JP2021100727A - METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY - Google Patents

METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY Download PDF

Info

Publication number
JP2021100727A
JP2021100727A JP2021066832A JP2021066832A JP2021100727A JP 2021100727 A JP2021100727 A JP 2021100727A JP 2021066832 A JP2021066832 A JP 2021066832A JP 2021066832 A JP2021066832 A JP 2021066832A JP 2021100727 A JP2021100727 A JP 2021100727A
Authority
JP
Japan
Prior art keywords
light
mouthpiece
light source
hippocampus
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021066832A
Other languages
Japanese (ja)
Inventor
智夫 松田
Tomoo Matsuda
智夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021066832A priority Critical patent/JP2021100727A/en
Publication of JP2021100727A publication Critical patent/JP2021100727A/en
Priority to JP2022043680A priority patent/JP2022161835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

To noninvasively apply stimulation with flashing light which flashes at about 40 Hz to the hippocampus inside the cranial bone to prevent, reduce, and treat dementia.SOLUTION: A light source 2 which emits near infrared light with wavelengths of 650 to 1000 nm called "biological window", which passes through biological tissues such as the cranial bone, blood vessels, and cerebral nerves is provided in the oral cavity to apply flashing light flashing at about 40 Hz toward the hippocampus 3. Taking the shortest route to transport light energy from the oral cavity 1 to the hippocampus 3 reduces the total amount of energy to be diffused and absorbed by cranial nerve cells just before light reaches the hippocampus 3, thereby preventing the cerebral nerves from being damaged due to excessive irradiation with energy.SELECTED DRAWING: Figure 1

Description

本発明は、認知症の予防、軽減、および治療のための40Hz閃光療法(40Hz Flashing Light Therapy)の技術分野において、頭蓋骨内部の海馬を直接的かつ無侵襲で閃光刺激する装置を提供することを目的とする。 The present invention provides a device that directly and non-invasively stimulates the hippocampus inside the skull in the technical field of 40 Hz Flashing Light Therapy for the prevention, alleviation, and treatment of dementia. The purpose.

MITの40Hz閃光療法(特許文献1)は、マウスの脳細胞の海馬領域の上部に侵襲的に埋め込んだ光ファイバーケーブルを介して繰り返し周波数が約40Hzの青色のレーザ光(波長473nm、出力約1mW)で閃光刺激を付与した動物実験により、既に低下していた記憶能力を回復させる効果が発見された。
その後、患者の視覚と聴覚などの知覚刺激による脳波誘導の技術を応用した非侵襲的(光源を身体に埋め込む手術が不要)な治療器具が採用され、臨床研究と治験によって治療効果が立証されて米国FDAから画期的な治療装置としての指定がなされた(非特許文献1)。
なお、本発明における「約40Hz」という表記における「約」とは、40Hz閃光療法に適用可能な周波数を厳密な40.0Hzに限定しないことを意味する。すなわち、周波数40.0Hzの前後に40Hz閃光療法としての効果を生ずる周波数の幅があり、40Hz閃光療法で付与する閃光刺激の繰り返し周波数として40.0Hzの前後に若干の周波数範囲を許容することを意味する。
MIT's 40 Hz flash therapy (Patent Document 1) is a blue laser beam with a repetition frequency of about 40 Hz (wavelength 473 nm, output about 1 mW) via an optical fiber cable invasively embedded in the upper part of the hippocampal region of mouse brain cells. An animal experiment in which a flash stimulus was applied was found to have the effect of restoring the memory ability that had already declined.
After that, non-invasive treatment equipment (no surgery to implant the light source in the body) was adopted by applying the technology of brain wave induction by perceptual stimuli such as the patient's sight and hearing, and the therapeutic effect was proved by clinical research and clinical trials. It was designated as an epoch-making treatment device by the US FDA (Non-Patent Document 1).
The term "about" in the notation "about 40 Hz" in the present invention means that the frequency applicable to 40 Hz flash therapy is not limited to a strict 40.0 Hz. That is, there is a frequency range around 40.0 Hz that produces the effect of 40 Hz flash therapy, and a slight frequency range is allowed around 40.0 Hz as the repetition frequency of the flash stimulus given by 40 Hz flash therapy. means.

一方、非侵襲的な光源が発する閃光刺激を利用して40Hz閃光療法を適用する市販器具もある。近赤外光の波長域(650〜1000nm)は生体内の水やヘモグロビンなどによる光吸収が少なく、生体組織をよく透過するため「生体の窓」とも呼ばれる。 この「生体の窓」の波長の光を使うと頭蓋骨や頭皮や血管などの生体組織を透過して脳の組織に光エネルギーを非侵襲的に照射できる。
例えば、カナダ国Vielight社の光治療器では、頭蓋骨と生体組織を透過する近赤外領域の波長810nmのLED光を頭蓋骨上部および鼻腔から照射することにより脳の上面と前面底部から閃光刺激する治療法の治験において、認知症の症状を軽減する効果が確認されている。(特許文献2および非特許文献2)
On the other hand, there are also commercially available instruments that apply 40 Hz flash therapy using the flash stimulus emitted by a non-invasive light source. The wavelength range of near-infrared light (650 to 1000 nm) is also called a "window of the living body" because it absorbs less light by water or hemoglobin in the living body and penetrates the living tissue well. Light of the wavelength of this "living body window" can be used to non-invasively irradiate brain tissues with light energy through living tissues such as the skull, scalp, and blood vessels.
For example, in the phototherapy device of Vielight, Canada, a treatment that stimulates flashes from the upper surface and anterior bottom of the brain by irradiating LED light with a wavelength of 810 nm in the near infrared region that passes through the skull and living tissue from the upper part of the skull and the nasal cavity. In clinical trials of the law, the effect of reducing the symptoms of dementia has been confirmed. (Patent Document 2 and Non-Patent Document 2)

特表2019−502429号公報Special Table 2019-502429 特表2020−534042号公報Special Table 2020-534042

「Non−invasive Neurostimulation Device Wins FDA’s Breakthrough Status」、Alzheimer’s News today, January 25,2021"Non-invasive Neurostimulation Device Wins FDA's Breakthrough Status", Alzheimer's News today, January 25, 2021 「Photobiomodulation for Improving Brain Function in Dementia 」、ClinicalTrials.gov Identifier: NCT03160027、U.S.National Library of Medicune"Photobiomodulation for Improving Brain Function in Dementia", ClinicalTrials.gov. gov Identifier: NCT03160027, U.S.A. S. National Library of Medicine

アルツハイマー症あるいはMCI(軽度認知障害,mild cognitive impairment)の初期の段階では、海馬の萎縮による物忘れから認知障害の症状が出始めることが知られている。しかし、特許文献1の知覚刺激による40Hz療法では、視覚・聴覚・触覚を司る脳部位周辺の認知症に関する症状を改善できるとはいえ、直接的に約40Hzの刺激を海馬そのものに付与できない問題がある。 In the early stages of Alzheimer's disease or MCI (mild cognitive impairment), it is known that symptoms of cognitive impairment begin to appear due to forgetfulness due to hippocampal atrophy. However, although the 40 Hz therapy using the sensory stimulus of Patent Document 1 can improve the symptoms related to dementia around the brain region that controls the visual, auditory, and tactile sensations, there is a problem that the stimulus of about 40 Hz cannot be directly applied to the hippocampus itself. is there.

また、Vielight(登録商標)は頭の上や鼻腔から頭蓋骨と生体組織を透過する波長810nmの近赤外LEDが発する光を脳の複数個所に向けて照射する。しかし、頭の上や鼻腔から海馬までの経路では、光が透過すべき距離が遠くて生体組織の層が厚い。そのため、いかに「生体の窓」の波長といえども、光エネルギーが途中の大量の脳神経の組織で散乱・吸収され、十分な光エネルギーが脳の裏側付近の海馬の位置までは到達しない。 In addition, Vielight (registered trademark) irradiates a plurality of parts of the brain with light emitted by a near-infrared LED having a wavelength of 810 nm that is transmitted through the skull and living tissue from above the head or from the nasal cavity. However, in the route above the head or from the nasal cavity to the hippocampus, the distance through which light should pass is long and the layer of living tissue is thick. Therefore, no matter how the wavelength of the "living body window", light energy is scattered and absorbed by a large amount of cranial nerve tissue on the way, and sufficient light energy does not reach the position of the hippocampus near the back side of the brain.

あえて過剰なエネルギーを放つ光源を使用するならば、頭蓋骨の外に設けた光の照射地点から海馬までの間にある大量の脳組織を透過して海馬まで光刺激が届くかもしれない。しかし、強烈すぎる光線の経路とその周辺にある脳の神経組織を著しく損傷し、あるいは脳梗塞などの脳疾患を誘発する危険が生じる可能性もあることに警戒しなければならない。 If a light source that emits excessive energy is used, the light stimulus may reach the hippocampus through a large amount of brain tissue located between the irradiation point of light provided outside the skull and the hippocampus. However, we must be wary of the potential for significant damage to the nervous system of the brain in and around the path of too intense rays, or the risk of inducing brain disease such as stroke.

本発明は、非侵襲的な閃光刺激を海馬に付与するために生体組織を透過する「生体の窓」の波長の近赤外光を約40Hzで明滅させ、目標に向けて光を照射する起点となる地点(以下、光源2と表記する)から目標地点としての海馬まで、光が通過する線分上の経路に含まれる脳の神経組織が可能な限り少なくなるように経路を選択する。
すなわち、口腔内に光源2を設け、短い距離で海馬を狙って光を照射することにより、骨や神経組織や血管などを含む生体組織で散乱・吸収される光エネルギーの総量を抑制し、照射する光エネルギーの所要出力を低減することで海馬の周囲の脳神経の損傷を予防する。
In the present invention, in order to apply a non-invasive flash stimulus to the hippocampus, near-infrared light having a wavelength of a "living body window" that passes through living tissue is blinked at about 40 Hz, and a starting point for irradiating light toward a target. The route is selected so that the nerve tissue of the brain included in the route on the line through which light passes from the point (hereinafter referred to as light source 2) to the hippocampus as the target point is as small as possible.
That is, by providing a light source 2 in the oral cavity and irradiating light at the hippocampus at a short distance, the total amount of light energy scattered and absorbed by living tissues including bones, nerve tissues, blood vessels, etc. is suppressed and irradiated. Prevents damage to the cerebral nerves around the hippocampus by reducing the required output of light energy.

具体的には、光源2を口腔内に設け、口腔と大脳の間にある頭蓋骨の一部(蝶形骨:sphenoid boneおよび/または側頭骨:Temporal bone)を透過して大脳の下部に位置する海馬を直撃するように「生体の窓」の波長の近赤外光を照射する。 Specifically, the light source 2 is provided in the oral cavity and is located in the lower part of the cerebrum through a part of the skull (sphenoid bone and / or the temporal bone: Temporal bone) between the oral cavity and the cerebrum. It irradiates near-infrared light with the wavelength of the "living body window" so as to hit the sphenoid bone directly.

口腔内に設ける光源2の位置と照射方向は、対象者(患者)の口腔と海馬の3次元位置データにもとづいて、光線で海馬をピンポイントに狙い撃ちするのに適切に決定することが望ましい。
例えば3次元のMRI(magnetic resonance imaging)などの医療用の画像データをもとに、頭蓋骨と口腔周囲の骨格や歯並びにもとづいて3次元座標軸の原点と軸方向を決定し、その座標軸にもとづいて、標的としての海馬に向けて光源2の位置からの照射方向を決める。
It is desirable that the position and irradiation direction of the light source 2 provided in the oral cavity are appropriately determined for pinpointing the hippocampus with a light beam based on the three-dimensional position data of the oral cavity and the hippocampus of the subject (patient).
For example, based on medical image data such as 3D MRI (magnetic resonance imaging), the origin and axial direction of the 3D coordinate axes are determined based on the skeleton and teeth around the skull and oral cavity, and based on the coordinate axes. The irradiation direction from the position of the light source 2 is determined toward the Kaiba as a target.

なお、海馬だけをピンポイントで狙い撃ちするのではなく、海馬を含む口腔の上部方向全体、あるいは、広く海馬を取り巻く周辺の脳神経にも40Hz療法を施す場合には、対象者ごとの厳密な3次元位置データなしに、光源2を含む器具を手で把持し、もしくはマウスピースで口腔内に光源2を固定し、口腔から海馬を含む脳の裏側へ向けて広い範囲に光を照射してもよい。
もし、光を照射するのが不都合な箇所があれば、その箇所を避けて照射すればよい。
In addition, when 40Hz therapy is applied not only to the hippocampus but also to the entire upper part of the oral cavity including the hippocampus or to the cerebral nerves surrounding the hippocampus widely, the exact three dimensions for each subject. Without position data, the device containing the light source 2 may be grasped by hand, or the light source 2 may be fixed in the oral cavity with a mouthpiece, and light may be irradiated over a wide range from the oral cavity to the back side of the brain including the hippocampus. ..
If there is a part where it is inconvenient to irradiate light, it is sufficient to avoid that part.

本発明の閃光刺激装置は、口腔内から海馬に向けてできるだけ短い距離で、生体組織を透過する「生体の窓」の波長の近赤外光を約40Hzの閃光刺激として無侵襲で照射する。
これにより特許文献1の動物実験で自然現象として解明された海馬への直接的な閃光刺激による記憶力低下を抑制する効果を、人体に対する無侵襲な手段においても実現することが可能となる。
The flash stimulator of the present invention non-invasively irradiates near-infrared light having a wavelength of a "living body window" that passes through a living tissue from the oral cavity toward the hippocampus as a flash stimulus of about 40 Hz.
This makes it possible to realize the effect of suppressing the deterioration of memory due to the direct flash stimulation to the hippocampus, which was elucidated as a natural phenomenon in the animal experiment of Patent Document 1, even by non-invasive means for the human body.

口腔内の光源2、海馬、および蝶形骨と側頭骨の位置関係。Positional relationship between light source 2, hippocampus, and sphenoid bone and temporal bone in the oral cavity. (実施例1)手に持って使用するLEDランス(Example 1) LED lance to be used by holding it in the hand (実施例2)光源2を口腔内に固定する光マウスピース(Example 2) Optical mouthpiece for fixing the light source 2 in the oral cavity (実施例3)光軸の方向調整機能を備えた光マウスピース(Example 3) Optical mouthpiece having a function of adjusting the direction of the optical axis <変形例> 上顎用のマウスピースと光ファイバーケーブル<Modification example> Maxillary mouthpiece and optical fiber cable <座標系の変換>頭蓋骨とマウスピースの3次元座標系<Coordinate system conversion> Three-dimensional coordinate system of skull and mouthpiece

図1は、口腔1の内部に設ける光源2、海馬3、および頭蓋骨(具体的には蝶形骨4と側頭骨5)の位置関係を示す図である。図示の通り、口腔1の内部に設けた光源2から頭蓋骨(蝶形骨4および/または側頭骨5)を透過して海馬3までは、少ない生体組織(特に神経組織)を透過して光線を照射できる位置関係にある。
図1(a)は大脳の中での海馬3の位置を示す正面図と側面図である。
図1(b)は口腔1に設けた光源2の光軸6を海馬3に向けて照射した図であり、詳細は実施例1に述べる。
図1(c)は口腔1に設けた光源2から放った光線の広がりに海馬3を含むように照射した図であり、詳細は実施例2に述べる。
図1(d)は口腔1に設けた光源2から照射方向を調整可能な光軸6を海馬3に向けて照射した図であり、詳細は実施例3に述べる。
FIG. 1 is a diagram showing a positional relationship between a light source 2, a hippocampus 3, and a skull (specifically, a sphenoid bone 4 and a temporal bone 5) provided inside the oral cavity 1. As shown in the figure, light rays are transmitted from the light source 2 provided inside the oral cavity 1 through the skull (sphenoid bone 4 and / or the temporal bone 5) to the hippocampus 3 through a small amount of living tissue (particularly nerve tissue). There is a positional relationship that allows irradiation.
FIG. 1A is a front view and a side view showing the position of the hippocampus 3 in the cerebrum.
FIG. 1B is a diagram in which the optical axis 6 of the light source 2 provided in the oral cavity 1 is irradiated toward the hippocampus 3, and details will be described in Example 1.
FIG. 1 (c) is a diagram in which the spread of light rays emitted from the light source 2 provided in the oral cavity 1 is irradiated so as to include the hippocampus 3, and details will be described in Example 2.
FIG. 1D is a diagram in which an optical axis 6 whose irradiation direction can be adjusted is irradiated toward the hippocampus 3 from a light source 2 provided in the oral cavity 1, and details will be described in Example 3.

以下の実施例では、口腔1から海馬3に向けて約40Hzの閃光刺激を無侵襲で照射するという目的を、自宅治療もしくは通院治療などに適した多様な形態で実現する事例を説明する。 In the following examples, an example will be described in which the purpose of non-invasively irradiating a flash stimulus of about 40 Hz from the oral cavity 1 to the hippocampus 3 is realized in various forms suitable for home treatment or outpatient treatment.

この実施例1では、手に持った器具を使って口腔1から海馬3に向けて、約40Hzの閃光刺激を印加する手段を説明する。なお、高齢な発明者自身の身体を用いて効果を確認する実験を行ったので、これも紹介する。
図2は、手で把持する棒の先端に近赤外LED7を取り付けたLEDランス10を説明する図である。
図2(a)はLEDランス10とLED駆動装置12の概観図を示す。この近赤外LED7は「生体の窓」に相当する近赤外光の波長域(650〜1000nm)の光を照射するものであって、LED駆動装置12から電線22で駆動電力を供給して約40Hzの矩形波の駆動電流IでOn−Offして点滅させた。
In the first embodiment, a means for applying a flash stimulus of about 40 Hz from the oral cavity 1 to the hippocampus 3 by using an instrument held in a hand will be described. An experiment was conducted to confirm the effect using the body of the elderly inventor himself, so this is also introduced.
FIG. 2 is a diagram illustrating an LED lance 10 in which a near-infrared LED 7 is attached to the tip of a rod to be gripped by hand.
FIG. 2A shows an overview view of the LED lance 10 and the LED drive device 12. The near-infrared LED 7 irradiates light in the wavelength range (650 to 1000 nm) of near-infrared light corresponding to a "living body window", and supplies driving power from the LED driving device 12 by an electric wire 22. It was turned off and blinked with a driving current I of a square wave of about 40 Hz.

図2(b)は、LEDランス10の把持部52を手で把持して口腔1の内部に差し込む状態を示す図である。図2(c)はLEDランス10の試作品に組み込んだ近赤外LED7(OptoSupply社製のOSI3CA5111A)の指向性を表す図である。このLED素子の仕様は、波長850[nm]、放射強度45[mW/Sr](ただし、駆動電流If=50mA、Vf=1.6Vの場合)、50%PowerAngleは2θ=15[deg]で、細い光ビームを放射する。 FIG. 2B is a diagram showing a state in which the grip portion 52 of the LED lance 10 is gripped by hand and inserted into the oral cavity 1. FIG. 2 (c) is a diagram showing the directivity of the near-infrared LED 7 (OSI3CA5111A manufactured by OPtoSUPPLY) incorporated in the prototype of the LED lance 10. The specifications of this LED element are wavelength 850 [nm], radiant intensity 45 [mW / Sr] (however, when drive current If = 50mA, Vf = 1.6V), and 50% Power Angle is 2θ = 15 [deg]. , Emit a thin light beam.

手で把持したLEDランス10の先端部に設けた近赤外LED7の半導体素子の発光点の位置を光源2の位置として説明する。この近赤外LED7の指向性における強度が最大になる光軸6を海馬3の方向に向け、海馬3に対して非侵襲の約40Hz閃光刺激を印加した。発明者自身が自分を実験動物として行った試行では、右側および左側の海馬3に向けて光軸6を僅かに振りながら交互に約2分間ずつ、合計で約20分程度にわたって閃光刺激を付与した。 The position of the light emitting point of the semiconductor element of the near-infrared LED 7 provided at the tip of the LED lance 10 gripped by hand will be described as the position of the light source 2. The optical axis 6 that maximizes the directivity of the near-infrared LED 7 was directed toward the hippocampus 3, and a non-invasive approximately 40 Hz flash stimulus was applied to the hippocampus 3. In the trial conducted by the inventor himself as an experimental animal, the flash stimulus was applied alternately for about 2 minutes while slightly swinging the optical axis 6 toward the hippocampus 3 on the right side and the left side for a total of about 20 minutes. ..

発明者単独で口腔内から海馬3に光軸6を向ける作業は、一般的な解剖図と自分のあごの骨格を手探りで比較しながら実施した。そのため、直接照準で光照射した角度や位置決めが不正確で、LEDの指向性の中心としての光軸6が海馬3に正確に命中せず、上下左右にずれていた可能性は残る。
しかしながら、高齢になるにつれて低下していた自分自身の記憶力ではあるが、照射実験の後には、少し前の記憶内容について細部までも鮮明に思い出す現象を体験することができた。これは、発明者自身にとってきわめて新鮮な驚きだった。
The work of directing the optical axis 6 from the oral cavity to the hippocampus 3 by the inventor alone was carried out while comparing a general anatomical chart with the skeleton of his / her jaw. Therefore, it is possible that the angle and positioning of the light irradiated with the direct aim are inaccurate, the optical axis 6 as the center of the directivity of the LED does not hit the hippocampus 3 accurately, and the LED is displaced vertically and horizontally.
However, although my own memory was declining as I got older, after the irradiation experiment, I was able to experience a phenomenon in which I could clearly remember the details of my previous memory. This was a very fresh surprise for the inventor himself.

後日、発明者は別件の医療検査のために病院でMRI(Magnetic Resonance Imaging)を撮影した。MRI画像解析を担当した医師によると、脳の下部に新しい脳梗塞の痕跡としての白い影が発見された。画像データを病院から譲り受け、自分のPCで画像を閲覧したところ、脳梗塞の痕跡としての白い陰の場所は、口腔1に入れた光源2と海馬3を結ぶ光軸6の近傍に相当する位置の周辺であった。
実験の際、発明者は自分ひとりの手作業で海馬3をねらって照射したが、光軸6の射線が外れていた可能性もある。あるいは拡散する光束を持ったLEDを使用したため、光源2に近い部分から生体組織に侵入する場所では、単位面積当たりの光エネルギー量が過剰であった可能性もある。あるいはこの位置に小さな脳梗塞の痕跡が生じたのは単なる偶然であり発明者自身の実験とは無関係かもしれない。
なお、現在この実験は中止しているので、この小さな脳梗塞の傷跡と発明者自身が行った実験との因果関係は今も不明である。
At a later date, the inventor took an MRI (Magnetic Resonance Imaging) at the hospital for another medical examination. According to the doctor in charge of MRI image analysis, a white shadow was found in the lower part of the brain as a trace of a new stroke. When I took over the image data from the hospital and browsed the image on my PC, the white shaded area as a trace of cerebral infarction was located near the optical axis 6 connecting the light source 2 and the hippocampus 3 in the oral cavity 1. It was around.
At the time of the experiment, the inventor manually aimed and irradiated the hippocampus 3, but it is possible that the line of sight of the optical axis 6 was off. Alternatively, since the LED having a diffused luminous flux is used, it is possible that the amount of light energy per unit area is excessive at the place where the LED invades the living tissue from the portion close to the light source 2. Alternatively, the occurrence of a small trace of cerebral infarction at this location is merely a coincidence and may be unrelated to the inventor's own experiments.
Since this experiment has been discontinued at present, the causal relationship between the scar of this small cerebral infarction and the experiment conducted by the inventor himself is still unknown.

一方、既に安全性が確保された治療法として、頭部の上方もしくは鼻腔から、頭蓋骨と生体組織を透過できる近赤外光の波長域の光を脳に向けて照射する治療法(非特許文献2)が知られており、医療機関による治験も含め多数の学術文献も存在する。しかし、脳の裏側から光を照射する場合には、安全に投入可能な単位面積当たりの光エネルギーの許容量は、既存の学術文献に記載される「日常的に日光に照らされる頭部上面における許容量」よりも脆弱な可能性もある。
生きた人体を用いて脳の裏側から海馬3を狙って光エネルギーを照射した本発明の追試を行う際には、くれぐれも、照射する光エネルギー量(あるいは密度)の管理には十分な注意が必要である。
On the other hand, as a treatment method for which safety has already been ensured, a treatment method in which light in the near-infrared wavelength range capable of passing through the skull and living tissue is irradiated to the brain from above the head or from the nasal cavity (non-patent documents). 2) is known, and there are many academic documents including clinical trials by medical institutions. However, when irradiating light from the back side of the brain, the permissible amount of light energy per unit area that can be safely input is described in the existing academic literature as "on the upper surface of the head that is lit by sunlight on a daily basis." It may be more vulnerable than the "allowable amount".
When performing a follow-up test of the present invention in which light energy is irradiated to the hippocampus 3 from the back side of the brain using a living human body, sufficient care must be taken in controlling the amount (or density) of light energy to be irradiated. Is.

今回、我が身を用いて行った実験によって、口腔1から海馬3への約40Hz閃光刺激の直接照射を行うことで、特許文献1の動物実験による試験結果と同様に、低下した短期記憶の能力を人体においても一時的に回復させる可能性を体験できた。
しかし、安全性を確保する上では今後に積み残した課題も多い。例えば、通常は太陽光を浴びる機会の無い脳の裏側に40Hzの閃光を照射する際に、安全に投入できる単位面積当たりの光エネルギーの数値(単位はmW/平方センチメートル)は不明である。特に、海馬3の近傍にはさまざまなホルモンを分泌する脳下垂体などの敏感で影響の大きな神経細胞も存在するため、誤って光エネルギーを過剰に照射せぬように厳重な配慮が必要である。
This time, by directly irradiating the hippocampus 3 from the oral cavity 1 with a flash stimulus of about 40 Hz by the experiment conducted using ourselves, the ability of short-term memory was reduced as in the test result by the animal experiment of Patent Document 1. I was able to experience the possibility of temporary recovery in the human body.
However, there are many issues left unsolved in the future in order to ensure safety. For example, when irradiating the back side of the brain, which normally does not have a chance to be exposed to sunlight, with a flash of 40 Hz, the numerical value of light energy per unit area (unit: mW / square centimeter) that can be safely input is unknown. In particular, since there are sensitive and highly influential nerve cells such as the pituitary gland that secrete various hormones in the vicinity of the hippocampus 3, strict consideration is required to prevent accidental excessive irradiation of light energy. ..

また、今回の実験結果から、LEDの指向性にもとづいて発散するビームが当たる断面の単位面積当たりのエネルギーが「近距離ほど大きくなる」ことが問題になるかもしれないことが危惧される。つまり、LEDの指向性のように拡散する光束を使用すると、海馬3に到達するよりも手前の脳細胞ほど光エネルギーの密度が高く、海馬の手前に位置する脳の神経にダメージを与える可能性が高くなるかもしれない。一方で、光線が生体組織を通過するに伴って、吸収や拡散によって減衰することも考慮する必要がある。
つまり、LED単体の指向性のような発散する光束では、照射距離(あるいは生体内に光が侵入した後の到達深度)が短いときには過剰なエネルギー密度で照射される場合がある。そこで、光線の平行化、もしくは一旦は光束の投影断面積を広げた後に再び光を収束させるように光学系を組むことが望ましい可能性もある。
例えば図2(c)のLEDの指向性の図に書き加えたように、第一光学系14を設けてLED自体の拡散する光束13を平行な光束15に変形するか、もしくはさらに第二光学系16を設けて収束する光束17に変形することもできる。
In addition, from the results of this experiment, it is feared that the energy per unit area of the cross section hit by the beam diverging based on the directivity of the LED may become a problem "the shorter the distance, the larger the energy". In other words, if a diffused luminous flux such as the directivity of an LED is used, the density of light energy is higher in the brain cells before reaching the hippocampus 3, and there is a possibility of damaging the nerves of the brain located in front of the hippocampus. May be higher. On the other hand, it is also necessary to consider that the light beam is attenuated by absorption and diffusion as it passes through the living tissue.
That is, a diverging luminous flux such as the directivity of a single LED may be irradiated with an excessive energy density when the irradiation distance (or the reach depth after the light enters the living body) is short. Therefore, it may be desirable to parallelize the light rays, or to construct an optical system so that the light is converged again after the projected cross-sectional area of the light flux is once widened.
For example, as added to the LED directivity diagram of FIG. 2C, the first optical system 14 is provided to transform the diffused luminous flux 13 of the LED itself into a parallel luminous flux 15, or further, the second optical flux. It is also possible to provide a system 16 and transform it into a convergent luminous flux 17.

図2(d)は、平行な光束15や収束する光束17を発生するように、光源2に光学系14や16を組み込んだLEDランス10の外観図の事例である。
また、光源2の手前に屈曲部を設けることで、LEDランス10の把持部52を把持した状態で、口腔1の中で光軸6の方向を操作しやすくしてもよい。
LEDランス10の先端に光学系14や16を設けた場合には、LEDランス10に機械的な屈曲部を設ける手段だけでなく、反射鏡(図示省略)を組み込むことにより光軸6が出射する方向を折り曲げる手段を用いて、口腔1の中でLEDランス10を操作しやすくすることもできる。
FIG. 2D is an example of an external view of the LED lance 10 in which the optical systems 14 and 16 are incorporated in the light source 2 so as to generate a parallel light flux 15 and a convergent light flux 17.
Further, by providing the bent portion in front of the light source 2, the direction of the optical axis 6 may be easily operated in the oral cavity 1 while the grip portion 52 of the LED lance 10 is gripped.
When the optical systems 14 and 16 are provided at the tip of the LED lance 10, the optical axis 6 is emitted by incorporating a reflector (not shown) as well as a means for providing a mechanically bent portion in the LED lance 10. It is also possible to facilitate the operation of the LED lance 10 in the oral cavity 1 by using the means of bending the direction.

発明者が最初に試作したLEDランス10は、市販のプラスチック製のボールペン本体としての中空パイプの中にLEDの電線22を通し、ボールペン本体の先端部分に接着剤を用いて近赤外LED7を封入した。
これにより、十分な防水性能が得られたのでLEDランス10の先端を口腔1に挿入しても唾液による漏電故障も起きず、老人である発明者が無意識に行った顎の咀嚼動作に起因するLED駆動用電線の切断などのトラブルも未然に防ぐことができた。
The LED lance 10 first prototyped by the inventor has an LED electric wire 22 passed through a hollow pipe as a commercially available plastic ballpoint pen body, and a near-infrared LED 7 is enclosed in the tip of the ballpoint pen body using an adhesive. did.
As a result, sufficient waterproof performance was obtained, so even if the tip of the LED lance 10 was inserted into the oral cavity 1, no leakage failure due to saliva occurred, which was caused by the jaw chewing operation unknowingly performed by the inventor who was an old man. It was possible to prevent troubles such as disconnection of the LED drive wire.

今後、幾多の発明者や研究者によってLEDの出力(放射強度)、波長、照射方向、ビームの指向性、光の変調波形や変調方法の選択、LEDランス10の操作性を高める外観形状、口腔1から海馬3を手際よく正確に狙い撃ちする位置決めの手段、さらには近赤外LEDの光学系設計や近赤外半導体レーザを利用する技術、あるいは光ファイバーとコリメータと反射鏡やプリズムなどの光学系を組み合わせる器具、など各種の数値限定や新規アイディアの付加が行われ、さらに有用な新規発明がなされることを願ってやまない。 In the future, many inventors and researchers will select LED output (radiation intensity), wavelength, irradiation direction, beam directionality, optical modulation waveform and modulation method, appearance shape that enhances operability of LED lance 10, oral cavity. Positioning means for aiming at Kaiba 3 from 1 to 3 accurately and accurately, as well as optical system design for near-infrared LEDs, technology using near-infrared semiconductor lasers, or optical systems such as optical fibers, collimators, reflectors, and prisms. We hope that various numerical values such as equipment to be combined and new ideas will be added, and that more useful new inventions will be made.

図3は、光源2をマウスピースに組み込んで下顎に装着し、上顎でマウスピースを軽く噛んで固定したうえで、光軸6の周りに太い光束13を照射する事例である。
図3(a)は光マウスピース20とLED駆動装置12の構成を説明する図である。この実施例2では、LED駆動装置12から電線22を介して光マウスピース20に組み込んだ近赤外LED7を矩形波でOn−Off駆動して約40Hzで点滅させる。
FIG. 3 shows an example in which the light source 2 is incorporated into a mouthpiece, attached to the lower jaw, the mouthpiece is lightly bitten and fixed by the upper jaw, and then a thick luminous flux 13 is irradiated around the optical axis 6.
FIG. 3A is a diagram illustrating the configuration of the optical mouthpiece 20 and the LED drive device 12. In the second embodiment, the near-infrared LED 7 incorporated in the optical mouthpiece 20 from the LED driving device 12 via the electric wire 22 is driven On-Off by a rectangular wave and blinks at about 40 Hz.

試作段階では、発明者は市販のスポーツ用マウスピースの本体を切削し、前述の実施例1と同じ近赤外LED7を図3(a)の光源2の位置に埋め込んだ。その結果、柔軟で屈曲するマウスピースとLEDの隙間から唾液が侵入してLED駆動用電線の漏電故障を起こす問題が発生した。
また、LED素子をマウスピースに埋め込む際に、対象者の口腔1の形状と脳内の海馬3の3次元の位置関係を正確に考慮したうえで、光軸6の方向と位置決めの再現性を確保する技術に課題があることが判明し、下記のように解決した。
At the prototype stage, the inventor cut the main body of a commercially available sports mouthpiece and embedded the same near-infrared LED 7 as in the first embodiment at the position of the light source 2 in FIG. 3 (a). As a result, there has been a problem that saliva invades through the gap between the flexible and flexible mouthpiece and the LED, causing an electric leakage failure of the LED driving electric wire.
In addition, when embedding the LED element in the mouthpiece, the direction of the optical axis 6 and the reproducibility of positioning are determined after accurately considering the shape of the oral cavity 1 of the subject and the three-dimensional positional relationship of the hippocampus 3 in the brain. It was found that there was a problem with the technology to be secured, and it was solved as follows.

図3(b)は光マウスピース20の使い方を示す図である。口腔1に入れた光マウスピース20の左右には2つの光源2があり、左右それぞれの光源2の位置から脳内の左右それぞれの海馬3へ、約40Hzで点滅する光軸6を向けてある。
なお、口腔1の顎や歯並びの寸法形状や海馬3との位置関係は個人によって異なるため、光マウスピース20に組み込む光源2の光軸6の照射方向をピンポイントに位置決めするには、個々の対象者ごとにオーダーメード(注文してあつらえた仕様)で正確に製作する必要がある。
また、老人が無意識にマウスピースを咀嚼しても2つの光源2の位置や光軸6の方向が大きく変動しないように、マウスピース本体60に組み込む光源2の位置や照射方向を機械的に保持するため、チタン合金などの硬質で軽量な構造部材をマウスピースに組み込むことが望ましい。
FIG. 3B is a diagram showing how to use the optical mouthpiece 20. There are two light sources 2 on the left and right sides of the optical mouthpiece 20 placed in the oral cavity 1, and an optical axis 6 blinking at about 40 Hz is directed from the positions of the left and right light sources 2 to the left and right hippocampi 3 in the brain. ..
Since the dimensions and shape of the jaws and teeth of the oral cavity 1 and the positional relationship with the hippocampus 3 differ from person to person, it is necessary to pinpoint the irradiation direction of the optical axis 6 of the light source 2 to be incorporated in the optical mouthpiece 20. It is necessary to accurately manufacture each target person with custom-made (customized specifications).
In addition, the position and irradiation direction of the light source 2 incorporated in the mouthpiece body 60 are mechanically held so that the positions of the two light sources 2 and the directions of the optical axes 6 do not fluctuate significantly even if the old man unknowingly chews the mouthpiece. Therefore, it is desirable to incorporate a hard and lightweight structural member such as a titanium alloy into the mouthpiece.

図3(c)は光マウスピース20に光源2を組み込む操向ヘッド30の概略の構造図である。この実施例2では、口腔1の内部における唾液による近赤外LED7の漏電対策と光軸6の再現性を確保する課題も解決する。
この操向ヘッド30の直径は前述の実施例1の近赤外LED7と同じ5mmで、長さは約15mm。これを光マウスピース20に組み込むと、図3(a)や図3(b)で光源2の位置に描いたように、操向ヘッド30の頭部が光マウスピース20から飛び出して見える。
FIG. 3C is a schematic structural diagram of the steering head 30 in which the light source 2 is incorporated in the optical mouthpiece 20. In the second embodiment, the problem of preventing electric leakage of the near-infrared LED 7 due to saliva inside the oral cavity 1 and ensuring the reproducibility of the optical axis 6 is also solved.
The diameter of the steering head 30 is 5 mm, which is the same as that of the near-infrared LED 7 of the first embodiment, and the length is about 15 mm. When this is incorporated into the optical mouthpiece 20, the head of the steering head 30 appears to protrude from the optical mouthpiece 20 as depicted at the position of the light source 2 in FIGS. 3 (a) and 3 (b).

操向ヘッド30は、主に透明ヘッド32、交換式円筒ミラー35、防水パッキン34、雄ネジ架台36、および表面実装用の超小型の近赤外LED7から構成される。透明ヘッド32の内側に設けた雌ネジ33で、防水パッキン34を介して雄ネジ架台36にネジ込んで封止する。なお口腔1の内部での唾液に対する防水性を高めるため、ネジ込んだ部分や、操向ヘッド30の底面の加工部分から組み込んだ表面実装用の超小型の近赤外LED7を駆動する電線22を取り出す部分を接着剤で封止する。
操向ヘッド30を光マウスピース20に固定する際には、光マウスピース20内部の硬質な構造部材と操向ヘッド30をネジ止めやレーザ溶着などの手段で機械的に強固に接続し、マウスピースが咀嚼されても光軸6の照射先が容易に変動しないようにすることが望ましい。
The steering head 30 is mainly composed of a transparent head 32, a replaceable cylindrical mirror 35, a waterproof packing 34, a male screw mount 36, and an ultra-small near-infrared LED 7 for surface mounting. The female screw 33 provided inside the transparent head 32 is screwed into the male screw mount 36 via the waterproof packing 34 to seal the seal. In order to improve the waterproofness against saliva inside the oral cavity 1, an electric wire 22 for driving an ultra-small near-infrared LED 7 for surface mounting incorporated from a screwed portion or a processed portion on the bottom surface of the steering head 30 is provided. Seal the part to be taken out with an adhesive.
When fixing the steering head 30 to the optical mouthpiece 20, the rigid structural member inside the optical mouthpiece 20 and the steering head 30 are mechanically and firmly connected by means such as screwing or laser welding to form a mouse. It is desirable that the irradiation destination of the optical axis 6 does not easily change even if the piece is chewed.

操向ヘッド30に組み込む表面実装用の超小型の近赤外LED7としては、例えばOptoSupply社製のOSI3120641E型がある。このLED素子は、波長850[nm]、放射強度10[mW/Sr](ただし、駆動電流If=20mA、Vf=1.3Vの場合。最大電流は75mA)、50%PowerAngleは2θ=35[deg]で、比較的広い範囲に光ビームを放射する。LED素子の寸法は縦3.2mm×横1.6mm×高さ1.8mmと非常に小さいため、雄ネジ架台36の底面を加工して組み込むことができる。 As an ultra-compact near-infrared LED 7 for surface mounting incorporated in the steering head 30, for example, there is OSI3120641E type manufactured by OptoSupply. This LED element has a wavelength of 850 [nm], a radiant intensity of 10 [mW / Sr] (however, when the drive current If = 20 mA and Vf = 1.3 V. The maximum current is 75 mA), and the 50% Power Angle is 2θ = 35 [. deg] emits a light beam over a relatively wide area. Since the dimensions of the LED element are as small as 3.2 mm in length × 1.6 mm in width × 1.8 mm in height, the bottom surface of the male screw mount 36 can be processed and incorporated.

雄ネジ架台36の内部は円筒形の中空であり、交換式円筒ミラー35を旋回自在に挿入できる。交換式円筒ミラー35の中心軸も光軸6が通るように円筒形に中空になっている。雄ネジ架台36の底部を加工して設けた超小型の近赤外LED7から発した光軸6は、交換式円筒ミラー35の中心軸の空洞を通過して、交換式円筒ミラー35に貼り付けた鏡面板38で全反射し、透明ヘッド32を透過して口腔1へと出射する。
鏡面板38と光軸6が交わる点が光源2の厳密な位置である。この光源2の位置で反射した約40Hzの刺激光の光軸6が海馬3を含んだ方向へ照射される。
The inside of the male screw mount 36 is hollow in a cylindrical shape, and the replaceable cylindrical mirror 35 can be inserted so as to be rotatable. The central axis of the replaceable cylindrical mirror 35 is also hollow in a cylindrical shape so that the optical axis 6 can pass through. The optical axis 6 emitted from the ultra-small near-infrared LED 7 provided by processing the bottom of the male screw mount 36 passes through the cavity of the central axis of the interchangeable cylindrical mirror 35 and is attached to the interchangeable cylindrical mirror 35. It is totally reflected by the mirror plate 38, passes through the transparent head 32, and is emitted to the oral cavity 1.
The point where the mirror plate 38 and the optical axis 6 intersect is the exact position of the light source 2. The optical axis 6 of the stimulation light of about 40 Hz reflected at the position of the light source 2 is irradiated in the direction including the hippocampus 3.

もし、光を照射するのが不都合な箇所があれば、その箇所を避けて照射することもできる事例を以下に示す。
図3(d)は交換式円筒ミラー35に貼り付けた鏡面板38を加工して部分的に反射率を下げ、高反射率の部分と低反射率の部分とで模様を描いた事例を模式的に描いてある。鏡面板38の模様の図柄に反射した光が脳の裏側の部位に当たって描かれる光の形状は、鏡面板38から離れるに従ってぼやけた形状にはなるが、鏡面板38の模様にある程度は対応した図形となる。これは、閃光刺激を付与したくない部分に低反射率の部分の図柄からの反射光を当てれば、照射される光のエネルギー密度を下げるための有用な解決策となる。
なお、鏡面板38の傾斜角θと旋回角φの調整方法は実施例3で説明するが、調整完了後は雄ネジ架台36に挿入した交換式円筒ミラー35を接着剤で固定することができる。
If there is a part where it is inconvenient to irradiate light, an example where it is possible to irradiate while avoiding that part is shown below.
FIG. 3D is a schematic example in which the mirror surface plate 38 attached to the replaceable cylindrical mirror 35 is processed to partially reduce the reflectance, and a pattern is drawn with a high reflectance portion and a low reflectance portion. It is drawn as a target. The shape of the light drawn by the light reflected by the pattern of the mirror plate 38 hitting the back side of the brain becomes blurry as the distance from the mirror plate 38 increases, but the figure corresponds to the pattern of the mirror plate 38 to some extent. It becomes. This is a useful solution for reducing the energy density of the emitted light by shining the reflected light from the pattern of the low reflectance portion on the portion to which the flash stimulus is not desired to be applied.
The method of adjusting the tilt angle θ and the swivel angle φ of the mirror surface plate 38 will be described in the third embodiment, but after the adjustment is completed, the replaceable cylindrical mirror 35 inserted into the male screw mount 36 can be fixed with an adhesive. ..

以上説明したように、実施例2は、口腔1の寸法形状と海馬3との位置関係を個人ごとにMRIなどの画像診断装置で計測し、光マウスピース20に組み込んだ光源2の位置と光軸6の方向を正確に位置決めして口腔1の中に固定することで、海馬3の位置に向けて近赤外LED7で発生させた閃光を照射する器具を提供するものである。 As described above, in the second embodiment, the dimensional shape of the oral cavity 1 and the positional relationship with the hippocampus 3 are measured for each individual by an image diagnostic device such as MRI, and the position and light of the light source 2 incorporated in the optical mouthpiece 20. By accurately positioning the direction of the axis 6 and fixing it in the oral cavity 1, an apparatus for irradiating a flash of light generated by a near-infrared LED 7 toward the position of the hippocampus 3 is provided.

今後、幾多の発明者や研究者によってLEDの出力(放射強度)、波長、照射方向、ビームの指向性、光の変調波形や変調方法の選択、さらには近赤外LED(あるいは近赤外の半導レーザー)の光学系設計などの数値限定や商品としての品質向上も含めた新規アイディアの付加なども行われ、有用な新規発明がなされることを願ってやまない。また、老人が無意識に行う顎の咀嚼動作によって、光マウスピース20に引き込む電線22を一層切断されにくく防護する構造や形状など、商品化に向けて新たな発明考案を追加する余地は大きい。 In the future, many inventors and researchers will select LED output (radiation intensity), wavelength, irradiation direction, beam directivity, light modulation waveform and modulation method, and even near-infrared LED (or near-infrared). We hope that useful new inventions will be made by limiting the numerical values of the optical system design of the semi-conducting laser) and adding new ideas including quality improvement as a product. In addition, there is a lot of room for adding new inventions for commercialization, such as a structure and a shape that protects the electric wire 22 drawn into the optical mouthpiece 20 from being cut more easily by the jaw chewing operation unconsciously performed by an old man.

図4は、光源2をマウスピースに組み込んで下顎に装着し、上顎でマウスピースを軽く噛んで下顎に押さえつけて固定しながら、海馬3をねらって細い光束の光軸6を位置決めして照射する事例である。
図4(a)は、参考のため、光マウスピース20を下の歯に被せたまま口を開け、舌を出して見せた状態を描いた図である。舌の根元の両側には、操向ヘッド30の最上部の透明ヘッド32の頭部が見える状態で突き出ている。電線22を誤って噛み切らないように、奥歯よりも奥の歯のない箇所を迂回して、上唇と下唇の分岐点から電線22を取り出す構造とした。
In FIG. 4, the light source 2 is incorporated into the mouthpiece and attached to the lower jaw, and while the mouthpiece is lightly bitten by the upper jaw and pressed against the lower jaw to fix it, the optical axis 6 of a thin luminous flux is positioned and irradiated with the aim of the hippocampus 3. This is an example.
FIG. 4A is a diagram showing a state in which the optical mouthpiece 20 is covered with the lower teeth, the mouth is opened, and the tongue is exposed for reference. On both sides of the base of the tongue, the head of the transparent head 32 at the uppermost portion of the steering head 30 is projected so as to be visible. In order to prevent the electric wire 22 from being bitten off by mistake, the electric wire 22 is taken out from the junction of the upper lip and the lower lip by bypassing the toothless portion behind the molars.

図4(b)は、光マウスピース20の使い方を示す図である。
実施例3では、近赤外LED7から出る光を平行な光束15ないしは収束する光束17に変換するレンズなどを含む光学系14(および/または16)も収納するため、操向ヘッド30の外にLED収納部31も設けている。
左右2組の操向ヘッド30とLED収納部31をマウスピースの左右の構造部材に固定し、さらに、光源2の位置から出射される細い光軸6の方向を海馬3の位置に向けて調整する。
FIG. 4B is a diagram showing how to use the optical mouthpiece 20.
In the third embodiment, the optical system 14 (and / or 16) including a lens that converts the light emitted from the near-infrared LED 7 into a parallel luminous flux 15 or a converging luminous flux 17 is also housed, so that it is outside the steering head 30. An LED storage unit 31 is also provided.
Two sets of left and right steering heads 30 and LED storage parts 31 are fixed to the left and right structural members of the mouthpiece, and the direction of the thin optical axis 6 emitted from the position of the light source 2 is adjusted toward the position of the hippocampus 3. To do.

図4(c)は、操向ヘッド30とLED収納部31の位置関係を示す。交換式円筒ミラー35は雄ネジ架台36の中心軸に空けられた円柱の空洞に旋回自在に挿入され、旋回方向の角度調整後は接着剤で固定される。
LED収納部31と操向ヘッド30は互いに隣接して光マウスピース20の構造部材に固定される。LED収納部31には近赤外LED7と光学系14(および/または16)が内蔵されており、近赤外LED7が発光した光軸6は透明板39と透明ヘッド32を透過して、交換式円筒ミラー35の鏡面板38と交換式円筒ミラー35の旋回の中心軸との交点に入射し、全反射したのちに透明ヘッド32を再び透過して出射する。この鏡面板38で光軸6が全反射する点が光源2の厳密な位置に相当する。
FIG. 4C shows the positional relationship between the steering head 30 and the LED housing unit 31. The replaceable cylindrical mirror 35 is rotatably inserted into a cylindrical cavity opened in the central axis of the male screw mount 36, and is fixed with an adhesive after adjusting the angle in the turning direction.
The LED housing portion 31 and the steering head 30 are adjacent to each other and fixed to the structural member of the optical mouthpiece 20. The near-infrared LED 7 and the optical system 14 (and / or 16) are built in the LED housing portion 31, and the optical axis 6 emitted by the near-infrared LED 7 passes through the transparent plate 39 and the transparent head 32 and is replaced. It is incident on the intersection of the mirror surface plate 38 of the type cylindrical mirror 35 and the central axis of rotation of the interchangeable cylindrical mirror 35, and after total internal reflection, it is transmitted through the transparent head 32 again and emitted. The point at which the optical axis 6 is totally reflected by the mirror plate 38 corresponds to the exact position of the light source 2.

図4(d)は、交換式円筒ミラー35の鏡面板38に入射する光軸8と反射した光軸9の関係を示す図である。この反射角度は鏡面板38を固定する交換式円筒ミラー35の鏡面傾斜角θに依存するが、この鏡面の傾斜角度37は、交換式円筒ミラー35を製造する際に対象者専用の角度に設計しておく。
つまり、対象者の口腔1の中の光源2から海馬3を光軸6が狙い撃ちするために適切な鏡面傾斜角θを得るためには、交換式円筒ミラー35を対象者ごとの寸法にオーダーメードで製作する必要がある。
FIG. 4D is a diagram showing the relationship between the optical axis 8 incident on the mirror surface plate 38 of the interchangeable cylindrical mirror 35 and the reflected optical axis 9. This reflection angle depends on the mirror surface tilt angle θ of the replaceable cylindrical mirror 35 that fixes the mirror surface plate 38, but the mirror surface tilt angle 37 is designed to be an angle dedicated to the subject when manufacturing the replaceable cylindrical mirror 35. I will do it.
That is, in order to obtain an appropriate mirror surface inclination angle θ for the optical axis 6 to aim at the hippocampus 3 from the light source 2 in the subject's oral cavity 1, the interchangeable cylindrical mirror 35 is customized to the dimensions of each subject. It is necessary to make it with.

図4(e)は、光マウスピース20の構造部材に固定した操向ヘッド30の、交換式円筒ミラー35の旋回角φを手動で調整する旋回調整工具40である。交換式円筒ミラー35を雄ネジ架台36の中心軸の空洞に旋回自在に挿入し、旋回調整工具40を交換式円筒ミラー35の切り欠きに嵌め込んだ上で旋回角φの方向に回転させることで、対象者の口腔1の中の光源2から海馬3を光軸6で狙い撃ちするために適切な旋回角φに調整する。調整後は接着剤で止めてよい。 FIG. 4E is a turning adjustment tool 40 for manually adjusting the turning angle φ of the replaceable cylindrical mirror 35 of the steering head 30 fixed to the structural member of the optical mouthpiece 20. The replaceable cylindrical mirror 35 is swivelably inserted into the cavity of the central axis of the male screw mount 36, and the swivel adjustment tool 40 is fitted into the notch of the replaceable cylindrical mirror 35 and then rotated in the direction of the swivel angle φ. Then, the Kaiba 3 is adjusted to an appropriate turning angle φ in order to aim at the Kaiba 3 from the light source 2 in the subject's oral cavity 1 with the optical axis 6. After the adjustment, it may be fixed with an adhesive.

この実施例3では、交換式円筒ミラー35の製作時に鏡面傾斜角θを対象者ごとの角度に作りこみ、交換式円筒ミラー35を雄ネジ架台36に組み込む際に旋回角φを手動で調整する事例を説明した。 In the third embodiment, the mirror surface inclination angle θ is set to the angle for each subject when the replaceable cylindrical mirror 35 is manufactured, and the turning angle φ is manually adjusted when the replaceable cylindrical mirror 35 is incorporated into the male screw mount 36. I explained the case.

なお、遠隔操作による自動制御が可能なマイクロマシンを使ってこの傾斜角θと旋回角φを遠隔操作で調整することも可能だが、超小型の精密機器の設計に加え、角度調整前の傾斜角θと旋回角φを精密に検出して光軸6の出射方向を安全かつ確実に遠隔操作する手段も課題となる。今後の有用な新規発明の出現を期待したい。 It is also possible to remotely adjust the tilt angle θ and the swivel angle φ using a micromachine that can be automatically controlled by remote control, but in addition to designing ultra-compact precision equipment, the tilt angle θ before angle adjustment A means for precisely detecting the turning angle φ and remotely controlling the emission direction of the optical shaft 6 is also an issue. We look forward to the emergence of useful new inventions in the future.

<変形例>
上記3つの実施例では、生体組織を透過しやすく「生体の窓」と呼ばれる波長域(650〜1000nm)の近赤外光51を、口腔1の内部に光源2を設けて脳内の海馬3に向けて照射する事例を3つ紹介した。すなわち、光源2を含む器具を手で把持する事例(実施例1)と、光源2を下顎用のマウスピースに組み込んで口腔1に固定して広い光束を照射する事例(実施例2)と、同様に下顎用のマウスピースに固定して細い光束を照射する事例(実施例3)である。
しかしながら、本発明の構成要素を分解して再構成することにより、上記の3種類以外にも多様な閃光刺激装置を設計することが可能である。
<Modification example>
In the above three examples, the hippocampus 3 in the brain is provided with a light source 2 inside the oral cavity 1 to emit near-infrared light 51 in a wavelength range (650 to 1000 nm) called a “window of the living body” that easily penetrates living tissues. We introduced three cases of irradiating toward. That is, a case where the device including the light source 2 is grasped by hand (Example 1), a case where the light source 2 is incorporated into a mouthpiece for the lower jaw and fixed to the oral cavity 1 to irradiate a wide luminous flux (Example 2). Similarly, this is an example of irradiating a thin light source by fixing the mouthpiece for the lower jaw (Example 3).
However, by disassembling and reconstructing the components of the present invention, it is possible to design various flash stimulators other than the above three types.

図5は上顎用のマウスピースや光ファイバーを使用する事例などの変形例を紹介する。 FIG. 5 introduces a modified example such as a case where a mouthpiece for the upper jaw and an optical fiber are used.

図5(a)は、やや厚めの厚底を備えた上顎用のマウスピースと2本のLEDランス10を組み合わせて、上顎と下顎でマウスピースを噛んで固定して使用する。2本のLEDランス10は、それぞれ先端に近赤外LED7の光軸6を斜め上向きに装着しており、マウスピースの厚底部分をくり貫いた円筒形の貫通空洞41の中を前後に位置を調整可能に構成されている。
さらに、2本のLEDランス10は円筒形であり、マウスピースに設けた円筒形の貫通空洞41の中を旋回自在に調整可能である。なお、マウスピースに対してLEDランス10を前後と旋回方向に調整した後は、マウスピースを口腔1に入れる前に、マウスピースとLEDランス10を固定する固定ネジ42を締めて前後方向や旋回方向の調整結果を固定することができる。
つまり、左右2つの近赤外LED7の前後方向の位置と光軸6の旋回方向の向きを手動で容易に調整できる。
In FIG. 5A, a mouthpiece for the upper jaw having a slightly thick platform and two LED lances 10 are combined, and the mouthpiece is bitten and fixed by the upper and lower jaws. The two LED lances 10 are each equipped with the optical axis 6 of the near-infrared LED 7 diagonally upward at the tip, and are positioned back and forth in a cylindrical through cavity 41 that hollows out the thick bottom portion of the mouthpiece. It is configured to be adjustable.
Further, the two LED lances 10 are cylindrical and can be swiveled in the cylindrical through cavity 41 provided in the mouthpiece. After adjusting the LED lance 10 to the mouthpiece in the front-back direction and the turning direction, before inserting the mouthpiece into the oral cavity 1, tighten the fixing screw 42 for fixing the mouthpiece and the LED lance 10 in the front-back direction and the turning direction. The direction adjustment result can be fixed.
That is, the positions of the two left and right near-infrared LEDs 7 in the front-rear direction and the orientation of the optical axis 6 in the turning direction can be easily adjusted manually.

この図5(a)の器具は、LEDランスの中に近赤外LED7と鏡面板38と光学系14(および/または16)を組み込むように設計変更することもできる。つまり、図4(d)のように鏡面板38を用いて入射する光軸8を所望の方向(光軸9)へ反射させることもでき、図2(d)のように所望の広がり方(拡散、平行、収束)の光束を照射するレンズを含んだ光学系を組み込む設計変更も可能である。 The fixture of FIG. 5A can also be redesigned to incorporate a near-infrared LED 7, a mirror plate 38, and an optical system 14 (and / or 16) in the LED lance. That is, as shown in FIG. 4 (d), the incident optical axis 8 can be reflected in a desired direction (optical axis 9) by using the mirror plate 38, and the desired spreading method (as shown in FIG. 2 (d)). It is also possible to change the design by incorporating an optical system that includes a lens that irradiates a luminous flux (diffuse, parallel, convergent).

しかしながら、一般の病院で認知症の物忘れ(軽い記憶喪失)の治療器具として利用するためには、使用方法も含めて、まだ多くの課題が残っている。
例えば、LEDランス10の先端部などが上顎の内壁に強く接触すると、神経反射の強い患者であれば嘔吐を催すかもしれない。またLEDランス10の位置決めを自動制御して遠隔操作することも可能だが、日常的な医療機関の治療で利用できるほど小型軽量化して設計するには幾多の技術的課題が存在する。一般的な治療に利用するための臨床医学分野の繊細な技術課題を解明し、それらの課題を解決する有用な新規発明が出現することを期待している。
However, in order to use it as a treatment device for dementia forgetfulness (mild memory loss) in general hospitals, many problems still remain, including how to use it.
For example, if the tip of the LED lance 10 makes strong contact with the inner wall of the maxilla, a patient with a strong nerve reflex may cause vomiting. It is also possible to automatically control the positioning of the LED lance 10 and remotely control it, but there are many technical problems in designing the LED lance 10 so that it is compact and lightweight so that it can be used in daily medical treatment. It is hoped that delicate technical issues in the field of clinical medicine for use in general treatment will be elucidated, and useful new inventions that solve these issues will emerge.

図5(b)は、上顎用の光マウスピース20であって、実施例2で説明した操向ヘッド30を組み込んだ事例である。図示を省略したが、実施例3と同様に操向ヘッド30と隣接してLED収納部31を設けてもよい。
この上顎用の光マウスピース20は、操向ヘッド30の上部先端が上顎の内壁に強く接触して患者に不快感を与えることを避けるため、操向ヘッド30の上部先端が光マウスピースの上部よりも大きく飛び出さないように設計することが望ましい。
FIG. 5B is an optical mouthpiece 20 for the upper jaw, which is an example in which the steering head 30 described in the second embodiment is incorporated. Although not shown, the LED housing unit 31 may be provided adjacent to the steering head 30 as in the third embodiment.
In the optical mouthpiece 20 for the upper jaw, the upper tip of the steering head 30 is the upper part of the optical mouthpiece in order to prevent the upper tip of the steering head 30 from strongly contacting the inner wall of the upper jaw and causing discomfort to the patient. It is desirable to design it so that it does not pop out more than.

図5(c)は光ファイバーケーブルで第一光学系14、つまりコリメータ、を介して平行な光束15を照射するLEDランス10である。把持部52を持ち、屈曲部で曲げた先端部の光源2の位置から近赤外光51を照射する。
光ファイバーケーブルの出口に設けたLEDランス10へ供給される近赤外光51の約40Hzの閃光は、光ファイバーケーブルの入り口からLEDで供給してもよいし、半導体レーザなどを使って供給してもよい。
FIG. 5C shows an LED lance 10 that irradiates a parallel luminous flux 15 via a first optical system 14, that is, a collimator, with an optical fiber cable. It has a grip portion 52 and irradiates near-infrared light 51 from the position of the light source 2 at the tip portion bent at the bent portion.
The flash of about 40 Hz of the near infrared light 51 supplied to the LED lance 10 provided at the outlet of the optical fiber cable may be supplied by an LED from the entrance of the optical fiber cable, or may be supplied by using a semiconductor laser or the like. Good.

図5(d)は光ファイバーケーブルで第一光学系14、つまりコリメータ、を介して平行な光束15を照射する光マウスピースである。口腔1の中に固定する際に唾液や食べ物カスが光学系に付着して汚れることを防止するため、第一光学系14を透明ヘッド32と防水パッキン34と雄ネジ架台36で構成され防汚ケースに収納することが望ましい。
なお、ファイバーラボ社製の市販の光ファイバー用小型コリメータは、波長850nm、直径2.8mm×全長9mmであり、光マウスピース用20の操向ヘッド30(直径5mm×全長15mm)の透明ヘッド32と防水パッキン34と雄ネジ架台36で構成された防汚ケースの外形寸法の中に収納するように設計することが可能である。
FIG. 5D is an optical mouthpiece that irradiates a parallel luminous flux 15 via a first optical system 14, that is, a collimator, with an optical fiber cable. In order to prevent saliva and food debris from adhering to the optical system and becoming dirty when fixed in the oral cavity 1, the first optical system 14 is composed of a transparent head 32, a waterproof packing 34, and a male screw mount 36 to prevent stains. It is desirable to store it in a case.
A commercially available small collimator for optical fibers manufactured by FiberLabs has a wavelength of 850 nm, a diameter of 2.8 mm and a total length of 9 mm. It can be designed to be housed in the external dimensions of the antifouling case composed of the waterproof packing 34 and the male screw mount 36.

<座標系の変換>
図6は、光源2の位置から海馬3の位置へ近赤外光51を指向する手段として、マウスピースを利用して頭部の3次元座標系の基準位置および基準方位を定める方法を説明する図である。
治療用の光マウスピース20の3次元座標系を定める土台は、歯列に被せる保護部材とその骨格としての硬質な構造部材とで構成されるマウスピース本体60である。光マウスピース20は、マウスピース本体60の構造部材に近赤外LED7や操向ヘッド30やLED収納部31などを強固かつ精密に固定して組み込んで構成している。
以下では、光マウスピース20のマウスピース本体60と同一寸法で、3つの標識点Pr,Pl,Pcの位置に造影剤を組み込んだ、計測用マウスピース53の使い方を説明する。
なお標識点は少なくとも3点あればよいが、標識点を4点以上設けて計測誤差を小さくするように計測データを統計処理してもよい。
<Transformation of coordinate system>
FIG. 6 describes a method of determining a reference position and a reference direction of the three-dimensional coordinate system of the head using a mouthpiece as a means for directing the near-infrared light 51 from the position of the light source 2 to the position of the hippocampus 3. It is a figure.
The base that determines the three-dimensional coordinate system of the therapeutic optical mouthpiece 20 is a mouthpiece body 60 composed of a protective member that covers the dentition and a rigid structural member as its skeleton. The optical mouthpiece 20 is configured by firmly and precisely fixing a near-infrared LED 7, a steering head 30, an LED storage portion 31, and the like to a structural member of the mouthpiece main body 60.
Hereinafter, how to use the measurement mouthpiece 53, which has the same dimensions as the mouthpiece body 60 of the optical mouthpiece 20 and incorporates a contrast medium at the positions of the three marking points Pr, Pl, and Pc, will be described.
The number of marking points may be at least three, but the measurement data may be statistically processed so as to reduce the measurement error by providing four or more marking points.

図6(a)では、頭蓋骨の特徴的な形状に基づいて頭蓋骨3次元座標系(X,Y,Z)を定める。
まず、頭蓋骨の左右にある2つの耳孔56の中心を貫いて、顔面の右側へ向けてX軸を定める。
次に、X軸と直交して、頭頂部の3つの骨で囲まれる大泉門57の中心を通るようにZ軸を定める。
さらに、X軸とY軸の交点を原点として定め、原点を通ってX軸とY軸に直交するように、顔面の正面へ向かってY軸を定める。
このように、頭蓋骨3次元座標系(X,Y,Z)を定めることによって、MRIなどによる画像データから、例えば左側の海馬3の座標はPhl(Xhl、Yhl、Zhl)などのように表現できる。
In FIG. 6A, the skull three-dimensional coordinate system (X, Y, Z) is defined based on the characteristic shape of the skull.
First, the X-axis is set toward the right side of the face through the centers of the two ear holes 56 on the left and right sides of the skull.
Next, the Z-axis is set so as to pass through the center of the Oizumimon 57 surrounded by the three bones on the crown, orthogonal to the X-axis.
Further, the intersection of the X-axis and the Y-axis is set as the origin, and the Y-axis is set toward the front of the face so as to pass through the origin and be orthogonal to the X-axis and the Y-axis.
By defining the skull three-dimensional coordinate system (X, Y, Z) in this way, the coordinates of the hippocampus 3 on the left side can be expressed as Phl (Xhl, Yhl, Zhl) from the image data by MRI or the like. ..

次に、治療用の光マウスピース20のマウスピース本体60と同一寸法の計測用マウスピース53を用いてマウスピース3次元座標系(x、y、z)を定める。
例えば、造影剤入りの計測用マウスピース53の左側の標識点Plから右側の標識点Prに向けてx軸を定める。次に、x軸と直交して計測用マウスピース53の正面の標識点Pcの中心を通るようにy軸を定める。x軸とy軸の交点を原点として定め、原点を通ってx軸とy軸に直交するように、計測用マウスピース53から上の方向へz軸を定める。
Next, the three-dimensional coordinate system (x, y, z) of the mouthpiece is determined by using the measurement mouthpiece 53 having the same dimensions as the mouthpiece body 60 of the optical mouthpiece 20 for treatment.
For example, the x-axis is determined from the marking point Pl on the left side of the measurement mouthpiece 53 containing the contrast medium to the marking point Pr on the right side. Next, the y-axis is set so as to pass through the center of the marking point Pc on the front surface of the measurement mouthpiece 53 orthogonal to the x-axis. The intersection of the x-axis and the y-axis is set as the origin, and the z-axis is set upward from the measurement mouthpiece 53 so as to pass through the origin and be orthogonal to the x-axis and the y-axis.

この頭蓋骨3次元座標系(X,Y,Z)とマウスピース3次元座標系(x、y、z)の2つの3次元直交座標系の間では、座標軸を回転および平行移動する変換行列(公知のアフィン変換)を用いて座標データを相互に変換することができる。
さらに2つの3次元直交座標系の間では、3次元空間内の3点それぞれを両者の座標系のデータで表現した合計6組の座標データを用いることで、両者の座標系の間のアフィン変換の変換行列Aを決定できることも公知である。
そこで、造影剤入りの計測用マウスピース53を下顎または上顎の歯列に被せ、上顎と下顎を閉じて計測用マウスピース53を固定した状態で、MRI検査やCT検査あるいはX線撮影などの画像診断装置を用いて、計測用マウスピース53に含まれる3つの標識点Pr,Pl,Pcの頭蓋骨3次元座標系で表現した3組の座標値を計測する。
A transformation matrix (known) that rotates and translates coordinate axes between two three-dimensional Cartesian coordinate systems, the skull three-dimensional coordinate system (X, Y, Z) and the mouthpiece three-dimensional coordinate system (x, y, z). Coordinate data can be converted to each other using the affine transformation of.
Furthermore, between the two 3D Cartesian coordinate systems, the affine transformation between the two coordinate systems is performed by using a total of 6 sets of coordinate data in which each of the 3 points in the 3D space is represented by the data of both coordinate systems. It is also known that the conversion matrix A of can be determined.
Therefore, the measurement mouthpiece 53 containing the contrast medium is placed on the dentition of the lower jaw or the upper jaw, and the upper jaw and the lower jaw are closed to fix the measurement mouthpiece 53, and images such as MRI examination, CT examination, or X-ray photography are performed. Using a diagnostic device, three sets of coordinate values represented by the skull three-dimensional coordinate system of the three marking points Pr, Pl, and Pc included in the measurement mouthpiece 53 are measured.

計測用マウスピース53に含まれる3つの標識点Pr,Pl,Pcについてのマウスピース3次元座標系で表現した3組の座標データは、計測用マウスピース53を設計製作する段階で設計値として既知である。あるいは計測用マウスピース53をMRI検査やCT検査あるいはX線撮影などの画像診断装置で計測した計測値を用いてもよい。
このようにして頭蓋骨3次元座標系での3組の座標データ(計測値)とマウスピース3次元座標系で表現した3つの標識点Pr,Pl,Pcの3組の座標データ(設計値および/または計測値)が得られるので、この合計6組の座標データを用いることで、2つの座標系を相互に変換するアフィン変換の変換行列Aを求めることができる。
つまり、上記で求めた変換行列Aを用いれば、頭蓋骨3次元座標系(X,Y,Z)で計測済みの海馬3の座標を、マウスピース3次元座標系(x、y、z)で表現することができる。
ここまでが計測用マウスピース53に関する説明である。
The three sets of coordinate data represented by the three-dimensional coordinate system of the mouthpiece for the three marking points Pr, Pl, and Pc included in the measurement mouthpiece 53 are known as design values at the stage of designing and manufacturing the measurement mouthpiece 53. Is. Alternatively, the measurement value measured by the measurement mouthpiece 53 with an image diagnostic device such as an MRI examination, a CT examination, or an X-ray imaging may be used.
In this way, the three sets of coordinate data (measured values) in the three-dimensional coordinate system of the skull and the three sets of coordinate data (design values and /) of the three marking points Pr, Pl, and Pc expressed in the three-dimensional coordinate system of the mouthpiece. Since the measured value) is obtained, the conversion matrix A of the affine transformation that mutually transforms the two coordinate systems can be obtained by using the total of 6 sets of coordinate data.
That is, by using the transformation matrix A obtained above, the coordinates of the hippocampus 3 measured in the skull three-dimensional coordinate system (X, Y, Z) are expressed in the mouthpiece three-dimensional coordinate system (x, y, z). can do.
The above is the description of the measurement mouthpiece 53.

以下では、上述の計測用マウスピース53と同一寸法のマウスピース本体60を備えた治療用の光マウスピース20に搭載した左の光源2に関する光源座標系(s,t,u)を利用して、図4の交換式円筒ミラー35の鏡面傾斜角θを設計し、旋回角φを調整する方法について説明する。 In the following, the light source coordinate system (s, t, u) relating to the left light source 2 mounted on the therapeutic optical mouthpiece 20 having the mouthpiece body 60 having the same dimensions as the measurement mouthpiece 53 described above is used. , The method of designing the mirror surface inclination angle θ of the interchangeable cylindrical mirror 35 of FIG. 4 and adjusting the turning angle φ will be described.

図6(b)は光マウスピース20の左の光源2(例えば、実施例2では鏡面板38と光軸6が交わる点)の位置を、左の光源2に関する3次元座標系の原点とする。
光マウスピース20の操向ヘッド30の調整作業を簡単にするため、光マウスピース20を設計製作する段階で、旋回自在な交換式円筒ミラー35の旋回の中心軸をマウスピース3次元座標系のz軸と平行に設計製造するよう定めるなど、左の光源に関する3次元座標系(s,t,u)はマウスピース3次元座標系(x、y、z)の平行移動になるように設計製造することができる。
それにより、マウスピース3次元座標系(x、y、z)と左の光源座標系(s,t,u)との間でもアフィン変換が可能であり、平行移動の変換行列は光マウスピース20を設計製作した機械寸法で定まる。
In FIG. 6B, the position of the left light source 2 of the optical mouthpiece 20 (for example, the point where the mirror plate 38 and the optical axis 6 intersect in the second embodiment) is set as the origin of the three-dimensional coordinate system with respect to the left light source 2. ..
In order to simplify the adjustment work of the steering head 30 of the optical mouthpiece 20, at the stage of designing and manufacturing the optical mouthpiece 20, the central axis of rotation of the replaceable cylindrical mirror 35 that can be swiveled is set to the three-dimensional coordinate system of the mouthpiece. The 3D coordinate system (s, t, u) for the left light source is designed and manufactured so that it moves in parallel with the mouthpiece 3D coordinate system (x, y, z), such as designing and manufacturing in parallel with the z-axis. can do.
As a result, affine transformation is possible between the three-dimensional coordinate system of the mouthpiece (x, y, z) and the light source coordinate system (s, t, u) on the left, and the transformation matrix of translation is the optical mouthpiece 20. It is determined by the machine dimensions designed and manufactured.

このようにして、頭蓋骨3次元座標系(X,Y,Z)で計測された海馬3の座標位置は、最初のアフィン変換によりマウスピース3次元座標系(x、y、z)で表現され、さらに2番目のアフィン変換で光源座標系(s,t,u)へと変換される。
すると、左の光源2と海馬3の座標は、どちらも左の光源座標系(s,t,u)で表現されることになり、さらに光源座標系(s,t,u)を極座標系に変換すれば、左の光源座標系(s,t,u)の原点としての光源2の位置から海馬3の位置に向けて光を照射するための旋回角と仰角が求まる。
あとは、光源2から海馬3に向けての極座標表現における旋回角と仰角を参考に、図4の交換式円筒ミラー35の鏡面傾斜角θを設計して製造し、旋回角φを調整すればよい。
In this way, the coordinate position of the Kaiba 3 measured by the skull three-dimensional coordinate system (X, Y, Z) is expressed by the mouthpiece three-dimensional coordinate system (x, y, z) by the first affine transformation. Furthermore, it is converted into the light source coordinate system (s, t, u) by the second affine transformation.
Then, the coordinates of the left light source 2 and the Kaiba 3 are both represented by the left light source coordinate system (s, t, u), and the light source coordinate system (s, t, u) is further changed to the polar coordinate system. After conversion, the turning angle and elevation angle for irradiating light from the position of the light source 2 as the origin of the left light source coordinate system (s, t, u) toward the position of the hippopotamus 3 can be obtained.
After that, referring to the turning angle and elevation angle in the polar coordinate representation from the light source 2 to the Kaiba 3, the mirror surface inclination angle θ of the interchangeable cylindrical mirror 35 in FIG. 4 is designed and manufactured, and the turning angle φ is adjusted. Good.

以上の左の光源2に関する光源座標系(s,t,u)の説明は、右の光源2に対する光源座標系でも同様であるので、説明の繰り返しを省略する。 Since the above description of the light source coordinate system (s, t, u) for the left light source 2 is the same for the light source coordinate system for the right light source 2, the repetition of the description will be omitted.

このように、操向ヘッド30を組み込んだ光マウスピース20のマウスピース本体60と同じ寸法で製作した造影剤入りの計測用マウスピース53を使って、MRI検査やCT検査あるいはX線撮影などの画像診断装置による3次元計測を行うことができる。
その造影剤入りの計測用マウスピース53の計測結果をもとに、対象者(患者)ごとの脳内組織や骨格などに合わせてオーダーメードで治療用の光マウスピース20を製作して調整することが可能である。
In this way, using the measurement mouthpiece 53 containing the contrast medium manufactured with the same dimensions as the mouthpiece body 60 of the optical mouthpiece 20 incorporating the steering head 30, MRI examination, CT examination, X-ray photography, etc. can be performed. Three-dimensional measurement can be performed by an diagnostic imaging device.
Based on the measurement result of the measurement mouthpiece 53 containing the contrast medium, a custom-made optical mouthpiece 20 for treatment is manufactured and adjusted according to the brain tissue and skeleton of each subject (patient). It is possible.

なお、光源2として指向性の広いLED単体を使用する場合には、近赤外LED7の半導体素子の発光点を光源2の位置とし、マウスピース3次元座標系(x、y、z)で表現した光源2から海馬3へ、LEDの指向性の中心としての光軸6を照射するように治療用の光マウスピース20を製作すればよい。
口腔1の中で唾液などに対する防水性や防汚性を確保するためには、表面実装用の小型LEDを、透明ヘッド32と防水パッキン34と雄ネジ架台36で構成される防汚ケース(図示省略)に収納することが望ましい。なお、防汚ケース内の光源2の位置からLEDの広い指向性の方向に海馬3を含むよう、防汚ケースごと海馬3の方向に傾けて光マウスピース20の構造部材に固定してもよい。
When a single LED having a wide directivity is used as the light source 2, the light emitting point of the semiconductor element of the near-infrared LED 7 is set as the position of the light source 2, and is represented by the three-dimensional coordinate system of the mouthpiece (x, y, z). The optical mouthpiece 20 for treatment may be manufactured so as to irradiate the optical axis 6 as the center of the directivity of the LED from the light source 2 to the hippopotamus 3.
In order to ensure waterproofness and antifouling property against saliva in the oral cavity 1, a small LED for surface mounting is an antifouling case composed of a transparent head 32, a waterproof packing 34, and a male screw mount 36 (illustrated). It is desirable to store it in (omitted). The antifouling case may be tilted toward the hippocampus 3 and fixed to the structural member of the optical mouthpiece 20 so that the hippocampus 3 is included in the wide directivity direction of the LED from the position of the light source 2 in the antifouling case. ..

<まとめ>
以上、3つの実施例と複数の変形例を用いて本発明を詳細に説明した。そこで、以下に、本発明の特徴を短く整理して記述する。
<Summary>
The present invention has been described in detail above with reference to three examples and a plurality of modifications. Therefore, the features of the present invention will be briefly described below.

第一に、本発明は方法の発明として表現することができ、
「認知症の予防、軽減、および治療のための40Hz閃光療法に適用する閃光刺激を提供する方法であって、
口腔1の内部に約40Hzで点滅する波長650〜1000nmの近赤外光51を発する光源2を設け、
前記光源2から頭蓋骨内部の海馬3へ向けて無侵襲で前記近赤外光51を照射すること
を特徴とする、
40Hzの閃光刺激を提供する方法」である。
なお光源2の厳密な位置は、近赤外LED7を口腔1に入れる場合は近赤外LED7の半導体素子の発光点であり、操向ヘッド30を適用する場合は光軸6が鏡面板38で全反射する点に相当する。さらに、図5(c)のように光学系によって光経路の向きや広がり方が調整された後に光軸6が空間へ照射される場合には、光学系の最終部分から光軸6が空間へ射出された点が光源2の厳密な位置である。
このように、本発明の特徴を説明する上記の文章において「光源2」とは、海馬3へ向けて光軸6を照射する「線分の基点」となる3次元空間における地点を指し示している。
なお、図5(c)や図5(d)における光ファイバーケーブルの発光側の入り口で、光エネルギーを供給するLEDや半導体レーザ素子などの発光素子そのものの種類や外形あるいは照明用の物品などを指し示す一般的な意味で「光源2」と呼んでいるわけではないことは、本発明に記載した多数の説明箇所からも明らかである。
First, the invention can be expressed as an invention of the method,
"A method of providing flash stimuli that apply to 40 Hz flash therapy for the prevention, alleviation, and treatment of dementia.
A light source 2 that emits near-infrared light 51 having a wavelength of 650 to 1000 nm that blinks at about 40 Hz is provided inside the oral cavity 1.
The near-infrared light 51 is radiated non-invasively from the light source 2 toward the hippocampus 3 inside the skull.
A method of providing a 40 Hz flash stimulus. "
The exact position of the light source 2 is the light emitting point of the semiconductor element of the near-infrared LED 7 when the near-infrared LED 7 is inserted into the oral cavity 1, and the optical axis 6 is the mirror plate 38 when the steering head 30 is applied. Corresponds to the point of total reflection. Further, when the optical axis 6 irradiates the space after the direction and the spreading of the optical path are adjusted by the optical system as shown in FIG. 5C, the optical axis 6 moves into the space from the final part of the optical system. The emitted point is the exact position of the light source 2.
As described above, in the above sentence explaining the features of the present invention, the "light source 2" refers to a point in the three-dimensional space which is the "base point of the line segment" that irradiates the optical axis 6 toward the hippocampus 3. ..
At the entrance on the light emitting side of the optical fiber cable in FIGS. 5 (c) and 5 (d), the type and outer shape of the light emitting element itself such as an LED or a semiconductor laser element that supplies light energy, or an article for lighting is indicated. It is clear from the many explanatory parts described in the present invention that the term "light source 2" is not used in a general sense.

第二に、本発明を方法ではなく装置の発明として表現することもでき、
「認知症の予防、軽減、および治療のための40Hz閃光療法に適用する閃光刺激を提供する装置であって、
口腔1の内部に設置して約40Hzで点滅する波長650〜1000nmの近赤外光51を発する光源2と、
前記光源2から頭蓋骨内部の海馬3へ向けて無侵襲で前記近赤外光51を照射する光指向手段50と
を備えることを特徴とする、
40Hzの閃光刺激を提供する装置」である。
Second, the invention can also be expressed as an invention of a device rather than a method.
"A device that provides flash stimuli for 40 Hz flash therapy for the prevention, alleviation, and treatment of dementia.
A light source 2 that is installed inside the oral cavity 1 and emits near-infrared light 51 having a wavelength of 650 to 1000 nm that blinks at about 40 Hz.
It is characterized by comprising a light directing means 50 that irradiates the near-infrared light 51 from the light source 2 toward the hippocampus 3 inside the skull in a non-invasive manner.
It is a device that provides a flash stimulus of 40 Hz.

第三に、光源2から海馬3へ向けて光を照射する光指向手段のうち、治療中に手に持って操作する器具については、
「前記光指向手段50は、
前記近赤外光51の光軸6を所期の方向に照射する前記光源2と、
前記光指向手段50を把持して前記近赤外光51の光軸6を所期の位置から所期の方向へ指向させる把持部52と、
を備える」、となる。
この具体例は、実施例1において図1を用いて詳細に説明した。なお、上記において所期の位置とは、治療中は光源2を口腔1の中に入れて使用することから、光軸6の起点としての光源2を置いた口腔1内の3次元空間内の地点を指す。また、所期の方向とは光源2から例えば海馬3に向かって光を照射する方向である。
Thirdly, among the light-directing means for irradiating light from the light source 2 to the hippocampus 3, the instrument to be held and operated during treatment is described.
"The light directing means 50 is
The light source 2 that irradiates the optical axis 6 of the near-infrared light 51 in the desired direction, and the light source 2.
A grip portion 52 that grips the light directing means 50 and directs the optical axis 6 of the near infrared light 51 from a desired position to a desired direction.
To be prepared. "
This specific example has been described in detail with reference to FIG. 1 in Example 1. In the above, the intended position is the position in the three-dimensional space in the oral cavity 1 where the light source 2 is placed as the starting point of the optical axis 6 because the light source 2 is used by putting it in the oral cavity 1 during the treatment. Point to a point. Further, the desired direction is a direction in which light is emitted from the light source 2 toward, for example, the hippocampus 3.

第四に、光源2から海馬3へ向けて光を照射する光指向手段のうち、治療用の光マウスピース20として組み込んだ器具については、
「前記光指向手段50は、
前記近赤外光51の光軸6を所期の方向に照射する前記光源2と、
上顎54または下顎55の歯列に固定して、前記近赤外光51の光軸6を前記光源2の位置から前記海馬3の方向へ指向させる基準位置と基準方位を頭部に定める治療用の光マウスピース20と、
を備える」、となる。
この具体例は、実施例2(図3)、実施例3(図4)および変形例(図5)で治療用の光マウスピース20として構成した器具を詳細に説明した。
また、「基準位置と基準方位を頭部に定める」とは、光マウスピース20に固定した光源2から海馬3に向けて光軸6を向けるにあたり、硬質な構造部材を内蔵した光マウスピース20を対象者の歯列に被せることで、対象者の頭部にある光源2と海馬3の位置と方向を定めるための基準を制定する(あるいは固定する、または確定する)ことを意味する。
Fourth, among the light-directing means for irradiating light from the light source 2 to the hippocampus 3, the device incorporated as the therapeutic optical mouthpiece 20 is
"The light directing means 50 is
The light source 2 that irradiates the optical axis 6 of the near-infrared light 51 in the desired direction, and the light source 2.
For treatment, the optical axis 6 of the near-infrared light 51 is fixed to the dentition of the upper jaw 54 or the lower jaw 55, and a reference position and a reference orientation are set on the head so as to direct the optical axis 6 of the near infrared light 51 from the position of the light source 2 toward the hippocampus 3. Light mouthpiece 20 and
To be prepared. "
This specific example has described in detail the instrument configured as the therapeutic optical mouthpiece 20 in Example 2 (FIG. 3), Example 3 (FIG. 4) and Modified Example (FIG. 5).
Further, "determining the reference position and the reference direction on the head" means that the optical mouthpiece 20 having a built-in hard structural member is used to direct the optical axis 6 from the light source 2 fixed to the optical mouthpiece 20 toward the hippocampus 3. By covering the subject's dentition, it means establishing (or fixing or fixing) a standard for determining the position and direction of the light source 2 and the hippo 3 on the subject's head.

第五に、光源2から海馬3へ向けて光を照射する光指向手段のうち、造影剤を計測用マウスピース53として組み込んだ器具については、
「前記光指向手段50は、
前記上顎54または前記下顎55の歯列に固定して、少なくとも3箇所以上の標識点に造影剤を組み込んだ計測用マウスピース53を座標計測手段として備える」、となる。
この具体例は、図6において頭蓋骨3次元座標系(X,Y,Z)とマウスピース3次元座標系の2つの3次元直交座標系の間で座標データを回転および平行移動する変換行列Aを決めるための造影剤入りの計測用マウスピース53について述べた。
ちなみに光源2を構成する光学部品の部分を除けば、治療用の光マウスピース20と計測用マウスピース53とは、内部の硬質な構造部材と歯列に被せる部材で構成されるマウスピース本体60の部分の寸法は同一である。
なお、計測用マウスピース53には近赤外LED7や操向ヘッド30などの部品を組み込まずに3次元座標を計測できるが、計測段階からこれらの部品を組み込んでおいても差し支えない。なぜならば、計測用マウスピース53を使って計測する段階から操向ヘッド30などの部品も予め組み込んでおけば、後日治療する段階で、対象者の口腔1の寸法が小さすぎて治療用の光マウスピース20の光学部品が患者の口腔1に当たって圧迫する可能性に気付きやすい。
そうすれば、当該の対象者(患者)については、使用するマウスピース本体60と計測用マウスピース53と治療用の光マウスピース20のサイズを一回り小さく変更するなどの対処を早期にとることが容易である。
Fifth, among the light-directing means for irradiating light from the light source 2 to the hippocampus 3, the instrument incorporating a contrast medium as a measurement mouthpiece 53 is
"The light directing means 50 is
A measurement mouthpiece 53 fixed to the dentition of the upper jaw 54 or the lower jaw 55 and incorporating a contrast medium at at least three or more marking points is provided as a coordinate measuring means. "
A specific example of this is a transformation matrix A that rotates and translates coordinate data between two 3D Cartesian coordinate systems, the skull 3D coordinate system (X, Y, Z) and the mouthpiece 3D coordinate system, in FIG. The measurement mouthpiece 53 containing a contrast agent for determining is described.
By the way, except for the optical parts constituting the light source 2, the therapeutic optical mouthpiece 20 and the measuring mouthpiece 53 are a mouthpiece main body 60 composed of an internal hard structural member and a member covering the dentition. The dimensions of the parts are the same.
Although the measurement mouthpiece 53 can measure three-dimensional coordinates without incorporating components such as the near-infrared LED 7 and the steering head 30, it is permissible to incorporate these components from the measurement stage. This is because if parts such as the steering head 30 are incorporated in advance from the stage of measurement using the measurement mouthpiece 53, the size of the oral cavity 1 of the subject is too small at the stage of treatment at a later date, and the light for treatment is used. It is easy to notice the possibility that the optical component of the mouthpiece 20 hits and presses on the patient's oral cavity 1.
Then, for the subject (patient), measures such as changing the size of the mouthpiece body 60 to be used, the mouthpiece 53 for measurement, and the optical mouthpiece 20 for treatment to be one size smaller should be taken at an early stage. Is easy.

本発明は頭蓋骨内部の海馬を直接的かつ無侵襲で閃光刺激する約40Hz閃光療法のための装置を提供する。
本発明に記載したそれぞれの実施形態は、この分野の脳科学技術分野の基礎研究から治験まで、さらには一般の認知症の予防、軽減、および治療のための多様な形態の治療器具を提供することができる。
The present invention provides a device for about 40 Hz flash therapy that directly and non-invasively flash stimulates the hippocampus inside the skull.
Each of the embodiments described in the present invention provides various forms of therapeutic instruments for the prevention, alleviation, and treatment of general dementia, from basic research to clinical trials in the field of brain science and technology in this field. be able to.

例えば、図2のLEDランス10は、認知症の予防の観点から、海馬の萎縮に起因した物忘れの自覚症状のある初期のMCI患者の場合についても、5分ないし20分程度の閃光刺激を照射することで自覚症状が軽減する可能性がある。
そのため、物忘れの自覚症状を有する初期の患者に、処置室などで、訓練された看護師から試験的に閃光刺激を照射し、治療効果が期待できるかどうかを検査する際に利用できる可能性がある。
For example, from the viewpoint of preventing dementia, the LED lance 10 in FIG. 2 irradiates a flash stimulus for about 5 to 20 minutes even in the case of an early MCI patient who has a subjective symptom of forgetfulness caused by atrophy of the hippocampus. This may reduce subjective symptoms.
Therefore, it may be possible to use it to test whether a therapeutic effect can be expected by irradiating an early patient with a subjective symptom of forgetfulness with a flash stimulus on a trial basis from a trained nurse in a treatment room or the like. is there.

また、図5(a)の上顎用マウスピース付き2連ランスは、海馬に近赤外光51による約40Hz閃光を照射する治療法を採用することを決定した患者に対し、MRI検査やCT検査あるいはX線撮影などの画像診断装置を用いて脳組織と骨格形状を3次元座標系で記述した海馬と歯列(あるいは計測用マウスピース53)などとの位置関係を計測した後に、その計測データにもとづいて精密に近赤外光51による約40Hz閃光を海馬へ照射して、治療効果が期待できるかどうかをさらに検証する検査に利用できる可能性がある。 In addition, the dual lance with a mouthpiece for the upper jaw shown in FIG. 5 (a) is used for MRI and CT examinations for patients who have decided to adopt a treatment method in which the hippocampus is irradiated with a flash of about 40 Hz by near infrared light 51. Alternatively, after measuring the positional relationship between the hippocampus and the dentition (or mouthpiece 53 for measurement) in which the brain tissue and skeletal shape are described in a three-dimensional coordinate system using an diagnostic imaging device such as X-ray imaging, the measurement data. Based on this, the hippocampus may be irradiated with a flash of about 40 Hz by near-infrared light 51 precisely, and it may be used for a test to further verify whether a therapeutic effect can be expected.

さらに、図4(a)や図5(b)などに示す下顎用と上顎用の光マウスピース20は、患者個人の脳組織と骨格形状を3次元座標系で記述した位置関係にもとづいて、患者ごとの寸法と角度で操向ヘッド30を組み込んで調整することにより、患者の自宅治療にも利用できる可能性がある。 Further, the optical mouthpieces 20 for the lower jaw and the upper jaw shown in FIGS. 4 (a) and 5 (b) are based on the positional relationship in which the brain tissue and skeletal shape of the individual patient are described in a three-dimensional coordinate system. By incorporating and adjusting the steering head 30 according to the dimensions and angles of each patient, it may be possible to use it for home treatment of patients.

1 口腔(Oral cavity)
2 光源(light source)
3 海馬(Hippocampus)
4 蝶形骨(Sphenoid bone)
5 側頭骨(Temporal bone)
6 光軸(optical axis)
7 近赤外LED(Near infrared LED)
8 入射する光軸(Incident optical axis)
9 反射した光軸(Reflected optical axis)
10 LEDランス(LED lance)
12 LED駆動装置(LED drive controller)
13 光束(Luminous flux)
14 第一光学系(First optical system)
15 平行な光束(Parallel luminous flux)
16 第二光学系(Second optical system)
17 収束する光束(Converging luminous flux)
20 光マウスピース(Optical mouthpiece)
22 電線(Electrical wire)
30 操向ヘッド(Steering head)
31 LED収納部(LED storage)
32 透明ヘッド(Transparent head)
33 雌ネジ(Female screw)
34 防水パッキン(Waterproof packing)
35 交換式円筒ミラー(Replaceable cylindrical mirror)
36 雄ネジ架台(Male screw mount)
37 鏡面傾斜角θ(Mirror surface inclination angle θ)
38 鏡面板(Mirror plate)
39 透明板(Transparent plate)
40 旋回調整工具(Turing adjustment tool)
41 貫通空洞(Penetration cavity)
42 固定ネジ(Fixing screw)
50 光指向手段(Means of directing light)
51 近赤外光(Near infrared light)
52 把持部(Grip)
53 計測用マウスピース(Mouthpiece for measurement)
54 上顎(Maxilla)
55 下顎(Lower jaw)
56 耳孔(ear canal)
57 大泉門(Posterior fontanelle)
60 マウスピース本体(Mouthpiece body)


1 Oral cavity
2 Light source (light source)
3 Hippocampus
4 Sphenoid bone
5 Temporal bone
6 Optical axis (optical axis)
7 Near infrared LED (Near infrared LED)
8 Incident optical axis
9 Reflected optical axis
10 LED lance
12 LED drive device (LED drive controller)
13 Luminous flux
14 First optical system
15 Parallel luminous flux (Parallel luminous flux)
16 Second optical system (Second optical system)
17 Converging luminous flux
20 Optical mouthpiece (Optical mouthpiece)
22 Electric wire (Electrical wire)
30 Steering head
31 LED storage unit (LED storage)
32 Transparent head
33 Female screw (Female screw)
34 Waterproof packing (Waterproof packing)
35 Replaceable Cylindrical Mirror
36 Male screw mount
37 Mirror surface inclination angle θ (Mirror surface inclination angle θ)
38 Mirror plate
39 Transparent plate
40 Turning adjustment tool
41 Penetration cavity
42 Fixing screw (Fixing screw)
50 Mean of directing light
51 Near infrared light
52 Grip
53 Mouthpiece for measurement (Mouthpiece for measurement)
54 Maxilla
55 Lower jaw
56 ear canal
57 Posterior fontanelle
60 Mouthpiece body (Mouthpiece body)


Claims (5)

認知症の予防、軽減、および治療のための40Hz閃光療法に適用する閃光刺激を提供する方法であって、
口腔1の内部に約40Hzで点滅する波長650〜1000nmの近赤外光51を発する光源2を設け、
前記光源2から頭蓋骨内部の海馬3へ向けて無侵襲で前記近赤外光51を照射すること
を特徴とする、
40Hzの閃光刺激を提供する方法
A method of providing a flash stimulus applied to 40 Hz flash therapy for the prevention, alleviation, and treatment of dementia.
A light source 2 that emits near-infrared light 51 having a wavelength of 650 to 1000 nm that blinks at about 40 Hz is provided inside the oral cavity 1.
The near-infrared light 51 is radiated non-invasively from the light source 2 toward the hippocampus 3 inside the skull.
How to provide a 40Hz flash stimulus
認知症の予防、軽減、および治療のための40Hz閃光療法に適用する閃光刺激を提供する装置であって、
口腔1の内部に設置して約40Hzで点滅する波長650〜1000nmの近赤外光51を発する光源2と、
前記光源2から頭蓋骨内部の海馬3へ向けて無侵襲で前記近赤外光51を照射する光指向手段50と
を備えることを特徴とする、
40Hzの閃光刺激を提供する装置
A device that provides a flash stimulus for 40 Hz flash therapy for the prevention, alleviation, and treatment of dementia.
A light source 2 that is installed inside the oral cavity 1 and emits near-infrared light 51 having a wavelength of 650 to 1000 nm that blinks at about 40 Hz.
It is characterized by comprising a light directing means 50 that irradiates the near-infrared light 51 from the light source 2 toward the hippocampus 3 inside the skull in a non-invasive manner.
A device that provides a 40 Hz flash stimulus
前記光指向手段50は、
前記近赤外光51の光軸6を所期の方向に照射する前記光源2と、
前記光指向手段50を把持して前記近赤外光51の光軸6を所期の位置から所期の方向へ指向させる把持部52と、
を備えることを特徴とする、
請求項2に記載の40Hzの閃光刺激を提供する装置
The light directing means 50
The light source 2 that irradiates the optical axis 6 of the near-infrared light 51 in the desired direction, and the light source 2.
A grip portion 52 that grips the light directing means 50 and directs the optical axis 6 of the near infrared light 51 from a desired position to a desired direction.
It is characterized by having
The device for providing the 40 Hz flash stimulus according to claim 2.
前記光指向手段50は、
前記近赤外光51の光軸6を所期の方向に照射する前記光源2と、
上顎54または下顎55の歯列に固定して、前記近赤外光51の光軸6を前記光源2の位置から前記海馬3の方向へ指向させる基準位置と基準方位を頭部に定める治療用の光マウスピース20と、
を備えることを特徴とする、
請求項2に記載の40Hzの閃光刺激を提供する装置


The light directing means 50
The light source 2 that irradiates the optical axis 6 of the near-infrared light 51 in the desired direction, and the light source 2.
For treatment, the optical axis 6 of the near-infrared light 51 is fixed to the dentition of the upper jaw 54 or the lower jaw 55, and a reference position and a reference orientation are set on the head so as to direct the optical axis 6 of the near infrared light 51 from the position of the light source 2 toward the hippocampus 3. Light mouthpiece 20 and
It is characterized by having
The device for providing the 40 Hz flash stimulus according to claim 2.


前記光指向手段50は、
前記上顎54または前記下顎55の歯列に固定して、少なくとも3箇所以上の標識点に造影剤を組み込んだ計測用マウスピース53を座標計測手段として備える
ことを特徴とする、
請求項2に記載の40Hzの閃光刺激を提供する装置


The light directing means 50
A measurement mouthpiece 53 fixed to the dentition of the upper jaw 54 or the lower jaw 55 and incorporating a contrast medium at at least three or more marking points is provided as a coordinate measuring means.
The device for providing the 40 Hz flash stimulus according to claim 2.


JP2021066832A 2021-04-11 2021-04-11 METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY Pending JP2021100727A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021066832A JP2021100727A (en) 2021-04-11 2021-04-11 METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY
JP2022043680A JP2022161835A (en) 2021-04-11 2022-03-18 THERAPY DEVICE USING 40Hz THERAPY METHOD FOR MCI THERAPY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021066832A JP2021100727A (en) 2021-04-11 2021-04-11 METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY

Publications (1)

Publication Number Publication Date
JP2021100727A true JP2021100727A (en) 2021-07-08

Family

ID=76651056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066832A Pending JP2021100727A (en) 2021-04-11 2021-04-11 METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY

Country Status (1)

Country Link
JP (1) JP2021100727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219998B1 (en) 2022-07-27 2023-02-09 康司 畑田 Treatment light control system, treatment light control method, and treatment light control program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219998B1 (en) 2022-07-27 2023-02-09 康司 畑田 Treatment light control system, treatment light control method, and treatment light control program
JP2024017079A (en) * 2022-07-27 2024-02-08 康司 畑田 Treatment light control system, treatment light control method and treatment light control program

Similar Documents

Publication Publication Date Title
US11318323B2 (en) Device for delivering precision phototherapy
US9308389B2 (en) Light therapy apparatus and methods
EP1896122B1 (en) Tissue treatment device
JP7174273B2 (en) Extra-oral mask for treatment of oral mucositis
EP1853347B1 (en) Light therapy device for treatment of bone disorders and biostimulation of bone and soft tissue
US10780296B2 (en) Transcranial laser therapy for treatment of acute ischemic stroke
US20050282102A1 (en) Kit for use by dental professionals
WO2008016894A2 (en) System and method for convergent light therapy having controllable dosimetry
US10350429B2 (en) Laser device for intracranial illumination via oral or nasal foramina access
US20210162232A1 (en) Apparatus for biophotonic tissue treatments
JP2021100727A (en) METHOD AND DEVICE TO PROVIDE STIMULATION WITH FLASHING LIGHT TO APPLY TO 40 Hz FLASHING LIGHT THERAPY
WO2016017349A1 (en) Laser medical treatment device
Smith General principles of laser therapy
KR102490579B1 (en) Dental robot
Ablyazizova et al. Innovations in medicine
JP2022161835A (en) THERAPY DEVICE USING 40Hz THERAPY METHOD FOR MCI THERAPY
JP2014030616A (en) Ultrashort-wave unit and ultrashort-wave device
KR20110131453A (en) The diagnosis and treatment equipment for a skin cancer