JP2021095933A - Slide member - Google Patents

Slide member Download PDF

Info

Publication number
JP2021095933A
JP2021095933A JP2019225833A JP2019225833A JP2021095933A JP 2021095933 A JP2021095933 A JP 2021095933A JP 2019225833 A JP2019225833 A JP 2019225833A JP 2019225833 A JP2019225833 A JP 2019225833A JP 2021095933 A JP2021095933 A JP 2021095933A
Authority
JP
Japan
Prior art keywords
plate
metal member
layer
sliding
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019225833A
Other languages
Japanese (ja)
Inventor
充 夏目
Mitsuru Natsume
充 夏目
信明 栗田
Nobuaki Kurita
信明 栗田
淳志 山住
Atsushi Yamazumi
淳志 山住
智洋 佐伯
Tomohiro Saeki
智洋 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Corp filed Critical Aisin Corp
Priority to JP2019225833A priority Critical patent/JP2021095933A/en
Priority to CN202011434440.XA priority patent/CN112984047A/en
Publication of JP2021095933A publication Critical patent/JP2021095933A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/139Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by friction-damping means
    • F16F15/1397Overload protection, i.e. means for limiting torque
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13142Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by the method of assembly, production or treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/02Surface features, e.g. notches or protuberances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Vibration Dampers (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

To provide a slide member having a compact construction to develop friction force even in an initial slide state, equivalent to that in a steady slide state.SOLUTION: The slide member includes a first metal member (1000) and a second metal member (2000), the first metal member including at least an embrittled layer (1010) formed on the top surface, and a hardened nitrided layer (1020) formed below the embrittled layer, the second metal member including at least a phosphate film layer (2010) formed on the top surface. The first metal member and the second metal member abut on each other at all times with one being pushed against the other, and relatively slide using an abrasion powder layer (1011) formed with the embrittled layer (1010) worn, as a boundary.SELECTED DRAWING: Figure 4

Description

本出願において開示された技術は、摺動部材に関する。 The technology disclosed in this application relates to sliding members.

車両等において、エンジン等の駆動源と変速機との間のトルク伝達経路上には、当該駆動源から当該変速機に向けて伝達されるトルクの振動(変動)を吸収するダンパ装置が設けられており、ダンパ装置は例えばクラッチ装置に組み込まれている。 In a vehicle or the like, a damper device is provided on a torque transmission path between a drive source such as an engine and a transmission to absorb vibration (fluctuation) of torque transmitted from the drive source toward the transmission. The damper device is incorporated in, for example, a clutch device.

ダンパ装置の一般的な構成としては、互いに相対回転可能な入力部材としてのディスクプレートと出力部材としてのハブとの間に、コイルスプリングを介在させて、コイルスプリングの弾性変形を利用してトルク変動を吸収して減衰させる技術が知られている。また、摩擦に基づくヒステリシストルクを発生させてトルク変動を吸収して減衰させる技術も知られている。さらにまた、前述のコイルスプリングの弾性変形やヒステリシストルクを用いても吸収できない変動トルクが発生した場合に、すべりを発生させてトルク伝達を強制的に遮断するリミッタ機構を有するダンパ装置も提案されている。 As a general configuration of a damper device, a coil spring is interposed between a disc plate as an input member that can rotate relative to each other and a hub as an output member, and torque fluctuates by utilizing elastic deformation of the coil spring. There is a known technique for absorbing and attenuating. Further, there is also known a technique of generating hysteresis torque based on friction to absorb and attenuate torque fluctuations. Furthermore, a damper device having a limiter mechanism that generates slip and forcibly shuts off torque transmission when a variable torque that cannot be absorbed even by using the elastic deformation of the coil spring or the hysteresis torque described above is generated has been proposed. There is.

ダンパ装置は、例えば、図1のような構成が採用され、主に、カバープレート10、サポートプレート20、プレッシャープレート30、ディスクプレート40、及び皿ばね50、を含み、さらに、プレッシャープレート30とディスクプレート40の間、及びディスクプレート40とカバープレート10の間にはそれぞれ摩擦材60が具備される。このような構成のダンパ装置においては、摩擦材60を介して、カバープレート10(及びプレッシャープレート30)からディスクプレート40へとトルクが伝達される。他方、駆動源側にて過大なトルク変動が発生した場合、摩擦材60を介してカバープレート10及びプレッシャープレート30がディスクプレート40に対してすべることにより、カバープレート10(及びプレッシャープレート30)からディスクプレート40へのトルク伝達が遮断される。このように、カバープレート10、プレッシャープレート30、及びディスクプレート40は、摩擦材60を介して相互に摺動(カバープレート10とディスクプレート40とが相互に摺動し、且つプレッシャープレート30とディスクプレート40とが相互に摺動)する摺動部材と捉えることができる。このような構成の摺動部材が採用されるダンパ装置は、例えば特許文献1、特許文献2、及び特許文献3に開示されている。 The damper device adopts, for example, the configuration shown in FIG. 1, and mainly includes a cover plate 10, a support plate 20, a pressure plate 30, a disc plate 40, and a disc spring 50, and further includes a pressure plate 30 and a disc. A friction material 60 is provided between the plates 40 and between the disc plate 40 and the cover plate 10, respectively. In the damper device having such a configuration, torque is transmitted from the cover plate 10 (and the pressure plate 30) to the disc plate 40 via the friction material 60. On the other hand, when an excessive torque fluctuation occurs on the drive source side, the cover plate 10 and the pressure plate 30 slide with respect to the disc plate 40 via the friction material 60, so that the cover plate 10 (and the pressure plate 30) Torque transmission to the disc plate 40 is cut off. In this way, the cover plate 10, the pressure plate 30, and the disc plate 40 slide with each other via the friction material 60 (the cover plate 10 and the disc plate 40 slide with each other, and the pressure plate 30 and the disc plate 40 and the disc plate 40 slide with each other. It can be regarded as a sliding member in which the plate 40 slides on each other). Damper devices that employ sliding members with such a configuration are disclosed in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.

特開2007−218346号公報Japanese Unexamined Patent Publication No. 2007-218346 特開2010−230162号公報Japanese Unexamined Patent Publication No. 2010-230162 特開2013−24364号公報Japanese Unexamined Patent Publication No. 2013-24364

しかしながら、前述のとおり説明した摩擦材を摺動部材間に設ける構成を採用すると、摩擦材の分だけ摺動部材が大型化してしまう点、また摺動部材における部品点数が多くなる点で課題がある。 However, if the configuration in which the friction material described above is provided between the sliding members is adopted, there are problems in that the sliding member becomes larger by the amount of the friction material and that the number of parts in the sliding member increases. is there.

他方、摩擦材を摺動部材間に設けず、プレッシャープレート30とディスクプレート40、及びディスクプレート40とカバープレート10とを金属部材間で直接摺動させると、図2に示すように、初期摺動状態における摩擦力が、定常摺動状態における摩擦力に対して相対的に低くなってしまう(図2における従来材のグラフ参照)。そのため、ダンパ装置における前述のような摺動部材として機能を発揮させるためには(摺動部材として機能を発揮するために必要な摩擦力を発現させるためには)、工場出荷時等において、摺動部材同士間で予備摺動を実行させる必要があり手間とコストがかかってしまう。なお、初期摺動状態とは、相互に摺動する部材間に所定量の摩耗粉が堆積していない状態で2つの部材が摺動することをいう。また、定常摺動状態とは、相互に摺動する部材間に所定量の摩耗粉が堆積した状態で2つの部材が摺動することをいう。したがって、2つの部材の摺動は、初期摺動状態を経た後に定常摺動状態へと遷移することとなり、定常摺動状態における2つの部材間の摩擦力(摩擦係数)は、初期摺動状態に比して高く、且つ安定している。 On the other hand, when the pressure plate 30 and the disc plate 40, and the disc plate 40 and the cover plate 10 are directly slid between the metal members without providing the friction material between the sliding members, the initial sliding is performed as shown in FIG. The frictional force in the moving state becomes relatively lower than the frictional force in the steady sliding state (see the graph of the conventional material in FIG. 2). Therefore, in order to exert the function as the sliding member as described above in the damper device (in order to develop the frictional force required to exert the function as the sliding member), the sliding member is used at the time of shipment from the factory. It is necessary to perform preliminary sliding between the moving members, which is troublesome and costly. The initial sliding state means that the two members slide in a state where a predetermined amount of wear powder is not accumulated between the members that slide with each other. Further, the steady sliding state means that the two members slide in a state where a predetermined amount of wear powder is accumulated between the members that slide with each other. Therefore, the sliding of the two members transitions to the steady sliding state after passing through the initial sliding state, and the frictional force (friction coefficient) between the two members in the steady sliding state is the initial sliding state. It is high and stable compared to.

そこで、様々な実施形態により、コンパクトに構成することができ、且つ初期摺動状態においても定常摺動状態と同等の摩擦力を発現させる摺動部材を提供する。 Therefore, various embodiments are provided to provide a sliding member that can be compactly configured and that exhibits a frictional force equivalent to that of a steady sliding state even in an initial sliding state.

一態様に係る摺動部材は、第1金属部材及び第2金属部材を具備し、前記第1金属部材は、その最表面に形成される脆化層と、前記脆化層の下に形成される硬化窒化層とを少なくとも含み、前記第2金属部材は、その最表面に形成されるリン酸塩皮膜層を少なくとも含み、前記第1金属部材及び前記第2金属部材は、一方が他方に押し付けられて互いに常に当接し、且つ前記脆化層が摩耗することにより形成される摩耗粉層を境界にして相対的に摺動するものである。 The sliding member according to one aspect includes a first metal member and a second metal member, and the first metal member is formed of an embrittlement layer formed on the outermost surface thereof and under the embrittlement layer. The second metal member contains at least a phosphate film layer formed on the outermost surface thereof, and one of the first metal member and the second metal member presses against the other. They are always in contact with each other and slide relative to each other with the wear powder layer formed by the wear of the embrittlement layer as a boundary.

この構成によれば、摩擦材を用いることがないため従来に比してコンパクトなものとなり、且つ前記第1金属部材と前記第2金属部材との間の摩擦力(摩擦係数)は、初期摺動状態においても定常摺動状態と同等とすることができる。また、この構成によれば、前記第1金属部材と前記第2金属部材とが摺動すると、前記摩耗粉層が効率的に形成されるため、初期摺動状態から定常摺動状態へと効率的に(早期に)遷移させることが可能となる。 According to this configuration, since no friction material is used, it is more compact than the conventional one, and the frictional force (friction coefficient) between the first metal member and the second metal member is the initial friction. Even in the moving state, it can be equivalent to the steady sliding state. Further, according to this configuration, when the first metal member and the second metal member slide, the wear debris layer is efficiently formed, so that the efficiency is changed from the initial sliding state to the steady sliding state. It is possible to make a transition (early).

また、一態様に係る前記摺動部材において、前記脆化層は、酸化物、窒化物、またはこれらの複合物で形成されることが好ましい。 Further, in the sliding member according to one aspect, the embrittlement layer is preferably formed of an oxide, a nitride, or a composite thereof.

この構成とすることによって、前記第1金属部材と前記第2金属部材とが摺動した際に、前記脆化層を容易に摩耗させて前記摩耗粉層をさらに効率的に形成することが可能となる。 With this configuration, when the first metal member and the second metal member slide, the embrittlement layer can be easily worn to form the wear powder layer more efficiently. Will be.

また、一態様に係る前記摺動部材において、前記脆化層は、マイクロポーラス構造を有する Further, in the sliding member according to one aspect, the embrittlement layer has a microporous structure.

この構成とすることによって、前記第1金属部材と前記第2金属部材とが摺動した際に、前記脆化層をさらに容易に摩耗させて、前記摩耗粉層をさらに効率的に形成することが可能となる。 With this configuration, when the first metal member and the second metal member slide, the embrittlement layer is more easily worn to form the wear powder layer more efficiently. Is possible.

また、一態様に係る前記摺動部材において、前記マイクロポーラス構造は、ポーラスサイズ2μm以下であることが好ましい。 Further, in the sliding member according to one aspect, the microporous structure preferably has a porous size of 2 μm or less.

この構成とすることによって、前記第1金属部材と前記第2金属部材とが摺動した際に、前記脆化層をさらに容易に摩耗させて、前記摩耗粉層をさらに効率的に形成することが可能となる。 With this configuration, when the first metal member and the second metal member slide, the embrittlement layer is more easily worn to form the wear powder layer more efficiently. Is possible.

また、一態様に係る前記摺動部材において、前記硬化窒化層の厚みは、前記脆化層の厚みよりも大きいことが好ましい。 Further, in the sliding member according to one aspect, the thickness of the cured nitride layer is preferably larger than the thickness of the embrittlement layer.

この構成とすることによって、前記第1金属部材と前記第2金属部材の耐久性向上につながり、前記第1金属部材と前記第2金属部材との間の安定的な摩擦力(摩擦係数)を確保することができる。 This configuration leads to an improvement in the durability of the first metal member and the second metal member, and provides a stable frictional force (friction coefficient) between the first metal member and the second metal member. Can be secured.

様々な実施形態によれば、コンパクトに構成することができ、且つ初期摺動状態においても定常摺動状態と同等の摩擦力を発現させる摺動部材を提供することができる。 According to various embodiments, it is possible to provide a sliding member that can be compactly configured and that exhibits a frictional force equivalent to that of a steady sliding state even in an initial sliding state.

従来のダンパ装置の構成を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the structure of the conventional damper apparatus. 初期摺動状態及び定常摺動状態における、従来材(従来の摺動部材)及び一実施形態に係る摺動部材の摩擦係数の推移を示すグラフである。It is a graph which shows the transition of the friction coefficient of the conventional material (conventional sliding member) and the sliding member which concerns on one Embodiment in an initial sliding state and a steady sliding state. 一実施形態に係る摺動部材が組み込まれたダンパ装置の構成を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically the structure of the damper device which incorporated the sliding member which concerns on one Embodiment. 一実施形態に係る摺動部材の構成を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically the structure of the sliding member which concerns on one Embodiment. 一実施形態に係る摺動部材に用いられる第1金属部材と第2金属部材との境界付近の未摺動時の断面を示す顕微鏡写真である。It is a micrograph which shows the cross section in the non-sliding state near the boundary between the 1st metal member and the 2nd metal member used for the sliding member which concerns on one Embodiment. 一実施形態に係る摺動部材に用いられる第1金属部材の境界付近の初期摺動状態時の断面を示す顕微鏡写真である。It is a micrograph which shows the cross section in the initial sliding state near the boundary of the 1st metal member used for the sliding member which concerns on one Embodiment. 一実施形態に係る摺動部材に用いられる第1金属部材の最表面からの深さと硬さ(硬度)との関係を示すグラフである。It is a graph which shows the relationship between the depth from the outermost surface and the hardness (hardness) of the 1st metal member used for the sliding member which concerns on one Embodiment. 脆化層のビッカース硬さと第1金属部材の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the Vickers hardness of the embrittlement layer and the wear amount of the 1st metal member. 脆化層のポーラスサイズと第1金属部材の摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the porous size of the embrittlement layer and the wear amount of the 1st metal member. 一実施形態に係る第1金属部材及び第2金属部材が用いられる摺動部材が摺動した場合における、摺動角度と摩擦係数の関係を示すグラフである。It is a graph which shows the relationship between the sliding angle and the friction coefficient when the sliding member which uses the 1st metal member and the 2nd metal member which concerns on one Embodiment slides.

以下、添付図面を参照して様々な実施形態を説明する。なお、図面において共通した構成要件には同一の参照符号が付されている。また、或る図面に表現された構成要素が、説明の便宜上、別の図面においては省略されていることがある点に留意されたい。さらにまた、添付した図面が必ずしも正確な縮尺で記載されている訳ではないということに注意されたい。 Hereinafter, various embodiments will be described with reference to the accompanying drawings. The same reference numerals are given to the common constituent requirements in the drawings. It should also be noted that the components represented in one drawing may be omitted in another for convenience of explanation. Furthermore, it should be noted that the attached drawings are not always drawn to the correct scale.

1.摺動部材が組み込まれたダンパ装置の構成
一実施形態に係る摺動部材は、一定の摩擦力で摺動する動作が必要な装置・部品に適用することができ、例えば、エンジンやモータ等の駆動源から変速機に向けて伝達されるトルクの振動(変動)を吸収するダンパ装置に適用することができる。そこで、一実施形態に係る摺動部材が組み込まれたダンパ装置の全体構成の概要の一例について、図3を参照して説明する。なお、一実施形態に係る摺動部材は、図1に示すような一般的な構成のダンパ装置にも適用することができることはいうまでもない。図3は、一実施形態に係る摺動部材が組み込まれたダンパ装置1の構成を模式的に示す概略断面図である。
1. 1. Configuration of Damper Device Incorporating a Sliding Member The sliding member according to one embodiment can be applied to a device / component that requires a sliding operation with a constant frictional force, for example, an engine, a motor, or the like. It can be applied to a damper device that absorbs vibration (fluctuation) of torque transmitted from a drive source to a transmission. Therefore, an example of an outline of the overall configuration of the damper device in which the sliding member according to the embodiment is incorporated will be described with reference to FIG. Needless to say, the sliding member according to the embodiment can also be applied to a damper device having a general configuration as shown in FIG. FIG. 3 is a schematic cross-sectional view schematically showing the configuration of the damper device 1 in which the sliding member according to the embodiment is incorporated.

一実施形態に係る摺動部材が組み込まれたダンパ装置1は、エンジンやモータ等の駆動源(図示せず)と変速機(図示せず)等の動力伝達経路上に設けられ、当該駆動源からの動力がフライホイール(図1における参照符号70に相当し、図3においては便宜上図示せず)を介して伝達されて、当該動力を変速機等へと伝達(出力)するものである。 The damper device 1 incorporating the sliding member according to the embodiment is provided on a drive source (not shown) such as an engine or a motor and a power transmission path such as a transmission (not shown), and the drive source is provided. The power is transmitted via a flywheel (corresponding to reference numeral 70 in FIG. 1 and not shown for convenience in FIG. 3), and the power is transmitted (output) to a transmission or the like.

ダンパ装置1は、トルク振動を吸収して減衰させるものである。このダンパ装置1は、図3に示すように、主に、フライホイールから取付けプレート5を介して動力が伝達される第1回転体としてのライニングプレート100、ディスクプレート200、ハブ300、プレッシャープレート400、付勢体としての皿ばね500、弾性機構体600、及びヒステリシストルク発生部材700を含む。なお、本明細書において軸方向とは、回転軸Oと平行に延びる方向を意味し、径方向とは、回転軸Oに直交する方向を意味し、周方向とは、回転軸Oの周りを周回する方向を意味するものとする。 The damper device 1 absorbs and attenuates torque vibration. As shown in FIG. 3, the damper device 1 mainly has a lining plate 100, a disc plate 200, a hub 300, and a pressure plate 400 as a first rotating body in which power is transmitted from a flywheel via a mounting plate 5. Includes a disc spring 500 as an urging body, an elastic mechanism 600, and a hysteresis torque generating member 700. In the present specification, the axial direction means a direction extending parallel to the rotation axis O, the radial direction means a direction orthogonal to the rotation axis O, and the circumferential direction means the circumference of the rotation axis O. It shall mean the direction of orbit.

ダンパ装置1において、動力伝達経路上、最も上流側に配されるライニングプレート100は、図3に示すように、エンジンやモータ等の駆動源に由来する動力が、当該駆動源に接続される回転軸(図示せず)、フライホイール、及び取付けプレート5を介して伝達される。ライニングプレート100は、取付けプレート5に対してボルトやナット等を介して固定される。 In the damper device 1, the lining plate 100 arranged on the most upstream side on the power transmission path is a rotation in which power derived from a drive source such as an engine or a motor is connected to the drive source, as shown in FIG. It is transmitted via a shaft (not shown), a flywheel, and a mounting plate 5. The lining plate 100 is fixed to the mounting plate 5 via bolts, nuts, or the like.

また、ライニングプレート100は、プレッシャープレート400及びディスクプレート200を構成する第1プレート201に挟まれるように配される。この構成により、プレッシャープレート400が後述する付勢体としての皿ばね500に付勢されると、ライニングプレート100は第1プレート201に押し付けられるように押圧される。これにより、ライニングプレート100に伝達された動力は第1プレート201(ディスクプレート200)へと伝達されることとなる。 Further, the lining plate 100 is arranged so as to be sandwiched between the pressure plate 400 and the first plate 201 constituting the disc plate 200. With this configuration, when the pressure plate 400 is urged by the disc spring 500 as an urging body described later, the lining plate 100 is pressed so as to be pressed against the first plate 201. As a result, the power transmitted to the lining plate 100 is transmitted to the first plate 201 (disc plate 200).

ところで、ライニングプレート100、プレッシャープレート400、及び皿ばね500は、トルク変動をダンパ装置1が吸収しきれなくなった場合に、すべりを発生させる(ライニングプレート100から第1プレート201への動力伝達を遮断する)リミッタ機構として機能することができる。つまり、ライニングプレート100と第1プレート201は相対回転して摺動する。したがって、ライニングプレート100及び第1プレート201は、すべりを発生させない限りライニングプレート100と第1プレート201とは常に当接して互いに摺動するものであるから、後述にて詳述する一実施形態に係る摺動部材とみなすことができる。この場合、ライニングプレート100及び第1プレート201のいずれか一方を第1金属部材1000、他方を第2金属部材2000と捉えることができる。 By the way, the lining plate 100, the pressure plate 400, and the disc spring 500 cause slippage when the damper device 1 cannot completely absorb the torque fluctuation (the power transmission from the lining plate 100 to the first plate 201 is cut off). It can function as a limiter mechanism. That is, the lining plate 100 and the first plate 201 rotate relative to each other and slide. Therefore, the lining plate 100 and the first plate 201 are always in contact with each other and slide with each other as long as the lining plate 100 and the first plate 201 do not cause slippage. It can be regarded as such a sliding member. In this case, either one of the lining plate 100 and the first plate 201 can be regarded as the first metal member 1000, and the other can be regarded as the second metal member 2000.

ダンパ装置1において、ディスクプレート200は、駆動源からの動力が前述のライニングプレート100を介して伝達される部材である。ディスクプレート200は、例えば、金属材料により形成され、特に図3に示すように、後述するハブ300を挟んで、回転軸Oの周りにおいて回転可能に設けられている。ディスクプレート200は、ハブ300の軸方向両側に設けられ、回転軸O周りに回転する一対の板部材としての第1プレート201及び第2プレート202を含む。 In the damper device 1, the disc plate 200 is a member in which the power from the drive source is transmitted via the lining plate 100 described above. The disc plate 200 is formed of, for example, a metal material, and is rotatably provided around a rotation axis O with a hub 300, which will be described later, interposed therebetween, as shown in FIG. The disc plate 200 includes a first plate 201 and a second plate 202 as a pair of plate members that are provided on both sides of the hub 300 in the axial direction and rotate around the rotation axis O.

第1プレート201は、前述のとおり、ライニングプレート100から直接動力が伝達される。第2プレート202は、軸方向において第1プレート201に対向するように配置されて回転軸O周りに第1プレートと一体回転する。 As described above, power is directly transmitted from the lining plate 100 to the first plate 201. The second plate 202 is arranged so as to face the first plate 201 in the axial direction, and rotates integrally with the first plate around the rotation axis O.

ここで、第1プレート201と第2プレート202とは、第2プレート202に設けられる連結部220において第1プレート201と一体化される。また、第1プレート201には、連結部(図示せず)を受入れる第1孔(図示せず)が設けられ、連結部は当該第1孔に挿入されてかしめられることで、第1プレート201と第2プレート202とが一体化される。 Here, the first plate 201 and the second plate 202 are integrated with the first plate 201 at the connecting portion 220 provided on the second plate 202. Further, the first plate 201 is provided with a first hole (not shown) for receiving the connecting portion (not shown), and the connecting portion is inserted into the first hole and crimped so that the first plate 201 And the second plate 202 are integrated.

また、第2プレート202には、図3に示すように、後述する皿ばね500を支持するための支持部225が設けられる。第2プレート202に設けられる支持部225は、主部202xから第1プレート201に対向する方向とは反対の軸方向に略L字状に突出する形状を有する構成とすることができる。但し、支持部225の形状は、皿ばね500を支持することが可能な限りにおいて、略L字状に限定されず適宜変更してもよい。 Further, as shown in FIG. 3, the second plate 202 is provided with a support portion 225 for supporting the disc spring 500, which will be described later. The support portion 225 provided on the second plate 202 may have a shape that protrudes from the main portion 202x in a substantially L-shape in the axial direction opposite to the direction facing the first plate 201. However, the shape of the support portion 225 is not limited to a substantially L shape as long as it can support the disc spring 500, and may be changed as appropriate.

第2プレート202に設けられる連結部220及び支持部225は、後述するハブ300よりも径方向外側であって、第2プレート202の周方向において互いに隣接する位置に設けられる。 The connecting portion 220 and the supporting portion 225 provided on the second plate 202 are provided at positions radially outside the hub 300, which will be described later, and adjacent to each other in the circumferential direction of the second plate 202.

ところで、第1プレート201及び第2プレート202は、相互に協働して、後述する弾性機構体600を収容する収容領域203を形成するように、軸方向に若干膨らんだ形状を有する。収容領域203は、従来から公知の構造を採用することができ、例えば、ディスクプレート200の周方向に沿って延びる弾性体610を収容するために、ディスクプレート200の周方向に沿って略直線状又は略円弧上に延びている。なお、後述するハブ300には、前述の収容領域203に対応して窓孔301が設けられる。 By the way, the first plate 201 and the second plate 202 have a shape slightly bulging in the axial direction so as to cooperate with each other to form a storage region 203 for accommodating the elastic mechanism body 600 described later. A conventionally known structure can be adopted for the accommodating area 203, for example, in order to accommodate the elastic body 610 extending along the circumferential direction of the disc plate 200, the accommodating region 203 is substantially linear along the circumferential direction of the disc plate 200. Or it extends on a substantially arc. The hub 300, which will be described later, is provided with a window hole 301 corresponding to the accommodation area 203 described above.

次に、ダンパ装置1におけるハブ300は、ダンパ装置1の出力部材として機能し、例えば、金属材料により形成され、全体として略環状に延びる形状を有し、第1プレート201及び第2プレート202に挟まれて、回転軸Oの周りにディスクプレート200(第1プレート201及び第2プレート202)に対して相対回転可能に設けられる。また、ハブ300は、図3に示すように、略円筒状の円筒部302に形成された貫通孔303に、変速機の入力軸(図示せず)を挿通させて当該入力軸とスプライン結合することができる。また、ハブ300は、円筒部302から径方向外側に向かって外径を有する円板部305を有する。 Next, the hub 300 in the damper device 1 functions as an output member of the damper device 1, and has, for example, a shape formed of a metal material and extending substantially in an annular shape as a whole, and is formed on the first plate 201 and the second plate 202. It is sandwiched and provided around the rotation shaft O so as to be rotatable relative to the disc plate 200 (first plate 201 and second plate 202). Further, as shown in FIG. 3, the hub 300 is spline-coupled to the input shaft by inserting the input shaft (not shown) of the transmission into the through hole 303 formed in the substantially cylindrical cylindrical portion 302. be able to. Further, the hub 300 has a disk portion 305 having an outer diameter from the cylindrical portion 302 toward the outer side in the radial direction.

円板部305には、前述のとおり、ディスクプレート200に設けられる収容領域に対応する形状を有する窓孔301が形成される。ハブ300に設けられるこれらの窓孔301は、後述する弾性機構体600の構成、より詳細には、弾性体610の数に対応して設けられる。つまり、窓孔301には、後述する弾性機構体600が収容される。 As described above, the disk portion 305 is formed with a window hole 301 having a shape corresponding to the accommodating area provided in the disc plate 200. These window holes 301 provided in the hub 300 are provided corresponding to the configuration of the elastic mechanism body 600, which will be described later, and more specifically, the number of elastic bodies 610. That is, the elastic mechanism body 600, which will be described later, is housed in the window hole 301.

ハブ300は、前述のとおりの構造に加えて、従来から公知の他の構造を適宜に組み合わせたものを採用することができる。 As the hub 300, in addition to the structure as described above, a hub 300 that is appropriately combined with other conventionally known structures can be adopted.

次に、ダンパ装置1における付勢体としての皿ばね500は、前述のリミッタ機構を構成し、且つ前述のライニングプレート100を、プレッシャープレート400を介して第1プレート201に押し付けるように付勢することで、ライニングプレート100から第1プレート201(ディスクプレート200)への動力伝達を実現させる構成要素である。 Next, the disc spring 500 as an urging body in the damper device 1 constitutes the above-mentioned limiter mechanism, and urges the above-mentioned lining plate 100 so as to be pressed against the first plate 201 via the pressure plate 400. This is a component that realizes power transmission from the lining plate 100 to the first plate 201 (disc plate 200).

なお、皿ばね500は、従来から公知の構造のものを用いることができる。皿ばね500は、ディスクプレート200(第2プレート202)に設けられる前述の支持部225に支持される。 As the disc spring 500, a conventionally known structure can be used. The disc spring 500 is supported by the above-mentioned support portion 225 provided on the disc plate 200 (second plate 202).

次に、ダンパ装置1における弾性機構体600は、図3に示すように、コイルスプリングが主に用いられる弾性体610、及び弾性体を周方向に支持する一対のシート部材620から主に構成される。 Next, as shown in FIG. 3, the elastic mechanism body 600 in the damper device 1 is mainly composed of an elastic body 610 in which a coil spring is mainly used and a pair of seat members 620 that support the elastic body in the circumferential direction. To.

そして、弾性機構体600は、前述にて説明したディスクプレート200に設けられる収容領域203内(及び前述にて説明したハブ300に設けられる窓孔301内)に収容される。つまり、前述したシート部材620は、周方向において収容領域に支持されている。 Then, the elastic mechanism body 600 is housed in the housing area 203 provided in the disc plate 200 described above (and in the window hole 301 provided in the hub 300 described above). That is, the above-mentioned seat member 620 is supported by the accommodating region in the circumferential direction.

以上の構成により、弾性体610は、シート部材620を介して、ディスクプレート200とハブ300とを、回転方向に弾性連結させることが可能となっている。つまり、エンジンやモータ等の駆動源からの動力が、ディスクプレート200、一対のうちの一方のシート部材620、弾性体610、一対のうちの他方のシート部材620、及びハブ300の順に伝達される。また、ディスクプレート200とハブ300とが互いに相対回転すると、弾性体610が圧縮変形させられることで、トルク変動が吸収される。 With the above configuration, the elastic body 610 can elastically connect the disc plate 200 and the hub 300 in the rotational direction via the seat member 620. That is, the power from a drive source such as an engine or a motor is transmitted in the order of the disc plate 200, one of the pair of seat members 620, the elastic body 610, the other of the pair of seat members 620, and the hub 300. .. Further, when the disc plate 200 and the hub 300 rotate relative to each other, the elastic body 610 is compressed and deformed, so that the torque fluctuation is absorbed.

次に、ダンパ装置1におけるヒステリシストルク発生部材700は、主に、ディスクプレート200における第1プレート201と一体回転する略円環状の第1ヒステリシスプレート701、ディスクプレート200における第2プレート202と一体回転する略円環上の第2ヒステリシスプレート702、ハブ300と一体回転する略円環状の第3ヒステリシスプレート703、第1ヒステリシスプレート701と第3ヒステリシスプレート703に挟まれる第4ヒステリシスプレート704、第2ヒステリシスプレート702と第3ヒステリシスプレート703に挟まれる第5ヒステリシスプレート705、第1プレート201に支持され第1プレート201と第1ヒステリシスプレート701との間に配される第1皿ばね706、及びハブ300(円板部305)に支持されハブ300(円板部305)と第3ヒステリシスプレート703との間に配される第2皿ばね707から構成される。第1ヒステリシスプレート701、第2ヒステリシスプレート702、第3ヒステリシスプレート703、第4ヒステリシスプレート704、及び第5ヒステリシスプレート705は、軸方向に僅かに移動できるように構成されている。 Next, the hysteresis torque generating member 700 in the damper device 1 mainly rotates integrally with the substantially annular first hysteresis plate 701 and the second plate 202 in the disc plate 200, which rotate integrally with the first plate 201 in the disc plate 200. A second hysteresis plate 702 on a substantially annular ring, a substantially annular third hysteresis plate 703 that rotates integrally with the hub 300, a fourth hysteresis plate 704 sandwiched between the first hysteresis plate 701 and the third hysteresis plate 703, and a second A fifth hysteresis plate 705 sandwiched between the hysteresis plate 702 and the third hysteresis plate 703, a first countersunk spring 706 supported by the first plate 201 and arranged between the first plate 201 and the first hysteresis plate 701, and a hub. It is composed of a second countersunk spring 707 supported by 300 (disk portion 305) and arranged between the hub 300 (disk portion 305) and the third hysteresis plate 703. The first hysteresis plate 701, the second hysteresis plate 702, the third hysteresis plate 703, the fourth hysteresis plate 704, and the fifth hysteresis plate 705 are configured to be slightly movable in the axial direction.

まず、第3ヒステリシスプレート703は、第2皿ばね707によってハブ300(円板部305)から離れる方向に付勢されて第4ヒステリシスプレート704に押し付けられるように構成されている。これにより、第3ヒステリシスプレート703と第4ヒステリシスプレート704との間でヒステリシストルクが発生する。 First, the third hysteresis plate 703 is configured to be urged by the second disc spring 707 in a direction away from the hub 300 (disk portion 305) and pressed against the fourth hysteresis plate 704. As a result, a hysteresis torque is generated between the third hysteresis plate 703 and the fourth hysteresis plate 704.

次に、第1ヒステリシスプレート701は、第1皿ばね706によって第1プレート201から離れる方向に付勢されて第4ヒステリシスプレート704に押し付けられるように構成される。これにより、第1ヒステリシスプレート701と第4ヒステリシスプレート704との間でヒステリシストルクが発生する。 Next, the first hysteresis plate 701 is configured to be urged by the first disc spring 706 in a direction away from the first plate 201 and pressed against the fourth hysteresis plate 704. As a result, a hysteresis torque is generated between the first hysteresis plate 701 and the fourth hysteresis plate 704.

さらに、第1皿ばね706が第1ヒステリシスプレート701を付勢する付勢力が、第2皿ばね707が第3ヒステリシスプレート703を付勢する付勢力よりも大きい場合、第1皿ばね706に付勢された第1ヒステリシスプレート701は、第4ヒステリシスプレート704、第3ヒステリシスプレート703、ハブ300、及び第5ヒステリシスプレート705を、第2ヒステリシスプレート702に押し付けるように各々を軸方向(図3においては紙面左方向)へ移動させる。これにより、第4ヒステリシスプレート704と第5ヒステリシスプレート705の軸方向延在部705yとの間、第3ヒステリシスプレート703と第5ヒステリシスプレート705の径方向延在部705xとの間、及び第5ヒステリシスプレート705の径方向延在部705xと第2ヒステリシスプレート702との間において、各々ヒステリシストルクを発生させることができる。 Further, when the urging force of the first disc spring 706 urging the first hysteresis plate 701 is larger than the urging force of the second disc spring 707 urging the third hysteresis plate 703, the first disc spring 706 is attached. The urged first hysteresis plate 701 is axially oriented (in FIG. 3) so as to press the fourth hysteresis plate 704, the third hysteresis plate 703, the hub 300, and the fifth hysteresis plate 705 against the second hysteresis plate 702. Moves to the left of the page). As a result, between the fourth hysteresis plate 704 and the axially extending portion 705y of the fifth hysteresis plate 705, between the third hysteresis plate 703 and the radial extending portion 705x of the fifth hysteresis plate 705, and the fifth. Hysteresis torque can be generated between the radial extension portion 705x of the hysteresis plate 705 and the second hysteresis plate 702.

以上のとおり説明したヒステリシストルク発生部材700において、第3ヒステリシスプレート703及び第4ヒステリシスプレート704は、互いが常に当接して摺動する部材であるから一実施形態に係る摺動部材とみなすことができる。同様に、第1ヒステリシスプレート701及び第4ヒステリシスプレート704等前述のとおりヒステリシストルクを発生させる2部材も、一実施形態に係る摺動部材とみなすことができる。 In the hysteresis torque generating member 700 described above, since the third hysteresis plate 703 and the fourth hysteresis plate 704 are members that are always in contact with each other and slide, they can be regarded as the sliding members according to the embodiment. it can. Similarly, the two members that generate the hysteresis torque as described above, such as the first hysteresis plate 701 and the fourth hysteresis plate 704, can also be regarded as the sliding members according to the embodiment.

一実施形態に係る摺動部材が組み込まれたダンパ装置1の概要は前述のとおりであるが、前述の構成要素に加えて、従来から公知の他の構成要素を適宜組合せてもよい。 The outline of the damper device 1 in which the sliding member according to the embodiment is incorporated is as described above, but in addition to the above-mentioned components, other conventionally known components may be appropriately combined.

2.摺動部材の構成
次に、ダンパ装置1に組み込まれた一実施形態に係る摺動部材の構成の概要について、図2、及び図4乃至図9を参照して説明する。図2は、初期摺動状態及び定常摺動状態における、従来材(従来の摺動部材)及び一実施形態に係る摺動部材の摩擦係数の推移を示すグラフである。図4は、一実施形態に係る摺動部材の構成を模式的に示す概略断面図である。図5は、一実施形態に係る摺動部材に用いられる第1金属部材1000と第2金属部材2000との境界付近の未摺動時の断面を示す顕微鏡写真である。図6は、一実施形態に係る摺動部材に用いられる第1金属部材1000の境界付近の初期摺動状態時の断面を示す顕微鏡写真である。図7は、一実施形態に係る摺動部材に用いられる第1金属部材1000の最表面からの深さと硬さ(硬度)との関係を示すグラフである。図8は、脆化層1010のビッカース硬さと第1金属部材の摩耗量との関係を示すグラフである。図9は、脆化層1010のポーラスサイズと第1金属部材1000の摩耗量との関係を示すグラフである。図10は、一実施形態に係る第1金属部材1000及び第2金属部材2000が用いられる摺動部材が摺動した場合における、摺動角度と摩擦係数の関係を示すグラフである。なお、図5及び図6においては、便宜上、第1金属部材1000と第2金属部材2000との間に黒く塗られた隙間が写真上に表現されているが、この隙間はあくまでも分析用に用いた樹脂が表現されているにすぎず、実際の摺動部材において当該隙間は省略される点に留意されたい。
2. Configuration of Sliding Member Next, an outline of the configuration of the sliding member according to the embodiment incorporated in the damper device 1 will be described with reference to FIGS. 2 and 4 to 9. FIG. 2 is a graph showing the transition of the friction coefficient of the conventional material (conventional sliding member) and the sliding member according to one embodiment in the initial sliding state and the steady sliding state. FIG. 4 is a schematic cross-sectional view schematically showing the configuration of the sliding member according to the embodiment. FIG. 5 is a photomicrograph showing a non-sliding cross section near the boundary between the first metal member 1000 and the second metal member 2000 used for the sliding member according to the embodiment. FIG. 6 is a photomicrograph showing a cross section of the first metal member 1000 used for the sliding member according to the embodiment in the initial sliding state near the boundary. FIG. 7 is a graph showing the relationship between the depth from the outermost surface and the hardness (hardness) of the first metal member 1000 used for the sliding member according to the embodiment. FIG. 8 is a graph showing the relationship between the Vickers hardness of the embrittlement layer 1010 and the amount of wear of the first metal member. FIG. 9 is a graph showing the relationship between the porous size of the embrittlement layer 1010 and the amount of wear of the first metal member 1000. FIG. 10 is a graph showing the relationship between the sliding angle and the friction coefficient when the sliding member in which the first metal member 1000 and the second metal member 2000 according to the embodiment are used slides. In FIGS. 5 and 6, for convenience, a gap painted in black between the first metal member 1000 and the second metal member 2000 is shown on the photograph, but this gap is used only for analysis. It should be noted that the resin that was used is only expressed, and the gap is omitted in the actual sliding member.

なお、一実施形態に係る摺動部材においては基本的に常時当接(接触)している2部材から構成されるものを前提とし、例えば、前述にて説明したライニングプレート100及び第1プレート201を摺動部材の一例とすることができる。一実施形態に係る摺動部材は、第1金属部材1000(例えば、ライニングプレート100)及び第2金属部材2000(例えば、第1プレート201)から構成される。 It should be noted that the sliding member according to one embodiment is basically composed of two members that are always in contact with each other, and for example, the lining plate 100 and the first plate 201 described above are described above. Can be taken as an example of a sliding member. The sliding member according to one embodiment is composed of a first metal member 1000 (for example, a lining plate 100) and a second metal member 2000 (for example, a first plate 201).

第1金属部材1000及び第2金属部材2000の材料(母材)としては、ダンパ装置1に一般に求められる所定の剛性を確保できる市販の鉄材や圧延鋼などの鋼材であれば特に制限なく用いられるが、後述する軟窒化処理の観点から、C(炭素)、Mn(マンガン)、Al(アルミニウム)、Cr(クロム)、Si(シリカ)、Ti(チタン)、及び/又はV(バナジウム)が構成成分の一部として含まれる鋼材であることが好ましい。 As the material (base material) of the first metal member 1000 and the second metal member 2000, any steel material such as a commercially available iron material or rolled steel that can secure a predetermined rigidity generally required for the damper device 1 is used without particular limitation. However, from the viewpoint of soft nitriding treatment described later, it is composed of C (carbon), Mn (manganese), Al (aluminum), Cr (chromium), Si (silica), Ti (titanium), and / or V (vanadium). It is preferably a steel material contained as a part of the components.

2−1.第1金属部材1000
図4に示すように、第1金属部材1000は、その最表面に形成される脆化層1010、脆化層1010の下に形成される硬化窒化層1020を少なくとも含む。他方、第2金属部材2000は、その最表面に凹凸状に形成されるリン酸塩皮膜層2010を少なくとも含む。第1金属部材1000及び第2金属部材2000は、用いられる場合、一方が他方に押し付けられて互いに常に当接する摺動部材として用いられる。
2-1. First metal member 1000
As shown in FIG. 4, the first metal member 1000 includes at least an embrittlement layer 1010 formed on the outermost surface thereof and a hardened nitrided layer 1020 formed under the embrittlement layer 1010. On the other hand, the second metal member 2000 includes at least a phosphate film layer 2010 formed in an uneven shape on the outermost surface thereof. When used, the first metal member 1000 and the second metal member 2000 are used as sliding members in which one is pressed against the other and always abuts against each other.

脆化層1010とは、図5に示すように、鋼材中に無数の微細なポーラスが形成されたマイクロポーラス構造を有し、初期摺動状態より前(未摺動時)においては、その表面は凹凸形状を呈する。したがって、第2金属部材2000の最表面に形成されるリン酸塩皮膜層2010との間で摺動すると、容易に摩耗して摩耗粉層を形成する。つまり、図6に示すように、初期摺動状態が開始すると、ほどなくして、脆化層1010の凹凸形状の表面は第2金属部材2000のリン酸塩皮膜層2010に削り取られる(掘り起こされる)。これにより、脆化層1010の最表面には、極平坦な摩耗粉層1011が形成される、このように形成された当該摩耗粉層1011が、第1金属部材1000と第2金属部材2000との摺動面(境界)となる。 As shown in FIG. 5, the embrittlement layer 1010 has a microporous structure in which innumerable fine porouss are formed in the steel material, and the surface thereof is before the initial sliding state (when not sliding). Exhibits an uneven shape. Therefore, when it slides with the phosphate film layer 2010 formed on the outermost surface of the second metal member 2000, it easily wears to form a wear debris layer. That is, as shown in FIG. 6, soon after the initial sliding state starts, the uneven surface of the embrittlement layer 1010 is scraped (digged up) by the phosphate film layer 2010 of the second metal member 2000. .. As a result, an extremely flat wear powder layer 1011 is formed on the outermost surface of the embrittlement layer 1010. The wear powder layer 1011 formed in this way is formed with the first metal member 1000 and the second metal member 2000. It becomes the sliding surface (boundary) of.

次に、第1金属部材1000に形成される脆化層1010及び硬化窒化層1020の生成方法について説明する。脆化層1010及び硬化窒化層1020は、第1金属部材1000の最表面から所定の深さ(厚さ)まで軟窒化処理することにより形成される。 Next, a method of forming the embrittled layer 1010 and the hardened nitrided layer 1020 formed on the first metal member 1000 will be described. The embrittlement layer 1010 and the hardened nitrided layer 1020 are formed by soft nitriding treatment from the outermost surface of the first metal member 1000 to a predetermined depth (thickness).

軟窒化処理はガス法又は塩浴法のいずれかを用いることができ、例えば、アンモニア等の雰囲気ガスを最適化することで、第1金属部材1000の表層にマイクロポーラス構造を有する窒化層を形成することができる。さらに、第1金属部材1000の表層に形成されたマイクロポーラス構造の極表層を水蒸気に晒すことで、当該極表層において耐食性の高い酸化鉄に置換することができる。このような一連の軟窒化処理を第1金属部材1000に施すことにより、第1金属部材1000の最表面から10μm以内の厚さにおいて脆化層1010を形成することができる。なお、脆化層1010は、前述の一連の軟窒化処理に基づき、酸化物、窒化物、またはこれらの複合物で形成されることとなる。 Either the gas method or the salt bath method can be used for the soft nitriding treatment. For example, by optimizing an atmospheric gas such as ammonia, a nitride layer having a microporous structure is formed on the surface layer of the first metal member 1000. can do. Further, by exposing the polar surface layer of the microporous structure formed on the surface layer of the first metal member 1000 to water vapor, the polar surface layer can be replaced with iron oxide having high corrosion resistance. By applying such a series of soft nitriding treatments to the first metal member 1000, the embrittlement layer 1010 can be formed at a thickness within 10 μm from the outermost surface of the first metal member 1000. The embrittlement layer 1010 is formed of an oxide, a nitride, or a composite thereof based on the series of soft nitriding treatments described above.

ところで、前述のとおり形成される脆化層1010の厚み(第1金属部材1000の最表面からの深さ)は、例えば図7に示すように10μm以内に構成される(図7の領域A)。また、脆化層1010の硬度は、図7に示すように、ビッカース硬さが350HV以下となることで、第2金属部材2000におけるリン酸塩皮膜層2010に容易に掘り起こされることとなる。なお、脆化層1010の硬度としては、図8に示すように、ビッカース硬さ350HVとすることで、第1金属部材1000の摩耗量を低減させることが分かる。つまり、摺動部材を初期摺動状態から早期に定常摺動状態へと移行させることで、第1金属部材1000の摩耗量を低減させることが可能となる。 By the way, the thickness of the embrittled layer 1010 (depth from the outermost surface of the first metal member 1000) formed as described above is configured to be within 10 μm as shown in FIG. 7, for example (region A in FIG. 7). .. Further, as shown in FIG. 7, the hardness of the embrittlement layer 1010 is such that the Vickers hardness is 350 HV or less, so that the embrittlement layer 1010 is easily dug up in the phosphate film layer 2010 in the second metal member 2000. As the hardness of the embrittlement layer 1010, as shown in FIG. 8, it can be seen that the amount of wear of the first metal member 1000 is reduced by setting the Vickers hardness to 350 HV. That is, the amount of wear of the first metal member 1000 can be reduced by shifting the sliding member from the initial sliding state to the steady sliding state at an early stage.

一方、前述のとおり形成される硬化窒化層1020の厚みは、図7に示すように、脆化層1010の厚みよりも大きく、例えば60μm以上に形成される(図7の領域B)。このように、硬化窒化層1020の厚みを脆化層1010の厚みよりも大きくすることで、第1金属部材1000及び第2金属部材2000の耐久性向上につながり、第1金属部材1000と第2金属部材2000との間において、安定的な摩擦力(摩擦係数)を確保することができる。 On the other hand, as shown in FIG. 7, the thickness of the cured nitride layer 1020 formed as described above is larger than the thickness of the embrittlement layer 1010, and is formed to be, for example, 60 μm or more (region B in FIG. 7). By making the thickness of the hardened nitrided layer 1020 larger than the thickness of the embrittlement layer 1010 in this way, the durability of the first metal member 1000 and the second metal member 2000 is improved, and the first metal member 1000 and the second metal member 1000 and the second metal member 1000 are improved. A stable frictional force (friction coefficient) can be secured between the metal member 2000 and the metal member 2000.

なお、図7に示す従来材(金属部材同士が直接摺動する摺動部材)においては、前述の軟窒化処理が施されず、第1金属部材1000の表面に硬化処理のみが施されたものであり、当該従来材における第1金属部材1000の最表面には硬化層(硬化窒化層)(図7における領域D参照)が形成される。なお、前述にて形成される従来材の当該硬化層の硬度は、ビッカース硬さ400HV乃至700HV程度となるため、脆化層1010のように容易に摩耗することはない。したがって、一実施形態に係る摺動部材と比較して、摩耗粉層が形成されるまでに時間がかかってしまう。つまり、定常摺動状態に至るまでに相当時間を要することとなる。 The conventional material (sliding member in which the metal members slide directly with each other) shown in FIG. 7 is not subjected to the above-mentioned soft nitriding treatment, and only the surface of the first metal member 1000 is subjected to a hardening treatment. A hardened layer (hardened nitrided layer) (see region D in FIG. 7) is formed on the outermost surface of the first metal member 1000 in the conventional material. Since the hardness of the hardened layer of the conventional material formed as described above is about 400 HV to 700 HV Vickers hardness, it is not easily worn like the embrittled layer 1010. Therefore, as compared with the sliding member according to one embodiment, it takes time for the wear powder layer to be formed. That is, it takes a considerable amount of time to reach the steady sliding state.

ところで、図4乃至図6に示すように、第1金属部材1000に軟窒化処理を施すと、硬化窒化層1020の下に、母材組織が窒素によって強化された拡散層1030が形成される(図7においては、一実施形態に係る摺動部材においては領域C参照)。また、拡散層1030の下には窒素の影響を受けず母材組織がそのまま形成されたままの母材層1050が形成される。なお、図7に示すように、拡散層1030の硬度は、ビッカース硬さが300HV以上とすることが、第1金属部材1000の摩耗量を低減する観点からは好ましい。 By the way, as shown in FIGS. 4 to 6, when the first metal member 1000 is subjected to soft nitriding treatment, a diffusion layer 1030 whose base metal structure is reinforced with nitrogen is formed under the hardened nitriding layer 1020 ( In FIG. 7, see region C for the sliding member according to one embodiment). Further, under the diffusion layer 1030, a base material layer 1050 is formed in which the base material structure is formed as it is without being affected by nitrogen. As shown in FIG. 7, it is preferable that the hardness of the diffusion layer 1030 has a Vickers hardness of 300 HV or more from the viewpoint of reducing the amount of wear of the first metal member 1000.

次に、前述のとおり生成された脆化層1010のマイクロポーラス構造におけるポーラスサイズは、図9に示すとおり、2μm以下であることが好ましく、1μm以下であることが特に好ましい。ポーラスサイズを2μm以下とすれば、ポーラスサイズが10μm程度の場合に比して、第1金属部材1000の摩耗量を2/3以下に低減させることができる。第1金属部材1000の摩耗量が少ないということは、初期摺動状態から早期に定常摺動状態へと移行することが可能となることを意味する。 Next, as shown in FIG. 9, the porous size of the embrittled layer 1010 produced as described above in the microporous structure is preferably 2 μm or less, and particularly preferably 1 μm or less. When the porous size is 2 μm or less, the amount of wear of the first metal member 1000 can be reduced to 2/3 or less as compared with the case where the porous size is about 10 μm. The fact that the amount of wear of the first metal member 1000 is small means that it is possible to shift from the initial sliding state to the steady sliding state at an early stage.

なお、摺動部材としての摩擦係数としては、一般に0.6以上であることが求められる。これを考慮すると、脆化層1010は粗面化されることが好ましく、その表面粗さは、図10に示すように、Rzjis(十点平均粗さ)が15μm以下であることが好ましく、8μm以上11μm以下であることが特に好ましい。 The coefficient of friction of the sliding member is generally required to be 0.6 or more. Considering this, the embrittled layer 1010 is preferably roughened, and the surface roughness thereof is preferably R zjis (10-point average roughness) of 15 μm or less, as shown in FIG. It is particularly preferably 8 μm or more and 11 μm or less.

2−2.第2金属部材2000
図4に示すように、第2金属部材2000の最表面(第2金属部材2000の母材2020の表面)には、前述のとおりリン酸塩皮膜層2010が形成される。リン酸塩としては、例えばリン酸亜鉛を用いることができる。リン酸塩皮膜層2010は、第2金属部材2000の最表面に一般的なボンデ処理を施すことによって形成される。
2-2. Second metal member 2000
As shown in FIG. 4, the phosphate film layer 2010 is formed on the outermost surface of the second metal member 2000 (the surface of the base material 2020 of the second metal member 2000) as described above. As the phosphate, for example, zinc phosphate can be used. The phosphate film layer 2010 is formed by applying a general bonde treatment to the outermost surface of the second metal member 2000.

以上のとおりの構成を含む第1金属部材1000及び第2金属部材2000から構成される一実施形態に係る摺動部材は、図2に示すように、初期摺動状態の初期(試験回数10000以下)においても、摩擦係数が0.65以上となり、且つ試験回数25000程度で初期摺動状態(図2おける領域P)から定常摺動状態(図2における領域Q)へと移行することができる。他方、従来材は、初期摺動状態の初期における摩擦係数は0.6以下であり、初期摺動状態(図2における領域X)から定常摺動状態(図2における領域Y)へと移行するまでに試験回数150000回程度を要する。したがって、一実施形態に係る摺動部材は、従来材に比して、初期摺動状態から早期に定常摺動状態へと移行することが可能となっている。 As shown in FIG. 2, the sliding member according to the embodiment composed of the first metal member 1000 and the second metal member 2000 including the above configuration has an initial sliding state (test number of 10,000 or less). ), The friction coefficient is 0.65 or more, and the initial sliding state (region P in FIG. 2) can be shifted to the steady sliding state (region Q in FIG. 2) when the number of tests is about 25,000. On the other hand, the conventional material has a friction coefficient of 0.6 or less at the initial stage of the initial sliding state, and shifts from the initial sliding state (region X in FIG. 2) to the steady sliding state (region Y in FIG. 2). It takes about 150,000 tests. Therefore, the sliding member according to one embodiment can shift from the initial sliding state to the steady sliding state at an early stage as compared with the conventional material.

以上、前述の通り、様々な実施形態を例示したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換、変更を行うことができる。 As described above, various embodiments have been exemplified, but the above embodiments are merely examples and are not intended to limit the scope of the invention. The above-described embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention.

1 ダンパ装置
1000 第1金属部材
1010 脆化層
1011 摩耗粉層
1020 硬化窒化層
2000 第2金属部材
2010 リン酸塩皮膜層
1 Damper device 1000 1st metal member 1010 Embrittlement layer 1011 Abrasion powder layer 1020 Hardened nitrided layer 2000 2nd metal member 2010 Phosphate film layer

Claims (5)

第1金属部材及び第2金属部材を具備し、
前記第1金属部材は、その最表面に形成される脆化層と、前記脆化層の下に形成される硬化窒化層とを少なくとも含み、
前記第2金属部材は、その最表面に形成されるリン酸塩皮膜層を少なくとも含み、
前記第1金属部材及び前記第2金属部材は、一方が他方に押し付けられて互いに常に当接し、且つ前記脆化層が摩耗することにより形成される摩耗粉層を境界にして相対的に摺動する、
摺動部材。
Equipped with a first metal member and a second metal member,
The first metal member includes at least an embrittlement layer formed on the outermost surface thereof and a hardened nitrided layer formed under the embrittlement layer.
The second metal member contains at least a phosphate film layer formed on the outermost surface thereof.
One of the first metal member and the second metal member is pressed against the other and always abuts against each other, and slides relative to each other with a wear debris layer formed by the wear of the embrittlement layer as a boundary. To do,
Sliding member.
前記脆化層は、酸化物、窒化物、またはこれらの複合物で形成される、請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the embrittled layer is formed of an oxide, a nitride, or a composite thereof. 前記脆化層は、マイクロポーラス構造を有する、請求項1又は請求項2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the embrittled layer has a microporous structure. 前記マイクロポーラス構造は、ポーラスサイズ2μm以下である、請求項3に記載の摺動部材。 The sliding member according to claim 3, wherein the microporous structure has a porous size of 2 μm or less. 前記硬化窒化層の厚みは、前記脆化層の厚みよりも大きい、請求項1乃至請求項3のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the thickness of the cured nitride layer is larger than the thickness of the embrittlement layer.
JP2019225833A 2019-12-13 2019-12-13 Slide member Pending JP2021095933A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019225833A JP2021095933A (en) 2019-12-13 2019-12-13 Slide member
CN202011434440.XA CN112984047A (en) 2019-12-13 2020-12-10 Sliding component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019225833A JP2021095933A (en) 2019-12-13 2019-12-13 Slide member

Publications (1)

Publication Number Publication Date
JP2021095933A true JP2021095933A (en) 2021-06-24

Family

ID=76344912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019225833A Pending JP2021095933A (en) 2019-12-13 2019-12-13 Slide member

Country Status (2)

Country Link
JP (1) JP2021095933A (en)
CN (1) CN112984047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136530A1 (en) * 2022-06-14 2023-12-15 Valeo Embrayages Torsion damping device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280643A (en) * 1991-07-24 1993-10-26 Nippon Piston Ring Co Ltd Piston ring and manufacture thereof
JP2009191294A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Method for manufacturing sliding member, and sliding member
JP2015086409A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Surface treatment method of metal
WO2015093463A1 (en) * 2013-12-16 2015-06-25 アイシン精機株式会社 Sliding member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280643A (en) * 1991-07-24 1993-10-26 Nippon Piston Ring Co Ltd Piston ring and manufacture thereof
JP2009191294A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Method for manufacturing sliding member, and sliding member
JP2015086409A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Surface treatment method of metal
WO2015093463A1 (en) * 2013-12-16 2015-06-25 アイシン精機株式会社 Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136530A1 (en) * 2022-06-14 2023-12-15 Valeo Embrayages Torsion damping device
WO2023242224A1 (en) * 2022-06-14 2023-12-21 Valeo Embrayages Torsion damping device

Also Published As

Publication number Publication date
CN112984047A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US5878856A (en) Flywheel device with a system of plain bearings
US8795093B2 (en) Torque fluctuation absorbing apparatus
JP5852701B2 (en) Fluid power transmission device
US20170252795A1 (en) Gear And An Electric Actuator Provided Therewith
JP2010230162A (en) Torque fluctuation absorber
CN107554288B (en) Decoupling pulley with offset clutch
JP4420115B2 (en) Power transmission mechanism
JP2021095933A (en) Slide member
JP2008039113A (en) Spring seat and spring assembly
JP5772983B2 (en) Torsional vibration damping device
JP4373502B2 (en) Power transmission mechanism
JP4073666B2 (en) Fluid torque transmission device with lock-up device
US11460088B2 (en) Damper
JPS6325223B2 (en)
JP2012255502A (en) Torsional vibration damping device
JP2018017277A (en) Pulley unit
JP5131369B2 (en) Torque fluctuation absorber
JP4270320B2 (en) Power transmission mechanism
JP2006308041A (en) Damper for absorbing torque fluctuations
EP2775166B1 (en) Torsional vibration damping device
JP2007327615A (en) Power transmission for vehicle
JP2005061488A (en) Two mass flywheel
WO2017139870A1 (en) Improved isolation device
JP2007225031A (en) Damper device
JP2000074165A (en) Variable diameter pulley

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128