JP2021096775A - 学習方法、学習プログラムおよび情報処理装置 - Google Patents

学習方法、学習プログラムおよび情報処理装置 Download PDF

Info

Publication number
JP2021096775A
JP2021096775A JP2019229399A JP2019229399A JP2021096775A JP 2021096775 A JP2021096775 A JP 2021096775A JP 2019229399 A JP2019229399 A JP 2019229399A JP 2019229399 A JP2019229399 A JP 2019229399A JP 2021096775 A JP2021096775 A JP 2021096775A
Authority
JP
Japan
Prior art keywords
learning
data
training data
teacher label
clustering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019229399A
Other languages
English (en)
Inventor
雄介 大木
Yusuke Oki
雄介 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019229399A priority Critical patent/JP2021096775A/ja
Priority to US17/121,013 priority patent/US20210192392A1/en
Publication of JP2021096775A publication Critical patent/JP2021096775A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

【課題】分類精度の良い決定木を作成する。【解決手段】実施形態の学習方法は、取得する処理と、算出する処理と、クラスタリングする処理と、付加する処理と、実行する処理とをコンピュータが実行する。取得する処理は、非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得する。算出する処理は、取得した学習済みモデルを用いて学習データを分類するとともに、学習データについての分類の結果が得られた要因に関するスコアを算出する。クラスタリングする処理は、算出したスコアに基づいて学習データをクラスタリングする。付加する処理は、クラスタリングによるクラスタに応じて第2の教師ラベルを学習データに付加する。実行する処理は、学習データと、付加した第2の教師ラベルとを用いて決定木の教師あり学習を実行する。【選択図】図10

Description

本発明の実施形態は、学習技術に関する。
従来、非線形な性質を含むデータの分類問題については、機械学習技術を用いた学習済みモデルによる分類が知られている。また、どのような論理によって分類結果が得られたかの解釈性が求められるような人事や金融領域への適用においては、分類結果に対する解釈性の高いモデルである決定木を用いて、非線形な性質を有するデータを分類する従来技術が知られている。
特開2010−9177号公報 特開2016−109495号公報
しかしながら、上記の従来技術における決定木の分類では、勾配ブースティング木(GBT)、ニューラルネットワークなどの他のモデルと比較して解釈性は高いが分類精度が劣るという問題がある。
1つの側面では、分類精度の良い決定木を作成することができる学習方法、学習プログラムおよび情報処理装置を提供することを目的とする。
1つの案では、学習方法は、取得する処理と、算出する処理と、クラスタリングする処理と、付加する処理と、実行する処理とをコンピュータが実行する。取得する処理は、非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得する。算出する処理は、取得した学習済みモデルを用いて学習データを分類するとともに、学習データについての分類の結果が得られた要因に関するスコアを算出する。クラスタリングする処理は、算出したスコアに基づいて学習データをクラスタリングする。付加する処理は、クラスタリングによるクラスタに応じて第2の教師ラベルを学習データに付加する。実行する処理は、学習データと、付加した第2の教師ラベルとを用いて決定木の教師あり学習を実行する。
分類精度の良い決定木を作成することができる。
図1は、システム構成の一例を示すブロック図である。 図2は、ホスト学習装置およびクライアント学習装置における動作例を示すフローチャートである。 図3は、教師あり学習による学習モデルを説明する説明図である。 図4は、学習モデルでのデータ分類を説明する説明図である。 図5は、学習データのクラスタリング処理を例示するフローチャートである。 図6は、要因距離行列と誤差行列の一例を示す説明図である。 図7Aは、誤差行列への影響度の評価を説明する説明図である。 図7Bは、誤差行列への影響度の評価を説明する説明図である。 図7Cは、誤差行列への影響度に応じたデータ消去を説明する説明図である。 図8は、学習データのクラスタリングを説明する説明図である。 図9は、新たな学習データの生成を説明する説明図である。 図10は、決定木の作成を説明する説明図である。 図11は、従来技術と本実施形態との比較を説明する説明図である。 図12は、従来技術と本実施形態との比較を説明する説明図である。 図13は、プログラムを実行するコンピュータの一例を示すブロック図である。
以下、図面を参照して、実施形態にかかる学習方法、学習プログラムおよび情報処理装置を説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。なお、以下の実施形態で説明する学習方法、学習プログラムおよび情報処理装置は、一例を示すに過ぎず、実施形態を限定するものではない。また、以下の各実施形態は、矛盾しない範囲内で適宜組みあわせてもよい。
図1は、システム構成の一例を示すブロック図である。図1に示すように、情報処理システム1は、ホスト学習装置2と、クライアント学習装置3とを有する。情報処理システム1では、ホスト学習装置2と、クライアント学習装置3とにより、教師ラベル10B、11Bが付与された学習データ10A、11Aでの教師あり学習を行う。次いで、情報処理システム1では、教師あり学習により得られたモデルを用いて、非線形な性質を含むデータである分類対象データ12を分類して分類結果13を得る。
なお、本実施形態ではホスト学習装置2と、クライアント学習装置3とを分けたシステム構成を例示するが、ホスト学習装置2およびクライアント学習装置3は、一つの学習装置であってもよい。すなわち、情報処理システム1は、一つの学習装置で構成されていてもよく、例えば情報処理装置の一例である。
また、本実施形態では、非線形な性質を含むデータの一例である受験者の成績から入学試験等の試験の合否を分類するケースを例示して説明する。すなわち、情報処理システム1は、受験者における国語、英語などの成績を分類対象データ12として情報処理システム1に入力し、その受験者における入学試験等の試験の合否を分類結果13として得るものとする。
また、学習データ10A、11Aは、サンプルとする受験者ごとの国語、英語などの成績である。ここで、学習データ11Aと、分類対象データ12とは同じデータ形式とする。例えば、学習データ11Aがサンプルとする受験者の英語と国語の成績データ(ベクトルデータ)である場合、分類対象データ12も対象者の英語と国語の成績データ(ベクトルデータ)とする。
ただし、学習データ10Aと学習データ11Aとは、サンプルとする受験者が同一であればよく、データ形式は異なっていてもよい。例えば、学習データ10Aはサンプルとする受験者の英語と国語の答案の画像データであり、学習データ11Aはサンプルとする受験者の英語と国語の成績データ(ベクトルデータ)であってもよい。なお、本実施形態では、学習データ10Aと学習データ11Aとは完全に同じデータであるものとする。すなわち、学習データ10A、11Aは、ともにサンプルとする受験者(Aさん、Bさん、…Zさん)の英語と国語の成績データであるものとする。
ホスト学習装置2は、ハイパーパラメータ調整部21、学習部22、推論部23、クラスタリング実施部24および作成部25を有する。
ハイパーパラメータ調整部21は、学習データ10Aを用いた機械学習が過学習とならないように、バッチサイズ、イテレーション数、エポック数などの機械学習に関するハイパーパラメータを調整する処理部である。具体的には、ハイパーパラメータ調整部21は、学習データ10Aの交差検証などにより、バッチサイズ、イテレーション数、エポック数などのハイパーパラメータのチューニングを行う。
学習部22は、学習データ10Aを用いた機械学習により分類を行う学習モデルを作成する処理部である。具体的には、学習部22は、学習データ10Aと、学習データ10Aに正解(例えばサンプルとする受験者の合否)として付与された教師ラベル10Bとをもとに、公知の教師あり学習を行うことで勾配ブースティング木(GBT)、ニューラルネットワークなどの学習モデルを作成する。すなわち、学習部22は、取得部の一例である。
推論部23は、学習部22が作成した学習モデルを用いた推論(分類)を行う処理部である。具体的には、推論部23は、学習部22が作成した学習モデルで学習データ10Aの分類を行う。例えば、推論部23は、学習部22が作成した学習モデルに学習データ10Aにおけるサンプルとする受験者それぞれの成績データを入力することで、受験者それぞれの合否の確率を分類スコアとして得る。次いで、推論部23は、得られた分類スコアをもとに、受験者それぞれの合否の分類を行う。
また、推論部23は、学習データ10Aにおいて分類結果が得られた要因に関するスコア(以下、要因スコア)を算出する。具体的には、推論部23は、機械学習モデルが行う分類についてどのような根拠でその分類を行ったかを解釈するLIME(Local Interpretable Model-agnostic Explanations)、SHAP(SHapley Additive exPlanations)等の公知の技術を用いることで要因スコアを算出する。すなわち、推論部23は、算出部の一例である。
クラスタリング実施部24は、推論部23が算出した要因スコアを用いて学習データ10Aをクラスタリングする処理部である。具体的には、クラスタリング実施部24は、推論部23が算出した要因スコアをもとに、似た要因を持つ学習データ10A同士をまとめ上げて、学習データ10Aを複数のクラスタに分ける。
作成部25は、学習データ10Aに正解として付与された教師ラベル10Bを、クラスタリング実施部24によるクラスタリングによるクラスタに基づいて教師ラベル11Bに変更する処理部である。具体的には、作成部25は、学習データ10Aのサンプルとする受験者それぞれに付与された正解(合否)を示す教師ラベル10Bについて、クラスタリング実施部24により分けられた複数のクラスタの中のいずれのクラスタに含まれるかを示すラベルに変更した教師ラベル11Bを作成する。また、作成部25は、教師ラベル10Bから教師ラベル11Bへの変更前後の対応関係を示すラベル対応情報11Cを作成する。
クライアント学習装置3は、ハイパーパラメータ調整部31、学習部32および推論部33を有する。
ハイパーパラメータ調整部31は、学習データ11Aを用いた機械学習が過学習とならないように、バッチサイズ、イテレーション数、エポック数などの機械学習に関するハイパーパラメータを調整する処理部である。具体的には、ハイパーパラメータ調整部21は、学習データ11Aの交差検証などにより、バッチサイズ、イテレーション数、エポック数などのハイパーパラメータのチューニングを行う。
学習部32は、学習データ11Aと、教師ラベル10Bより変更した教師ラベル11Bとを用いて決定木に関する公知の教師あり学習を行う処理部である。具体的には、学習部32が学習する決定木は、複数のノードおよび各ノードを接続するエッジから構成され、中間の各ノードには分岐条件(例えば所定のデータ項目における条件式)が対応付けられる。また、決定木における終端の各ノードには教師ラベル11Bの各ラベル、すなわちクラスタリング実施部24のクラスタリングによるクラスタそれぞれが対応付けられる。
学習部32は、決定木に関する公知の教師あり学習により、学習データ11Aのサンプルとする受験者それぞれについて、教師ラベル11Bに付与されたラベルに対応する終端のノードに至るように中間の各ノードの分岐条件を決定することで決定木を生成する。
また、学習部32は、教師ラベル10Bから教師ラベル11Bに変更した際の対応関係を示すラベル対応情報11Cに基づき、学習した決定木における終端のノードの置き換えを行う。具体的には、学習部32は、学習した決定木における、教師ラベル11Bの各ラベルに対応する終端のノードを、ラベル対応情報11Cが示す対応関係により教師ラベル10Bのラベル(例えば受験者の合否)に置き換える。これにより、学習した決定木による分類では、中間の各ノードの分岐条件によって終端のノードまで辿ることで、教師ラベル10Bのラベルに対応する分類結果(例えば受験者の合否)を得ることができる。
推論部33は、分類対象データ12について、学習部32で学習した決定木を用いた推論(分類)を行う処理部である。具体的には、推論部33は、学習部32で学習した決定木における中間の各ノードの分岐条件より分類対象データ12に該当する条件のエッジを進み、終端のノードまで辿ることで分類結果13を得る。
図2は、ホスト学習装置2およびクライアント学習装置3における動作例を示すフローチャートである。図2に示すように、処理が開始されると、学習部22は、学習データ10Aと、学習データ10Aに正解として付与された教師ラベル10Bとによる学習モデルの教師あり学習を行う(S1)。
図3は、教師あり学習による学習モデルを説明する説明図である。図3の左側は、学習データ10Aに含まれる、サンプルとする受験者それぞれのデータd1についての、国語の成績(x)と英語の成績(x)の平面における分布を示している。なお、データd1における「1」または「0」は、教師ラベル10Bとして付与された合否のラベルを示し、「1」は合格者、「0」は不合格者であることを示している。
図3に示すように、学習部22は、合格者と不合格者とを分類する勾配ブースティング木(GBT)の学習モデルM1における境界k1が真の境界k2により近づけるように、学習モデルM1における重み(a、a…a)を調整して学習モデルM1を求める。
図2に戻り、S1に次いで、推論部23は、学習部22が作成した学習モデルM1で学習データ10Aの分類を行い、学習データ10Aに含まれるサンプルとする受験者それぞれの分類スコアを算出する(S2)。
図4は、学習モデルM1でのデータ分類を説明する説明図である。図4に示すように、学習部22は、「Aさん」、「Bさん」…「Zさん」それぞれの受験者d11における成績(国語)d12と、成績(英語)d13とを学習モデルM1に入力することで、受験者d11の合否の分類に関する不合格確率d14および合格確率d15の出力を得る。学習部22は、得られた不合格確率d14および合格確率d15をもとに、分類結果d16を判定する。具体的には、学習部22は、合格確率d15が不合格確率d14よりも大きい場合は合格を示す「1」を分類結果d16とし、合格確率d15が不合格確率d14よりも大きくない場合は、不合格を示す「0」を分類結果d16とする。
図2に戻り、推論部23は、学習モデルM1が行う分類の要因を調べるLIME、SHAPなどの公知の技術を用いて、分類スコアが得られた要因(要因スコア)の算出を行う(S3)。
例えば、「Aさん」について、成績が(英語の成績,国語の成績)=(6.5,7.2)であり、この成績を学習モデルM1に入力することで合格「1」と分類されているものとする。推論部23は、LIME、SHAPなどの公知の技術により、分類の要因を示す要因スコアとして、英語、国語それぞれの成績が「Aさん」の合格に寄与する寄与度を得る。例えば、推論部23は、「Aさん」の合格の要因スコアとして、英語、国語それぞれの成績の寄与度である(英語の成績,国語の成績)=(3.5,4.5)を得る。この要因スコアにより、「Aさん」の合格については、英語よりも国語の成績のほうが寄与していることがわかる。
次いで、クラスタリング実施部24は、推論部23が算出した要因スコアを用いて学習データ10Aのクラスタリングを行う(S4)。図5は、学習データ10Aのクラスタリング処理を例示するフローチャートである。
図5に示すように、クラスタリング処理が開始されると、クラスタリング実施部24は、要因距離行列と、誤差行列とを定義する(S10)。
図6は、要因距離行列と誤差行列の一例を示す説明図である。図6に示すように、要因距離行列40は、学習データ10Aにおけるサンプルとする受験者(「Aさん」、「Bさん」…)それぞれについて、自分と他の受験者との要因スコアの距離(要因距離)を並べた行列である。よって、要因距離行列40は、それぞれの受験者において、自分自身との要因距離は「0」となる対称行列である。図示例の要因距離行列40では、「Dさん」と「Eさん」との間の要因距離は「4」となる。クラスタリング実施部24は、例えばサンプルとする受験者それぞれについて、英語、国語それぞれの成績の寄与度のベクトルデータより、自分自身と他の受験者とのベクトルデータの距離を求めることで要因距離行列40を定義する。
誤差行列41は、学習データ10Aにおけるサンプルとする受験者(「Aさん」、「Bさん」…)それぞれについて、他の受験者の分類スコアで分類を行った場合に生じる誤差(例えば自分自身と他の受験者との分類スコアの距離)を並べた行列である。よって、誤差行列41は、それぞれの受験者において、自分自身との誤差は「0」となる対称行列である。図示例の誤差行列41では、「Cさん」の分類スコアで、「Aさん」の分類を行った場合に生じる誤差は「4」となる。クラスタリング実施部24は、例えばサンプルとする受験者それぞれについて、分類スコアより誤差を求めることで要因距離行列40を定義する。
図5に戻り、S10に次いで、クラスタリング実施部24は、定義した要因距離行列40、誤差行列41より除去されずに残った、クラスタの代表とするデータ(代表データ)の数が、ユーザなどにより予め設定された数と一致するまでループ処理を繰り返す(S11〜S14)。すなわち、クラスタリング実施部24は、所定のクラスタ数分、要因距離行列40、誤差行列41より除去されずに代表データが残るまでS12、S13の処理を繰り返す。
具体的には、ループ処理が開始されると、クラスタリング実施部24は、要因距離行列40より任意の学習データを除去した場合の誤差行列41への影響度を評価する(S12)。
図7A、図7Bは誤差行列41への影響度の評価を説明する説明図である。図7Aに示すように、仮に「Aさん」を要因距離行列40より除外した場合を考える。要因距離行列40における「Aさん」に対する要因距離より、「Aさん」と最も要因の近い人は、要因距離が「1」の「Bさん」である。このように、クラスタリング実施部24は、要因距離行列40より除去の対象とするデータと要因の近いデータを特定する。
次いで、クラスタリング実施部24は、誤差行列41を参照し、最も要因の近い分類スコア(他の受験者の分類スコア)で分類を行った場合の誤差(影響度)を評価する。例えば、「Aさん」にとって最も要因の近い人は「Bさん」であることから、「Aさん」を要因距離行列40より除外して「Bさん」の分類スコアを用いた場合には、誤差行列41より誤差(影響度)が「3」増加することが判る。
また、図7Bに示すように、仮に「Bさん」を要因距離行列40より除外した場合を考える。要因距離行列40における「Bさん」に対する要因距離より、「Bさん」と最も要因の近い人は、要因距離が「1」の「Aさん」、「Eさん」である。このように、クラスタリング実施部24は、要因距離行列40より除去の対象とするデータと要因の近いデータを特定する。
次いで、クラスタリング実施部24は、誤差行列41を参照し、最も要因の近い分類スコア(他の受験者の分類スコア)で分類を行った場合の誤差(影響度)を評価する。例えば、「Bさん」にとって最も要因の近い人は「Aさん」、「Eさん」であることから、「Bさん」を要因距離行列40より除外して「Aさん」、「Eさん」の分類スコアを用いた場合には、誤差行列41より誤差(影響度)が少なくとも「2」増加することが判る。
図5に戻り、S12に次いで、クラスタリング実施部24は、S12で評価した影響度をもとに、誤差行列41への影響度が最も小さい学習データを要因距離行列40、誤差行列41より除去する(S13)。
図7Cは、誤差行列41への影響度に応じたデータ消去を説明する説明図である。図7Cに示すように、クラスタリング実施部24は、影響度が「1」であり、最も影響度の小さい「Dさん」を要因距離行列40と、誤差行列41とから除去する。これにより、要因距離行列40、誤差行列41における残りは、「Aさん」、「Bさん」、「Cさん」、「Eさん」の4人となる。このように、クラスタリング実施部24は、残りがクラスタ数分になるまでループ処理を繰り返す。
図5に戻り、ループ処理(S11〜S14)に次いで、クラスタリング実施部24は、学習データ10Aにおけるそれぞれの学習データ(サンプルとする受験者それぞれのデータd1)が最も距離の短い代表データが代表するクラスタに属するようにクラスタリングする(S15)。
図8は、学習データのクラスタリングを説明する説明図である。なお、ループ処理(S11〜S14)では、「Aさん」、「Bさん」、「Cさん」、「Eさん」の4人のデータd1が代表データとして残るものとする。図8に示すように、クラスタリング実施部24は、最も要因距離の小さい代表データが代表するクラスタに属するように、要因距離をもとに学習データ10Aに含まれるデータd1をクラスタリングする。これにより、学習データ10Aに含まれるデータd1それぞれは、「A」、「B」、「C」、「E」のいずれかのクラスタに属することとなる。
図2に戻り、S4に次いで、作成部25は、クラスタリング実施部24によるクラスタをもとに、学習データ10Aに正解として付与された教師ラベル10Bを教師ラベル11Bに変更した新たな学習データを生成する(S5)。
図9は、新たな学習データの生成を説明する説明図である。図9に示すように、元の学習データ(学習データ10Aと、教師ラベル10Bとの組み合わせ)では、受験者d11について、成績(国語) d12と、成績(英語) d13とともに、試験の合否(合格=「1」/不合格=「0」)を示す教師ラベルc11が付与される。
作成部25は、クラスタリング実施部24によるクラスタリングで得られたクラスタをもとに、教師ラベル10Bを教師ラベル11Bに変更する。これにより、新たな学習データ(学習データ11Aと、教師ラベル11Bとの組み合わせ)では、受験者d11について、成績(国語) d12と、成績(英語) d13とともに、受験者d11が属するクラスタ(例えば「A」、「B」、「C」、「D」)を示す教師ラベルc12が付与される。
図2に戻り、S5に次いで、学習部32は、学習データ11Aと、教師ラベル10Bより変更した教師ラベル11Bとを用いて、すなわち新たな学習データを用いて、公知の教師あり学習を行うことで決定木を作成する(S6)。
図10は、決定木の作成を説明する説明図である。図10に示すように、学習部32は、教師ラベル11Bに付与されたラベル(例えば「A」、「B」、「C」、「D」)に対応する終端のノード(n4〜n7)に至るように中間の各ノード(n1〜n3)の分岐条件を決定することで決定木M2を生成する。
次いで、学習部32は、決定木M2の学習完了後に、終端のノード(n4〜n7)のラベル(例えば「A」、「B」、「C」、「D」)を変換前の状態(例えば合格=「1」/不合格=「0」)に戻す。具体的には、学習部32は、教師ラベル10Bから教師ラベル11Bに変更した際の対応関係を示すラベル対応情報11Cに基づき、学習した決定木M2における終端のノード(n4〜n7)の置き換えを行う。
図2に戻り、S6に次いで、推論部33は、分類対象データ12について、学習部32で学習した決定木M2による推論を行い、分類結果13を取得する(S7)。
以上のように、情報処理システム1は、非線形の性質を有する学習データ10Aを教師ラベル10Bによる教師あり学習した学習モデルM1を取得する。また、情報処理システム1は、取得した学習モデルM1を用いて学習データ10Aを分類するとともに、学習データ10Aにおいて分類結果が得られた要因に関するスコアを算出する。また、情報処理システム1は、算出したスコアを用いて学習データ10Aをクラスタリングする。また、情報処理システム1は、クラスタリングによるクラスタに基づく教師ラベル11Bを学習データ10A(11A)に付加する。また、情報処理システム1は、学習データ11Aと、付加した教師ラベル11Bとを用いて決定木M2の教師あり学習を行う。
このように、情報処理システム1では、分類結果が得られた要因に関するスコアにより要因を持つ学習データ同士を集めたクラスタに基づいて決定木M2の学習に用いる教師ラベルを変更するので、決定木M2の分類精度を向上させることができる。したがって、分類対象データ12の分類においては、決定木M2が有する高い解釈性を保ちつつ、精度の高い分類結果13を得ることができる。
図11、図12は、従来技術と本実施形態との比較を説明する説明図である。図11において、ケースE1は従来技術を適用して作成した決定木M3を用いて分類しており、ケースE2は本実施形態において作成した決定木M2を用いて分類している。なお、ケースE1、E2における分類対象データ12は同じものであり、一例として「aさん」の成績(国語(x),英語(x))とする。
図11に示すように、受験者の合否を分ける真の境界K1に対し、ケースE1における決定木M3が合否を分ける境界K3では、「aさん」のところで合否が逆転している。したがって、実際には「aさん」は合格であるところ、決定木M3を用いた分類では、不合格と分類している。これに対し、ケースE2における決定木M2が合否を分ける境界K3では、「aさん」のところで実際と合否が一致している(図10の右側の「E」、「1」を参照)。したがって、決定木M2を用いた分類では、実際の合否に合った正しい分類を行うことができる。また、決定木M2による分類では、中間のノードにおける分岐条件より、合否に関する高い解釈性を保つことができる。
図12では、kaggleのフリーデータセットを用いて機械学習の評価値であるAccuracy、AUC(Area Under the Curve)を求めた実験例F1〜F3を例示している。具体的には、フリーデータセットについて、本実施形態を用いた手法(本手法)と、決定木のみを用いた手法(決定木)、GBTの一種であるLightGBMのみを用いた手法(LightGBM)との評価値を求めて比較している。
なお、実験例F1は、過学習するように設計された2値分類問題(https://www.kaggle.com/c/dont-overfit-ii/overview)に関するフリーデータセットを用いた実験例である。また、実験例F2は、取引予測に関する2値分類問題(https://www.kaggle.com/lakshmi25npathi/santander-customer-transaction-prediction-dataset)に関するフリーデータセットを用いた実験例である。また、実験例F3は、心臓疾患に関する2値分類問題(https://www.kaggle.com/ronitf/heart-disease-uci)に関するフリーデータセットを用いた実験例である。なお、実験例F1〜F3では、学習および推論の10試行分の平均値より評価値を求めているものとする。
図12に示すように、実験例F1〜F3のいずれにおいても、本手法では、真の境界により近づけることが可能なLightGBMに及ばないケースがあるものの、決定木よりは高い精度で分類結果が得られている。
また、情報処理システム1は、クラスタリングにおいて、学習データ10Aのそれぞれについての、要因に関するスコアが近い学習データで分類した場合の誤差に基づき、学習データ10Aの中から誤差における影響度が小さい学習データを除去してクラスタそれぞれを代表する代表データを求める。次いで、情報処理システム1は、スコアをもとに代表データが代表するクラスタのいずれかに属するように学習データをクラスタリングする。これにより、情報処理システム1では、クラスタを代表する代表データを基準に似た要因を持つ学習データ同士をクラスタリングすることができる。
また、情報処理システム1は、教師ラベル10Bから教師ラベル11Bに変更した際の対応関係に基づき、学習した決定木M2における教師ラベル11Bに対応するノードを、教師ラベル10Bに対応するノードに置き換える。これにより、情報処理システム1では、分類対象データ12について、元の教師ラベル10B(例えば試験の合否)に対応する分類結果13を得ることができる。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、ハイパーパラメータ調整部21と学習部22、クラスタリング実施部24と作成部25、または、ハイパーパラメータ調整部31とハイパーパラメータ調整部31などは統合してもよい。また、図示した各処理は、上記の順番に限定されるものでなく、処理内容を矛盾させない範囲において、同時に実施してもよく、順序を入れ替えて実施してもよい。
さらに、各装置で行われる各種処理機能は、CPU(またはMPU、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部または任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(またはMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、またはワイヤードロジックによるハードウエア上で、その全部または任意の一部を実行するようにしてもよいことは言うまでもない。また、各種処理機能は、クラウドコンピューティングにより、複数のコンピュータが協働して実行してもよい。
ところで、上記の各実施形態で説明した各種の処理は、予め用意されたプログラムをコンピュータで実行することで実現できる。そこで、以下では、上記の各実施形態と同様の機能を有するプログラムを実行するコンピュータの一例を説明する。図13は、プログラムを実行するコンピュータの一例を示すブロック図である。
図13に示すように、コンピュータ100は、各種演算処理を実行するCPU101と、データ入力を受け付ける入力装置102と、モニタ103とを有する。また、コンピュータ100は、記憶媒体からプログラム等を読み取る媒体読取装置104と、各種装置と接続するためのインタフェース装置105と、他の情報処理装置等と有線または無線により接続するための通信装置106とを有する。また、コンピュータ100は、各種情報を一時記憶するRAM107と、ハードディスク装置108とを有する。また、各装置101〜108は、バス109に接続される。
ハードディスク装置108には、図1に示した情報処理システム1内の各処理部(例えばハイパーパラメータ調整部21、31、学習部22、32、推論部23、33、クラスタリング実施部24および作成部25)と同様の機能を有するプログラム108Aが記憶される。また、ハードディスク装置108には、情報処理システム1内の各処理部を実現するための各種データが記憶される。入力装置102は、例えば、コンピュータ100の利用者から操作情報等の各種情報の入力を受け付ける。モニタ103は、例えば、コンピュータ100の利用者に対して表示画面等の各種画面を表示する。インタフェース装置105は、例えば印刷装置等が接続される。通信装置106は、図示しないネットワークと接続され、他の情報処理装置と各種情報をやりとりする。
CPU101は、ハードディスク装置108に記憶されたプログラム108Aを読み出して、RAM107に展開して実行することで、各種の処理に関するプロセスを実行する。これらのプロセスは、図1に示した情報処理システム1内の各処理部(例えばハイパーパラメータ調整部21、31、学習部22、32、推論部23、33、クラスタリング実施部24および作成部25)として機能させることができる。
なお、上記のプログラム108Aは、ハードディスク装置108に記憶されていなくてもよい。例えば、コンピュータ100が読み取り可能な記憶媒体に記憶されたプログラム108Aを、コンピュータ100が読み出して実行するようにしてもよい。コンピュータ100が読み取り可能な記憶媒体は、例えば、CD−ROMやDVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置にプログラム108Aを記憶させておき、コンピュータ100がこれらからプログラム108Aを読み出して実行するようにしてもよい。
以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得し、
取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出し、
算出した前記スコアに基づいて前記学習データをクラスタリングし、
前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加し、
前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する、
処理をコンピュータが実行することを特徴とする学習方法。
(付記2)前記クラスタリングする処理は、前記学習データのそれぞれについての、前記スコアが近い学習データで分類した場合の誤差に基づき、前記学習データの中から前記誤差における影響度が小さい学習データを除去して前記クラスタそれぞれを代表する代表データを決定し、前記スコアと前記代表データとに基づいて前記学習データをクラスタリングする処理を含む、
ことを特徴とする付記1に記載の学習方法。
(付記3)前記第2の教師ラベルを付加する処理は、前記学習済みモデルの学習時に前記学習データに付加された第1の教師ラベルを、前記第2の教師ラベルに変更する処理を含み、
前記決定木の教師あり学習を実行する処理は、前記第1の教師ラベルから前記第2の教師ラベルに変更した際の対応関係に基づき、学習した前記決定木に含まれる前記第2の教師ラベルに対応するノードを、前記第1の教師ラベルに対応するノードに置き換える処理を含む、
ことを特徴とする付記1または2に記載の学習方法。
(付記4)非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得し、
取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出し、
算出した前記スコアに基づいて前記学習データをクラスタリングし、
前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加し、
前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する、
処理をコンピュータに実行させることを特徴とする学習プログラム。
(付記5)前記クラスタリングする処理は、前記学習データのそれぞれについての、前記スコアが近い学習データで分類した場合の誤差に基づき、前記学習データの中から前記誤差における影響度が小さい学習データを除去して前記クラスタそれぞれを代表する代表データを決定し、前記スコアと前記代表データとに基づいて前記学習データをクラスタリングする処理を含む、
ことを特徴とする付記4に記載の学習プログラム。
(付記6)前記第2の教師ラベルを付加する処理は、前記学習済みモデルの学習時に前記学習データに付加された第1の教師ラベルを、前記第2の教師ラベルに変更する処理を含み、
前記決定木の教師あり学習を実行する処理は、前記第1の教師ラベルから前記第2の教師ラベルに変更した際の対応関係に基づき、学習した前記決定木に含まれる前記第2の教師ラベルに対応するノードを、前記第1の教師ラベルに対応するノードに置き換える処理を含む、
ことを特徴とする付記4または5に記載の学習プログラム。
(付記7)非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得する取得部と、
取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出する算出部と、
算出した前記スコアに基づいて前記学習データをクラスタリングするクラスタリング実施部と、
前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加する付加部と、
前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する学習部と、
を有することを特徴とする情報処理装置。
(付記8)前記クラスタリング実施部は、前記学習データのそれぞれについての、前記スコアが近い学習データで分類した場合の誤差に基づき、前記学習データの中から前記誤差における影響度が小さい学習データを除去して前記クラスタそれぞれを代表する代表データを決定し、前記スコアと前記代表データとに基づいて前記学習データをクラスタリングする、
ことを特徴とする付記7に記載の情報処理装置。
(付記9)前記付加部は、前記学習済みモデルの学習時に前記学習データに付加された第1の教師ラベルを、前記第2の教師ラベルに変更し、
前記学習部は、前記第1の教師ラベルから前記第2の教師ラベルに変更した際の対応関係に基づき、学習した前記決定木に含まれる前記第2の教師ラベルに対応するノードを、前記第1の教師ラベルに対応するノードに置き換える、
ことを特徴とする付記7または8に記載の情報処理装置。
1…情報処理システム
2…ホスト学習装置
3…クライアント学習装置
10A、11A…学習データ
10B、11B…教師ラベル
11C…ラベル対応情報
12…分類対象データ
13…分類結果
21、31…ハイパーパラメータ調整部
22、32…学習部
23、33…推論部
24…クラスタリング実施部
25…作成部
40…要因距離行列
41…誤差行列
100…コンピュータ
101…CPU
102…入力装置
103…モニタ
104…媒体読取装置
105…インタフェース装置
106…通信装置
107…RAM
108…ハードディスク装置
108A…プログラム
109…バス
c11、c12…教師ラベル
d1…データ
d11…受験者
d12…成績(国語)
d13…成績(英語)
d14…不合格確率
d15…合格確率
d16…分類結果
E1〜E2…ケース
F1〜F3…実験例
k1、k2、K1、K3…境界
M1…学習モデル
M2、M3…決定木
n1〜n7…ノード

Claims (5)

  1. 非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得し、
    取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出し、
    算出した前記スコアに基づいて前記学習データをクラスタリングし、
    前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加し、
    前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する、
    処理をコンピュータが実行することを特徴とする学習方法。
  2. 前記クラスタリングする処理は、前記学習データのそれぞれについての、前記スコアが近い学習データで分類した場合の誤差に基づき、前記学習データの中から前記誤差における影響度が小さい学習データを除去して前記クラスタそれぞれを代表する代表データを決定し、前記スコアと前記代表データとに基づいて前記学習データをクラスタリングする処理を含む、
    ことを特徴とする請求項1に記載の学習方法。
  3. 前記第2の教師ラベルを付加する処理は、前記学習済みモデルの学習時に前記学習データに付加された第1の教師ラベルを、前記第2の教師ラベルに変更する処理を含み、
    前記決定木の教師あり学習を実行する処理は、前記第1の教師ラベルから前記第2の教師ラベルに変更した際の対応関係に基づき、学習した前記決定木に含まれる前記第2の教師ラベルに対応するノードを、前記第1の教師ラベルに対応するノードに置き換える処理を含む、
    ことを特徴とする請求項1または2に記載の学習方法。
  4. 非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得し、
    取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出し、
    算出した前記スコアに基づいて前記学習データをクラスタリングし、
    前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加し、
    前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する、
    処理をコンピュータに実行させることを特徴とする学習プログラム。
  5. 非線形の性質を有する学習データを教師あり学習した学習済みモデルを取得する取得部と、
    取得した前記学習済みモデルを用いて前記学習データを分類するとともに、前記学習データについての前記分類の結果が得られた要因に関するスコアを算出する算出部と、
    算出した前記スコアに基づいて前記学習データをクラスタリングするクラスタリング実施部と、
    前記クラスタリングによるクラスタに応じて第2の教師ラベルを前記学習データに付加する付加部と、
    前記学習データと、付加した前記第2の教師ラベルとを用いて決定木の教師あり学習を実行する学習部と、
    を有することを特徴とする情報処理装置。
JP2019229399A 2019-12-19 2019-12-19 学習方法、学習プログラムおよび情報処理装置 Pending JP2021096775A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019229399A JP2021096775A (ja) 2019-12-19 2019-12-19 学習方法、学習プログラムおよび情報処理装置
US17/121,013 US20210192392A1 (en) 2019-12-19 2020-12-14 Learning method, storage medium storing learning program, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019229399A JP2021096775A (ja) 2019-12-19 2019-12-19 学習方法、学習プログラムおよび情報処理装置

Publications (1)

Publication Number Publication Date
JP2021096775A true JP2021096775A (ja) 2021-06-24

Family

ID=76431459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229399A Pending JP2021096775A (ja) 2019-12-19 2019-12-19 学習方法、学習プログラムおよび情報処理装置

Country Status (2)

Country Link
US (1) US20210192392A1 (ja)
JP (1) JP2021096775A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214547A1 (ja) * 2022-05-02 2023-11-09 日本臓器製薬株式会社 プログラム、情報処理装置及び情報処理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665180B2 (en) * 2020-02-28 2023-05-30 International Business Machines Corporation Artificially intelligent security incident and event management
US20220121984A1 (en) * 2020-10-21 2022-04-21 Zscaler, Inc. Explaining internals of Machine Learning classification of URL content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184369A (ja) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp 観測目標の類識別装置
JP2018005640A (ja) * 2016-07-04 2018-01-11 タカノ株式会社 分類器生成装置、画像検査装置、及び、プログラム
JP2019053491A (ja) * 2017-09-14 2019-04-04 株式会社東芝 ニューラルネットワーク評価装置、ニューラルネットワーク評価方法、およびプログラム
JP2021018466A (ja) * 2019-07-17 2021-02-15 株式会社PKSHA Technology ルール抽出装置、情報処理装置、ルール抽出方法及びルール抽出プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923608B2 (en) * 2013-03-04 2014-12-30 Xerox Corporation Pre-screening training data for classifiers
US10705796B1 (en) * 2017-04-27 2020-07-07 Intuit Inc. Methods, systems, and computer program product for implementing real-time or near real-time classification of digital data
US10740371B1 (en) * 2018-12-14 2020-08-11 Clinc, Inc. Systems and methods for intelligently configuring and deploying a machine learning-based dialogue system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184369A (ja) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp 観測目標の類識別装置
JP2018005640A (ja) * 2016-07-04 2018-01-11 タカノ株式会社 分類器生成装置、画像検査装置、及び、プログラム
JP2019053491A (ja) * 2017-09-14 2019-04-04 株式会社東芝 ニューラルネットワーク評価装置、ニューラルネットワーク評価方法、およびプログラム
JP2021018466A (ja) * 2019-07-17 2021-02-15 株式会社PKSHA Technology ルール抽出装置、情報処理装置、ルール抽出方法及びルール抽出プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伏見 卓恭 ほか: ""ネットワーク上での特徴量分布を考慮したアノテーション付与法"", 情報処理学会論文誌, vol. 第58巻, 第6号, JPN6023030500, 2017, pages 1246 - 1257, ISSN: 0005113174 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214547A1 (ja) * 2022-05-02 2023-11-09 日本臓器製薬株式会社 プログラム、情報処理装置及び情報処理方法

Also Published As

Publication number Publication date
US20210192392A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
Imran et al. Student academic performance prediction using supervised learning techniques.
JP2021096775A (ja) 学習方法、学習プログラムおよび情報処理装置
Barbella et al. Understanding Support Vector Machine Classifications via a Recommender System-Like Approach.
Akilandasowmya et al. Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification
Geetha et al. Prediction of the academic performance of slow learners using efficient machine learning algorithm
Lottering et al. A model for the identification of students at risk of dropout at a university of technology
Andrade et al. A study of deep learning approaches for classification and detection chromosomes in metaphase images
Chander et al. Data clustering using unsupervised machine learning
JP2023551787A (ja) Oct画像データを正規化すること
Malik et al. Enhancing Student Success Prediction with FeatureX: A Fusion Voting Classifier Algorithm with Hybrid Feature Selection
Ariansyah et al. IMPROVING PERFORMANCE OF STUDENTS’GRADE CLASSIFICATION MODEL USES NAÏVE BAYES GAUSSIAN TUNING MODEL AND FEATURE SELECTION
Jasim et al. Characteristics of data mining by classification educational dataset to improve student’s evaluation
Akanbi Application of Naive Bayes to Students’ Performance Classification
Tiwari Concepts and strategies for machine learning
US20170293863A1 (en) Data analysis system, and control method, program, and recording medium therefor
JP7347198B2 (ja) 推論方法、推論プログラムおよび情報処理装置
Hamoud et al. A prediction model based machine learning algorithms with feature selection approaches over imbalanced dataset
Krishna et al. Integrating Advanced Machine Learning in Information Systems Research: What can Automated Machine Learning and Transfer Learning offer?
Islam et al. Detection of Facebook addiction using machine learning
Tariq et al. Comparing different oversampling methods in predicting multi-class educational datasets using machine learning techniques
Dajda et al. Current trends in software engineering bachelor theses
Las Johansen et al. Predicting academic performance of information technology students using c4. 5 classification algorithm: a model development
Gao et al. Genetically optimized neural network for college English teaching evaluation method
Wang et al. Undersampling based on generalized learning vector quantization and natural nearest neighbors for imbalanced data
Albi et al. A Topological Data Analysis Framework for Computational Phenotyping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240206