液を、窒素源の供給と兼ねて添加してもよい。さらに、油脂分解が進むと槽内の処理水が酸性に傾くことを利用して、pHの減少またはアルカリの消費量に基づいて分解活性を間接的にモニタリングし、投入微生物製剤量をフィードバック制御するシステムを組み込んでもよい。 In one embodiment, the apparatus or system of the present invention may also be configured to control the pH of the oil-containing wastewater in the oil-decomposing tank. Such a configuration may be provided separately with a pH control unit for controlling the pH, may be realized by the above-mentioned implementation / control unit or control by a program, or a part or all thereof may be realized manually. , Part or all of which may be realized or optimized by artificial intelligence (AI) or machine learning. The pH can be controlled by any means or method known in the art, for example by adding an appropriate amount of acid or alkali. Therefore, for pH control, the pH is measured, the amount of acid and / or alkali to be charged is calculated based on the measured value and other parameters (eg volume, etc.) and based on the calculation result. This can be achieved by adding acid and / or alkali. In a preferred embodiment, as shown in FIG. 18, the oil / fat decomposition tank may include a pH adjusting tank that automatically adjusts the pH when the pH falls outside the set range. In one embodiment, the pH adjustment tank automatically adds 2N sulfuric acid or 2N sodium hydroxide aqueous solution to the fat decomposition tank via a pump P6, for example, when the pH is out of the set range, and decomposes the fat. The pH in the tank can be adjusted within the set range. Alternatively, instead of sodium hydroxide, ammonia or an aqueous solution thereof may be added also as a supply of a nitrogen source. Furthermore, by utilizing the fact that the treated water in the tank becomes acidic as the decomposition of fats and oils progresses, the decomposition activity is indirectly monitored based on the decrease in pH or the consumption of alkali, and the amount of the input microbial preparation is feedback-controlled. The system may be incorporated.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽の油脂含有排水の温度を制御するように構成されていてもよい。そのような構成は、温度制御部を別途設けることによって実現されてもよく、上記実施/制御部またはプログラムによる制御によって、温度制御が実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。そのような温度制御は、12〜42℃の範囲内に制御することができる能力を含むことが好ましいが、これに限定されない。温度制御は、当該分野で公知の任意の手段によって達成することができる。好ましい実施形態において、図18に示すように、センサーL2において測定された温度が設定範囲を下回ると、ヒーターによって排水が加温され、温度が設定範囲まで上昇され得る。あるいは、ボイラ廃熱などの廃熱や、高温の排水の直接添加や熱交換を利用し得る。また、センサーL2に置いて測定された温度が設定温度範囲を上回ると、クーラーによって排水が冷却され、温度が設定温度まで低下され得る。あるいは、冷却水の注水や冷水との熱交換、冷気の供給を利用し得る。さらに、分解による発酵熱で温度が上昇するという原理を利用して、温度上昇の程度または冷却システムの作動を感知し、投入微生物製剤量をフィードバック制御するシステムを組み込んでもよい。 In one embodiment, the apparatus or system of the present invention may also be configured to control the temperature of the oil-containing wastewater in the oil-decomposing tank. Such a configuration may be realized by separately providing a temperature control unit, temperature control may be realized by the above-mentioned implementation / control unit or control by a program, and a part or all thereof may be realized manually. It may be realized or optimized in part or in whole by artificial intelligence (AI) or machine learning. Such temperature control preferably includes, but is not limited to, the ability to control within the range of 12-42 ° C. Temperature control can be achieved by any means known in the art. In a preferred embodiment, as shown in FIG. 18, when the temperature measured by the sensor L2 falls below the set range, the drainage is heated by the heater and the temperature can be raised to the set range. Alternatively, waste heat such as boiler waste heat, direct addition of high-temperature wastewater, and heat exchange can be used. Further, when the temperature measured by the sensor L2 exceeds the set temperature range, the drainage is cooled by the cooler, and the temperature can be lowered to the set temperature. Alternatively, injection of cooling water, heat exchange with cold water, and supply of cold air can be used. Furthermore, by utilizing the principle that the temperature rises due to the heat of fermentation due to decomposition, a system that senses the degree of temperature rise or the operation of the cooling system and feedback-controls the amount of the input microbial preparation may be incorporated.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽中の油脂含有排水のC/Nを制御するように構成されていてもよい。この油脂含有排水のC/Nの範囲は、2〜50、2〜30、あるいは2〜20であることが好ましいが、これに限定されない。そのようなC/N制御は、C/N制御部を別途設けることによって実現されてもよく、上記実施/制御部またはプログラムによる制御によって、C/N制御が実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。排水中の窒素が不足するため上記範囲に入らない場合、必要量の窒素(好ましくは硫酸アンモニウム又は尿素)をN源タンクから、例えばポンプP7を介して添加し得る(図18)。あるいは、pH調製と連動させる形式でアンモニア水などを添加し得る。 In one embodiment, the apparatus or system of the present invention may also be configured to control the C / N of the oil-containing wastewater in the oil-decomposing tank. The range of C / N of this oil-containing wastewater is preferably 2 to 50, 2 to 30, or 2 to 20, but is not limited to this. Such C / N control may be realized by separately providing a C / N control unit, or C / N control may be realized by the control by the implementation / control unit or the program, and a part thereof. Alternatively, all may be realized manually, and some or all of them may be realized or optimized by artificial intelligence (AI) or machine learning. If the nitrogen in the wastewater is insufficient and does not fall within the above range, a required amount of nitrogen (preferably ammonium sulfate or urea) can be added from the N source tank via, for example, pump P7 (FIG. 18). Alternatively, aqueous ammonia or the like can be added in a form linked with pH adjustment.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽中の油脂含有排水のN/Pを制御するように構成されていてもよい。この油脂含有排水のN/Pの範囲は、1〜20、1〜10、あるいは1〜5であることが好ましいが、これに限定されない。そのようなN/P制御は、N/P制御部を別途設けることによって実現されてもよく、上記実施/制御部またはプログラムによる制御によって、N/P制御が実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。排水中のリンが不足するため上記範囲に入らない場合は、必要量のリンをリン酸塩の形態で、P源タンクから、例えばポンプP8を介して添加し得る(図18)。また、上記の窒素源およびリン酸塩を含む水溶液を、N/Pが上記の範囲にあるようにあらかじめ調製した一つの活性化剤として一つのタンクに保管し、まとめて供給し得る。 In one embodiment, the apparatus or system of the present invention may also be configured to control the N / P of the oil-containing wastewater in the oil-decomposing tank. The range of N / P of this oil-containing wastewater is preferably 1 to 20, 1 to 10, or 1 to 5, but is not limited to this. Such N / P control may be realized by separately providing an N / P control unit, or N / P control may be realized by the above-mentioned implementation / control unit or control by a program, and a part thereof. Alternatively, all may be realized manually, and some or all of them may be realized or optimized by artificial intelligence (AI) or machine learning. If the above range is not met due to lack of phosphorus in the effluent, the required amount of phosphorus can be added in the form of phosphate from the P source tank, for example via pump P8 (FIG. 18). Further, the aqueous solution containing the above-mentioned nitrogen source and phosphate can be stored in one tank as one activator prepared in advance so that the N / P is in the above-mentioned range, and can be supplied together.

一つの実施形態では、本発明の装置またはシステムはまた、油脂分解槽からの流出水中の投入微生物量を制御するように構成されていてもよい。そのような投入微生物量制御は、投入微生物量制御部を別途設けることによって実現されてもよく、上記実施/制御部またはプログラムによる制御によって、投入微生物量制御が実現されてもよく、その一部または全部が手動で実現されてもよく、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。 In one embodiment, the apparatus or system of the present invention may also be configured to control the amount of microorganisms input into the effluent from the fat decomposition tank. Such control of the amount of input microorganisms may be realized by separately providing an input microorganism amount control unit, or control by the above-mentioned implementation / control unit or program may realize control of the amount of input microorganisms, and a part thereof. Alternatively, all may be realized manually, and some or all of them may be realized or optimized by artificial intelligence (AI) or machine learning.

好ましい実施形態において、油脂分解槽はまた、発泡状況を検知するための発泡センサーも備え得る。油脂分解槽はさらに、発泡センサーによって発泡を感知すると消泡剤を自動投入する消泡タンクを備え得る。さらに、発泡中は油脂の分解が活発であることを示している場合も多いので、これを利用して、発泡センサーまたは消泡剤の添加と連動して、投入微生物製剤量をフィードバック制御するシステムを組み込んでもよい。 In a preferred embodiment, the fat decomposition tank may also include a foaming sensor for detecting foaming conditions. The oil / fat decomposition tank may further include a defoaming tank that automatically charges a defoaming agent when foaming is detected by a foaming sensor. Furthermore, since it often indicates that the decomposition of fats and oils is active during foaming, a system that uses this to feed back control the amount of microbial preparation input in conjunction with the addition of a foaming sensor or antifoaming agent. May be incorporated.

本発明の油脂分解槽はさらに、指定した日時に必要量をサンプリングする採水ポンプが取り付けられていてもよく、設定に従って冷蔵庫内の採水タンクに送液され得る。 The oil / fat decomposition tank of the present invention may be further equipped with a water sampling pump that samples a required amount at a specified date and time, and the liquid can be sent to a water sampling tank in the refrigerator according to the setting.

1つの実施形態において、本発明の油脂分解槽は、油脂分解槽における排水の油脂分解の程度を確認するための確認手段を備え得る。この確認手段による確認は、例えば排水を遠心分離し、その上清の状況から油脂分解の程度を評価することであってもよい。 In one embodiment, the oil / fat decomposition tank of the present invention may be provided with a confirmation means for confirming the degree of oil / fat decomposition of wastewater in the oil / fat decomposition tank. The confirmation by this confirmation means may be, for example, centrifuging the wastewater and evaluating the degree of oil / fat decomposition from the state of the supernatant.

油脂分解槽において処理された排水は、例えばポンプP9を介して、活性汚泥槽等の後段処理に供され得る。 The wastewater treated in the oil / fat decomposition tank can be subjected to a subsequent treatment of an activated sludge tank or the like via, for example, a pump P9.

以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Hereinafter, examples will be given to explain the present invention in more detail. However, the present invention is not limited to these examples and the like.

試験例1:溶存酸素濃度(DO)の影響
n−Hex値が約10000 mg/Lの油分を含む7Lの食品工場排水を10Lファーメンター((株)バイオット製)に仕込み、様々な溶存酸素濃度下、30℃にて油分のバッチによる分解試験を行った。なお、この排水中には、もともと3×10 cells/mLほどの微生物が存在していることが、LB寒天培地上でのコロニー計数より示された。微生物製剤にはバークホルデリア・アルボリスとヤロウィア・リポリティカの混合製剤を使用し、前者の微生物濃度が1.0×10 cells/mLになるように、分解試験開始時に植菌した。後者の微生物濃度は、植菌時も培養中も前者の1/10程度の細胞数であることが通常であるため、前者の濃度を総投入微生物濃度とした。
Test Example 1: Effect of Dissolved Oxygen Concentration (DO) 7 L of food factory wastewater containing oil with an n-Hex value of about 10,000 mg / L was charged into a 10 L fermenter (manufactured by Biot Co., Ltd.), and various dissolved oxygen concentrations Below, a decomposition test was carried out at 30 ° C. with a batch of oil content. Incidentally, during this wastewater, originally the microorganisms of about 3 × 10 8 cells / mL are present, it was shown from the colony counts on LB agar medium. The microbial preparations using a mixed formulation of Burkholderia arboris and Yarrowia lipolytica, as the concentration of microorganisms the former is 1.0 × 10 6 cells / mL, were inoculated at the beginning degradation test. Since the latter microbial concentration is usually about 1/10 of the number of cells during inoculation and culturing, the former concentration is taken as the total input microbial concentration.

溶存酸素濃度(DO)は、ガルバニ式発酵用DO電極により常時モニタリングし、曝気量と攪拌速度により調整した。分解試験中、pHは密閉型pH電極により常時モニタリングし、6.0〜8.0となるように、希塩酸と水酸化ナトリウム水溶液の添加により自動調整した。試験液を経時的にサンプリングし、n−Hex抽出物の濃度をJIS K 0102に準じて測定した。バッチ試験は3回実施し、その標準誤差をグラフに表記した。結果を図1に示す。 The dissolved oxygen concentration (DO) was constantly monitored by a galvanic fermentation DO electrode and adjusted by the amount of aeration and the stirring speed. During the decomposition test, the pH was constantly monitored by a closed pH electrode and automatically adjusted to 6.0 to 8.0 by adding dilute hydrochloric acid and an aqueous sodium hydroxide solution. The test solution was sampled over time, and the concentration of the n-Hex extract was measured according to JIS K 0102. The batch test was performed 3 times and the standard error was shown in the graph. The results are shown in FIG.

試験例2:pHの影響
試験例1と同じ7Lの食品工場排水を10Lファーメンター((株)バイオット製)に仕込み、様々なpH条件下、30℃にて油分のバッチによる分解試験を行った。微生物製剤には試験例1と同じものを使用し、バークホルデリア・アルボリスの濃度が1.0×10 cells/mLになるように、分解試験開始時に植菌した。分解試験中、DOは1.0以上となるように曝気攪拌を行った。DO及びpHの測定及び調整も試験例1と同様の方法で行った。試験液を経時的にサンプリングし、n−Hex抽出物の濃度を試験例1と同じ方法で測定した。バッチ試験は3回実施し、その標準誤差をグラフに表記した。結果を図2に示す。
Test Example 2: Effect of pH The same 7L of food factory wastewater as in Test Example 1 was charged into a 10L fermenter (manufactured by Biot Co., Ltd.), and a decomposition test of oil was carried out at 30 ° C. by batch under various pH conditions. .. The same microbial preparation as in Test Example 1 was used, and the cells were inoculated at the start of the decomposition test so that the concentration of Burkholderia arboris was 1.0 × 10 6 cells / mL. During the decomposition test, aeration stirring was performed so that the DO was 1.0 or more. The measurement and adjustment of DO and pH were also carried out in the same manner as in Test Example 1. The test solution was sampled over time, and the concentration of the n-Hex extract was measured by the same method as in Test Example 1. The batch test was performed 3 times and the standard error was shown in the graph. The results are shown in FIG.

試験例3:温度の影響
試験例1と同じ7Lの食品工場排水を10Lファーメンター((株)バイオット製)に仕込み、様々な温度条件下にて油分のバッチによる分解試験を行った。微生物製剤には試験例1と同じものを使用し、バークホルデリア・アルボリスの濃度が1.0×10 cells/mLになるように、分解試験開始時に植菌した。分解試験中、DOは1.0以上となるように曝気攪拌を行い、pHは6.0〜8.0となるように調整した。DO及びpHの測定及び調整も試験例1と同様の方法で行った。試験液を経時的にサンプリングし、n−Hex抽出物の濃度を試験例1と同じ方法で測定した。バッチ試験は3回実施し、その標準誤差をグラフに表記した。結果を図3に示す。
Test Example 3: Effect of temperature 7 L of food factory wastewater, the same as in Test Example 1, was charged into a 10 L fermenter (manufactured by Biot Co., Ltd.), and a decomposition test of oil was carried out by batch under various temperature conditions. The same microbial preparation as in Test Example 1 was used, and the cells were inoculated at the start of the decomposition test so that the concentration of Burkholderia arboris was 1.0 × 10 6 cells / mL. During the decomposition test, aeration was stirred so that the DO was 1.0 or more, and the pH was adjusted to 6.0 to 8.0. The measurement and adjustment of DO and pH were also carried out in the same manner as in Test Example 1. The test solution was sampled over time, and the concentration of the n-Hex extract was measured by the same method as in Test Example 1. The batch test was performed 3 times and the standard error was shown in the graph. The results are shown in FIG.

試験例4:炭素と窒素の比(C/N)の影響
キャノーラ油1% (n−hex 約10,000 mg/L相当)を含む無機塩培地7Lを10Lファーメンター((株)バイオット製)に仕込み、様々なC/N (各元素の重量比)の条件下、30℃、pH6.0〜8.0にて油分のバッチによる分解試験を行った。無機塩培地の組成は、NaHPO 3.5g/L,KHPO 2.0g/L,(NHSO 0.775〜3.6g/L,MgCl・6HO 0.34g/L,FeSO・7HO 2.8mg/L, MnSO・5HO 2.4mg/L,CoCl・6HO 2.4mg/L,CaCl・2HO 1.7mg/L,CuCl・2HO 0.2mg/L,ZnSO・7HO 0.3mg/L,NaMoO 0.25mg/Lであった。C/Nについては、10以上については硫安((NHSO)の濃度を変えることによって調整した。C/Nが2以下の場合は、これに尿素を足して調整した。
Test Example 4: Effect of carbon to nitrogen ratio (C / N) 10 L fermenter (manufactured by Biot Co., Ltd.) containing 7 L of inorganic salt medium containing 1% of canola oil (equivalent to about 10,000 mg / L of n-hex). The decomposition test of the oil content was carried out by batch at 30 ° C. and pH 6.0 to 8.0 under various C / N (weight ratio of each element) conditions. The composition of the mineral salts medium is, Na 2 HPO 4 3.5g / L , KH 2 PO 4 2.0g / L, (NH 4) 2 SO 4 0.775~3.6g / L, MgCl 2 · 6H 2 O 0.34g / L, FeSO 4 · 7H 2 O 2.8mg / L, MnSO 4 · 5H 2 O 2.4mg / L, CoCl 2 · 6H 2 O 2.4mg / L, CaCl 2 · 2H 2 O 1. 7mg / L, CuCl 2 · 2H 2 O 0.2mg / L, ZnSO 4 · 7H 2 O 0.3mg / L, was NaMoO 4 0.25mg / L. C / N was adjusted for 10 or more by changing the concentration of ammonium sulfate ((NH 4 ) 2 SO 4). When C / N was 2 or less, urea was added to this to adjust.

キャノーラ油の炭素含有量についてはトリオレイン酸換算で計算した。これに、n−Hex値が100 mg/L以下であることがわかっている下水処理場の活性汚泥1Lを遠心分離し、上記無機塩培地50 mLに再懸濁したものを添加した。その結果、5×10 cells/mLほどの培養可能な微生物があらかじめ存在する試験液ができた。これに、試験例1と同じ微生物製剤を、バークホルデリア・アルボリスの濃度が1.0×10 cells/mLになるように、分解試験開始時に植菌した。分解試験中、DOは1.0以上となるように曝気攪拌を行った。DO及びpHの測定及び調整も試験例1と同様の方法で行った。試験液を経時的にサンプリングし、n−Hex抽出物の濃度をJIS K 0102に準じて測定した。バッチ試験は3回実施し、その標準誤差をグラフに表記した。結果を図4に示す。 The carbon content of canola oil was calculated in terms of trioleic acid. To this, 1 L of activated sludge from a sewage treatment plant known to have an n-Hex value of 100 mg / L or less was centrifuged, and resuspended in 50 mL of the above-mentioned inorganic salt medium was added. As a result, a test solution was prepared in which culturable microorganisms of about 5 × 10 6 cells / mL were pre-existing. Thereto, the same microorganism formulation as in Test Example 1, so that the concentration of Burkholderia arboris is 1.0 × 10 6 cells / mL, were inoculated at the beginning degradation test. During the decomposition test, aeration stirring was performed so that the DO was 1.0 or more. The measurement and adjustment of DO and pH were also carried out in the same manner as in Test Example 1. The test solution was sampled over time, and the concentration of the n-Hex extract was measured according to JIS K 0102. The batch test was performed 3 times and the standard error was shown in the graph. The results are shown in FIG.

試験例5:窒素とリンの比(N/P)の影響
キャノーラ油1% (n−Hex 約10000 mg/L相当)を含む無機塩培地7Lを10Lファーメンター((株)バイオット製)に仕込み、様々なN/P (各元素の重量比)の条件下、30℃、pH6.0〜8.0にて油分のバッチによる分解試験を行った。無機塩培地の組成は、硫安とリン酸塩の濃度以外は試験例4と同じである。窒素源である(NHSOの濃度については4 g/Lと固定し、N/Pについてはリン源であるNaHPOとKHPOの濃度を変えることによって調整した。ただし、NaHPO:KHPO(重量比)は3.5:2に固定した。
Test Example 5: Effect of nitrogen to phosphorus ratio (N / P) 7 L of inorganic salt medium containing 1% of canola oil (equivalent to about 10,000 mg / L of n-Hex) was charged into a 10 L fermenter (manufactured by Biot Co., Ltd.). , Under various N / P (weight ratio of each element) conditions, a decomposition test of oil was carried out by batch at 30 ° C. and pH 6.0-8.0. The composition of the inorganic salt medium is the same as that of Test Example 4 except for the concentrations of ammonium sulfate and phosphate. The concentration of the nitrogen source (NH 4 ) 2 SO 4 was fixed at 4 g / L, and the concentration of N / P was adjusted by changing the concentrations of the phosphorus sources Na 2 HPO 4 and KH 2 PO 4. However, Na 2 HPO 4 : KH 2 PO 4 (weight ratio) was fixed at 3.5: 2.

微生物製剤には試験例1と同じものを使用し、バークホルデリア・アルボリスの濃度が1.0×10 cells/mLになるように、分解試験開始時に植菌した。分解試験中、DOは1.0以上となるように曝気攪拌を行った。DO及びpHの測定及び調整も試験例1と同様の方法で行った。試験液を経時的にサンプリングし、n−Hex抽出物の濃度をJIS K 0102に準じて測定した。バッチ試験は3回実施し、その標準誤差をグラフに表記した。結果を図5に示す。 The same microbial preparation as in Test Example 1 was used, and the cells were inoculated at the start of the decomposition test so that the concentration of Burkholderia arboris was 1.0 × 10 6 cells / mL. During the decomposition test, aeration stirring was performed so that the DO was 1.0 or more. The measurement and adjustment of DO and pH were also carried out in the same manner as in Test Example 1. The test solution was sampled over time, and the concentration of the n-Hex extract was measured according to JIS K 0102. The batch test was performed 3 times and the standard error was shown in the graph. The results are shown in FIG.

試験例6:間欠式投入における投入時の投入微生物濃度の影響
工場の排水処理現場に、独自に設計・製作した現場実証デモ試験機を設置した。このデモ試験機は、原水中継槽(50L)、油分解槽(60L)、活性汚泥槽(30L)、沈殿槽(12.5L)、排出中継槽(50L)から成り、現場の排水をポンプで原水中継槽に引き込み、順次、油分解槽、活性汚泥槽、沈殿槽に連続的に流す。これら各槽は排出中継槽に連結しており、各槽から任意の量を直接排出することができる。各槽ごとに処理量や滞留時間を設定することができ、沈殿槽からは、任意の量の沈降汚泥を活性汚泥槽に返送することが可能である。
Test Example 6: Effect of input microbial concentration at the time of intermittent input A field demonstration tester originally designed and manufactured was installed at the wastewater treatment site of the factory. This demo tester consists of a raw water relay tank (50L), an oil decomposition tank (60L), an activated sludge tank (30L), a settling tank (12.5L), and a discharge relay tank (50L). It is drawn into the raw water relay tank and continuously flowed into the oil decomposition tank, activated sludge tank, and settling tank. Each of these tanks is connected to a discharge relay tank, and an arbitrary amount can be directly discharged from each tank. The treatment amount and residence time can be set for each tank, and an arbitrary amount of settled sludge can be returned from the settling tank to the activated sludge tank.

油分解槽においては、設置されたセンサーにより温度、pH、DO、MLSSが常時モニタリングされる。また、発泡状況も発泡センサーにより常時監視され、発泡を感知すると消泡剤が自動投入される。pHは、設定範囲外になったときにpH調整タンクから2N硫酸又は2N水酸化ナトリウム水溶液が自動添加され調整される。曝気は、ブロアから油分解槽流量計、活性汚泥槽流量計によって調整された量の空気を供給して行われる。油分解槽には、冷蔵庫内に設置された微生物製剤タンクから、設定した流量と時間で微生物製剤がポンプにより供給される。さらに、指定した日時に必要量をサンプリングできるように、油分解槽には採水ポンプが取り付けられており、設定に従って冷蔵庫内の採水タンクに送液される。 In the oil cracking tank, the temperature, pH, DO and MLSS are constantly monitored by the installed sensors. In addition, the foaming status is constantly monitored by the foaming sensor, and when foaming is detected, the defoaming agent is automatically added. When the pH is out of the set range, 2N sulfuric acid or 2N sodium hydroxide aqueous solution is automatically added from the pH adjustment tank to adjust the pH. Aeration is performed by supplying an amount of air adjusted by an oil decomposition tank flow meter and an activated sludge tank flow meter from the blower. The microbial preparation is pumped to the oil decomposition tank from a microbial preparation tank installed in the refrigerator at a set flow rate and time. Furthermore, a water sampling pump is attached to the oil cracking tank so that the required amount can be sampled at a specified date and time, and the liquid is sent to the water sampling tank in the refrigerator according to the setting.

微生物製剤を間欠投入する分解試験を、実排水を連続的にデモ試験機に流しながら実施した。現場において、間欠投入時の微生物濃度をステップ式に上げていった。微生物製剤には、試験例1と同じバークホルデリア・アルボリスとヤロウィア・リポリティカの混合製剤を使用した。各投入時の投入微生物濃度において、データが安定する3日目と5日目の滞留時間経過直後の油脂分解槽からの流出水サンプルについて、n−Hex抽出物の濃度をJIS K 0102に準じて測定し、油分の分解除去効果を調べた。これによって同条件での測定を2回ずつ(3日目と5日目)実施することになるため、再現性が確認された。 A decomposition test in which the microbial preparation was intermittently added was carried out while the actual wastewater was continuously flowed to the demonstration tester. At the site, the microbial concentration at the time of intermittent injection was increased stepwise. As the microbial preparation, the same mixed preparation of Burkholderia alboris and Yarrowia lipolytica as in Test Example 1 was used. For the effluent samples from the oil and fat decomposition tank immediately after the elapse of the residence time on the 3rd and 5th days when the data was stable at the concentration of the input microorganisms at each input, the concentration of the n-Hex extract was adjusted according to JIS K 0102. It was measured and the effect of decomposing and removing oil was investigated. As a result, the measurement under the same conditions was performed twice (3rd day and 5th day), so that the reproducibility was confirmed.

さらに、5日目のサンプリング時には、流出水中の微生物濃度を測定し、投入微生物の増殖状況を調べた(グラフ〇印)。微生物の濃度測定は、投入微生物についてはバークホルデリア・アルボリスの16SリボソームDNAをターゲットとしたリアルタイムPCRにより、全微生物についてはLB培地上でのコロニー計数によって行った。リアルタイムPCRはサンプルごとに3回行い、全微生物濃度の測定は希釈段階ごとに3枚のプレートを作製し行って、標準誤差を求めた。また、微生物濃度を上げる前には一旦、微生物の供給を3日間停止し、n−Hex値への影響を調べた。なお、どの条件でも、油脂分解槽のpHを中性付近に自動調整した。水温は25〜35℃の間であった。また、処理中、DOが1 mg/L以上になるように曝気攪拌した。n−Hex値については、JIS K 0102に準じてサンプルごとに3回測定し、標準誤差を求めた。 Furthermore, at the time of sampling on the 5th day, the concentration of microorganisms in the effluent was measured, and the growth status of the input microorganisms was examined (graph ○ mark). The concentration of microorganisms was measured by real-time PCR targeting 16S ribosomal DNA of Berkholderia alboris for input microorganisms and by colony counting on LB medium for all microorganisms. Real-time PCR was performed 3 times for each sample, and total microbial concentration was measured by preparing 3 plates for each dilution step to determine the standard error. In addition, before increasing the microbial concentration, the supply of microorganisms was temporarily stopped for 3 days, and the effect on the n-Hex value was investigated. Under any condition, the pH of the fat decomposition tank was automatically adjusted to near neutral. The water temperature was between 25 and 35 ° C. In addition, during the treatment, aeration was stirred so that the DO was 1 mg / L or more. The n-Hex value was measured three times for each sample according to JIS K 0102, and the standard error was determined.

6−1.低濃度油脂(n−Hex値300 mg/L程度)排水における結果
n−Hex値のレベルが300 mg/Lレベル、排水量100トン/日の現場において、1/1000の規模の100L/日の処理速度で試験を行った。油脂分解槽の処理水体積を50L、滞留時間を12時間に設定した。5×10、5×10、1×10、又は5×10cells/mLの濃度の微生物製剤を処理水体積の1/1000である50 mLずつ、滞留時間に合わせるように1日2回投入した。結果を図6に示す。投入時の投入微生物濃度は、5×10、5×10、1×10、5×10cells/mLとなる(×印)。
6-1. Results of low-concentration fats and oils (n-Hex value of about 300 mg / L) Wastewater treatment of 100 L / day on a scale of 1/1000 at the site where the level of n-Hex value is 300 mg / L level and the displacement is 100 tons / day. The test was performed at speed. The volume of treated water in the fat decomposition tank was set to 50 L, and the residence time was set to 12 hours. 5 × 10 6 , 5 × 10 7 , 1 × 10 8 or 5 × 10 8 cells / mL concentration of microbial preparation, 50 mL each, which is 1/1000 of the treated water volume, for 1 day to match the residence time. It was thrown in twice. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 3 , 5 × 10 4 , 1 × 10 5 , 5 × 10 5 cells / mL (x mark).

その結果、投入時の投入油分解菌濃度が5×10cells/mL以上で、n−Hex値が大幅に減少した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇したが、再投入により油分の分解は速やかに回復した。油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。また、投入時の投入油分解菌濃度が1×10 cells/mLで該微生物の増殖は認められず、5×10cells/mLでは減少した。 As a result, the concentration of the oil-degrading bacteria charged at the time of charging was 5 × 10 4 cells / mL or more, and the n-Hex value was significantly reduced. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the concentration of oil increased on the same day, but the decomposition of oil quickly recovered by re-injection. Despite the decomposition of fats and oils, no growth of 100 times or more of the introduced microorganisms was observed at any input amount. In addition, the concentration of the oil-degrading bacteria added at the time of addition was 1 × 10 5 cells / mL, and no growth of the microorganism was observed, and the concentration decreased at 5 × 10 5 cells / mL.

培養中で微生物が増殖しなくても油脂分解効果が得られることはこれまでの生物工学の常識から外れるが、油脂の濃度がそれほど高くないため、増殖するための炭素源が不足したことが原因と考えられる。増殖しなくても投入した濃度の微生物で油分を十分に分解できたものと考えられる。よって、必要以上の高濃度の微生物を投入しても無駄であることがわかった。 It is out of the conventional wisdom of biotechnology that the effect of decomposing fats and oils can be obtained even if microorganisms do not grow in culture, but the cause is that the concentration of fats and oils is not so high and there is a shortage of carbon sources for growth. it is conceivable that. It is probable that the oil could be sufficiently decomposed by the added concentration of microorganisms even if they did not grow. Therefore, it was found that it is useless to add a higher concentration of microorganisms than necessary.

また、この排水中には、投入微生物以外に、もともと2×10cells/mL程度の微生物(図6△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%以下であり、投入微生物が優占種又は主要な種とならなくても分解効果が発揮可能であるということも、これまでの生物工学の常識から外れる。 In addition to the input microorganisms, microorganisms of about 2 × 10 7 cells / mL (marked with △ in Fig. 6) originally exist in this wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration fluctuates greatly. There was no. The concentration of input microorganisms in the effluent is 1% or less of the total microbial concentration, and the decomposition effect can be exhibited even if the input microorganisms do not become dominant or major species. It deviates from common sense.

6−2.中濃度油脂(n−Hex値3000 mg/L程度)排水における結果
n−Hex値のレベルが3000 mg/Lレベル、排水量100トン/日の現場において、1/1250の規模の80L/日の処理速度で試験を行った。油脂分解槽の処理水体積を60L、滞留時間を18時間に設定した。5×10、1×10、5×10、1×10cells/mLの濃度の微生物製剤を60 mLずつ、滞留時間に合わせるように18時間ごとに投入した。結果を図7に示す。投入時の投入微生物濃度は、5×10、1×10、5×10、1×10cells/mLとなる(×印)。
6-2. Results in drainage of medium-concentration fats and oils (n-Hex value of about 3000 mg / L) Treatment of 80 L / day on a scale of 1/1250 at the site where the level of n-Hex value is 3000 mg / L level and the displacement is 100 tons / day. The test was performed at speed. The volume of treated water in the fat decomposition tank was set to 60 L, and the residence time was set to 18 hours. 60 mL of the microbial preparation having a concentration of 5 × 10 7 , 1 × 10 8 , 5 × 10 8 , 1 × 10 9 cells / mL was added every 18 hours to match the residence time. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 4 , 1 × 10 5 , 5 × 10 5 , 1 × 10 6 cells / mL (x mark).

その結果、投入時の投入微生物濃度が1×10cells/mL以上で、n−Hex値が大幅に減少した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇したが、再投入により油分の分解は速やかに回復した。また、通常の微生物の培養と異なり、油分を効果的に分解しても投入した微生物の桁違いの増殖は認められず、逆に投入時の投入油分解菌濃度が1×10cells/mLの時では、該微生物濃度は減少した。油脂の濃度がそれほど高くないため、増殖するための炭素源が不足したことが原因と考えられる。増殖しなくても投入した濃度の微生物で油分を十分に分解できたものと考えられる。よって、必要以上の高濃度の微生物を投入しても無駄であることがわかった。 As a result, the input concentration of microorganisms during introduced is at 1 × 10 5 cells / mL or more, n-Hex value has decreased significantly. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the concentration of oil increased on the same day, but the decomposition of oil quickly recovered by re-injection. In addition, unlike normal microbial culture, even if the oil content is effectively decomposed, the added microorganisms do not grow by an order of magnitude, and conversely, the concentration of the added oil-degrading bacteria at the time of addition is 1 × 10 6 cells / mL. At that time, the microbial concentration decreased. Since the concentration of fats and oils is not so high, it is considered that the cause is insufficient carbon source for growth. It is probable that the oil could be sufficiently decomposed by the added concentration of microorganisms even if they did not grow. Therefore, it was found that it is useless to add a higher concentration of microorganisms than necessary.

また、この排水中には、投入微生物以外に、もともと8×10cells/mL程度の微生物(図7△印)が存在し、油分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 In addition to the input microorganisms, microorganisms of about 8 × 10 7 cells / mL (marked with △ in Fig. 7) originally exist in this wastewater, and even if an oil-decomposed microbial preparation is added, the total microbial concentration fluctuates greatly. There was no. The concentration of input microorganisms in the effluent was 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant or major species.

6−3.高濃度油脂(n−Hex値10000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、排水を地下水で3倍に希釈し、n−Hex値を10000 mg/L程度の希釈排水として、1/1250の規模の80L/日の処理速度で試験を行った。油脂分解槽の処理水体積を60L、滞留時間を18時間に設定した。1×10、5×10、1×10、3×10cells/mLの濃度の微生物製剤を60 mLずつ、滞留時間に合わせるように18時間ごとに投入した。結果を図8に示す。投入時の投入微生物濃度は、1×10、5×10、1×10、3×10cells/mLとなる(×印)。
6-3. Results in high-concentration fats and oils (n-Hex value about 10000 mg / L) drainage At the site where the level of n-Hex value is 30,000 mg / L level and the amount of drainage is 100 tons / day, the wastewater is diluted 3 times with groundwater and n. The test was carried out at a treatment rate of 80 L / day on a scale of 1/1250 with a −Hex value of about 10000 mg / L as diluted wastewater. The volume of treated water in the fat decomposition tank was set to 60 L, and the residence time was set to 18 hours. 60 mL of the microbial preparation having a concentration of 1 × 10 8 , 5 × 10 8 , 1 × 10 9 , 3 × 10 9 cells / mL was added every 18 hours to match the residence time. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 1 × 10 5 , 5 × 10 5 , 1 × 10 6 , 3 × 10 6 cells / mL (x mark).

その結果、投入時の投入微生物濃度が5×10cells/mL以上で、n−Hex値が95%以上低下した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇したが、再投入により油分の分解は速やかに回復した。また、通常の微生物の培養と異なり、油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。さらに、油分を非常に効果的に分解しても投入した微生物の10倍以上の増殖は認められなかった。また、投入時の投入微生物濃度が1×10cells/mLで十分な油分解除去効果が得られており、それ以上の微生物を投入する意義はほとんど認めらなかった。 As a result, the concentration of the added microorganisms at the time of charging was 5 × 10 5 cells / mL or more, and the n-Hex value decreased by 95% or more. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the concentration of oil increased on the same day, but the decomposition of oil quickly recovered by re-injection. In addition, unlike the normal culture of microorganisms, despite the decomposition of fats and oils, no growth of 100 times or more was observed as compared with the input microorganisms at any input amount. Furthermore, even if the oil was decomposed very effectively, no more than 10 times the growth of the introduced microorganisms was observed. In addition, a sufficient oil decomposition removal effect was obtained when the concentration of the added microorganisms at the time of addition was 1 × 10 6 cells / mL, and there was almost no significance in adding more microorganisms.

また、この希釈排水中には、投入微生物以外に、もともと4×10cells/mL程度の微生物(図8△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%程度又はそれ以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 In addition to the input microorganisms, microorganisms of about 4 × 10 8 cells / mL (marked with △ in Fig. 8) originally exist in this diluted wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration is high. There was no change. The concentration of the input microorganisms in the effluent was about 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant species or the main species.

6−4.超高濃度油脂(n−Hex値30000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、1/2000の規模の50L/日の処理速度で試験を行った。油脂分解槽の処理水体積を50L、滞留時間を24時間に設定した。5×10、1×10、3×10、5×10、1×1010 cells/mLの濃度の微生物製剤を50 mLずつ、滞留時間に合わせるように24時間ごとに投入した。結果を図9に示す。投入時の投入微生物濃度は、5×10、1×10、3×10、5×10、1×10cells/mLとなる(×印)。
6-4. Results of ultra-high concentration fats and oils (n-Hex value of about 30,000 mg / L) at the site where the level of n-Hex value is 30,000 mg / L level and the displacement is 100 tons / day, the scale of 50 L / day is 1/2000. The test was performed at the processing speed. The volume of treated water in the fat decomposition tank was set to 50 L, and the residence time was set to 24 hours. 50 mL of the microbial preparation having a concentration of 5 × 10 8 , 1 × 10 9 , 3 × 10 9 , 5 × 10 9 , 1 × 10 10 cells / mL was added every 24 hours to match the residence time. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 5 , 1 × 10 6 , 3 × 10 6 , 5 × 10 6 , 1 × 10 7 cells / mL (x mark).

その結果、投入時の投入微生物濃度が1×10cells/mL以上で、n−Hex値が99%以上低下した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇したが、再投入により油分の分解は速やかに回復した。通常の微生物の培養と異なり、油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。さらに、油分を非常に効果的に分解しても投入した微生物の10倍以上の増殖は認められなかった。投入微生物の濃度を変えても微生物の増殖レベルは同程度で、最大でも1×10cells/mLレベルにまでしか増殖できなかった。よって、それ以上の微生物を投入しても無駄である。 As a result, the concentration of the added microorganisms at the time of charging was 1 × 10 6 cells / mL or more, and the n-Hex value was reduced by 99% or more. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the concentration of oil increased on the same day, but the decomposition of oil quickly recovered by re-injection. Unlike normal culturing of microorganisms, despite decomposing fats and oils, no growth of 100 times or more was observed as compared with the introduced microorganisms at any input amount. Furthermore, even if the oil was decomposed very effectively, no more than 10 times the growth of the introduced microorganisms was observed. With growth levels comparable microorganisms by changing the concentration of charged microorganisms, it could only grow to 1 × 10 7 cells / mL level at maximum. Therefore, it is useless to add more microorganisms.

また、この排水中には、投入微生物以外に、もともと1×10cells/mL以上の微生物(図9△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 In addition to the input microorganisms, microorganisms of 1 × 10 9 cells / mL or more (marked with △ in Fig. 9) originally exist in this wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration fluctuates greatly. There was no. The concentration of input microorganisms in the effluent was 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant or major species.

試験例7:連続式投入における投入時の投入微生物濃度の影響
工場の排水処理現場に、試験例6と同じ現場実証デモ試験機を設置して、排水を連続的に流しながら、微生物製剤も連続投入する分解試験を行った。各現場において供給微生物濃度を3日毎に、投入時の投入微生物濃度が5×10から1×10cells/mLの範囲内になるように、ステップ式に上げていった。微生物製剤には、試験例1と同じバークホルデリア・アルボリスとヤロウィア・リポリティカの混合製剤を使用し、前者の微生物濃度を総投入微生物濃度とした。
Test Example 7: Effect of input microbial concentration at the time of input in continuous input A microbial preparation is continuously flowed while the same on-site demonstration tester as in Test Example 6 is installed at the wastewater treatment site of the factory. A disassembly test was conducted. At each site, the concentration of the supplied microorganisms was increased step by step every 3 days so that the concentration of the introduced microorganisms at the time of charging was in the range of 5 × 10 3 to 1 × 10 7 cells / mL. As the microbial preparation, the same mixed preparation of Burkholderia alboris and Yarrowia lipolytica as in Test Example 1 was used, and the former microbial concentration was used as the total input microbial concentration.

各投入微生物濃度3日目に流出水のサンプリングを行い、n−Hex抽出物の濃度をJIS K0102に準じて測定し、油分の分解除去効果を調べた。また、流出水中の投入微生物と全微生物の濃度を試験例6と同じ手法により分析した。最後に微生物製剤の供給を停止し、n−Hex値への影響を調べた。なお、どの条件でも、油脂分解槽のpHは中性付近に自動調整した。水温は25〜35℃の間であった。また、処理中、DOが1 mg/L以上になるように曝気攪拌した。n−Hex値の分析については、サンプルごとに3回実施し、標準誤差を求めた。 The effluent was sampled on the 3rd day of each input microbial concentration, and the concentration of the n-Hex extract was measured according to JIS K0102 to examine the effect of decomposing and removing oil. In addition, the concentrations of the input microorganisms and all the microorganisms in the effluent were analyzed by the same method as in Test Example 6. Finally, the supply of the microbial preparation was stopped and the effect on the n-Hex value was investigated. Under any condition, the pH of the fat decomposition tank was automatically adjusted to near neutral. The water temperature was between 25 and 35 ° C. In addition, during the treatment, aeration was stirred so that the DO was 1 mg / L or more. The analysis of the n-Hex value was performed three times for each sample, and the standard error was determined.

7−1.低濃度油脂(n−Hex値300 mg/L程度)排水における結果
n−Hex値のレベルが300 mg/Lレベル、排水量100トン/日の現場において、1/1000の規模の100L/日の処理速度で試験を行った。油脂分解槽の処理水体積を50L、滞留時間を12時間に設定した。5×10、5×10、1×10、又は5×10cells/mLの濃度の微生物製剤を処理水流量の1/1000である4.17 mL/hの供給速度で連続的に投入した。結果を図10に示す。投入時の投入微生物濃度は、5×10、5×10、1×10、5×10cells/mLとなる(×印)。
7-1. Results of low-concentration fats and oils (n-Hex value of about 300 mg / L) Wastewater treatment of 100 L / day on a scale of 1/1000 at the site where the level of n-Hex value is 300 mg / L level and the displacement is 100 tons / day. The test was performed at speed. The volume of treated water in the fat decomposition tank was set to 50 L, and the residence time was set to 12 hours. Continuously feed microbial preparations at a concentration of 5 × 10 6 , 5 × 10 7 , 1 × 10 8 or 5 × 10 9 cells / mL at a supply rate of 4.17 mL / h, which is 1/1000 of the treated water flow rate. I put it in. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 3 , 5 × 10 4 , 1 × 10 5 , 5 × 10 5 cells / mL (x mark).

その結果、間欠式投入のときと同様に、投入時の投入微生物濃度が5×10cells/mL以上で、n−Hex値が大幅に減少した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇した。油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。また、投入時の投入微生物濃度が1×10 cells/mL で微生物の増殖は認められず、5×10cells/mLでは減少した。よって、必要以上の高濃度の微生物を投入しても無駄であることがわかった。 As a result, as in the case of intermittent charging, the concentration of the charged microorganisms at the time of charging was 5 × 10 4 cells / mL or more, and the n-Hex value was significantly reduced. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the oil concentration increased on the same day. Despite the decomposition of fats and oils, no growth of 100 times or more of the introduced microorganisms was observed at any input amount. In addition, the concentration of the added microorganisms at the time of addition was 1 × 10 5 cells / mL, and no growth of microorganisms was observed, and the concentration decreased at 5 × 10 5 cells / mL. Therefore, it was found that it is useless to add a higher concentration of microorganisms than necessary.

また、この排水中には、投入微生物以外に、もともと2×10cells/mL程度の微生物(図10△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%程度又はそれ以下であり、投入微生物が優占種又は主要な種とならなくても分解効果が発揮可能であった。 In addition to the input microorganisms, microorganisms of about 2 × 10 7 cells / mL (marked with △ in Fig. 10) originally exist in this wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration fluctuates greatly. There was no. The concentration of the input microorganisms in the effluent was about 1% or less of the total microbial concentration, and the decomposition effect could be exhibited even if the input microorganisms did not become the dominant species or the main species.

7−2.中濃度油脂(n−Hex値3000 mg/L程度)排水における結果
n−Hex値のレベルが3000 mg/Lレベル、排水量100トン/日の現場において、1/1250の規模の80L/日の処理速度で試験を行った。油脂分解槽の処理水体積を60L、滞留時間を18時間に設定した。5×10、1×10、5×10、1×10cells/mLの濃度の微生物製剤を処理水量の1/1000である3.3 mL/hの供給速度で連続的に投入した。結果を図11に示す。投入時の投入微生物濃度は、5×10、1×10、5×10、1×10cells/mLとなる(×印)。
7-2. Results in drainage of medium-concentration fats and oils (n-Hex value of about 3000 mg / L) Treatment of 80 L / day on a scale of 1/1250 at the site where the level of n-Hex value is 3000 mg / L level and the displacement is 100 tons / day. The test was performed at speed. The volume of treated water in the fat decomposition tank was set to 60 L, and the residence time was set to 18 hours. The microbial preparation having a concentration of 5 × 10 7 , 1 × 10 8 , 5 × 10 8 , 1 × 10 9 cells / mL is continuously added at a supply rate of 3.3 mL / h, which is 1/1000 of the treated water volume. did. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 4 , 1 × 10 5 , 5 × 10 5 , 1 × 10 6 cells / mL (x mark).

その結果、間欠式投入のときと同様に、投入時の投入微生物濃度が1×10cells/mL以上で、n−Hex値が大幅に減少した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇した。また、油分を効果的に分解しても投入した微生物の桁違いの増殖は認められず、逆に投入時の投入微生物濃度が1×10
cells/mLの時では、全く増殖しなかった。よって、必要以上の高濃度の微生物を投入しても無駄であることがわかった。
As a result, as in the case of intermittent turned-on microbial density during introduced is at 1 × 10 5 cells / mL or more, n-Hex value has decreased significantly. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the oil concentration increased on the same day. In addition, even if the oil was effectively decomposed, no extraordinary growth of the added microorganisms was observed, and conversely, the concentration of the added microorganisms at the time of addition was 1 × 106.
At cells / mL, it did not grow at all. Therefore, it was found that it is useless to add a higher concentration of microorganisms than necessary.

また、この排水中には、投入微生物以外に、もともと8×10 cells/mL程度の微生物(図11△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 In addition to the input microorganisms, microorganisms of about 8 × 10 7 cells / mL (marked with △ in Fig. 11) originally exist in this wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration fluctuates greatly. There was no. The concentration of input microorganisms in the effluent was 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant or major species.

7−3.高濃度油脂(n−Hex値10000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、排水を地下水で3倍に希釈し、n−Hex値を10000 mg/L程度の希釈排水として、1/1250の規模の80L/日の処理速度で試験を行った。油脂分解槽の処理水体積を60L、滞留時間を18時間に設定した。1×10、5×10、1×10、3×10cells/mLの濃度の微生物製剤を処理水量の1/1000である3.3 mL/hの供給速度で連続的に投入した。結果を図12に示す。投入時の投入微生物濃度は、1×10、5×10、1×10、3×10cells/mLとなる(×印)。
7-3. Results in high-concentration fats and oils (n-Hex value about 10000 mg / L) drainage At the site where the level of n-Hex value is 30,000 mg / L level and the amount of drainage is 100 tons / day, the wastewater is diluted 3 times with groundwater and n. The test was carried out at a treatment rate of 80 L / day on a scale of 1/1250 with a −Hex value of about 10000 mg / L as diluted wastewater. The volume of treated water in the fat decomposition tank was set to 60 L, and the residence time was set to 18 hours. The microbial preparation having a concentration of 1 × 10 8 , 5 × 10 8 , 1 × 10 9 , 3 × 10 9 cells / mL is continuously added at a supply rate of 3.3 mL / h, which is 1/1000 of the treated water volume. did. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 1 × 10 5 , 5 × 10 5 , 1 × 10 6 , 3 × 10 6 cells / mL (x mark).

その結果、間欠式投入のときと同様に、投入時の投入微生物濃度が5×10cells/mL以上で、n−Hex値が95%以上低下した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇した。また、通常の微生物の培養と異なり、油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。さらに、油分を効果的に分解しても投入した微生物の10倍以上の増殖は認められなかった。また、投入時の投入油分解菌濃度が1×10
cells/mLで十分な油分解除去効果が得られており、それ以上の微生物を投入する意義はほとんど認めらなかった。
As a result, as in the case of intermittent turned-on microbial density during turned is at 5 × 10 5 cells / mL or more, n-Hex value has decreased by more than 95%. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the oil concentration increased on the same day. In addition, unlike the normal culture of microorganisms, despite the decomposition of fats and oils, no growth of 100 times or more was observed as compared with the input microorganisms at any input amount. Furthermore, even if the oil was effectively decomposed, the growth of more than 10 times that of the introduced microorganism was not observed. In addition, the concentration of oil-degrading bacteria added at the time of addition is 1 × 10 6
Sufficient oil decomposition and removal effect was obtained with cells / mL, and the significance of adding more microorganisms was hardly recognized.

また、この希釈排水中には、投入微生物以外に、もともと4×10cells/mL程度の微生物(図12△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%程度又はそれ以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 Also, during this dilution waste water, in addition to charged microorganisms originally present 4 × 10 8 cells / mL of about microorganisms (Figure 12 △ mark), it is charged with oil degrading microorganism formulation, significant to the total concentration of microorganisms There was no change. The concentration of the input microorganisms in the effluent was about 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant species or the main species.

7−4.超高濃度油脂(n−Hex値30000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、1/2000の規模の50L/日の処理速度で試験を行った。油脂分解槽の処理水体積を50L、滞留時間を24時間に設定した。5×10、1×10、3×10、5×10、1×1010 cells/mLの濃度の微生物製剤を2.1 mL/hの供給速度で連続的に投入した。結果を図13に示す。投入時の投入微生物濃度は、5×10、1×10、3×10、5×10、1×10cells/mLになる(×印)。
7-4. Results of ultra-high concentration fats and oils (n-Hex value of about 30,000 mg / L) at the site where the level of n-Hex value is 30,000 mg / L level and the displacement is 100 tons / day, the scale of 50 L / day is 1/2000. The test was performed at the processing speed. The volume of treated water in the fat decomposition tank was set to 50 L, and the residence time was set to 24 hours. Microbial preparations at a concentration of 5 × 10 8 , 1 × 10 9 , 3 × 10 9 , 5 × 10 9 , 1 × 10 10 cells / mL were continuously added at a feed rate of 2.1 mL / h. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 5 , 1 × 10 6 , 3 × 10 6 , 5 × 10 6 , 1 × 10 7 cells / mL (x mark).

その結果、間欠式投入のときと同様に、投入時の投入微生物濃度が1×10cells/mL以上で、n−Hex値が99%以上低下した。微生物の投入を停止すると(投入時投入微生物濃度ゼロ)、油分の濃度が即日に上昇した。通常の微生物の培養と異なり、油脂を分解しているにも関わらず、どの投入量においても投入した微生物の100倍以上の増殖は認められなかった。さらに、油分を効果的に分解しても投入した微生物の10倍以上の増殖は認められなかった。投入微生物の濃度を変えても微生物の増殖レベルは同程度で、最大でも1×10cells/mLレベルにまでしか増殖できなかった。よって、それ以上の微生物を投入しても無駄である。 As a result, as in the case of intermittent charging, the concentration of the charged microorganisms at the time of charging was 1 × 10 6 cells / mL or more, and the n-Hex value decreased by 99% or more. When the addition of microorganisms was stopped (the concentration of microorganisms added at the time of addition was zero), the oil concentration increased on the same day. Unlike normal culturing of microorganisms, despite decomposing fats and oils, no growth of 100 times or more was observed as compared with the introduced microorganisms at any input amount. Furthermore, even if the oil was effectively decomposed, the growth of more than 10 times that of the introduced microorganism was not observed. With growth levels comparable microorganisms by changing the concentration of charged microorganisms, it could only grow to 1 × 10 7 cells / mL level at maximum. Therefore, it is useless to add more microorganisms.

また、この排水中には、投入微生物以外に、もともと1×10cells/mL程度以上の微生物(図13△印)が存在し、油脂分解微生物製剤を投入しても、全微生物濃度に大きな変動はなかった。流出水中の投入微生物の濃度は全微生物濃度の1%以下であり、投入微生物が優占種又は主要な種とならなくても分解効果は十分に発揮された。 In addition to the input microorganisms, microorganisms of about 1 × 10 9 cells / mL or more (marked with Δ in FIG. 13) are originally present in this wastewater, and even if the fat-decomposing microbial preparation is added, the total microbial concentration is high. There was no change. The concentration of input microorganisms in the effluent was 1% or less of the total microbial concentration, and the decomposition effect was sufficiently exhibited even if the input microorganisms did not become the dominant or major species.

試験例8:滞留時間の影響
油分濃度(n−Hex値)が低い、中程度、高い、非常に高い排水を連続的に流しながら、微生物製剤を間欠投入する分解試験を行った。現場に試験例6と同じ現場実証デモ試験機を設置して試験を行った。油脂分解槽の処理水体積60Lに対し、滞留時間を4時間から24時間まで段階的に上げていき、油脂濃度に応じた濃度の微生物製剤を滞留時間ごとに投入した。したがって処理速度は、360L/日から60L/日まで段階的に下がることとなった。微生物製剤には、試験例1と同じバークホルデリア・アルボリスとヤロウィア・リポリティカの混合製剤を使用した。
Test Example 8: Effect of residence time A decomposition test was conducted in which a microbial preparation was intermittently added while continuously flowing wastewater having a low, medium, high, and very high oil concentration (n-Hex value). The same on-site demonstration demonstration tester as in Test Example 6 was installed at the site and the test was conducted. The residence time was gradually increased from 4 hours to 24 hours with respect to the treated water volume of 60 L in the oil / fat decomposition tank, and a microbial preparation having a concentration corresponding to the oil / fat concentration was added for each residence time. Therefore, the processing speed was gradually reduced from 360 L / day to 60 L / day. As the microbial preparation, the same mixed preparation of Burkholderia alboris and Yarrowia lipolytica as in Test Example 1 was used.

滞留時間が経過し、次の微生物製剤の投入直前に流出水のサンプリングを行い、n−Hex抽出物の濃度をJIS K0102に準じて測定し、油分の分解除去効果を調べた。なお、油脂分解槽のpHは中性付近に自動調整した。水温は25〜35℃の間であった。また、処理中、DOが1 mg/L以上になるように曝気攪拌した。n−Hex値の分析については、サンプルごとに3回実施し、標準誤差を求めた。 After the residence time had elapsed, the effluent was sampled immediately before the next microbial preparation was added, and the concentration of the n-Hex extract was measured according to JIS K0102 to examine the effect of decomposing and removing oil. The pH of the fat decomposition tank was automatically adjusted to near neutral. The water temperature was between 25 and 35 ° C. In addition, during the treatment, aeration was stirred so that the DO was 1 mg / L or more. The analysis of the n-Hex value was performed three times for each sample, and the standard error was determined.

8−1.低濃度油脂(n−Hex値300 mg/L程度)排水における結果
n−Hex値のレベルが300 mg/Lレベル、排水量100トン/日の現場において、実排水を連続的にデモ試験機に流しながら、試験を実施した。各設定滞留時間の開始時に、5×10cells/mLの濃度の微生物製剤を、処理水流量の1/1000である60 mL投入した。結果を図14に示す。投入時の投入微生物濃度は5×10cells/mLとなる。12時間の滞留時間でn−Hex値が90%近く低下した。さらに、18時間の滞留時間でn−Hex値が90%以上低下し、多くの自治体の下水道への放流基準値の30 mg/L未満をも達成し、n−Hex値だけに着目すると、本処理である活性汚泥処理すら不要となるほどの処理効果を示した。
8-1. Results of low-concentration fats and oils (n-Hex value about 300 mg / L) drainage At the site where the level of n-Hex value is 300 mg / L level and the displacement is 100 tons / day, the actual wastewater is continuously poured into the demonstration tester. However, the test was conducted. At the beginning of each set residence time, 60 mL of microbial preparation having a concentration of 5 × 10 7 cells / mL was added, which is 1/1000 of the treated water flow rate. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 4 cells / mL. The n-Hex value decreased by nearly 90% after a residence time of 12 hours. Furthermore, the n-Hex value decreased by 90% or more after the residence time of 18 hours, and achieved the discharge standard value of less than 30 mg / L to the sewerage of many local governments. The treatment effect was such that even the activated sludge treatment, which is a treatment, became unnecessary.

8−2.中濃度油脂(n−Hex値3000 mg/L程度)排水における結果
n−Hex値のレベルが3000 mg/Lレベル、排水量100トン/日の現場において、実排水を連続的にデモ試験機に流しながら、試験を実施した。各設定滞留時間の開始時に、5×10cells/mLの濃度の微生物製剤を、処理水流量の1/1000である60 mL投入した。結果を図15に示す。投入時の投入微生物濃度は5×10cells/mLとなる。滞留時間が18時間でn−Hex値が95%以上低下し、20時間で98%以上低下し50 mg/L未満に、24時間では99%以上低下し、多くの自治体の下水道への放流基準値の30 mg/L未満になった。
8-2. Results of drainage of medium-concentration fats and oils (n-Hex value of about 3000 mg / L) At the site where the level of n-Hex value is 3000 mg / L level and the displacement is 100 tons / day, the actual wastewater is continuously poured into the demonstration tester. However, the test was conducted. At the beginning of each set residence time, 60 mL of microbial preparation having a concentration of 5 × 10 8 cells / mL was added, which is 1/1000 of the treated water flow rate. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 5 × 10 5 cells / mL. The n-Hex value decreased by 95% or more in 18 hours, 98% or more in 20 hours, less than 50 mg / L, and 99% or more in 24 hours. The value was less than 30 mg / L.

8−3.高濃度油脂(n−Hex値10000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、排水を地下水で3倍に希釈したものを連続的にデモ試験機に流しながら、試験を実施した。各設定滞留時間の開始時に、1×10cells/mLの濃度の微生物製剤を、処理水流量の1/1000である60 mL投入した。結果を図16に示す。投入時の投入微生物濃度は1×10cells/mLとなる。滞留時間が20時間以上でn−Hex値が99%以上低下し、さらに24時間では多くの自治体の下水道への放流基準値の30 mg/L未満に低下した。
8-3. Results of drainage of high-concentration fats and oils (n-Hex value of about 10000 mg / L) At the site where the level of n-Hex value is 30,000 mg / L level and the displacement is 100 tons / day, the wastewater is diluted three times with groundwater. The test was carried out while continuously flowing through the demo tester. At the beginning of each set residence time, 60 mL of microbial preparation having a concentration of 1 × 10 9 cells / mL was added, which is 1/1000 of the treated water flow rate. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 1 × 10 6 cells / mL. When the residence time was 20 hours or more, the n-Hex value decreased by 99% or more, and in 24 hours, it decreased to less than 30 mg / L, which is the standard value for discharge to the sewer of many local governments.

8−4.超高濃度油脂(n−Hex値30000 mg/L程度)排水における結果
n−Hex値のレベルが30000 mg/Lレベル、排水量100トン/日の現場において、実排水を連続的にデモ試験機に流しながら、試験を実施した。各設定滞留時間の開始時に、3×10cells/mLの濃度の微生物製剤を、処理水流量の1/1000である60 mL投入した。結果を図17に示す。投入時の投入微生物濃度は3×10cells/mLとなる。滞留時間24時間でn−Hex値が99%以上低下した。
8-4. Results of ultra-high concentration fats and oils (n-Hex value about 30,000 mg / L) drainage At the site where the level of n-Hex value is 30,000 mg / L level and the displacement is 100 tons / day, the actual wastewater is continuously used as a demonstration tester. The test was carried out while flowing. At the beginning of each set residence time, 60 mL of microbial preparation having a concentration of 3 × 10 9 cells / mL was added, which is 1/1000 of the treated water flow rate. The results are shown in FIG. The concentration of the added microorganisms at the time of charging is 3 × 10 6 cells / mL. The n-Hex value decreased by 99% or more when the residence time was 24 hours.

試験例9:流入油分量と投入微生物量の関係
試験例6と同様に、複数の油分量の排水処理を行い、流入油分量と投入微生物量の関係を検討した。以下に、流入油分量と投入微生物量の関係を示す。
Test Example 9: Relationship between the amount of inflow oil and the amount of input microorganisms Similar to Test Example 6, wastewater treatment of a plurality of oil amounts was performed, and the relationship between the amount of inflow oil and the amount of input microorganisms was examined. The relationship between the amount of inflowing oil and the amount of input microorganisms is shown below.

Figure 2021100758
*ノルマルヘキサン値から算出される油分量
表1の結果から、油脂分解槽に投入される微生物製剤の量は、油脂分解槽に流入する油脂含有排水中のノルマルヘキサン抽出物1mg当たり、3.0×10〜1.0×10 cells、好ましくは3.0×10〜1×10cellsほどで十分な油脂分解が達成されることが明らかになった。
Figure 2021100758
* Oil content calculated from the normal hexane value From the results in Table 1, the amount of the microbial preparation charged into the fat decomposition tank is 3.0 per 1 mg of the normal hexane extract in the oil-containing wastewater flowing into the fat decomposition tank. It was clarified that sufficient oil and fat decomposition was achieved in about × 10 4 to 1.0 × 10 8 cells, preferably about 3.0 × 10 4 to 1 × 10 7 cells.

Claims (1)

本明細書の一部に記載の発明。The invention described in a part of this specification.
JP2021032846A 2017-11-14 2021-03-02 Oil-containing wastewater treatment method, system and device Active JP7319695B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017218942 2017-11-14
JP2017218942 2017-11-14
JP2018202323 2018-10-26
JP2018202323 2018-10-26
JP2019540014A JP7128530B2 (en) 2017-11-14 2018-11-14 Oil-containing wastewater treatment method, system and device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019540014A Division JP7128530B2 (en) 2017-11-14 2018-11-14 Oil-containing wastewater treatment method, system and device

Publications (3)

Publication Number Publication Date
JP2021100758A true JP2021100758A (en) 2021-07-08
JP2021100758A5 JP2021100758A5 (en) 2022-06-16
JP7319695B2 JP7319695B2 (en) 2023-08-02

Family

ID=66538649

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019540014A Active JP7128530B2 (en) 2017-11-14 2018-11-14 Oil-containing wastewater treatment method, system and device
JP2021032846A Active JP7319695B2 (en) 2017-11-14 2021-03-02 Oil-containing wastewater treatment method, system and device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019540014A Active JP7128530B2 (en) 2017-11-14 2018-11-14 Oil-containing wastewater treatment method, system and device

Country Status (3)

Country Link
EP (1) EP3712247A4 (en)
JP (2) JP7128530B2 (en)
WO (1) WO2019098255A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210276904A1 (en) * 2018-07-06 2021-09-09 National University Corporation Tokai National Higher Education And Research System Novel microorganisms for decomposing oil and fat containing fatty acid
SE544067C2 (en) 2019-06-26 2021-11-30 Bioteria Tech Ab Methods, system and device for controlling biological treatment processes and systems
EP4026809A4 (en) * 2019-09-06 2024-01-03 National Univ Corporation Tokai National Higher Education And Research System Novel microorganism having high ability to degrade oil at low temperature
CN112707584A (en) * 2020-12-02 2021-04-27 邯郸钢铁集团有限责任公司 Method for treating cold-rolling oily wastewater of iron and steel enterprises
JPWO2022118987A1 (en) * 2020-12-04 2022-06-09
JP6989987B1 (en) 2020-12-04 2022-02-03 国立大学法人東海国立大学機構 Continuous input of microbial preparations for wastewater treatment containing oils and fats
CN113789279B (en) * 2021-09-18 2023-02-17 北京科技大学 Fat-degrading tropical bacillus preparation and preparation method and application thereof
CN114262118B (en) * 2021-12-10 2023-11-03 浙江宏创新材料有限公司 Wastewater treatment method for organic silicon resin production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113489A (en) * 2000-10-06 2002-04-16 Yuken Industry Co Ltd Method and apparatus for biodegradation of oil
JP2011182782A (en) * 2010-02-09 2011-09-22 Sekisui Aqua System Kk Oil-and-fat splitting microorganism, microorganism-immobilization carrier, method for treating waste water and system for treating waste water
JP5470614B2 (en) * 2009-03-27 2014-04-16 国立大学法人名古屋大学 Treatment method of fat and oil containing wastewater by lipase-secreting microorganisms that can grow and decompose oil under mild acid conditions, grease trap purification method, and oil and fat decomposing agent
WO2016005771A1 (en) * 2014-07-10 2016-01-14 Breathe Ad Limited Treatment method for fats, oils and/or greases
JP2017177031A (en) * 2016-03-31 2017-10-05 シーシーアイ株式会社 Method of treating wastewater, and kit for wastewater treatment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3150862B2 (en) * 1995-01-20 2001-03-26 株式会社荏原製作所 Method for treating wastewater containing n-hexane extract
JP2002126785A (en) * 2000-10-30 2002-05-08 Moriroku Co Ltd Method and apparatus for treating oils containing wastewater
JP3921120B2 (en) * 2001-12-26 2007-05-30 日立化成メンテナンス株式会社 Biopharmaceutical having oil decomposing performance and kitchen wastewater treatment method using the same
US7172895B2 (en) * 2002-04-25 2007-02-06 Takuya Kitamura Microorganism and drainage method
JP5640211B2 (en) 2009-03-27 2014-12-17 国立大学法人名古屋大学 Oil and fat-containing wastewater treatment method, grease trap purification method, and oil and fat decomposing agent by the combined effect of lipase or its secreting microorganism and hydrolysis product decomposing microorganism
JP5630855B2 (en) * 2010-02-09 2014-11-26 積水アクアシステム株式会社 Oil-degrading microorganism, microorganism-immobilized carrier, wastewater treatment method, and wastewater treatment system
JP5685783B2 (en) 2012-01-19 2015-03-18 国立大学法人名古屋大学 Novel Yarrowia microorganism, oil decomposing agent and oil decomposing / removing method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113489A (en) * 2000-10-06 2002-04-16 Yuken Industry Co Ltd Method and apparatus for biodegradation of oil
JP5470614B2 (en) * 2009-03-27 2014-04-16 国立大学法人名古屋大学 Treatment method of fat and oil containing wastewater by lipase-secreting microorganisms that can grow and decompose oil under mild acid conditions, grease trap purification method, and oil and fat decomposing agent
JP2011182782A (en) * 2010-02-09 2011-09-22 Sekisui Aqua System Kk Oil-and-fat splitting microorganism, microorganism-immobilization carrier, method for treating waste water and system for treating waste water
WO2016005771A1 (en) * 2014-07-10 2016-01-14 Breathe Ad Limited Treatment method for fats, oils and/or greases
JP2017177031A (en) * 2016-03-31 2017-10-05 シーシーアイ株式会社 Method of treating wastewater, and kit for wastewater treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
堀 克敏, JOURNAL OF ENVIRONMENTAL BIOTECHNOLOGY, vol. 17, no. 1, JPN6020045511, 2017, pages 3 - 8, ISSN: 0005089944 *

Also Published As

Publication number Publication date
EP3712247A1 (en) 2020-09-23
JP7319695B2 (en) 2023-08-02
WO2019098255A1 (en) 2019-05-23
JPWO2019098255A1 (en) 2019-11-21
EP3712247A4 (en) 2021-07-28
JP7128530B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP2021100758A (en) Oil-and-fat containing wastewater treatment method, system and apparatus
Sun et al. Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor: Influence of inoculation ratios
Monclús et al. Optimization of biological nutrient removal in a pilot plant UCT-MBR treating municipal wastewater during start-up
Del Rio et al. Aerobic granular SBR systems applied to the treatment of industrial effluents
Guo et al. The performance of freshwater one-stage partial nitritation/anammox process with the increase of salinity up to 3.0%
CN103298753B (en) Process municipal wastewater and production have the method for the biomass of biological polymer production potential
Mohan et al. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)
He et al. Denitrification of synthetic nitrate-contaminated groundwater combined with rice washing drainage treatment
US20140263039A1 (en) METHOD AND APPARATUS FOR UNICELLULAR BIOMASS PRODUCTION USING pH CONTROL SYSTEM AND INDUSTRIAL WASTEWATER WITH HIGH BIOCHEMICAL OXYGEN DEMAND LEVELS
Ca\-nizares et al. Free and immobilized cultures of Spirulina maxima for swine waste treatment
US10227246B2 (en) Method for the treatment of industrial waste
Ab Halim et al. Development of aerobic granules in sequencing batch reactor system for treating high temperature domestic wastewater
Moharikar et al. Microbial population dynamics at effluent treatment plants
Karkare et al. Kinetic studies on agrochemicals wastewater treatment by aerobic activated sludge process at high MLSS and high speed agitation
Sarti et al. Domestic sewage treatment in a pilot-scale anaerobic sequencing batch biofilm reactor (ASBBR)
Chen et al. Biological COD reduction and inorganic suspended solids accumulation in a pilot-scale membrane bioreactor for traditional Chinese medicine wastewater treatment
Uhrig et al. Report on optimised PHA production process layout
Buitrón et al. Control of phenol biodegradation by using CO2 evolution rate as an activity indicator
Mohan et al. Composite chemical wastewater treatment by biofilm configured periodic discontinuous batch process operated in anaerobic metabolic function
Delnavaz Application of mathematical models for determination of microorganisms growth rate kinetic coefficients for wastewater treatment plant evaluation
Aimale-Troy et al. Effect of dissolved oxygen concentration on activated sludge bacterial community and oxygen uptake rate in a SBR using co-produced oxygen from a PEM hydrogen electrolyser
Hasan et al. Large-scale cultivation of Thiobacillus denitrificans to support pilot and field tests of a bioaugmentation process for microbial oxidation of sulfides: Scientific note
Kobayashi et al. Performance evaluation and effect of biogas circulation rate of a bubble column for biological desulfurization
Noordover et al. Containment in industrial biotechnology within wastewater treatment plants
Cao et al. Membrane‐aerated biofilm reactor behaviors for the treatment of high‐strength ammonium industrial wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230713

R150 Certificate of patent or registration of utility model

Ref document number: 7319695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150