JP2021099270A - Method for evaluating structure of catalyst carrier for fuel cells - Google Patents

Method for evaluating structure of catalyst carrier for fuel cells Download PDF

Info

Publication number
JP2021099270A
JP2021099270A JP2019231408A JP2019231408A JP2021099270A JP 2021099270 A JP2021099270 A JP 2021099270A JP 2019231408 A JP2019231408 A JP 2019231408A JP 2019231408 A JP2019231408 A JP 2019231408A JP 2021099270 A JP2021099270 A JP 2021099270A
Authority
JP
Japan
Prior art keywords
dimensional image
catalyst carrier
filled
representing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019231408A
Other languages
Japanese (ja)
Inventor
寛司 猪子
Kanji Inoko
寛司 猪子
寿夫 山重
Hisao Yamashige
寿夫 山重
久美子 野村
Kumiko Nomura
久美子 野村
瑠伊 井元
Rui Imoto
瑠伊 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019231408A priority Critical patent/JP2021099270A/en
Publication of JP2021099270A publication Critical patent/JP2021099270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Image Analysis (AREA)

Abstract

To provide a method for evaluating the structure of a catalyst carrier for fuel cells, with which it is possible to quantitatively evaluate the structure of an open hole.SOLUTION: A method for evaluating the structure of a catalyst carrier for fuel cells according to the present invention comprises: a step for stacking a plurality of unprocessed cross-sectional images one on another, creating the unprocessed three-dimensional image of a catalyst carrier, stacking a plurality of hole-filled cross sectional images one on another and creating the hole-filled three-dimensional image of the catalyst carrier; a step for executing the exclusive OR and negative OR operations of the attribute of each element of the unprocessed three-dimensional image and the attribute of each element of the hole-filled three-dimensional image located at the same coordinate as said each element, and extracting an element that represents a pore and an element that represents the periphery; a step for determining that an element, out of the elements representing the pore, which adjoins an element representing the periphery in the unprocessed three-dimensional image is an element representing an entry to the pore; and a step for performing a width priority search of an element structure that represents the pore included in the unprocessed three-dimensional image and thereby acquiring the number of open holes and the distance thereto.SELECTED DRAWING: Figure 1

Description

本発明は、貫通孔の構造を評価する燃料電池用の触媒担体の構造評価方法に関する。 The present invention relates to a method for evaluating the structure of a catalyst carrier for a fuel cell for evaluating the structure of through holes.

近年、燃料電池が、例えば、自動車の動力源や家庭用コージェネレーション等に採用されている。燃料電池の発電性能を決める要因には、触媒層を構成する触媒担体の構造がある。このため、燃料電池では、必要な発電性能が得られるように触媒担体を所望の構造にすることが求められている。このため、作製した触媒担体の構造が所望の構造になっているかどうか正確に評価する構造評価方法が必要とされている。 In recent years, fuel cells have been adopted, for example, as power sources for automobiles and home cogeneration. A factor that determines the power generation performance of a fuel cell is the structure of the catalyst carrier that constitutes the catalyst layer. Therefore, in a fuel cell, it is required that the catalyst carrier has a desired structure so that the required power generation performance can be obtained. Therefore, there is a need for a structure evaluation method that accurately evaluates whether or not the structure of the produced catalyst carrier has a desired structure.

触媒担体の構造評価方法としては、例えば、電子顕微鏡により撮影された触媒担体の表面の画像を演算処理装置に入力し、画像サイズの変換、2値化処理のしきい値、ノイズ除去用の膨張処理回数・収縮処理回数、抽出要素の大きさの最大値・最小値等のパラメータを入力した後、2値化処理、ノイズ除去(膨張・収縮処理)、ラベリング処理による細孔候補の抽出を行い、細孔を抽出する、触媒構造の解析方法が知られている(特許文献1)。 As a method for evaluating the structure of the catalyst carrier, for example, an image of the surface of the catalyst carrier taken by an electron microscope is input to an arithmetic processing apparatus, and image size conversion, a threshold value for binarization processing, and expansion for noise removal are performed. After inputting parameters such as the number of treatments / shrinkage treatments and the maximum / minimum values of the size of the extracted element, binarization treatment, noise removal (expansion / contraction treatment), and labeling treatment are used to extract pore candidates. , A method for analyzing a catalyst structure that extracts pores is known (Patent Document 1).

特開2004−102467号公報Japanese Unexamined Patent Publication No. 2004-102467

燃料電池の発電性能に決める触媒担体の構造を検討した結果から、特に触媒担体に存在する細孔が貫通していることにより、ガス拡散性や排水性が向上し、発電性能が向上すると考えられている。しかしながら、貫通孔が形成されるように作製された触媒担体であっても、貫通孔の構造次第では発電性能に優劣がつき、場合によっては貫通孔が形成されていない構造の触媒担体よりも発電性能が低下することもある。 From the results of examining the structure of the catalyst carrier that determines the power generation performance of the fuel cell, it is considered that the gas diffusibility and drainage property are improved and the power generation performance is improved, especially by penetrating the pores existing in the catalyst carrier. ing. However, even if the catalyst carrier is made so that the through hole is formed, the power generation performance is superior or inferior depending on the structure of the through hole, and in some cases, the power generation is higher than that of the catalyst carrier having the structure without the through hole. Performance may be reduced.

そこで、高い燃料電池の発電性能が得られる触媒担体を開発するためには、発電性能に優劣を生じさせる、触媒担体の貫通孔の3次元の構造を定量的に評価する方法が求められている。これに対し、特許文献1に記載された触媒構造の解析方法では、電子顕微鏡により撮影された触媒担体の表面の画像から細孔数、細孔径、及び細孔面積を求めることができるが、触媒担体の貫通孔の3次元の構造を定量的に評価することが困難である。 Therefore, in order to develop a catalyst carrier capable of obtaining high power generation performance of a fuel cell, a method of quantitatively evaluating the three-dimensional structure of the through hole of the catalyst carrier, which causes superiority or inferiority in power generation performance, is required. .. On the other hand, in the method for analyzing the catalyst structure described in Patent Document 1, the number of pores, the pore diameter, and the pore area can be obtained from the image of the surface of the catalyst carrier taken by an electron microscope. It is difficult to quantitatively evaluate the three-dimensional structure of the through-holes of the carrier.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、貫通孔の構造を定量的に評価することができる燃料電池用の触媒担体の構造評価方法を提供することにある。 The present invention has been made in view of these points, and an object of the present invention is to provide a method for evaluating the structure of a catalyst carrier for a fuel cell, which can quantitatively evaluate the structure of through holes. There is.

上記課題を解決すべく、本発明の燃料電池用の触媒担体の構造評価方法は、上記触媒担体の複数の未処理断面像を取得する未処理断面像取得工程と、上記複数の未処理断面像の細孔領域を穴埋めすることで複数の穴埋め済断面像を作成する穴埋め済断面像作成工程と、上記複数の未処理断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、上記触媒担体の内部の充填部を表す各要素の属性が「1」に設定され、上記触媒担体の内部の細孔及び上記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、上記触媒担体の未処理3次元像を作成する未処理3次元像作成工程と、上記複数の穴埋め済断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、上記触媒担体の内部の充填部及び穴埋め部を表す各要素の属性が「1」に設定され、上記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、上記触媒担体の穴埋め済3次元像を作成する穴埋め済3次元像作成工程と、上記未処理3次元像の各要素の属性と該各要素と同一座標に位置する上記穴埋め済3次元像の各要素の属性との排他的論理和(XOR)演算を実行し、上記排他的論理和演算の結果に基づき、上記未処理3次元像の要素のうち上記細孔を表す要素を抽出する第1演算工程と、上記未処理3次元像の各要素の属性と該各要素と同一座標に位置する上記穴埋め済3次元像の各要素の属性との否定論理和(NOR)演算を実行し、上記否定論理和演算の結果に基づき、上記未処理3次元像の要素のうち上記外周部を表す要素を抽出する第2演算工程と、上記未処理3次元像において、上記細孔を表す要素のうち上記外周部を表す要素に隣接する要素を、上記細孔の入口部を表す要素と判定する入口部判定工程と、上記未処理3次元像に含まれる上記細孔を表す要素構造の幅優先探索を行うことにより、上記細孔の一の上記入口部から他の上記入口部まで貫通する貫通孔の数と距離を取得する貫通孔情報取得工程と、を備えることを特徴とする。 In order to solve the above problems, the structural evaluation method of the catalyst carrier for a fuel cell of the present invention includes an untreated cross-sectional image acquisition step of acquiring a plurality of untreated cross-sectional images of the catalyst carrier and a plurality of untreated cross-sectional images. A three-dimensional image composed of elements that are structural units by stacking the hole-filled cross-sectional image creation step of creating a plurality of hole-filled cross-sectional images by filling the pore regions of the above and the above-mentioned multiple unprocessed cross-sectional images. By performing the constructing process, the attribute of each element representing the filling portion inside the catalyst carrier is set to "1", and each element representing the pores inside the catalyst carrier and the outer peripheral portion surrounding the catalyst carrier. The unprocessed three-dimensional image creating step of creating the untreated three-dimensional image of the catalyst carrier in which the attribute of is set to "0", and the plurality of filled-in-filled cross-sectional images are laminated and composed of elements which are structural units. By performing the process of constructing the three-dimensional image, the attribute of each element representing the filling portion and the filling portion inside the catalyst carrier is set to "1", and each element representing the outer peripheral portion surrounding the catalyst carrier is set to "1". The hole-filled three-dimensional image creation step for creating the hole-filled three-dimensional image of the catalyst carrier in which the attribute of is set to "0", the attribute of each element of the unprocessed three-dimensional image, and the same coordinates as the element. An exclusive logical sum (XOR) operation with the attributes of each element of the filled-in 3D image located in is executed, and based on the result of the exclusive logical sum operation, among the elements of the unprocessed 3D image, the above Negative logic between the first calculation step of extracting the elements representing the pores, the attributes of each element of the unprocessed 3D image, and the attributes of each element of the filled-in 3D image located at the same coordinates as each element. A second calculation step of executing a sum (NOR) operation and extracting an element representing the outer peripheral portion from the elements of the unprocessed three-dimensional image based on the result of the negative logical sum operation, and the unprocessed three-dimensional image. In the entrance portion determination step of determining an element adjacent to the element representing the outer peripheral portion among the elements representing the pores as an element representing the entrance portion of the pores, and the above-mentioned unprocessed three-dimensional image. A through-hole information acquisition step of acquiring the number and distance of through-holes penetrating from one of the entrances of the pores to the other entrances by performing a width-priority search of an element structure representing the pores is provided. It is characterized by that.

本発明によれば、燃料電池用の触媒担体の貫通孔の構造を定量的に評価することができる。 According to the present invention, the structure of through holes of a catalyst carrier for a fuel cell can be quantitatively evaluated.

実施形態の一例における未処理断面像取得工程、穴埋め済断面像作成工程、未処理3次元像作成工程、及び穴埋め済3次元像作成工程を模式的に示す工程図である。It is a process diagram which shows typically the unprocessed cross-sectional image acquisition process, the hole-filled cross-sectional image making process, the unprocessed three-dimensional image making process, and the hole-filled three-dimensional image making process in an example of embodiment. 触媒担体のTEM3次元像における複数の細孔を表す要素構造を模式的に示す図である。It is a figure which shows typically the element structure which represents a plurality of pores in the TEM three-dimensional image of a catalyst carrier. 図2に示す複数の細孔を表す要素構造において、幅優先探索を開始する開始要素として選択された細孔の入口部を表す要素を含む、細孔を表す要素構造及び幅優先探索の関連情報を示す図である。In the element structure representing a plurality of pores shown in FIG. 2, the element structure representing the pores including the element representing the entrance of the pore selected as the starting element for starting the breadth-first search and the related information of the breadth-first search are shown. It is a figure. 図3に示す細孔を表す要素構造の幅優先探索を行う場合のキューを時系列で模式的に示す図である。It is a figure which shows typically the queue in the case of performing the breadth-first search of the element structure representing the pore shown in FIG. 3 in time series. 触媒担体毎の燃料電池セルの発電性能の評価結果を示すグラフである。It is a graph which shows the evaluation result of the power generation performance of the fuel cell for each catalyst carrier. 従来の燃料電池用の触媒担体の構造評価方法を模式的に示す図である。It is a figure which shows typically the structure evaluation method of the catalyst carrier for a conventional fuel cell. 実施例の燃料電池用の触媒担体の構造評価方法による評価結果を模式的に示すグラフである。It is a graph which shows typically the evaluation result by the structure evaluation method of the catalyst carrier for a fuel cell of an Example.

以下、本発明に係る実施形態の燃料電池用の触媒担体の構造評価方法について説明する。 Hereinafter, a method for evaluating the structure of the catalyst carrier for a fuel cell according to the embodiment of the present invention will be described.

実施形態の燃料電池用の触媒担体の構造評価方法は、上記触媒担体の複数の未処理断面像を取得する未処理断面像取得工程と、上記複数の未処理断面像の細孔領域を穴埋めすることで複数の穴埋め済断面像を作成する穴埋め済断面像作成工程と、上記複数の未処理断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、上記触媒担体の内部の充填部を表す各要素の属性が「1」に設定され、上記触媒担体の内部の細孔及び上記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、上記触媒担体の未処理3次元像を作成する未処理3次元像作成工程と、上記複数の穴埋め済断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、上記触媒担体の内部の充填部及び穴埋め部を表す各要素の属性が「1」に設定され、上記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、上記触媒担体の穴埋め済3次元像を作成する穴埋め済3次元像作成工程と、上記未処理3次元像の各要素の属性と該各要素と同一座標に位置する上記穴埋め済3次元像の各要素の属性との排他的論理和(XOR)演算を実行し、上記排他的論理和演算の結果に基づき、上記未処理3次元像の要素のうち上記細孔を表す要素を抽出する第1演算工程と、上記未処理3次元像の各要素の属性と該各要素と同一座標に位置する上記穴埋め済3次元像の各要素の属性との否定論理和(NOR)演算を実行し、上記否定論理和演算の結果に基づき、上記未処理3次元像の要素のうち上記外周部を表す要素を抽出する第2演算工程と、上記未処理3次元像において、上記細孔を表す要素のうち上記外周部を表す要素に隣接する要素を、上記細孔の入口部を表す要素と判定する入口部判定工程と、上記未処理3次元像に含まれる上記細孔を表す要素構造の幅優先探索を行うことにより、上記細孔の一の上記入口部から他の上記入口部まで貫通する貫通孔の数と距離を取得する貫通孔情報取得工程と、を備えることを特徴とする。 The structural evaluation method of the catalyst carrier for the fuel cell of the embodiment includes a step of acquiring a plurality of untreated cross-sectional images of the catalyst carrier and a pore region of the plurality of untreated cross-sectional images. By performing the hole-filled cross-sectional image creation step of creating a plurality of hole-filled cross-sectional images and the process of superimposing the plurality of unprocessed cross-sectional images to construct a three-dimensional image composed of elements that are structural units. , The attribute of each element representing the filling portion inside the catalyst carrier is set to "1", and the attribute of each element representing the pores inside the catalyst carrier and the outer peripheral portion surrounding the catalyst carrier is set to "0". The set untreated three-dimensional image creation step of creating the untreated three-dimensional image of the catalyst carrier and the plurality of hole-filled cross-sectional images are laminated to construct a three-dimensional image composed of elements that are structural units. The attribute of each element representing the filling portion and the filling portion inside the catalyst carrier is set to "1", and the attribute of each element representing the outer peripheral portion surrounding the catalyst carrier is set to "0". The set hole-filled three-dimensional image creation step for creating a hole-filled three-dimensional image of the catalyst carrier, the attributes of each element of the unprocessed three-dimensional image, and the hole-filled 3 located at the same coordinates as each element. An exclusive logical sum (XOR) operation with the attributes of each element of the dimensional image is executed, and based on the result of the exclusive logical sum operation, the element representing the pore is extracted from the elements of the unprocessed three-dimensional image. Performs a negative logical sum (NOR) operation between the first calculation step and the attributes of each element of the unprocessed three-dimensional image and the attributes of each element of the filled-in three-dimensional image located at the same coordinates as each element. Then, based on the result of the negative logical sum operation, the second arithmetic step of extracting the element representing the outer peripheral portion from the elements of the unprocessed three-dimensional image and the unprocessed three-dimensional image represent the pores. Of the elements, an element adjacent to the element representing the outer peripheral portion is determined to be an element representing the entrance portion of the pores, and an entrance portion determination step, and an element structure representing the pores included in the unprocessed three-dimensional image. It is characterized by comprising a through hole information acquisition step of acquiring the number and distance of through holes penetrating from one entrance portion of one of the pores to the other entrance portion by performing a width priority search.

最初に、実施形態の燃料電池用の触媒担体の構造評価方法の一例について説明する。ここで、図1は、実施形態の一例における未処理断面像取得工程、穴埋め済断面像作成工程、未処理3次元像作成工程、及び穴埋め済3次元像作成工程を模式的に示す工程図である。図2は、触媒担体のTEM3次元像における複数の細孔を表す要素構造を模式的に示す図である。図3は、図2に示す複数の細孔を表す要素構造において、幅優先探索を開始する開始要素として選択された細孔の入口部を表す要素を含む、細孔を表す要素構造及び幅優先探索の関連情報を示す図である。図4は、図3に示す細孔を表す要素構造の幅優先探索を行う場合のキューを時系列で模式的に示す図である。 First, an example of the structure evaluation method of the catalyst carrier for the fuel cell of the embodiment will be described. Here, FIG. 1 is a process diagram schematically showing an unprocessed cross-sectional image acquisition step, a hole-filled cross-sectional image creation step, an unprocessed three-dimensional image creation step, and a hole-filled three-dimensional image creation step in an example of the embodiment. is there. FIG. 2 is a diagram schematically showing an element structure representing a plurality of pores in a TEM three-dimensional image of a catalyst carrier. FIG. 3 shows an element structure representing a pore and a breadth-first search including an element representing the entrance of the pore selected as a starting element for starting a breadth-first search in the element structure representing a plurality of pores shown in FIG. It is a figure which shows the related information. FIG. 4 is a diagram schematically showing a queue in the case of performing a breadth-first search of the element structure representing the pores shown in FIG. 3 in chronological order.

本例の構造評価方法では、まず、図1に示すように、評価対象の燃料電池用の触媒担体の複数のTEM断面像(未処理断面像)10Tを取得する(未処理断面像取得工程)。具体的には、触媒担体を所定平面により所定間隔でスライスした際の複数の断面をTEM(透過型電子顕微鏡)でそれぞれ観察することで複数のTEM断面像10Tを取得する。複数のTEM断面像10Tは、触媒担体の内部の材料が充填された部分が表示された充填領域1と、触媒担体の内部の細孔が表示された細孔領域2と、触媒担体を取り囲む部分が表示された外周領域3とを含んでいる。 In the structural evaluation method of this example, first, as shown in FIG. 1, a plurality of TEM cross-sectional images (unprocessed cross-sectional images) 10T of the catalyst carrier for the fuel cell to be evaluated are acquired (unprocessed cross-sectional image acquisition step). .. Specifically, a plurality of TEM cross-sectional images 10T are obtained by observing each of a plurality of cross sections when the catalyst carrier is sliced on a predetermined plane at predetermined intervals with a TEM (transmission electron microscope). The plurality of TEM cross-sectional images 10T show a filling region 1 in which a portion filled with the material inside the catalyst carrier is displayed, a pore region 2 in which pores inside the catalyst carrier are displayed, and a portion surrounding the catalyst carrier. Includes the outer peripheral region 3 in which is displayed.

次に、図1に示すように、複数のTEM断面像10Tの細孔領域2を穴埋めすることで複数の穴埋め済断面像10Aを作成する(穴埋め済断面像作成工程)。具体的には、複数のTEM断面像10Tにおける細孔領域2を、触媒担体の内部の細孔が穴埋めされた部分を表す穴埋め領域4に修正することで、複数の穴埋め済断面像10Aを作成する。複数の穴埋め済断面像10Aは、充填領域1と、穴埋め領域4と、外周領域3とを含んでいる。 Next, as shown in FIG. 1, a plurality of hole-filled cross-sectional images 10A are created by filling the pore regions 2 of the plurality of TEM cross-sectional images 10T (hole-filled cross-sectional image creating step). Specifically, by modifying the pore region 2 in the plurality of TEM cross-sectional images 10T to the fill-in-the-blank region 4 representing the portion in which the pores inside the catalyst carrier are filled, a plurality of fill-in-the-blank cross-sectional images 10A are created. To do. The plurality of hole-filled cross-sectional images 10A include a filling area 1, a hole-filling area 4, and an outer peripheral area 3.

次に、図1に示すように、複数のTEM断面像10Tをこれらの断面像の取得位置等の条件に従って積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、複数のTEM断面像10Tから触媒担体のTEM3次元像100T(未処理3次元像)を作成する(未処理3次元像作成工程)。触媒担体のTEM3次元像100Tは、構造単位である要素から構成されており、触媒担体の内部の材料が充填された充填部を表す部分と、触媒担体の内部の細孔を表す部分と、触媒担体を取り囲む外周部を表す部分とを含んでいる。触媒担体のTEM3次元像100Tの各要素の属性は、複数のTEM断面像10Tの画素に基づき2値化されており、充填部を表す各要素の属性は「1」に設定され、細孔及び外周部を表す各要素の属性は「0」に設定されている。なお、要素の位置は3次元座標で特定され、要素間の距離は各要素の位置から算出できる。 Next, as shown in FIG. 1, a process of stacking a plurality of TEM cross-sectional images 10T according to conditions such as acquisition positions of these cross-sectional images to construct a three-dimensional image composed of elements that are structural units is performed. To create a TEM three-dimensional image 100T (unprocessed three-dimensional image) of the catalyst carrier from a plurality of TEM cross-sectional images 10T (unprocessed three-dimensional image creation step). The TEM three-dimensional image 100T of the catalyst carrier is composed of elements that are structural units, and includes a portion representing a filling portion filled with a material inside the catalyst carrier, a portion representing pores inside the catalyst carrier, and a catalyst. It includes a portion representing an outer peripheral portion surrounding the carrier. The attributes of each element of the TEM three-dimensional image 100T of the catalyst carrier are binarized based on the pixels of a plurality of TEM cross-sectional images 10T, and the attributes of each element representing the filling portion are set to "1", and the pores and the pores are set. The attribute of each element representing the outer peripheral portion is set to "0". The position of the element is specified by three-dimensional coordinates, and the distance between the elements can be calculated from the position of each element.

次に、図1に示すように、複数の穴埋め済断面像10Aを複数のTEM断面像10Tの取得位置等の条件に従って積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、複数の穴埋め済断面像10Aから触媒担体の穴埋め済3次元像100Aを作成する(穴埋め済3次元像作成工程)。触媒担体の穴埋め済3次元像100Aは、構造単位である要素から構成されており、触媒担体の内部の材料が充填された充填部を表す部分と、触媒担体の内部の細孔が穴埋めされた穴埋め部を表す部分と、触媒担体を取り囲む外周部を表す部分とを含んでいる。触媒担体の穴埋め済3次元像100Aの各要素の属性は、複数の穴埋め済断面像10Aの画素に基づき2値化されており、充填部及び穴埋め部を表す各要素の属性は「1」に設定され、外周部を表す各要素の属性は「0」に設定されている。なお、要素の位置は3次元座標で特定され、要素間の距離は各要素の位置から算出できる。 Next, as shown in FIG. 1, a process of stacking a plurality of filled-in-filled cross-sectional images 10A according to conditions such as acquisition positions of a plurality of TEM cross-sectional images 10T to construct a three-dimensional image composed of elements that are structural units. By performing the above, a hole-filled three-dimensional image 100A of the catalyst carrier is created from the plurality of hole-filled cross-sectional images 10A (hole-filled three-dimensional image creation step). The hole-filled three-dimensional image 100A of the catalyst carrier is composed of elements that are structural units, and the portion representing the filling portion filled with the material inside the catalyst carrier and the pores inside the catalyst carrier are filled with holes. It includes a portion representing a hole filling portion and a portion representing an outer peripheral portion surrounding the catalyst carrier. The attributes of each element of the fill-in-the-blank three-dimensional image 100A of the catalyst carrier are binarized based on the pixels of the plurality of fill-in-the-blank cross-sectional images 10A, and the attributes of each element representing the filling portion and the filling portion are set to "1". The attribute of each element representing the outer peripheral portion is set to "0". The position of the element is specified by three-dimensional coordinates, and the distance between the elements can be calculated from the position of each element.

次に、TEM3次元像100Tの各要素の属性と該各要素と同一座標に位置する穴埋め済3次元像100Aの各要素の属性との排他的論理和(XOR)演算を実行し、排他的論理和演算の結果に基づき、TEM3次元像100Tの要素のうち細孔を表す要素を抽出する(第1演算工程)。具体的には、この排他的論理和演算を実行すると、TEM3次元像100Tにおける細孔を表す各要素の属性「0」と穴埋め済3次元像100Aにおける穴埋め部を表す各要素の属性「1」との排他的論理和演算の結果のみが「1」となるので、TEM3次元像100Tの要素のうち、排他的論理和演算の結果が「1」となった座標に位置する要素のみを細孔を表す要素として抽出する。 Next, an exclusive OR (XOR) operation is executed between the attributes of each element of the TEM 3D image 100T and the attributes of each element of the filled-in 3D image 100A located at the same coordinates as the elements, and the exclusive OR is executed. Based on the result of the sum calculation, the element representing the pores is extracted from the elements of the TEM three-dimensional image 100T (first calculation step). Specifically, when this exclusive OR operation is executed, the attribute "0" of each element representing the pores in the TEM three-dimensional image 100T and the attribute "1" of each element representing the fill-in-the-blank portion in the filled-in-filled three-dimensional image 100A. Since only the result of the exclusive OR operation with is "1", only the elements located at the coordinates where the result of the exclusive OR operation is "1" among the elements of the TEM 3D image 100T are pores. Is extracted as an element representing.

次に、TEM3次元像100Tの各要素の属性と該各要素と同一座標に位置する穴埋め済3次元像100Aの各要素の属性との否定論理和(NOR)演算を実行し、否定論理和演算の結果に基づき、TEM3次元像100Tの要素のうち外周部を表す要素を抽出し、外周部を表す要素の属性を「0」から「2」に変更する(第2演算工程)。具体的には、この排他的論理和演算を実行すると、TEM3次元像100Tにおける外周部を表す各要素の属性「0」と穴埋め済3次元像100Aにおける外周部を表す各要素の属性「0」との排他的論理和演算の結果のみが「1」となるので、TEM3次元像100Tの要素のうち、排他的論理和演算の結果が「1」となった座標に位置する要素のみを外周部を表す要素として抽出し、外周部を表す要素の属性を「0」から「2」に変更する。 Next, a NOR operation is performed between the attributes of each element of the TEM 3D image 100T and the attributes of each element of the filled-in 3D image 100A located at the same coordinates as each element, and the NOR operation is performed. Based on the result of, the element representing the outer peripheral portion is extracted from the elements of the TEM three-dimensional image 100T, and the attribute of the element representing the outer peripheral portion is changed from "0" to "2" (second calculation step). Specifically, when this exclusive OR operation is executed, the attribute "0" of each element representing the outer peripheral portion in the TEM three-dimensional image 100T and the attribute "0" of each element representing the outer peripheral portion in the filled-in three-dimensional image 100A. Since only the result of the exclusive OR operation with is "1", only the element located at the coordinate where the result of the exclusive OR operation is "1" among the elements of the TEM 3D image 100T is the outer peripheral portion. The attribute of the element representing the outer peripheral portion is changed from "0" to "2".

次に、TEM3次元像100Tにおいて、細孔を表す要素のうち外周部を表す要素に隣接する要素を、細孔の入口部を表す要素と判定し、細孔の入口部を表す各要素に対して互いに識別可能なIDを割り当てる(入口部判定工程)。具体的には、この段階では、TEM3次元像100Tの要素において、細孔を表す要素の属性が「0」に設定され、かつ充填部を表す各要素の属性が「1」に設定されている上に、外周部を表す要素の属性が「2」に設定されているので、属性が「0」の要素のうち属性が「2」の要素に隣接する要素を、細孔の入口部を表す要素と判定し、細孔の入口部を表す各要素に対して互いに識別可能なIDを割り当てる。 Next, in the TEM three-dimensional image 100T, among the elements representing the pores, the elements adjacent to the elements representing the outer peripheral portion are determined to be the elements representing the entrance portion of the pores, and for each element representing the entrance portion of the pores. And assign IDs that can be identified from each other (entrance determination step). Specifically, at this stage, in the element of the TEM three-dimensional image 100T, the attribute of the element representing the pore is set to "0", and the attribute of each element representing the filling portion is set to "1". Since the attribute of the element representing the outer peripheral portion is set to "2" above, the element adjacent to the element having the attribute "2" among the elements having the attribute "0" represents the entrance portion of the pore. It is determined that it is an element, and an ID that can be distinguished from each other is assigned to each element representing the entrance of the pore.

次に、TEM3次元像100Tに含まれる複数の細孔を表す要素構造の幅優先探索を行うことにより、細孔の一の入口部から他の入口部まで貫通する貫通孔の数及び距離等を取得する(貫通孔情報取得工程)。 Next, by performing a breadth-first search of the element structure representing a plurality of pores included in the TEM three-dimensional image 100T, the number and distance of through holes penetrating from one inlet portion of the pore to the other inlet portion are acquired. (Through hole information acquisition process).

貫通孔情報取得工程では、最初に、図2に示すTEM3次元像100Tにおける複数の細孔を表す要素構造において、複数の細孔の入口部を表す要素のIDの中から、幅優先探索を開始する開始要素とする要素のID「A」を選択する。これにより、開始要素として、IDが「A」の細孔の入口部を表す要素を選択する。続いて、図3及び図4に示すように、該開始要素(IDが「A」の細孔の入口部を表す要素)を含む細孔を表す要素構造の幅優先探索を行う。以下、図3及び図4を参照しながら、該細孔を表す要素構造の幅優先探索を具体的に説明する。 In the through hole information acquisition step, first, in the element structure representing a plurality of pores in the TEM three-dimensional image 100T shown in FIG. 2, breadth-first search is started from the IDs of the elements representing the entrance portions of the plurality of pores. Select the ID "A" of the element to be the start element. As a result, an element representing the entrance of the pore whose ID is "A" is selected as the starting element. Subsequently, as shown in FIGS. 3 and 4, a breadth-first search of the element structure representing the pore including the starting element (element representing the entrance portion of the pore whose ID is “A”) is performed. Hereinafter, the breadth-first search of the element structure representing the pores will be specifically described with reference to FIGS. 3 and 4.

(細孔を表す要素構造の幅優先探索)
細孔を表す要素構造の幅優先探索では、まず、図3に示すように、開始要素(IDが「A」の細孔の入口部を表す要素)を含む細孔を表す要素構造において、開始要素の距離情報を「0」に設定した上で、図4のステップ1に示すように、IDが「A」の開始要素をキュー(待ち行列)の探索候補リストに加え、かつ現要素に設定する。
(Breadth-first search of element structure representing pores)
In the breadth-first search of the element structure representing the pore, first, as shown in FIG. 3, in the element structure representing the pore including the start element (element representing the entrance portion of the pore whose ID is "A"), the start element After setting the distance information of to "0", as shown in step 1 of FIG. 4, the start element having the ID "A" is added to the search candidate list of the queue (queue) and set to the current element. ..

次に、図3に示すように、IDが「A」の現要素の周囲に隣接する未探索要素(探索が済んでいない細孔を表す要素)を探索し、IDが「a」の未探索要素を見つけ、該未探索要素の距離情報を「現要素の距離情報+1」すなわち「1」に設定する。その後、図4のステップ2に示すように、該未探索要素をキューの探索候補リストに後ろから加え、IDが「A」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「a」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, an unsearched element (an element representing a pore that has not been searched) adjacent to the current element having an ID of "A" is searched, and an unsearched element having an ID of "a" is searched. The element is found, and the distance information of the unsearched element is set to "distance information of the current element + 1", that is, "1". After that, as shown in step 2 of FIG. 4, the unsearched element is added to the search candidate list of the queue from the back, and the current element having the ID "A" is set as the searched element from the search candidate list of the queue to the searched list. After moving, by selecting the unsearched element from the front of the search candidate list of the queue, the unsearched element having the ID "a" is selected and set as a new current element.

次に、図3に示すように、IDが「a」の現要素の周囲に隣接する未探索要素を探索し、IDが「b」の未探索要素を見つけ、該未探索要素の距離情報を「現要素の距離情報+1」すなわち「2」に設定する。その後、図4のステップ3に示すように、該未探索要素をキューの探索候補リストに後ろから加え、IDが「a」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「b」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "a" is searched, an unsearched element having an ID of "b" is found, and the distance information of the unsearched element is obtained. Set to "distance information of current element + 1", that is, "2". After that, as shown in step 3 of FIG. 4, the unsearched element is added to the search candidate list of the queue from the back, and the current element having the ID "a" is set as the searched element from the search candidate list of the queue to the searched list. After moving, by selecting the unsearched element from the front of the search candidate list of the queue, the unsearched element having the ID "b" is selected and set as a new current element.

次に、図3に示すように、IDが「b」の現要素の周囲に隣接する未探索要素を探索し、IDが「c」及び「d」の未探索要素を見つけ、これらの未探索要素の距離情報を「現要素の距離情報+1」すなわち「3」に設定する。その後、図4のステップ4に示すように、これらの未探索要素をキューの探索候補リストに後ろから加え、IDが「b」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「c」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, the unsearched elements adjacent to the current element having the ID "b" are searched, the unsearched elements having the IDs "c" and "d" are found, and these unsearched elements are searched. The distance information of the element is set to "distance information of the current element + 1", that is, "3". After that, as shown in step 4 of FIG. 4, these unsearched elements are added to the search candidate list of the queue from the back, and the current element having the ID "b" is set as the searched element and the searched list is searched from the search candidate list of the queue. By selecting an unsearched element from the front of the search candidate list of the queue after moving to, the unsearched element having the ID "c" is selected and set as a new current element.

次に、図3に示すように、IDが「c」の現要素の周囲に隣接する未探索要素を探索し、IDが「e」の未探索要素を見つけ、該未探索要素の距離情報を「現要素の距離情報+1」すなわち「4」に設定する。その後、図4のステップ5に示すように、該未探索要素をキューの探索候補リストに後ろから加え、IDが「c」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「d」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "c" is searched, an unsearched element having an ID of "e" is found, and the distance information of the unsearched element is obtained. Set to "distance information of current element + 1", that is, "4". After that, as shown in step 5 of FIG. 4, the unsearched element is added to the search candidate list of the queue from the back, and the current element having the ID “c” is set as the searched element from the search candidate list of the queue to the searched list. After moving, by selecting the unsearched element from the front of the search candidate list of the queue, the unsearched element having the ID "d" is selected and set as a new current element.

次に、図3に示すように、IDが「d」の現要素の周囲に隣接する未探索要素を探索し、未探索要素として、IDが「B」の細孔の入口部を表す要素を見つけ、該入口部の要素の距離情報を「現要素の距離情報+1」すなわち「4」に設定する。その後、図4のステップ6に示すように、該入口部の要素をキューの探索候補リストに後ろから加え、IDが「d」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「e」の未探索要素を選択して新たな現要素に設定する。さらに、探索で見つけたIDが「B」の該入口部の要素の距離情報「4」を貫通孔の距離情報として含む貫通孔情報1を出力する。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "d" is searched, and as an unsearched element, an element representing the entrance of the pore having an ID of "B" is used. Find and set the distance information of the element at the entrance to "distance information of the current element + 1", that is, "4". After that, as shown in step 6 of FIG. 4, the element of the entrance portion is added to the search candidate list of the queue from the back, and the current element having the ID "d" is set as the searched element and the search list is searched from the search candidate list of the queue. By selecting an unsearched element from the front of the search candidate list of the queue after moving to, the unsearched element having the ID "e" is selected and set as a new current element. Further, the through hole information 1 including the distance information "4" of the element of the entrance portion whose ID is "B" found in the search is output as the distance information of the through hole.

次に、図3に示すように、IDが「e」の現要素の周囲に隣接する未探索要素を探索し、IDが「f」及び「g」の未探索要素を見つけ、これらの未探索要素の距離情報を「現要素の距離情報+1」すなわち「5」に設定する。その後、図4のステップ7に示すように、これらの未探索要素をキューの探索候補リストに後ろから加え、IDが「e」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「B」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, the unsearched elements adjacent to the current element having the ID "e" are searched, the unsearched elements having the IDs "f" and "g" are found, and these unsearched elements are searched. The distance information of the element is set to "distance information of the current element + 1", that is, "5". After that, as shown in step 7 of FIG. 4, these unsearched elements are added to the search candidate list of the queue from the back, and the current element having the ID "e" is set as the searched element and the searched list is searched from the search candidate list of the queue. By selecting the unsearched element from the front of the search candidate list of the queue after moving to, the unsearched element having the ID "B" is selected and set as a new current element.

次に、図3に示すように、IDが「B」の現要素の周囲に隣接する未探索要素を探索しても、未探索要素を見つけることができないので、図4のステップ8に示すように、IDが「B」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「f」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, even if the unsearched element adjacent to the current element having the ID “B” is searched, the unsearched element cannot be found. Therefore, as shown in step 8 of FIG. By moving the current element with the ID "B" from the search candidate list of the queue to the searched list as the searched element, and then selecting the unsearched element from the front of the search candidate list of the queue, the ID becomes ". Select the unsearched element of "f" and set it as a new current element.

次に、図3に示すように、IDが「f」の現要素の周囲に隣接する未探索要素を探索し、IDが「h」の未探索要素を見つけ、該未探索要素の距離情報を「現要素の距離情報+1」すなわち「6」に設定する。その後、図4のステップ9に示すように、該未探索要素をキューの探索候補リストに後ろから加え、IDが「f」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「g」の未探索要素を選択して新たな現要素に設定する。なお、IDが「h」の未探索要素は、細孔を表す要素構造において、末端の要素であるものの細孔の入口部を表す要素ではないので、IDが「h」の未探索要素の距離情報を貫通孔の距離情報として含む貫通孔情報を出力することはない。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "f" is searched, an unsearched element having an ID of "h" is found, and the distance information of the unsearched element is obtained. Set to "distance information of current element + 1", that is, "6". After that, as shown in step 9 of FIG. 4, the unsearched element is added to the search candidate list of the queue from the back, and the current element having the ID "f" is set as the searched element from the search candidate list of the queue to the searched list. After moving, by selecting the unsearched element from the front of the search candidate list of the queue, the unsearched element having the ID "g" is selected and set as a new current element. The unsearched element having an ID of "h" is a terminal element in the element structure representing the pore, but is not an element representing the entrance portion of the pore. Therefore, the distance of the unsearched element having an ID of "h". The through hole information including the information as the through hole distance information is not output.

次に、図3に示すように、IDが「g」の現要素の周囲に隣接する未探索要素を探索し、未探索要素として、IDが「j」の細孔を表す要素及びIDが「C」の細孔の入口部を表す要素を見つけ、該細孔の要素及び該入口部の要素の距離情報を「現要素の距離情報+1」すなわち「6」に設定する。その後、図4のステップ10に示すように、これらの該細孔の要素及び該入口部の要素をキューの探索候補リストに後ろから加え、IDが「g」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「h」の未探索要素を選択して新たな現要素に設定する。さらに、探索で見つけたIDが「C」の該入口部の要素の距離情報「6」を貫通孔の距離情報として含む貫通孔情報2を出力する。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "g" is searched, and as an unsearched element, an element representing a pore having an ID of "j" and an ID having an ID of "j" are ". The element representing the entrance portion of the pore of "C" is found, and the distance information of the element of the pore and the element of the entrance portion is set to "distance information of the current element +1", that is, "6". After that, as shown in step 10 of FIG. 4, these elements of the pores and the elements of the entrance are added from the back to the search candidate list of the queue, and the current element having the ID "g" is queued as the searched element. By moving from the search candidate list of the above to the searched list and then selecting the unsearched element from the front of the search candidate list of the queue, the unsearched element with the ID "h" is selected and set as a new current element. To do. Further, the through hole information 2 including the distance information “6” of the element at the entrance portion whose ID is “C” found in the search is output as the through hole distance information.

次に、図3に示すように、IDが「h」の現要素の周囲に隣接する未探索要素を探索しても、未探索要素を見つけることができないので、図4のステップ11に示すように、IDが「h」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「j」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, even if the unsearched element adjacent to the current element having the ID “h” is searched, the unsearched element cannot be found. Therefore, as shown in step 11 of FIG. By moving the current element with the ID "h" from the search candidate list of the queue to the searched list as the searched element, and then selecting the unsearched element from the front of the search candidate list of the queue, the ID becomes ". Select the unsearched element of "j" and set it as a new current element.

次に、図3に示すように、IDが「j」の現要素の周囲に隣接する未探索要素を探索し、未探索要素として、IDが「D」の細孔の入口部を表す要素を見つけ、該入口部の要素の距離情報を「現要素の距離情報+1」すなわち「7」に設定する。その後、図4のステップ12に示すように、該入口部の要素をキューの探索候補リストに後ろから加え、IDが「j」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「C」の未探索要素を選択して新たな現要素に設定する。さらに、探索で見つけたIDが「D」の該入口部の要素の距離情報「7」を貫通孔の距離情報として含む貫通孔情報3を出力する。 Next, as shown in FIG. 3, an unsearched element adjacent to the current element having an ID of "j" is searched, and as an unsearched element, an element representing the entrance of the pore having an ID of "D" is used. Find and set the distance information of the element at the entrance to "distance information of the current element + 1", that is, "7". After that, as shown in step 12 of FIG. 4, the element of the entrance portion is added to the search candidate list of the queue from the back, and the current element having the ID "j" is set as the searched element and the search list is searched from the search candidate list of the queue. By selecting an unsearched element from the front of the search candidate list of the queue after moving to, the unsearched element having the ID "C" is selected and set as a new current element. Further, the through hole information 3 including the distance information "7" of the element at the entrance portion whose ID is "D" found in the search is output as the through hole distance information.

次に、図3に示すように、IDが「C」の現要素の周囲に隣接する未探索要素を探索しても、未探索要素を見つけることができないので、図4のステップ13に示すように、IDが「C」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、IDが「D」の未探索要素を選択して新たな現要素に設定する。 Next, as shown in FIG. 3, even if the unsearched element adjacent to the current element having the ID “C” is searched, the unsearched element cannot be found. Therefore, as shown in step 13 of FIG. By moving the current element with the ID "C" from the search candidate list of the queue to the searched list as the searched element, and then selecting the unsearched element from the front of the search candidate list of the queue, the ID becomes ". Select the unsearched element of "D" and set it as a new current element.

次に、図3に示すように、IDが「D」の現要素の周囲に隣接する未探索要素を探索しても、未探索要素を見つけることができないので、図4のステップ14に示すように、IDが「D」の現要素を探索済要素としてキューの探索候補リストから探索済リストに移す。これにより、キューの探索候補リストに未探索要素が無くなるので探索を終了する。 Next, as shown in FIG. 3, even if the unsearched element adjacent to the current element having the ID “D” is searched, the unsearched element cannot be found. Therefore, as shown in step 14 of FIG. In addition, the current element whose ID is "D" is moved from the search candidate list of the queue to the searched list as the searched element. As a result, there are no unsearched elements in the search candidate list of the queue, so the search ends.

以上のような開始要素(IDが「A」の細孔の入口部を表す要素)を含む細孔を表す要素構造の幅優先探索を行うことにより、上記貫通孔情報1〜3に基づいて、該細孔が貫通孔であるか否か、該貫通孔の距離、及び該貫通孔の枝分かれ数等の情報を取得することができる。なお、幅優先探索では、貫通孔の距離として、細孔の一の入口部から他の入口部までの最短の距離を取得できる。 By performing a breadth-first search of the element structure representing the pores including the start element (element representing the entrance portion of the pore whose ID is "A") as described above, the said through hole information 1 to 3 Information such as whether or not the pore is a through hole, the distance of the through hole, and the number of branches of the through hole can be obtained. In the breadth-first search, the shortest distance from one entrance of the pore to the other entrance can be obtained as the distance of the through hole.

貫通孔情報取得工程では、図2に示すTEM3次元像100Tにおける複数の細孔を表す要素構造において、複数の細孔の入口部を表す要素のIDの中から、幅優先探索を開始する開始要素とする要素のIDを順番に選択することで、複数の細孔を表す要素構造のそれぞれについて、幅優先探索を行う。これにより、TEM3次元像100Tに3次元像が構築された、評価対象の燃料電池用の触媒担体について、細孔の入口部の数、貫通孔の数、各貫通孔の距離、各貫通孔の枝分かれ数、及び貫通しない細孔の数等のような貫通孔及び細孔の構造の定量的な情報を取得することができる。 In the through-hole information acquisition step, in the element structure representing a plurality of pores in the TEM three-dimensional image 100T shown in FIG. 2, a breadth-first search is started from among the IDs of the elements representing the entrances of the plurality of pores. By selecting the IDs of the elements to be used in order, breadth-first search is performed for each of the element structures representing the plurality of pores. As a result, regarding the catalyst carrier for the fuel cell to be evaluated, the three-dimensional image was constructed on the TEM three-dimensional image 100T, the number of pore inlets, the number of through holes, the distance of each through hole, and each through hole. Quantitative information on the structure of through-holes and pores, such as the number of branches and the number of non-penetrating pores, can be obtained.

このため、本例の燃料電池用の触媒担体の構造評価方法では、これらの貫通孔及び細孔の構造の定量的な情報を取得することにより、貫通孔及び細孔の構造を定量的に評価することができる。 Therefore, in the structure evaluation method of the catalyst carrier for the fuel cell of this example, the structures of the through holes and the pores are quantitatively evaluated by acquiring the quantitative information of the structures of the through holes and the pores. can do.

従って、実施形態の燃料電池用の触媒担体の構造評価方法によれば、本例のように、燃料電池用の触媒担体の貫通孔の構造を定量的に評価することができる。このため、貫通孔の構造の定量的な評価に基づき、燃料電池の発電性能を推定することができる。 Therefore, according to the method for evaluating the structure of the catalyst carrier for the fuel cell of the embodiment, the structure of the through hole of the catalyst carrier for the fuel cell can be quantitatively evaluated as in this example. Therefore, the power generation performance of the fuel cell can be estimated based on the quantitative evaluation of the structure of the through hole.

続いて、実施形態の燃料電池用の触媒担体の構造評価方法における工程の条件等を詳細に説明する。 Subsequently, the process conditions and the like in the structural evaluation method of the catalyst carrier for the fuel cell of the embodiment will be described in detail.

上記未処理断面像取得工程において触媒担体の複数の未処理断面像を取得する方法としては、上記貫通孔情報取得工程で細孔を表す要素構造の幅優先探索を行うことができる未処理3次元像を構築可能な複数の未処理断面像を取得できれば特に限定されないが、例えば、上記例のように、触媒担体を所定平面により所定間隔でスライスした際の複数の断面をTEM(透過型電子顕微鏡)でそれぞれ観察することで複数のTEM断面像を取得する方法等が挙げられる。 As a method of acquiring a plurality of untreated cross-sectional images of the catalyst carrier in the untreated cross-sectional image acquisition step, an untreated three-dimensional image capable of performing a width priority search of an element structure representing a pore in the through hole information acquisition step. It is not particularly limited as long as a plurality of untreated cross-sectional images capable of constructing the above can be obtained, but for example, as in the above example, a plurality of cross-sections when the catalyst carrier is sliced by a predetermined plane at predetermined intervals are TEM (transmission electron microscope). A method of obtaining a plurality of TEM cross-sectional images by observing each of them can be mentioned.

上記穴埋め済断面像作成工程においては、具体的には、上記例のように、上記複数の未処理断面像における触媒担体の内部の細孔が表示された細孔領域を、触媒担体の内部の細孔が穴埋めされた部分を表す穴埋め領域に修正することで、複数の穴埋め済断面像を作成する。 In the step of creating the hole-filled cross-sectional image, specifically, as in the above example, the pore region in which the pores inside the catalyst carrier in the plurality of untreated cross-sectional images are displayed is formed inside the catalyst carrier. A plurality of hole-filled cross-sectional images are created by modifying the hole-filled area to represent the part where the pores are filled.

上記貫通孔情報取得工程において、上記例のように、上記未処理3次元像に含まれる上記細孔を表す要素構造の幅優先探索を行う手順は、以下の通りである。 In the through hole information acquisition step, as in the above example, the procedure for performing a breadth-first search for the element structure representing the pores included in the untreated three-dimensional image is as follows.

(1)触媒担体の未処理3次元像における複数の細孔を表す要素構造において、IDで互いに識別される複数の細孔の入口部を表す要素のIDの中から、幅優先探索を開始する開始要素とする要素のIDを選択する。
(2)開始要素(IDが選択された細孔の入口部を表す要素)を含む細孔を表す要素構造において、開始要素の距離情報を「0」に設定した上で、開始要素をキュー(待ち行列)の探索候補リストに加え、かつ現要素に設定する。
(3)現要素の周囲に隣接する未探索要素(探索が済んでいない細孔を表す要素)を探索し、未探索要素を見つけた場合には、該未探索要素の距離情報を「現要素の距離情報+1」に設定する。その後、該未探索要素をキューの探索候補リストに後ろから加え、現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、該未探索要素を選択して新たな現要素に設定する。
(4)現要素の周囲に隣接する未探索要素を探索した際に、未探索要素として、開始要素とは異なる細孔の入口部を表す要素を見つけた場合には、該入口部の要素の距離情報を「現要素の距離情報+1」に設定する。その後、該入口部の要素の距離情報を貫通孔の距離情報として含む貫通孔情報を出力する。
(5)現要素の周囲に隣接する未探索要素を探索し、未探索要素を見つけることができない場合には、現要素を探索済要素としてキューの探索候補リストから探索済リストに移した上で、キューの探索候補リストの前から未探索要素を選択することで、該未探索要素を選択して新たな現要素に設定する。
(6)キューの探索候補リストに未探索要素が無くなった場合には探索を終了する。
(1) In the element structure representing a plurality of pores in the untreated three-dimensional image of the catalyst carrier, the breadth-first search is started from the IDs of the elements representing the entrances of the plurality of pores identified by the IDs. Select the ID of the element to be the element.
(2) In the element structure representing the pores including the start element (the element representing the entrance of the pore whose ID is selected), the distance information of the start element is set to "0", and then the start element is queued ( In addition to the search candidate list of the queue), and set it in the current element.
(3) When an unsearched element (an element representing a pore that has not been searched) adjacent to the periphery of the current element is searched and an unsearched element is found, the distance information of the unsearched element is used as the "current element". Distance information +1 ”. After that, the unsearched element is added to the search candidate list of the queue from the back, the current element is moved from the search candidate list of the queue to the searched list as the searched element, and then the unsearched element is moved from the front of the search candidate list of the queue. By selecting, the unsearched element is selected and set as a new current element.
(4) When searching for an unsearched element adjacent to the periphery of the current element, if an element representing the entrance portion of the pore different from the starting element is found as the unsearched element, the element of the entrance portion is found. Set the distance information to "distance information of the current element + 1". After that, the through-hole information including the distance information of the element of the inlet portion as the distance information of the through-hole is output.
(5) Search for unsearched elements adjacent to the current element, and if the unsearched element cannot be found, move the current element as a searched element from the search candidate list of the queue to the searched list. By selecting an unsearched element from the front of the search candidate list of the queue, the unsearched element is selected and set as a new current element.
(6) When there are no unsearched elements in the search candidate list of the queue, the search ends.

以下、実施例及び比較例を挙げて、本発明に係る実施形態をさらに具体的に説明する。 Hereinafter, embodiments according to the present invention will be described in more detail with reference to Examples and Comparative Examples.

[比較例]
比較例として従来の燃料電池用の触媒担体の構造評価方法を説明する。
図5は、触媒担体毎の燃料電池セルの発電性能の評価結果を示すグラフである。図6は、従来の燃料電池用の触媒担体の構造評価方法を模式的に示す図である。
[Comparison example]
As a comparative example, a method for evaluating the structure of a conventional catalyst carrier for a fuel cell will be described.
FIG. 5 is a graph showing the evaluation results of the power generation performance of the fuel cell for each catalyst carrier. FIG. 6 is a diagram schematically showing a method for evaluating the structure of a conventional catalyst carrier for a fuel cell.

従来の燃料電池用の触媒担体の構造評価方法では、図5に示すような触媒担体1及び触媒担体2を触媒層に用いた燃料電池セルの発電性能を決める要因となる触媒担体の構造を評価するために、図6に示すように、外観観察に基づいた定性的な評価を行った。具体的には、電子顕微鏡等を用いた外観観察に基づいて、触媒担体1は細孔が多く貫通孔の距離が短く見えるから、触媒担体1を触媒層に用いた燃料電池セルの発電性能は低くなり、触媒担体2は細孔が少なく貫通孔の距離が長く見えるから、触媒担体2を触媒層に用いた燃料電池セルの発電性能は高くなると評価した。 In the conventional method for evaluating the structure of a catalyst carrier for a fuel cell, the structure of the catalyst carrier that is a factor that determines the power generation performance of the fuel cell using the catalyst carrier 1 and the catalyst carrier 2 as the catalyst layer as shown in FIG. 5 is evaluated. Therefore, as shown in FIG. 6, a qualitative evaluation based on the appearance observation was performed. Specifically, based on appearance observation using an electron microscope or the like, the catalyst carrier 1 has many pores and the distance between the through holes seems to be short. Therefore, the power generation performance of the fuel cell using the catalyst carrier 1 as the catalyst layer is high. It was evaluated that the power generation performance of the fuel cell using the catalyst carrier 2 as the catalyst layer would be high because the catalyst carrier 2 had few pores and the distance between the through holes seemed to be long.

[実施例]
実施例の燃料電池用の触媒担体の構造評価方法を説明する。
図7(a)〜図7(c)は、実施例の燃料電池用の触媒担体の構造評価方法による評価結果を模式的に示すグラフである。
[Example]
A method for evaluating the structure of the catalyst carrier for the fuel cell of the example will be described.
7 (a) to 7 (c) are graphs schematically showing the evaluation results by the structural evaluation method of the catalyst carrier for the fuel cell of the example.

実施例の燃料電池用の触媒担体の構造評価方法では、触媒担体1及び触媒担体2について、例えば、図7(a)に示すように、細孔の入口部の数を求めた上で、さらに、図7(b)及び図7(c)に示すように、細孔のうち一の入口部から他の入口部まで貫通する貫通孔の数、及び貫通孔の距離のヒストグラム(貫通孔の距離の階級毎の貫通孔の数を示すヒストグラム)を求めた。これにより、触媒担体1及び触媒担体2の貫通孔の構造を定量的に評価することができた。さらに、これらの貫通孔の構造の定量的な評価と、触媒担体1及び触媒担体2を触媒層に用いた燃料電池セルの発電性能とを紐付けて評価することができた。 In the method for evaluating the structure of the catalyst carrier for the fuel cell of the embodiment, for the catalyst carrier 1 and the catalyst carrier 2, for example, as shown in FIG. 7A, after determining the number of pore inlets, the catalyst carrier 1 and the catalyst carrier 2 are further evaluated. , 7 (b) and 7 (c), a histogram of the number of through-holes penetrating from one inlet to the other of the pores, and the distance of the through-holes (distance of through-holes). (Histogram showing the number of through holes for each class) was obtained. As a result, the structures of the through holes of the catalyst carrier 1 and the catalyst carrier 2 could be quantitatively evaluated. Further, the quantitative evaluation of the structure of these through holes could be evaluated in association with the power generation performance of the fuel cell using the catalyst carrier 1 and the catalyst carrier 2 as the catalyst layer.

以上、本発明に係る実施形態について詳述したが、本発明は、上記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although the embodiments according to the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various aspects are described within the scope of the claims as long as the spirit of the present invention is not deviated. It is possible to make design changes.

10T TEM断面像
10A 穴埋め済断面像
100T TEM3次元像
100A 穴埋め済3次元像
10T TEM cross-sectional image 10A Hole-filled cross-section image 100T TEM three-dimensional image 100A Hole-filled three-dimensional image

Claims (1)

燃料電池用の触媒担体の構造評価方法であって、
前記触媒担体の複数の未処理断面像を取得する未処理断面像取得工程と、
前記複数の未処理断面像の細孔領域を穴埋めすることで複数の穴埋め済断面像を作成する穴埋め済断面像作成工程と、
前記複数の未処理断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、前記触媒担体の内部の充填部を表す各要素の属性が「1」に設定され、前記触媒担体の内部の細孔及び前記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、前記触媒担体の未処理3次元像を作成する未処理3次元像作成工程と、
前記複数の穴埋め済断面像を積層し、構造単位である要素から構成される3次元像を構築する処理を行うことにより、前記触媒担体の内部の充填部及び穴埋め部を表す各要素の属性が「1」に設定され、前記触媒担体を取り囲む外周部を表す各要素の属性が「0」に設定された、前記触媒担体の穴埋め済3次元像を作成する穴埋め済3次元像作成工程と、
前記未処理3次元像の各要素の属性と該各要素と同一座標に位置する前記穴埋め済3次元像の各要素の属性との排他的論理和(XOR)演算を実行し、前記排他的論理和演算の結果に基づき、前記未処理3次元像の要素のうち前記細孔を表す要素を抽出する第1演算工程と、
前記未処理3次元像の各要素の属性と該各要素と同一座標に位置する前記穴埋め済3次元像の各要素の属性との否定論理和(NOR)演算を実行し、前記否定論理和演算の結果に基づき、前記未処理3次元像の要素のうち前記外周部を表す要素を抽出する第2演算工程と、
前記未処理3次元像において、前記細孔を表す要素のうち前記外周部を表す要素に隣接する要素を、前記細孔の入口部を表す要素と判定する入口部判定工程と、
前記未処理3次元像に含まれる前記細孔を表す要素構造の幅優先探索を行うことにより、前記細孔の一の前記入口部から他の前記入口部まで貫通する貫通孔の数と距離を取得する貫通孔情報取得工程と、
を備えることを特徴とする燃料電池用の触媒担体の構造評価方法。
A method for evaluating the structure of catalyst carriers for fuel cells.
An untreated cross-sectional image acquisition step of acquiring a plurality of untreated cross-sectional images of the catalyst carrier, and
A hole-filled cross-sectional image creation step of creating a plurality of hole-filled cross-sectional images by filling the pore regions of the plurality of unprocessed cross-sectional images.
By laminating the plurality of untreated cross-sectional images and performing a process of constructing a three-dimensional image composed of elements that are structural units, the attribute of each element representing the filling portion inside the catalyst carrier is "1". To create an untreated three-dimensional image of the catalyst carrier, the attributes of each element representing the pores inside the catalyst carrier and the outer peripheral portion surrounding the catalyst carrier are set to "0". Dimensional image creation process and
By stacking the plurality of filled-in-filled cross-sectional images and performing a process of constructing a three-dimensional image composed of elements that are structural units, the attributes of each element representing the filled portion and the filled-in portion inside the catalyst carrier can be changed. A hole-filled three-dimensional image creation step for creating a hole-filled three-dimensional image of the catalyst carrier, which is set to "1" and the attribute of each element representing the outer peripheral portion surrounding the catalyst carrier is set to "0".
An exclusive OR (XOR) operation is performed between the attributes of each element of the unprocessed three-dimensional image and the attributes of each element of the filled-in three-dimensional image located at the same coordinates as the elements, and the exclusive OR is executed. Based on the result of the sum calculation, the first calculation step of extracting the element representing the pore among the elements of the unprocessed three-dimensional image, and
A NOR operation is performed on the attributes of each element of the unprocessed three-dimensional image and the attributes of each element of the filled-in-filled three-dimensional image located at the same coordinates as the elements. The second calculation step of extracting the element representing the outer peripheral portion from the elements of the unprocessed three-dimensional image based on the result of
In the untreated three-dimensional image, an entrance portion determination step of determining an element adjacent to an element representing the outer peripheral portion among the elements representing the pores as an element representing the entrance portion of the pores
By performing a breadth-first search of the element structure representing the pores included in the unprocessed three-dimensional image, the number and distance of through holes penetrating from the entrance portion of one of the pores to the other entrance portion are obtained. Through hole information acquisition process and
A method for evaluating the structure of a catalyst carrier for a fuel cell.
JP2019231408A 2019-12-23 2019-12-23 Method for evaluating structure of catalyst carrier for fuel cells Pending JP2021099270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231408A JP2021099270A (en) 2019-12-23 2019-12-23 Method for evaluating structure of catalyst carrier for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231408A JP2021099270A (en) 2019-12-23 2019-12-23 Method for evaluating structure of catalyst carrier for fuel cells

Publications (1)

Publication Number Publication Date
JP2021099270A true JP2021099270A (en) 2021-07-01

Family

ID=76541049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231408A Pending JP2021099270A (en) 2019-12-23 2019-12-23 Method for evaluating structure of catalyst carrier for fuel cells

Country Status (1)

Country Link
JP (1) JP2021099270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071321A1 (en) * 2020-09-29 2022-04-07 エヌ・イー ケムキャット株式会社 Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
WO2022071320A1 (en) * 2020-09-29 2022-04-07 エヌ・イー ケムキャット株式会社 Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071321A1 (en) * 2020-09-29 2022-04-07 エヌ・イー ケムキャット株式会社 Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
WO2022071320A1 (en) * 2020-09-29 2022-04-07 エヌ・イー ケムキャット株式会社 Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack

Similar Documents

Publication Publication Date Title
JP2021099270A (en) Method for evaluating structure of catalyst carrier for fuel cells
CN110176280B (en) Method for describing crystal structure of material and application thereof
CN105793848B (en) Computer-implemented method including modeling procedure
CN107358535B (en) Community discovery method and device
CN109408046B (en) Shortest-path Web service combination method based on graph
CN110275929B (en) Candidate road section screening method based on grid segmentation and grid segmentation method
KR101275834B1 (en) Method of miming Top-K important patterns
JP2019159959A (en) Inspection system, identification system, and learning data generation device
Seki et al. The collapse of the friendster network started from the center of the core
US20150269284A1 (en) Intelligent chamfer recognition in cad models
Bhardwaj et al. A novel genetic programming based classifier design using a new constructive crossover operator with a local search technique
CN117151922A (en) Knowledge-graph-based part processing process route generation method and device
JP2019087107A (en) Simulation method, program, and device
CN114092379A (en) Wafer defect data clustering method and device
CN115061836B (en) Micro-service splitting method based on graph embedding algorithm for interface layer
Gueréndel et al. Creating small but meaningful representations of digital pathology images
EP2926244B1 (en) Method and apparatus for creating 3d model
Kaveh et al. A guided tabu search for profile optimization of finite element models
JP2017004052A (en) Learning device, method, and program
Conde-Céspedes et al. Approximation of the Maximal Alpha--Consensus Local Community Detection Problem in Complex Networks
Verbeek et al. On Petri-net synthesis and attribute-based visualization
Liang et al. A Clustering Method Based on Neighborhood Chain
Khan et al. A new and fast approximation algorithm for vertex cover using a maximum independent set (VCUMI)
Wowczko Density-based clustering with DBSCAN and OPTICS
CN115456099A (en) High-quality track depth generation method meeting difference privacy