JP2021100332A - Application support technique, application support system, application support method of hydroelectric generator - Google Patents

Application support technique, application support system, application support method of hydroelectric generator Download PDF

Info

Publication number
JP2021100332A
JP2021100332A JP2019231017A JP2019231017A JP2021100332A JP 2021100332 A JP2021100332 A JP 2021100332A JP 2019231017 A JP2019231017 A JP 2019231017A JP 2019231017 A JP2019231017 A JP 2019231017A JP 2021100332 A JP2021100332 A JP 2021100332A
Authority
JP
Japan
Prior art keywords
hydroelectric generator
water storage
flow rate
hydroelectric
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019231017A
Other languages
Japanese (ja)
Other versions
JP7259731B2 (en
Inventor
廣則 中島
Hironori Nakajima
廣則 中島
田邊 隆之
Takayuki Tanabe
隆之 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019231017A priority Critical patent/JP7259731B2/en
Publication of JP2021100332A publication Critical patent/JP2021100332A/en
Application granted granted Critical
Publication of JP7259731B2 publication Critical patent/JP7259731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a planning support method of an operation plan of a hydroelectric generator at a hydraulic power plant which can utilize mixed integer linear programming to mathematical programming by expressing an object function and restriction in linear expression.SOLUTION: Characteristics of a hydroelectric generator are defined as a water storage amount V [m3] of a water storage facility, a flow rate Q [m3/s] to the hydroelectric generator, and an index α (power generation output P [MW]/the flow rate Q [m3/s]) of efficiency of the hydroelectric generator, the characteristics of the hydroelectric generator are expressed in a three-dimensional space S by using values of the defined information, and modeled by a surface function.SELECTED DRAWING: Figure 4

Description

本発明は、水力発電所において水力発電機を最適に運用するための運転計画の立案を支援する技術に関する。 The present invention relates to a technique for supporting the formulation of an operation plan for optimally operating a hydroelectric generator in a hydroelectric power plant.

周知のように水力発電を効率的に行うため、コンピュータによる運転支援が行われている。例えば特許文献1には、水力発電機の発電電力に応じて最適な貯水施設(ダムなど)の運用を支援するシステムが提案されている。 As is well known, computer-based driving support is provided to efficiently generate hydroelectric power. For example, Patent Document 1 proposes a system that supports the operation of an optimal water storage facility (dam, etc.) according to the generated power of a hydroelectric generator.

このようなシステムの最適な運転計画の立案には、混合整数線形計画法(MIP)を用いる場合がある。ただし、運転計画立案に混合整数線形計画法を用いる場合、目的関数と制約とが線形で表現できなければならない。 Mixed integer linear programming (MIP) may be used to formulate the optimal operating plan for such a system. However, when the mixed integer linear programming method is used for operation planning, the objective function and the constraint must be able to be expressed linearly.

ところが機器の効率(入出力特性)は、図1に示すように、一般に非線形な特性を持っている。このような特性の機器を混合整数線形計画法で扱う場合には、図2に示すように、出力のレベルを適当な区間で分割し、分割された区間内では効率が一定であると近似して扱う(区分線形)。 However, as shown in FIG. 1, the efficiency (input / output characteristics) of the device generally has non-linear characteristics. When handling equipment with such characteristics by the mixed integer linear programming method, as shown in FIG. 2, the output level is divided into appropriate intervals, and it is approximated that the efficiency is constant within the divided intervals. Handle (partial linear).

特許第5235923号公報Japanese Patent No. 5235923

水力発電所における水力発電機の運転計画時は、貯水施設の水位や予想される貯水施設への流量などに基づき水力発電機の運転指令および発電電力量の制御の効率化が図られている。 When planning the operation of a hydroelectric power plant at a hydroelectric power plant, the efficiency of controlling the operation command of the hydroelectric power generator and the amount of generated power is improved based on the water level of the water storage facility and the expected flow rate to the water storage facility.

ところが、水力発電には次にあげる問題があるため、単純に発電機特性を区分線形することで混合整数線形法を適用することはできない。 However, since hydroelectric power generation has the following problems, it is not possible to apply the mixed integer linear method by simply piecewise linearizing the generator characteristics.

(1)水力発電機の入出力特性は、図3に示すように、貯水施設の水位Lに応じて変動する。そのため、ある水位の入出力特性は区分線形できても、水位間の特性は線形式で扱うことができず、混合整数線形計画法の適用ができない。 (1) As shown in FIG. 3, the input / output characteristics of the hydroelectric generator fluctuate according to the water level L of the water storage facility. Therefore, even if the input / output characteristics of a certain water level can be piecewise linear, the characteristics between water levels cannot be handled in linear form, and the mixed integer linear programming method cannot be applied.

(2)負荷需要に対する供給(発電機出力)を確保しながらエネルギー効率(水力発電機の場合は使用水量)を最大化するためには、「負荷需要=供給量」の等式制約を満たしながら投入されるエネルギーの最小化を目的関数とすればよい。 (2) In order to maximize energy efficiency (water consumption in the case of a hydroelectric generator) while ensuring supply (generator output) for load demand, while satisfying the equation constraint of "load demand = supply amount" The minimization of the input energy may be the objective function.

しかしながら、目的とする供給量(負荷需要)が無い場合には、入力(流量Q)および出力(発電出力P)がともに変数なため、エネルギー効率を最大化するような場合に混合整数線形計画法の適用ができない。 However, when there is no target supply amount (load demand), both the input (flow rate Q) and the output (power generation output P) are variables, so when the energy efficiency is maximized, the mixed integer linear programming method is used. Cannot be applied.

本発明は、このような従来の問題を解決するためになされ、水力発電所の水力発電機の運転計画を立案する際、目的関数と制約とを線形式で表現して数理計画法に混合整数線形計画法を利用可能にすることを解決課題としている。 The present invention has been made to solve such a conventional problem, and when formulating an operation plan for a hydroelectric generator in a hydroelectric power plant, the objective function and the constraint are expressed in linear form and mixed integers in a mathematical programming method. The solution is to make linear programming available.

(1)本発明の一態様は、貯水施設からの放水を利用して発電を実行する水力発電機を最適に運用する運転計画の立案を支援する方式であって、
前記水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電出力P[MW]/前記流量Q[m3/s])と、定義し、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化することを特徴としている。
(1) One aspect of the present invention is a method of supporting the formulation of an operation plan for optimally operating a hydroelectric generator that executes power generation by utilizing water discharged from a water storage facility.
The characteristics of the hydroelectric generator
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
It is defined as an index α of the efficiency of the hydroelectric generator (power generation output P [MW] / flow rate Q [m 3 / s]).
It is characterized in that the characteristics of the hydroelectric generator are represented in a three-dimensional space and modeled by a surface function using the values of the defined information.

(2)本発明の他の態様は、貯水施設からの放水を利用して発電を実行する水力発電機を最適に運用する運転計画の立案を支援するシステムであって、
前記水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電出力P[MW]/前記流量Q[m3/s])と、定義し、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化するモデル作成部を備えることを特徴としている。
(2) Another aspect of the present invention is a system that supports the formulation of an operation plan for optimally operating a hydroelectric generator that executes power generation by utilizing water discharged from a water storage facility.
The characteristics of the hydroelectric generator
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
It is defined as an index α of the efficiency of the hydroelectric generator (power generation output P [MW] / flow rate Q [m 3 / s]).
It is characterized by including a model creation unit that expresses the characteristics of the hydroelectric generator in a three-dimensional space and models it with a surface function using the values of the defined information.

(3)本発明のさらに他の態様は、貯水施設からの放水を利用して発電を実行する水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電電力P[MW]/前記流量Q[m3/s])と、
定義し、前記水力発電機を最適に運用する運転計画の立案を支援するシステムの実行する方法であって、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化するステップを有することを特徴としている。
(3) Yet another aspect of the present invention describes the characteristics of a hydroelectric generator that performs power generation by utilizing water discharged from a water storage facility.
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
The index α of the efficiency of the hydroelectric generator (generated power P [MW] / the flow rate Q [m 3 / s]) and
It is a method of executing a system that defines and supports the formulation of an operation plan for optimal operation of the hydroelectric generator.
It is characterized by having a step of expressing the characteristics of the hydroelectric generator in a three-dimensional space and modeling it with a surface function using the values of the defined information.

本発明によれば、水力発電所の水力発電機の運転計画を立案する際、目的関数と制約とを線形式で表現して数理計画法に混合整数線形計画法を用いることが可能となる。 According to the present invention, when formulating an operation plan for a hydroelectric generator in a hydroelectric power plant, it is possible to express an objective function and a constraint in a linear form and use a mixed integer linear programming method as a mathematical programming method.

機器の入出力特性を示すグラフ。A graph showing the input / output characteristics of a device. 図1を区分線形したグラフ。A graph in which FIG. 1 is piecewise linear. 水力発電機の入出力特性を示すグラフ。A graph showing the input / output characteristics of a hydroelectric generator. 本発明の実施形態に係る三次元空間を複数分割した状態を示すグラフ。The graph which shows the state which divided into a plurality of three-dimensional spaces which concerns on embodiment of this invention. 混合整数線形計画法により作成した水力発電所の運転計画を示すグラフ。A graph showing the operation plan of a hydroelectric power plant created by the mixed integer linear programming method.

以下、本発明の実施形態に係る水力発電機の運用支援システム(方法・方式)を説明する。このシステムは、水力発電所の水力発電機を最適に運用するための運転計画の立案を支援する。 Hereinafter, the operation support system (method / method) for the hydroelectric generator according to the embodiment of the present invention will be described. This system assists in the development of operational plans for optimal operation of hydropower generators in hydropower plants.

≪システム内容≫
(1)前記システムは、貯水施設(ダム)の水位や予想されるダムへの流量に基づき水力発電機の運転指令と発電電力量の制御の効率化を図るため、数理計画法に混合整数線形計画法を用いる。
≪System contents≫
(1) The system is a mixture of integers and linear programming in order to improve the efficiency of controlling the operation command of the hydroelectric generator and the amount of power generated based on the water level of the water storage facility (dam) and the expected flow rate to the dam. Use the planning method.

ここでは機器の効率(入出力特性)の非線形特性を線形の式で表現するため、水力発電機の特性を次のとおりに定義する。
・V=ダムの貯水量(水位)[m3
・Q=水力発電機への流量[m3/s]
・α=水力発電機の効率の指標=P(発電出力[MW])/Q(流量[m3/s])
また、前記システムは、水力発電機を混合整数線形計画法でモデル化するため、水力発電機の特性を貯水量V・流量Q・前記指標αの逆数「1/α」の三次元空間で表し、その特性を面関数でモデル化する方式を採用している。
Here, in order to express the non-linear characteristics of the efficiency (input / output characteristics) of the equipment with a linear equation, the characteristics of the hydroelectric generator are defined as follows.
・ V = Dam water storage capacity (water level) [m 3 ]
・ Q = Flow rate to hydroelectric generator [m 3 / s]
・ Α = Index of efficiency of hydroelectric generator = P (Power generation output [MW]) / Q (Flow rate [m 3 / s])
In addition, since the system models the hydroelectric generator by the mixed integer linear programming method, the characteristics of the hydroelectric generator are represented by a three-dimensional space of the reciprocal "1 / α" of the water storage amount V, the flow rate Q, and the index α. , The method of modeling the characteristics with a surface function is adopted.

(2)なお、前記システムは、コンピュータにより構成され、通常のコンピュータのハードウェアリソース(例えばCPU,RAM・ROMなどの主記憶装置,SSD・HDDなどの補助記憶装置)を備える。 (2) The system is composed of a computer and includes hardware resources of a normal computer (for example, a main storage device such as a CPU and a RAM / ROM, and an auxiliary storage device such as an SSD / HDD).

このハードウェアリソースとソフトウェアリソース(OS,アプリケーションなど)との協働の結果、前記システムは、前記定義内容を水力発電機の特性として記憶する図示省略の記憶部と、前記定義された特性の情報を面関数でモデル化する図示省略のモデル生成部とを実装する。ここで前記記憶部は主に前記記憶装置に構築されている。 As a result of the collaboration between the hardware resource and the software resource (OS, application, etc.), the system has a storage unit (not shown) that stores the defined contents as the characteristics of the hydroelectric generator, and information on the defined characteristics. Is implemented with a model generator (not shown) that models with a surface function. Here, the storage unit is mainly built in the storage device.

≪処理内容≫
前記システムの運転計画の作成支援、即ち前記モデル作成部の実行する具体的な処理内容を説明する。
≪Processing content≫
The support for creating the operation plan of the system, that is, the specific processing contents executed by the model creation unit will be described.

S01:まず、前記システムの起動時に前記特性「V・Q・α」の値を取得し、前述の水力発電機の特性を「V・Q・1/α」の三次元空間で表す。図4中のSは、この三次元空間の一例を示している。 S01: First, the value of the characteristic "VQ1 / α" is acquired when the system is started, and the characteristic of the hydroelectric generator described above is represented by a three-dimensional space of "VQ1 / α". S in FIG. 4 shows an example of this three-dimensional space.

S02:水力発電機の特性を表すS01の三次元空間を複数分割する。図4に基づき説明すれば、三次元空間Sを「Q」方向および「P」方向のそれぞれに複数に分割してM面の平面で近似させる。 S02: The three-dimensional space of S01 representing the characteristics of the hydroelectric generator is divided into a plurality of parts. Explaining with reference to FIG. 4, the three-dimensional space S is divided into a plurality of parts in each of the "Q" direction and the "P" direction and approximated by the plane of the M plane.

分割数は一定間隔でなくともよく、分割された平面と実際の特性との誤差が許容値以上になれば次の平面を作成するなどの手法でもよく、平面の大きさが同じである必要はない。 The number of divisions does not have to be a fixed interval, and if the error between the divided planes and the actual characteristics exceeds the allowable value, a method such as creating the next plane may be used, and the planes need to be the same size. Absent.

S03:S02で作成された各平面(M面)から面関数のパラメータを算出する。すなわち、平面mを構成する三点それぞれの「V・Q・1/α」に基づき式(1)の面関数「Q/P」となるパラメータ「Am,Bm,Cm」を、すべての平面mについて取得する。この式(1)によれば、逆数「1/α」はすべての平面mよりも大きくなる。 The parameters of the surface function are calculated from each plane (M plane) created in S03: S02. That is, all the parameters "A m , B m , C m " which are the surface functions "Q / P" of the equation (1) based on the "V, Q, 1 / α" of each of the three points constituting the plane m are set. Acquire about the plane m of. According to this equation (1), the reciprocal "1 / α" is larger than all planes m.

Figure 2021100332
Figure 2021100332

S04:水力発電機の前記特性「V・Q・1/α」を目的関数および制約でモデル化する。 S04: The characteristic "VQ1 / α" of the hydroelectric generator is modeled by the objective function and the constraint.

(A)目的関数
まず、目的関数について説明すれば、該目的関数は式(2)を基本とする。
・t=計画時間内の時刻,
・n=前記水力発電機の番号
本目的関数は、逆数「1/α」を最小化すると前記指標αの値が最大化する、すなわち効率が最大化することを意味する。
(A) Objective function First, the objective function will be described. The objective function is based on the equation (2).
・ T = time within the planned time,
N = number of the hydroelectric generator This objective function means that the value of the index α is maximized, that is, the efficiency is maximized when the reciprocal “1 / α” is minimized.

Figure 2021100332
Figure 2021100332

本提案では水力発電機停止時に逆数「1/α」を「0」となるようにしているため、式(2)の目的関数を最小化すると、水力発電機を停止して行く方向にもっていく。すなわち、水位を上昇させる(発電する場合に効率が良くなる。)方向に持っていく。 In this proposal, the reciprocal "1 / α" is set to "0" when the hydroelectric generator is stopped, so if the objective function of equation (2) is minimized, the hydroelectric generator will be stopped. .. That is, the water level is raised (efficiency is improved when generating electricity).

ただし、ダム水位が増加していくと溢水のおそれがある。特に水力発電機が発電停止の状態のままの溢水は損失と考えられる。そこで、式(3)の目的関数を用いて、溢水にペナルティを与えることが好ましい。 However, if the dam water level increases, there is a risk of flooding. In particular, flooding with the hydroelectric generator stopped is considered a loss. Therefore, it is preferable to give a penalty to the overflow by using the objective function of the equation (3).

Figure 2021100332
Figure 2021100332

・Qof=溢水量[m3/s]
・kof=溢水量に対するペナルティ係数
式(3)中の「kof」には、発電停止状態で溢水させたときに目的関数の値が小さくなることのないような値を設定する。例えば式(3)中の「Σt1/αn(t)」がとり得る最大値よりも大きく設定する。そうすることで必要が無い限り溢水しない運転計画を立てることができ、フルに充電しても溢水してしまう状況を抑制することが可能となる。
・ Q of = overflow amount [m 3 / s]
-K of = Penalty coefficient for overflow amount For "k of " in equation (3), set a value that does not reduce the value of the objective function when flooding occurs while power generation is stopped. For example, “Σ t 1 / α n (t)” in the equation (3) is set to be larger than the maximum value that can be taken. By doing so, it is possible to make an operation plan that does not overflow unless it is necessary, and it is possible to suppress the situation where the water overflows even when fully charged.

(B)制約
つぎに制約について説明すれば、逆数「1/α」はすべての平面mよりも大きいので、式(4)の制約が必要となる。
(B) Constraint Next, the constraint of Eq. (4) is required because the reciprocal "1 / α" is larger than all planes m.

Figure 2021100332
Figure 2021100332

・Gn=整数変数(水力発電機の運転時=「1」、同停止時=「0」)
発電停止時に式(4)中の逆数「1/α=0」を成立させるため、式(4)の「Cm」項に「Gn」を乗算する。
・ G n = integer variable (when the hydroelectric generator is operating = "1", when it is stopped = "0")
In order to establish the reciprocal "1 / α = 0" in the equation (4) when the power generation is stopped, the "C m " term in the equation (4) is multiplied by "G n".

また、水力発電機の流量Qnを、発電停止時に「0」とするため、式(5)の制約を定める。 Further, since the flow rate Q n of the hydroelectric generator is set to “0” when the power generation is stopped, the constraint of the equation (5) is set.

Figure 2021100332
Figure 2021100332

・Qn,max=水力発電機の最大流量[m3/s]
さらにダムの貯水量は水力発電機毎に異なることはないが、発電停止時に式(4)中の逆数「1/α=0」を成立させるため、水力発電機毎にダミー水位(ダミーの貯水量)Vn[m3]を持たせている。ここでは水力発電機の発電停止時にダミー水位「Vn=0」を成立させるため、式(6)の制約を定める。
・ Q n, max = maximum flow rate of hydroelectric generator [m 3 / s]
Furthermore, the amount of water stored in the dam does not differ for each hydroelectric generator, but since the inverse number "1 / α = 0" in equation (4) is established when power generation is stopped, the dummy water level (dummy water storage) for each hydroelectric generator is established. Amount) V n [m 3 ] is given. Here, the constraint of the equation (6) is set in order to establish the dummy water level “V n = 0” when the power generation of the hydroelectric generator is stopped.

Figure 2021100332
Figure 2021100332

・Vmin=ダムの貯水量Vの最小値[m3
・Vmax=ダムの貯水量Vの最大値[m3
その一方で水力発電機の運転時にはダミー水位Vnをダムの実際の貯水量とする必要がある。そこで、式(7)の制約を定める。
・ V min = minimum value of water storage capacity V of the dam [m 3 ]
・ V max = maximum value of water storage capacity V of the dam [m 3 ]
On the other hand, when operating a hydroelectric generator, it is necessary to set the dummy water level V n as the actual amount of water stored in the dam. Therefore, the constraint of equation (7) is defined.

Figure 2021100332
Figure 2021100332

このように前記運用支援システムは、複数のダムで構成された水力発電所の運転計画を立案する際、水力発電機の特性を目的関数「式(1)/式(2)」および制約「式(3)〜式(7)」でモデル化する。水力発電機の特性を「V・Q・1/α」の3点を通る平面で表現することにより、水位で変動する水力発電機の効率を線形で扱えるようになる。 In this way, when formulating an operation plan for a hydroelectric power plant composed of a plurality of dams, the operation support system sets the characteristics of the hydroelectric generator as the objective function "Equation (1) / Eq. (2)" and the constraint "Equation". (3) -Equation (7) "is modeled. By expressing the characteristics of the hydroelectric generator on a plane that passes through the three points of "V, Q, 1 / α", the efficiency of the hydroelectric generator that fluctuates depending on the water level can be handled linearly.

したがって、水力発電機の特性が線形モデルとなり、混合整数線形計画法(MIP)で扱うことができ、効率的な運転計画の作成が可能となる。特に、式(2)の目的関数によれば、溢水を抑制して効率よく発電する運転計画を立案することができる。 Therefore, the characteristics of the hydroelectric generator become a linear model, which can be handled by the mixed integer linear programming method (MIP), and an efficient operation plan can be created. In particular, according to the objective function of Eq. (2), it is possible to formulate an operation plan that suppresses overflow and efficiently generates electricity.

図5は、混合整数線形計画法により作成した水力発電所の運転計画を示し、一年間の発電使用水量・貯水量・流量・溢水量がグラフ化されている。このように水力発電機の線形モデルに基づき混合整数線形計画法(MIP)により最適な運転計画が作成される。 FIG. 5 shows an operation plan of a hydroelectric power plant created by a mixed integer linear programming method, and graphs the amount of water used for power generation, the amount of water stored, the amount of flow, and the amount of overflow for one year. In this way, the optimum operation plan is created by the mixed integer linear programming method (MIP) based on the linear model of the hydroelectric generator.

なお、本発明は、上記実施形態に限定されるものではなく、各請求項に記載された範囲内で変形して実施することができる。例えば逆数「1/α」ではなく、前記指標αそのものでも目的関数の最大化問題として捉えれば、同様に扱えることが可能である。 The present invention is not limited to the above embodiment, and can be modified and implemented within the range described in each claim. For example, if the index α itself is regarded as a maximization problem of the objective function instead of the reciprocal “1 / α”, it can be treated in the same way.

S…三次元空間
M…平面
S ... three-dimensional space M ... plane

Claims (10)

貯水施設からの放水を利用して発電を実行する水力発電機を最適に運用する運転計画の立案を支援する方式であって、
前記水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電出力P[MW]/前記流量Q[m3/s])と、定義し、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化する
ことを特徴とする水力発電機の運用支援方式。
It is a method that supports the formulation of an operation plan that optimally operates a hydroelectric generator that uses water discharged from a water storage facility to generate electricity.
The characteristics of the hydroelectric generator
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
It is defined as an index α of the efficiency of the hydroelectric generator (power generation output P [MW] / flow rate Q [m 3 / s]).
An operation support method for a hydroelectric generator, characterized in that the characteristics of the hydroelectric generator are represented in a three-dimensional space and modeled by a surface function using the values of the defined information.
前記三次元空間を前記貯水量Vおよび前記流量Qの方向にそれぞれ複数に分割して所定平面で近似させ、
前記分割された前記各平面の面関数に基づくパラメータを取得し、該取得されたパラメータを用いて目的関数および制約を定め、
前記目的関数および前記制約により前記特性をモデル化することを特徴とする請求項1記載の水力発電機の運用支援方式。
The three-dimensional space is divided into a plurality of directions in the directions of the water storage amount V and the flow rate Q, and approximated by a predetermined plane.
The parameters based on the surface function of each of the divided planes are acquired, and the objective function and the constraint are determined using the acquired parameters.
The operation support method for a hydroelectric generator according to claim 1, wherein the characteristics are modeled by the objective function and the constraints.
式(1)の前記面関数(Q/P)となる前記パラメータ「Am,Bm,Cm」をすべての平面mから取得し、
Figure 2021100332
前記目的関数を式(2)とすることを特徴とする請求項2記載の水力発電機の運用支援方式。
Figure 2021100332
t=計画時間内の時刻,
n=前記水力発電機の番号
The parameters "A m , B m , C m " which are the surface functions (Q / P) of the equation (1) are obtained from all planes m.
Figure 2021100332
The operation support method for a hydroelectric generator according to claim 2, wherein the objective function is given by the equation (2).
Figure 2021100332
t = time within the planned time,
n = number of the hydroelectric generator
式(1)の前記面関数(Q/P)となる前記パラメータ「Am,Bm,Cm」をすべての前記平面mから取得し、
Figure 2021100332
前記目的関数を式(3)とすることを特徴とする請求項2記載の水力発電機の運用支援方式。
Figure 2021100332
t=計画時間内の時刻,
n=前記水力発電機の番号
of=溢水量[m3/s]
of=溢水量に対するペナルティ係数
The parameters "A m , B m , C m " which are the surface functions (Q / P) of the equation (1) are obtained from all the planes m.
Figure 2021100332
The operation support method for a hydroelectric generator according to claim 2, wherein the objective function is the equation (3).
Figure 2021100332
t = time within the planned time,
n = Number of the hydroelectric generator Q of = Overflow amount [m 3 / s]
k of = Penalty coefficient for overflow
前記指標の逆数について、式(4)の制約が成立することを特徴とする請求項3または4記載の水力発電機の運用支援方式。
Figure 2021100332
The operation support method for a hydroelectric generator according to claim 3 or 4, wherein the constraint of the formula (4) is satisfied with respect to the reciprocal of the index.
Figure 2021100332
前記流量Qについて、式(5)の制約が成立することを特徴とする請求項3〜5のいずれかに記載の水力発電機の運用支援方式。
Figure 2021100332
n,max=水力発電機の最大流量[m3/s]
The operation support method for a hydroelectric generator according to any one of claims 3 to 5, wherein the constraint of the formula (5) is satisfied with respect to the flow rate Q.
Figure 2021100332
Q n, max = maximum flow rate of hydroelectric generator [m 3 / s]
式(6)の前記制約が成立するダミーの貯水量「Vn」を設けたことを特徴とする請求項6記載の水力発電機の運用支援方式。
Figure 2021100332
min=貯水量「V」の最小値[m3
max=貯水量「V」の最大値[m3
n=整数変数:水力発電機の運転時に「1」,同停止時に「0」
The operation support method for a hydroelectric generator according to claim 6, wherein a dummy water storage amount "V n " for which the above constraint of the formula (6) is satisfied is provided.
Figure 2021100332
V min = minimum value of water storage amount "V" [m 3 ]
V max = maximum value of water storage amount "V" [m 3 ]
G n = integer variable: "1" when the hydroelectric generator is operating, "0" when the hydroelectric generator is stopped
前記ダミーの貯水量Vnを前記水力発電機の発電運転時に前記貯水施設の前記貯水量Vとし、
式(7)の制約が成立することを特徴とする請求項7記載の水力発電機の運用支援方式。
Figure 2021100332
The dummy water storage amount V n is defined as the water storage amount V of the water storage facility during the power generation operation of the hydroelectric generator.
The operation support method for a hydroelectric generator according to claim 7, wherein the constraint of the formula (7) is satisfied.
Figure 2021100332
貯水施設からの放水を利用して発電を実行する水力発電機を最適に運用する運転計画の立案を支援するシステムであって、
前記水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電出力P[MW]/前記流量Q[m3/s])と、定義し、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化するモデル作成部を備える
ことを特徴とする水力発電機の運用支援システム。
It is a system that supports the formulation of an operation plan that optimally operates a hydroelectric generator that uses water discharged from a water storage facility to generate electricity.
The characteristics of the hydroelectric generator
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
It is defined as an index α of the efficiency of the hydroelectric generator (power generation output P [MW] / flow rate Q [m 3 / s]).
An operation support system for a hydroelectric generator, characterized in that it includes a model creation unit that expresses the characteristics of the hydroelectric generator in a three-dimensional space and models it with a surface function using the values of the defined information.
貯水施設からの放水を利用して発電を実行する水力発電機の特性を、
前記貯水施設の貯水量V[m3]と、
前記水力発電機への流量Q[m3/s]と、
前記水力発電機の効率の指標α(発電電力P[MW]/前記流量Q[m3/s])と、
定義し、前記水力発電機を最適に運用する運転計画の立案を支援するシステムの実行する方法であって、
前記定義された情報の値を用いて前記水力発電機の特性を三次元空間で表して面関数でモデル化するステップを有する
ことを特徴とする水力発電機の運用支援方法。
The characteristics of a hydroelectric generator that uses water discharged from a water storage facility to generate electricity,
The amount of water stored in the water storage facility V [m 3 ] and
The flow rate Q [m 3 / s] to the hydroelectric generator and
The index α of the efficiency of the hydroelectric generator (generated power P [MW] / the flow rate Q [m 3 / s]) and
It is a method of executing a system that defines and supports the formulation of an operation plan for optimal operation of the hydroelectric generator.
A method for supporting the operation of a hydroelectric generator, which comprises a step of expressing the characteristics of the hydroelectric generator in a three-dimensional space and modeling it with a surface function using the values of the defined information.
JP2019231017A 2019-12-23 2019-12-23 Operation support method for hydraulic power generator, Operation support system for hydraulic power generator, Operation support method for hydraulic power generator Active JP7259731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231017A JP7259731B2 (en) 2019-12-23 2019-12-23 Operation support method for hydraulic power generator, Operation support system for hydraulic power generator, Operation support method for hydraulic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231017A JP7259731B2 (en) 2019-12-23 2019-12-23 Operation support method for hydraulic power generator, Operation support system for hydraulic power generator, Operation support method for hydraulic power generator

Publications (2)

Publication Number Publication Date
JP2021100332A true JP2021100332A (en) 2021-07-01
JP7259731B2 JP7259731B2 (en) 2023-04-18

Family

ID=76541507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231017A Active JP7259731B2 (en) 2019-12-23 2019-12-23 Operation support method for hydraulic power generator, Operation support system for hydraulic power generator, Operation support method for hydraulic power generator

Country Status (1)

Country Link
JP (1) JP7259731B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125949A (en) * 1999-11-01 2001-05-11 Jekku:Kk Road plan design aiding system and recording medium
JP2003324992A (en) * 2002-05-08 2003-11-14 Mitsubishi Electric Corp Variable speed pumped storage power generator and its stopping method
JP2015146065A (en) * 2014-01-31 2015-08-13 中国電力株式会社 Forecasting system and forecasting method
JP2018163396A (en) * 2017-03-24 2018-10-18 アズビル株式会社 Piecewise linear approximation function generation apparatus and method
JP2019169064A (en) * 2018-03-26 2019-10-03 東芝エネルギーシステムズ株式会社 Output distribution apparatus of hydroelectric power station and hydroelectric power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125949A (en) * 1999-11-01 2001-05-11 Jekku:Kk Road plan design aiding system and recording medium
JP2003324992A (en) * 2002-05-08 2003-11-14 Mitsubishi Electric Corp Variable speed pumped storage power generator and its stopping method
JP2015146065A (en) * 2014-01-31 2015-08-13 中国電力株式会社 Forecasting system and forecasting method
JP2018163396A (en) * 2017-03-24 2018-10-18 アズビル株式会社 Piecewise linear approximation function generation apparatus and method
JP2019169064A (en) * 2018-03-26 2019-10-03 東芝エネルギーシステムズ株式会社 Output distribution apparatus of hydroelectric power station and hydroelectric power generation system

Also Published As

Publication number Publication date
JP7259731B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
Kourounis et al. Toward the next generation of multiperiod optimal power flow solvers
Jabr et al. Robust optimization of storage investment on transmission networks
Mohammadian et al. Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm
Catalao et al. Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach
Barros et al. Optimization of large-scale hydropower system operations
Ceja-Gomez et al. Under-frequency load shedding via integer programming
Kheshti et al. Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems
Séguin et al. Self-scheduling short-term unit commitment and loading problem
Catalão et al. Optimal offering strategies for wind power producers considering uncertainty and risk
JP5812938B2 (en) How to solve the unit commitment problem for a set of generators
Liu et al. Parallel chance-constrained dynamic programming for cascade hydropower system operation
Lima et al. Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach
Pan et al. Strengthened MILP formulation for certain gas turbine unit commitment problems
CN110535183B (en) Scheduling method and system of virtual power plant
Niknam et al. Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints
WO2017090519A1 (en) Information processing device, information processing method, and recording medium
Marchand et al. Fast near-optimal heuristic for the short-term hydro-generation planning problem
Hamann et al. Real-time optimization of a hydropower cascade using a linear modeling approach
Madani et al. A scalable semidefinite relaxation approach to grid scheduling
Alqurashi et al. Model predictive control to two-stage stochastic dynamic economic dispatch problem
Krishnan et al. Building foresight in long-term infrastructure planning using end-effect mitigation models
Esmaeeli et al. Determination of optimal reserve contribution of thermal units to afford the wind power uncertainty
JP2021100332A (en) Application support technique, application support system, application support method of hydroelectric generator
Patel et al. Optimized cascade fractional‐order 3DOF‐controller for frequency regulation of a hybrid power system using marine predators algorithm
CN115907140A (en) Method and device for optimizing power spot shipment scheme, computer equipment and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7259731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150