JP2021093482A - Manufacturing method of insulation circuit board - Google Patents

Manufacturing method of insulation circuit board Download PDF

Info

Publication number
JP2021093482A
JP2021093482A JP2019224389A JP2019224389A JP2021093482A JP 2021093482 A JP2021093482 A JP 2021093482A JP 2019224389 A JP2019224389 A JP 2019224389A JP 2019224389 A JP2019224389 A JP 2019224389A JP 2021093482 A JP2021093482 A JP 2021093482A
Authority
JP
Japan
Prior art keywords
copper plate
circuit layer
wire
copper
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019224389A
Other languages
Japanese (ja)
Other versions
JP7490950B2 (en
Inventor
拓也 松尾
Takuya Matsuo
拓也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019224389A priority Critical patent/JP7490950B2/en
Priority claimed from JP2019224389A external-priority patent/JP7490950B2/en
Publication of JP2021093482A publication Critical patent/JP2021093482A/en
Application granted granted Critical
Publication of JP7490950B2 publication Critical patent/JP7490950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

To prevent the generation of stains due to soldering when a copper plate is formed into a circuit pattern by a wire cut discharge processing and jointed to a ceramic substrate.SOLUTION: A manufacturing method of a circuit board having a circuit layer formed in a circuit pattern on a front surface of a ceramic substrate, includes: a circuit layer copper plate formation step of cutting the copper plate made of copper or a copper alloy by wire cutting discharge processing to form the circuit layer copper plate of which a zinc concentration of a cutting end surface is 1.21 at% or less; and a joint step of forming the circuit layer by jointing the circuit layer copper plate with an active metal soldering to the ceramic substrate.SELECTED DRAWING: Figure 1

Description

本発明は、パワーモジュール用基板等の絶縁回路基板の製造方法に関する。 The present invention relates to a method for manufacturing an insulated circuit board such as a power module board.

パワーモジュール用基板として、セラミックス基板からなる絶縁層の一方の面に回路層が形成されるとともに、他方の面に放熱層が形成されたものが知られている。また、電子部品の小型化や高出力化により、高いパワー密度が求められる場合には、回路層の放熱性を高めるために、回路層に銅又は銅合金が用いられている。
特許文献1には、銅板に活性金属ろうの薄板をクラッドした複合ろう材をプレス抜き又は放電加工して回路パターンを形成し、この回路パターンを形成した複合ろう材を活性金属ろうの薄板側でセラミックス基板上に接合し、その後、複合ろう材の回路パターンの繋ぎ部分をエッチングして除去することが記載されている。
この場合、プレス抜きにより銅板を回路パターンに形成する場合に比べて、ワイヤカット放電加工により回路パターンに形成する方が、プレス金型の製作を省略できる分、納期を短くすることができる。
As a substrate for a power module, one in which a circuit layer is formed on one surface of an insulating layer made of a ceramic substrate and a heat radiating layer is formed on the other surface is known. Further, when high power density is required due to miniaturization and high output of electronic components, copper or a copper alloy is used for the circuit layer in order to improve the heat dissipation of the circuit layer.
In Patent Document 1, a composite brazing material obtained by clad a thin plate of active metal brazing on a copper plate is punched or electric discharge machined to form a circuit pattern, and the composite brazing material on which this circuit pattern is formed is formed on the thin plate side of the active metal brazing plate. It is described that the joint portion of the circuit pattern of the composite brazing material is etched and removed after joining on a ceramic substrate.
In this case, as compared with the case where the copper plate is formed into a circuit pattern by punching, the case where the copper plate is formed into a circuit pattern by wire-cut electric discharge machining can shorten the delivery time because the production of the press die can be omitted.

特開平6−177513号公報Japanese Unexamined Patent Publication No. 6-177513

ところで、活性金属ろう材を用いて銅板をセラミックス基板に接合すると、溶融したろう材の余剰分がセラミックス基板と銅板との間から漏れ出し、銅板の側面を伝って上昇して銅板の表面に這い上がる現象が生じる場合がある。この銅板の表面に這い上がったろう材がそのまま固化すると、回路層の表面にろうのシミ(ろうシミと称す)となって残存する。このろうシミは、回路層の周縁から面方向に濡れ広がっており、目視では、回路層の表面が荒れたように見える。このろうシミが形成された状態で電子部品が搭載されると、ワイヤボンディングなどの際に接合不良が生じるおそれがある。 By the way, when a copper plate is joined to a ceramic substrate using an active metal brazing material, a surplus of the molten brazing material leaks from between the ceramic substrate and the copper plate, rises along the side surface of the copper plate, and crawls on the surface of the copper plate. The phenomenon of rising may occur. When the brazing material that crawls up on the surface of this copper plate solidifies as it is, it remains as a wax stain (called a wax stain) on the surface of the circuit layer. The wax stains are wet and spread in the surface direction from the peripheral edge of the circuit layer, and the surface of the circuit layer appears to be rough to the naked eye. If an electronic component is mounted in a state where the wax stain is formed, a bonding defect may occur during wire bonding or the like.

特許文献1記載のプレス抜きにより銅板を打抜いて回路パターンに形成する場合に比べて、放電加工(ワイヤカット放電加工)により回路パターンに形成した場合に、ろうシミの発生が顕著になる。ただし、この特許文献1記載の回路基板の場合は、セラミックス基板に接合した後に、回路層における回路パターンの繋ぎ部分をエッチングにより除去しているため、接合後にろうシミが形成されたとしても、エッチングにより除去することが可能である。
しかしながら、回路パターンに繋ぎ部分を形成しない場合など、エッチングを施さない場合には、ろうシミが残ったままとなる。
Compared with the case where the copper plate is punched out by the press punching described in Patent Document 1 to form the circuit pattern, the occurrence of wax stain becomes remarkable when the circuit pattern is formed by electric discharge machining (wire cut electric discharge machining). However, in the case of the circuit board described in Patent Document 1, since the connecting portion of the circuit pattern in the circuit layer is removed by etching after joining to the ceramic substrate, even if wax stains are formed after joining, etching is performed. Can be removed by
However, if etching is not performed, such as when a connecting portion is not formed in the circuit pattern, wax stains remain.

本発明は、このような事情に鑑みてなされたもので、銅板をワイヤカット放電加工により回路パターンに形成してセラミックス基板に接合する場合のろうシミの発生を防止できる絶縁回路基板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for manufacturing an insulated circuit board capable of preventing the occurrence of wax stains when a copper plate is formed into a circuit pattern by wire-cut electric discharge machining and bonded to a ceramic substrate. The purpose is to provide.

本発明者は、ろうシミの防止策について鋭意研究し、以下の知見を得た。
接合時に溶融して液相となったろう材は、セラミックス基板と銅板との間から余剰分が漏れ出た後、銅板の側面を伝って上昇し、側面から表面にかけて這い上がることで、回路層の表面にろうシミを形成する。このため、回路層表面のろうシミの発生を防止するためには、セラミックス基板と銅板との間からの溶融ろう材の漏れ出し、銅板の側面での上昇、側面から表面への這い上がりの三つの形態のうちのいずれかを抑制する必要がある。
The present inventor has earnestly studied measures to prevent wax stains and obtained the following findings.
The brazing material, which melts at the time of joining and becomes a liquid phase, leaks from the space between the ceramic substrate and the copper plate, then rises along the side surface of the copper plate, and crawls up from the side surface to the surface of the circuit layer. Form wax stains on the surface. Therefore, in order to prevent the occurrence of wax stains on the surface of the circuit layer, the molten brazing material leaks from between the ceramic substrate and the copper plate, rises on the side surface of the copper plate, and crawls up from the side surface to the surface. It is necessary to suppress one of the two forms.

特許文献1記載のプレス抜きにより銅板を打抜いて回路パターンに形成する場合、回路パターンの周縁にバリが生じるため、このバリが銅板の表裏面と側面との間でのろう材の移動を妨げることができると考えられる。しかし、ワイヤカット放電加工により銅板を回路パターンに形成する場合は、バリが生じないため、前述の三つの形態のうち、セラミックス基板と銅板との間からのろう材の漏れ出し、及び銅板の切断端面(側面)から表面への這い上がりを抑制することは難しい。また、回路層の周縁まで良好な接合を得るため、ろう材の漏れ出しを完全になくすことは不可能である。このため、このワイヤカット放電加工によって銅板を形成する場合にあっては、銅板の切断端面(側面)でのろう材の上昇を防止できなければ、ろうシミの発生を防止できない。 When a copper plate is punched out to form a circuit pattern by punching according to Patent Document 1, burrs are generated on the periphery of the circuit pattern, and these burrs hinder the movement of the brazing material between the front and back surfaces of the copper plate and the side surfaces. It is thought that it can be done. However, when the copper plate is formed into a circuit pattern by wire cut electric discharge machining, burrs do not occur. Therefore, among the above three forms, the brazing material leaks from between the ceramic substrate and the copper plate, and the copper plate is cut. It is difficult to suppress the creeping up from the end face (side surface) to the surface. Further, it is impossible to completely eliminate the leakage of the brazing material in order to obtain a good bond up to the peripheral edge of the circuit layer. Therefore, in the case of forming a copper plate by this wire-cut electric discharge machining, the occurrence of wax stains cannot be prevented unless the brazing material can be prevented from rising on the cut end surface (side surface) of the copper plate.

そこで、ワイヤカット放電加工により切断した銅板の切断端面(側面)とプレスにより打抜いた銅板の打ち抜き端面(側面)の状態を比較調査するために、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いたエネルギー分散型X線分光法(EDX:Energy Dispersive X-ray Spectroscopy)により銅板の側面をそれぞれ成分分析したところ、銅以外に炭素、酸素、亜鉛が多く確認された。そして、この分析結果に基づきワイヤカット放電加工による銅板の切断端面(側面)におけるろう材の上昇防止策を研究したところ、切断端面の亜鉛濃度が高いと、ろう材が切断端面を伝って上昇し易いことを見出し、この亜鉛濃度を所定値以下に抑えることで、切断端面におけるろう材の上昇を防止して、表面のろうシミの発生を抑制できるとの結論に至った。 Therefore, in order to compare and investigate the state of the cut end face (side surface) of the copper plate cut by wire cut discharge processing and the punched end face (side surface) of the copper plate punched by the press, a scanning electron microscope (SEM) was used. When the side surfaces of the copper plate were analyzed for their components by the energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray Spectroscopy) used, a large amount of carbon, oxygen, and zinc were confirmed in addition to copper. Then, based on this analysis result, a study was conducted on measures to prevent the brazing material from rising on the cut end face (side surface) of the copper plate by wire-cut electric discharge machining. As a result, when the zinc concentration on the cut end face was high, the brazing material rose along the cut end face. We found that it was easy, and concluded that by suppressing the zinc concentration to a predetermined value or less, it was possible to prevent the brazing material from rising on the cut end face and suppress the occurrence of wax stains on the surface.

すなわち、本発明は、セラミックス基板の表面に、回路パターンに形成された回路層を有する絶縁回路基板の製造方法であって、銅又は銅合金からなる銅板をワイヤカット放電加工により前記回路パターンに切断して、切断端面の亜鉛濃度が1.21at%以下の回路層用銅板を形成する回路層用銅板形成工程と、前記回路層用銅板を前記セラミックス基板に活性金属ろう材によって接合して前記回路層を形成する接合工程とを有する。 That is, the present invention is a method for manufacturing an insulated circuit board having a circuit layer formed in a circuit pattern on the surface of a ceramics substrate, in which a copper plate made of copper or a copper alloy is cut into the circuit pattern by wire-cut discharge processing. Then, the circuit layer copper plate forming step of forming the circuit layer copper plate having a zinc concentration of 1.21 at% or less on the cut end face and the circuit layer copper plate are joined to the ceramics substrate with an active metal brazing material to form the circuit. It has a joining step of forming a layer.

銅板をワイヤカット放電加工により回路パターンに形成すると、切断端面の亜鉛濃度が増大する傾向にあり、その亜鉛濃度が1.21at%を超えていると、その銅板をセラミックス基板に活性金属ろう材によって接合したときに、セラミックス基板と銅板との間から漏れ出た溶融ろう材が銅板の切断端面を伝って上昇して表面に這い上がり、回路層にろうシミが生じ易い。この亜鉛濃度を1.21at%以下とすることにより、接合時に溶融したろう材が銅板の切断端面(側面)を伝って表面まで上昇する現象を抑制でき、ろうシミの発生を防止できる。 When a copper plate is formed into a circuit pattern by wire-cut electric discharge machining, the zinc concentration on the cut end face tends to increase, and when the zinc concentration exceeds 1.21 at%, the copper plate is used as a ceramic substrate with an active metal brazing material. When joined, the molten brazing material leaking from between the ceramic substrate and the copper plate rises along the cut end face of the copper plate and crawls up to the surface, and wax stains are likely to occur in the circuit layer. By setting the zinc concentration to 1.21 at% or less, it is possible to suppress the phenomenon that the brazing material melted at the time of joining travels along the cut end face (side surface) of the copper plate and rises to the surface, and the occurrence of wax stains can be prevented.

この製造方法の好ましい実施態様として、ワイヤカット放電加工の電極として用いられるワイヤの表面の亜鉛濃度が20質量%以下であるとよい。 As a preferred embodiment of this manufacturing method, the zinc concentration on the surface of the wire used as an electrode for wire cut electric discharge machining is preferably 20% by mass or less.

ワイヤカット放電加工の電極として用いられるワイヤとしては、銅と亜鉛の合金である黄銅(真鍮)(但し、亜鉛の量は20質量%以下)、無酸素銅、タングステンなどが材料として用いられる。また、黄銅等の素線の外周面に亜鉛のコーティングをしたものも存在する。これらワイヤのうち、加工時に銅板に接近して放電するワイヤの表面の亜鉛濃度が高いと、加工後の銅板の切断端面の亜鉛濃度が高くなる。前述した銅板の切断端面の亜鉛濃度を1.21at%以下に抑えるためには、ワイヤの表面の亜鉛濃度を20質量%以下にするとよい。 As the wire used as the electrode for wire cut discharge processing, brass (brass) which is an alloy of copper and zinc (however, the amount of zinc is 20% by mass or less), oxygen-free copper, tungsten and the like are used as materials. In addition, there are also those in which the outer peripheral surface of a wire such as brass is coated with zinc. Of these wires, if the zinc concentration on the surface of the wire that is discharged in close proximity to the copper plate during processing is high, the zinc concentration on the cut end face of the copper plate after processing is high. In order to suppress the zinc concentration on the cut end surface of the copper plate to 1.21 at% or less, the zinc concentration on the surface of the wire may be 20% by mass or less.

本発明によれば、銅板をワイヤカット放電加工により回路パターンに形成してセラミックス基板に接合する場合のろうシミの発生を防止できる。 According to the present invention, it is possible to prevent the occurrence of wax stains when a copper plate is formed into a circuit pattern by wire-cut electric discharge machining and bonded to a ceramic substrate.

本発明の一実施形態に係る絶縁回路基板の正面図である。It is a front view of the insulation circuit board which concerns on one Embodiment of this invention. 図1に示す絶縁回路基板の平面図である。It is a top view of the insulation circuit board shown in FIG. 図1に示す絶縁回路基板の回路層用銅板をワイヤカット放電加工している状態を示す模式図である。It is a schematic diagram which shows the state which the copper plate for a circuit layer of the insulation circuit board shown in FIG. 1 is wire-cut electric discharge machining. 図1に示す絶縁回路基板の接合前の状態を示す図である。It is a figure which shows the state before joining of the insulation circuit board shown in FIG.

以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[絶縁回路基板の構成]
絶縁回路基板1は、セラミックス基板11と、セラミックス基板11の一方の面に形成された回路層12と、セラミックス基板11の他方の面に形成された放熱層13とを備える。
[Structure of insulated circuit board]
The insulating circuit board 1 includes a ceramics substrate 11, a circuit layer 12 formed on one surface of the ceramics substrate 11, and a heat radiating layer 13 formed on the other surface of the ceramics substrate 11.

セラミックス基板11は、回路層12と放熱層13の間の電気的接続を防止する矩形板状の絶縁基板であって、例えば窒化けい素(Si)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)等により形成され、その厚さは例えば0.2mm〜1.2mmである。なお、セラミックス基板11の両面に形成される回路層12及び金属層13がいずれも銅又は銅合金からなる場合には、セラミックス基板を窒化けい素により構成することが好ましい。 The ceramic substrate 11 is a rectangular plate-shaped insulating substrate that prevents electrical connection between the circuit layer 12 and the heat dissipation layer 13, and is, for example, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), or aluminum oxide. It is formed of (Al 2 O 3 ) or the like, and its thickness is, for example, 0.2 mm to 1.2 mm. When both the circuit layer 12 and the metal layer 13 formed on both sides of the ceramic substrate 11 are made of copper or a copper alloy, it is preferable that the ceramic substrate is made of silicon nitride.

セラミックス基板11の平面サイズは特に限定されないが、例えば(40mm〜140mm)×(40mm〜100mm)に設定されている。 The plane size of the ceramic substrate 11 is not particularly limited, but is set to, for example, (40 mm to 140 mm) × (40 mm to 100 mm).

回路層12は、セラミックス基板11の上面(一方の面)に形成され、純度99質量%以上の銅又は銅合金が用いられ、その厚さは、例えば0.2mm以上2.0mm以下である。 The circuit layer 12 is formed on the upper surface (one surface) of the ceramic substrate 11, and copper or a copper alloy having a purity of 99% by mass or more is used, and the thickness thereof is, for example, 0.2 mm or more and 2.0 mm or less.

回路層12の平面サイズはセラミックス基板11よりも小さく、特に限定されないが、例えば(36mm〜136mm)×(36mm〜96mm)に設定されている。また、図2に示すように、複数の小回路層121,122が所定の間隔をおいて並べられて一つの回路層12が構成されており、回路層12としての平面サイズは、これら小回路層121,122と小回路層121,122間の隙間を含む全体のサイズである。なお、回路層12が一枚の金属板から構成される、いわゆる、ベタ回路層であってもよい。 The plane size of the circuit layer 12 is smaller than that of the ceramic substrate 11, and is not particularly limited, but is set to, for example, (36 mm to 136 mm) × (36 mm to 96 mm). Further, as shown in FIG. 2, a plurality of small circuit layers 121 and 122 are arranged at predetermined intervals to form one circuit layer 12, and the plane size of the circuit layer 12 is determined by these small circuits. It is the total size including the gap between the layers 121 and 122 and the small circuit layers 121 and 122. The circuit layer 12 may be a so-called solid circuit layer composed of a single metal plate.

放熱層13は、セラミックス基板11の下面(他方の面)に形成され、純度99質量%以上の銅又は銅合金を用いることができる。その厚さは、例えば0.2mm以上2.0mm以下である。 The heat radiating layer 13 is formed on the lower surface (the other surface) of the ceramic substrate 11, and copper or a copper alloy having a purity of 99% by mass or more can be used. Its thickness is, for example, 0.2 mm or more and 2.0 mm or less.

また、放熱層13の平面サイズはセラミックス基板11よりも小さく、特に限定されないが、例えば回路層12と同じ(36mm〜136mm)×(36mm〜96mm)に設定されている。この放熱層13は、図示例では一枚の金属板により構成されているが、例えば回路層12の小回路層121,122と同様に、複数枚の金属板によって構成されていてもよい。 The plane size of the heat radiating layer 13 is smaller than that of the ceramic substrate 11, and is not particularly limited, but is set to, for example, the same (36 mm to 136 mm) × (36 mm to 96 mm) as the circuit layer 12. Although the heat radiating layer 13 is composed of one metal plate in the illustrated example, it may be composed of a plurality of metal plates as in the case of the small circuit layers 121 and 122 of the circuit layer 12, for example.

なお、回路層12及び放熱層13は、銅又は銅合金として同じ組成でもよいが、異なる組成としてもよい。回路層12及び放熱層13の厚さ及び大きさも、同じの場合もあるが、異なる場合もある。 The circuit layer 12 and the heat radiating layer 13 may have the same composition as copper or a copper alloy, but may have different compositions. The thickness and size of the circuit layer 12 and the heat radiating layer 13 may be the same, but may be different.

[絶縁回路基板の製造方法]
次に、本実施形態の絶縁回路基板1の製造方法について説明する。
[Manufacturing method of insulated circuit board]
Next, a method of manufacturing the insulated circuit board 1 of the present embodiment will be described.

(回路層12及び放熱層13に用いられる金属板の形成工程(回路層用銅板形成工程))
銅又は銅合金からなる平板状の銅板をワイヤカット放電加工により切断して、回路層用銅板及び放熱層用銅板を形成する。図3には平板状の銅板150から小回路層用銅板151,152を形成する場合について示している。
ワイヤカット放電加工は、例えば0.2mm〜0.3mm程度の直径のワイヤ(電極線)20にパルス電流を流して、ワーク(銅板150)との間で放電現象を発生させながら、例えば図3の矢印Aで示すようにワイヤ20を走行させ、ワイヤ20の長さ方向と直交する方向にワーク(銅板150)を矢印Bで示すように移動させることにより、ワーク(銅板150)をワイヤ20に対向する部分で局部的に溶融除去しつつ切断加工するものである。この場合、ワイヤ20及びワーク(銅板150)の冷却、加工粉の除去等のために、切断部分の全体を水等の加工液中に浸漬させた状態で加工する。
(Metal plate forming step used for circuit layer 12 and heat radiating layer 13 (Copper plate forming step for circuit layer))
A flat copper plate made of copper or a copper alloy is cut by wire-cut electric discharge machining to form a copper plate for a circuit layer and a copper plate for a heat dissipation layer. FIG. 3 shows a case where the copper plates 151 and 152 for the small circuit layer are formed from the flat plate-shaped copper plate 150.
In the wire cut discharge processing, for example, a pulse current is passed through a wire (electrode wire) 20 having a diameter of about 0.2 mm to 0.3 mm to generate a discharge phenomenon with the work (copper plate 150), for example, FIG. The work (copper plate 150) is moved to the wire 20 by running the wire 20 as shown by the arrow A and moving the work (copper plate 150) in the direction orthogonal to the length direction of the wire 20 as shown by the arrow B. It is cut while locally melting and removing at the facing portion. In this case, in order to cool the wire 20 and the work (copper plate 150), remove processing powder, and the like, the entire cut portion is processed in a state of being immersed in a processing liquid such as water.

このワイヤカット放電加工により銅板150を切断加工する場合、ワイヤ20と銅板150とは数μm〜数十μmの距離で接近して放電する。電極としてのワイヤ20には、亜鉛が40質量%程度含まれる黄銅(真鍮)が用いられることが多い。黄銅(真鍮)のように亜鉛を含む素材からなる場合、放電により切断された回路層用銅板151,152の切断端面S2に亜鉛が付着する。この回路層用銅板151,152の切断端面S2の亜鉛濃度が高いと、次の接合工程において、切断端面S2における溶融ろう材の上昇を防止できず、回路層12表面S1にろうシミが発生する。亜鉛濃度がろうシミの発生に影響する理由は定かでないが、ろうシミが発生しないようにするためには、回路層用銅板151,152の切断端面S2の亜鉛濃度は1.21at%以下にする必要がある。 When the copper plate 150 is cut by this wire cut electric discharge machining, the wire 20 and the copper plate 150 are close to each other at a distance of several μm to several tens of μm and discharged. Brass (brass) containing about 40% by mass of zinc is often used for the wire 20 as an electrode. When it is made of a material containing zinc such as brass, zinc adheres to the cut end faces S2 of the circuit layer copper plates 151 and 152 cut by electric discharge. If the zinc concentration of the cut end faces S2 of the circuit layer copper plates 151 and 152 is high, it is not possible to prevent the molten brazing material from rising on the cut end faces S2 in the next joining step, and wax stains occur on the circuit layer 12 surface S1. .. The reason why the zinc concentration affects the occurrence of wax stains is not clear, but in order to prevent the occurrence of wax stains, the zinc concentration of the cut end faces S2 of the circuit layer copper plates 151 and 152 should be 1.21 at% or less. There is a need.

そこで、ワイヤカット放電加工による切断加工後の回路層用銅板151,152の切断端面S2の亜鉛濃度が1.21at%以下となる条件で放電加工する。亜鉛濃度が1.21at%以下となる条件としては、無酸素銅やタングステンからなるワイヤを用いるとよいが、Cu−Zn系合金のように亜鉛を含む場合、亜鉛濃度が20質量%以下であれば、加工後の回路層用銅板151,152の切断端面S2を1.21at%以下にすることができる。なお、亜鉛濃度が20質量%を超えたワイヤは、これを用いると切断端面S2の亜鉛濃度が1.21at%を超えるため、使用できない。 Therefore, electric discharge machining is performed under the condition that the zinc concentration of the cut end faces S2 of the circuit layer copper plates 151 and 152 after the cutting process by wire cut electric discharge machining is 1.21 at% or less. As a condition for the zinc concentration to be 1.21 at% or less, it is preferable to use a wire made of oxygen-free copper or tungsten, but when zinc is contained like a Cu-Zn alloy, the zinc concentration should be 20% by mass or less. For example, the cut end face S2 of the processed copper plates 151 and 152 for the circuit layer can be 1.21 at% or less. A wire having a zinc concentration of more than 20% by mass cannot be used because the zinc concentration of the cut end face S2 exceeds 1.21 at% when it is used.

また、ワイヤの表面に亜鉛コーティングしたものも使用可能であるが、その場合も表面の亜鉛濃度が20質量%以下であれば使用できる。
また、プレス加工により回路層用銅板を形成する場合等には、加工後に回路層用銅板を脱脂・洗浄することが行われるが、このワイヤカット放電加工により形成された回路層用銅板151,152については、脱脂・洗浄の処理を施すことなく、加工後にそのまま次の接合工程に供される。
Further, a wire coated with zinc on the surface can be used, but even in that case, it can be used as long as the zinc concentration on the surface is 20% by mass or less.
Further, when the circuit layer copper plate is formed by press working, the circuit layer copper plate is degreased and washed after the processing, and the circuit layer copper plate 151,152 formed by this wire cut electric discharge machining is performed. Is used as it is in the next joining step after processing without being subjected to degreasing / cleaning treatment.

なお、回路層用銅板151,152は回路層12がパターンに形成されるため、ワイヤカット放電加工によって形成されるが、放熱層用銅板130については、ワイヤカット放電加工によって形成してもよいし、プレスによる打ち抜き加工によって形成してもよい。この場合、放熱層13については、その表面にヒートシンク等が接合され、回路層12と異なり、ワイヤボンディング等がなされないので、ろうシミが生じていたとしても接合への影響は少ないが、外観を損なうので、ワイヤカット放電加工する場合は、回路層用銅板151,152の場合と同様、表面の亜鉛濃度を20質量%以下のワイヤ20を用いて、切断端面の亜鉛濃度を1.21at%以下にするとよい。 Since the circuit layers 12 are formed in a pattern, the circuit layer copper plates 151 and 152 are formed by wire-cut electric discharge machining, but the heat-dissipating layer copper plate 130 may be formed by wire-cut electric discharge machining. , May be formed by electric discharge machining with a press. In this case, the heat radiating layer 13 has a heat sink or the like bonded to the surface thereof, and unlike the circuit layer 12, wire bonding or the like is not performed. Therefore, even if wax stains occur, the effect on the bonding is small, but the appearance is deteriorated. In the case of wire-cut electric discharge machining, the zinc concentration on the cut end face is 1.21 at% or less using the wire 20 having a surface zinc concentration of 20% by mass or less, as in the case of the circuit layer copper plates 151 and 152. It is good to set it to.

(接合工程)
以上のようにして回路層用銅板151,152及び放熱層用銅板130を形成した後、セラミックス基板11に回路層用銅板151,152及び放熱層用銅板130をそれぞれAg−Ti系又はAg−Cu−Ti系の活性金属ろう材を用いて接合する。具体的には、図4に示すように、セラミックス基板11の両面に、それぞれAg−Cu−Ti系等からなるろう材箔30を介在させて回路層用銅板151,152及び放熱層用銅板130を積層する。そして、これらの積層体をカーボン板(図示略)により挟持し、積層方向に荷重をかけながら真空中で加熱することにより、セラミックス基板11と回路層用銅板151,152及び放熱層用銅板130を接合する。これにより、セラミックス基板11の上面に回路層12が接合部(ろう付け部)を介して接合され、下面に放熱層13が接合部(ろう付け部)を介して接合された絶縁回路基板1が形成される。
(Joining process)
After forming the circuit layer copper plates 151 and 152 and the heat radiation layer copper plate 130 as described above, the circuit layer copper plates 151 and 152 and the heat radiation layer copper plate 130 are formed on the ceramic substrate 11 as Ag-Ti or Ag-Cu, respectively. -Join using a Ti-based active metal brazing material. Specifically, as shown in FIG. 4, a brazing material foil 30 made of Ag-Cu-Ti or the like is interposed on both sides of the ceramic substrate 11, and the copper plates 151 and 152 for the circuit layer and the copper plates 130 for the heat dissipation layer are respectively interposed. Are laminated. Then, these laminated bodies are sandwiched between carbon plates (not shown) and heated in a vacuum while applying a load in the stacking direction to form the ceramic substrate 11, the copper plates 151 and 152 for the circuit layer, and the copper plate 130 for the heat dissipation layer. Join. As a result, the insulating circuit board 1 in which the circuit layer 12 is bonded to the upper surface of the ceramic substrate 11 via the bonding portion (brazing portion) and the heat radiating layer 13 is bonded to the lower surface via the bonding portion (brazing portion) is formed. It is formed.

セラミックス基板11と回路層用銅板151,152及び放熱層用銅板130とを接合する際、積層方向への加圧力は0.1MPa〜1.0MPa、加熱温度は800℃〜930℃とするとよい。また、Ag−Cu−Ti系等のろう材箔30は、厚さ5μm〜15μmであるとよい。箔に代えて、ペーストとしてもよく、ペーストを例えばセラミックス基板11の両面に塗布し、その上に回路層用銅板151,152及び放熱層用銅板130を積層して接合すればよい。 When joining the ceramic substrate 11, the circuit layer copper plates 151 and 152, and the heat dissipation layer copper plate 130, the pressing force in the stacking direction is preferably 0.1 MPa to 1.0 MPa, and the heating temperature is preferably 800 ° C. to 930 ° C. The brazing material foil 30 such as Ag-Cu-Ti has a thickness of 5 μm to 15 μm. Instead of the foil, a paste may be used. For example, the paste may be applied to both surfaces of the ceramic substrate 11, and the circuit layer copper plates 151 and 152 and the heat radiation layer copper plate 130 may be laminated and joined.

この接合工程において、セラミックス基板11と回路層用銅板151,152との間に介在したろう材箔30が溶融し、余剰分がセラミックス基板11と回路層用銅板151,152との間から漏れ出したとしても、回路層用銅板151,152の側面(ワイヤカット放電加工時の切断端面)S2における亜鉛の濃度が低いため、この側面S2を伝って溶融ろう材が上昇する現象が抑制され、その結果、回路層12表面S1のろうシミの発生が防止される。 In this joining step, the brazing foil 30 interposed between the ceramic substrate 11 and the copper plates 151 and 152 for the circuit layer melts, and the surplus leaks from between the ceramic substrate 11 and the copper plates 151 and 152 for the circuit layer. Even so, since the concentration of zinc on the side surfaces (cut end faces during wire-cut electric discharge machining) S2 of the copper plates 151 and 152 for the circuit layer is low, the phenomenon that the molten brazing material rises along the side surfaces S2 is suppressed, and the phenomenon is suppressed. As a result, the occurrence of wax stains on the surface S1 of the circuit layer 12 is prevented.

その他、細部構成は上記実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態ではセラミックス基板の回路層とは反対側の面に放熱層が形成されているが、放熱層を有しない絶縁回路基板にも本発明を適用することができる。
In addition, the detailed configuration is not limited to that of the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the heat radiating layer is formed on the surface of the ceramic substrate opposite to the circuit layer, but the present invention can be applied to an insulated circuit board having no heat radiating layer.

無酸素銅からなる厚さ0.8mmの銅板をワイヤカット放電加工により回路パターンに切断加工し、回路層用銅板を作製した。
このとき、ワイヤカット放電加工に使用したワイヤ表面及び回路層用銅板の切断端面をそれぞれ走査型電子顕微鏡を用いたエネルギー分散型X線分光法(SEM−EDX)により成分分析して、その亜鉛濃度を測定した。
次いで、ワイヤカット後の銅板を窒化けい素からなるセラミックス基板の表面に厚さ10μmとなるように塗布したAg−Cu−Tiの活性金属ろう材ペーストを介して積層し、これを加圧加熱することによって接合した。このときの接合条件は、真空雰囲気下、加圧力を0.2MPa、温度を815℃とした。
A copper plate having a thickness of 0.8 mm made of oxygen-free copper was cut into a circuit pattern by wire-cut electric discharge machining to prepare a copper plate for a circuit layer.
At this time, the surface of the wire used for the wire cut discharge processing and the cut end face of the copper plate for the circuit layer were respectively component-analyzed by energy dispersive X-ray spectroscopy (SEM-EDX) using a scanning electron microscope, and the zinc concentration thereof. Was measured.
Next, the wire-cut copper plate is laminated on the surface of a ceramic substrate made of silicon nitride via an active metal brazing paste of Ag-Cu-Ti coated so as to have a thickness of 10 μm, and this is pressurized and heated. Joined by. The joining conditions at this time were a vacuum atmosphere, a pressing force of 0.2 MPa, and a temperature of 815 ° C.

得られた接合体について、回路層表面のろうシミの有無を確認した。ろうシミが生じる場合は、回路層の周縁から表面へ面方向に濡れ広がって形成されており、銅表面に対してろうシミの部分が荒れたように見えることから、目視により、荒れたように見えた部分が存在するか否かでろうシミの有無を判断した。
その結果を表1に示す。
With respect to the obtained bonded body, the presence or absence of wax stains on the surface of the circuit layer was confirmed. When wax stains occur, they are formed by wetting and spreading from the peripheral edge of the circuit layer to the surface in the surface direction, and the wax stains appear to be rough with respect to the copper surface. The presence or absence of wax stains was judged based on the presence or absence of visible parts.
The results are shown in Table 1.

Figure 2021093482
Figure 2021093482

表1に示す結果から明らかなように、接合前の銅板の切断端面の亜鉛濃度が1.21at%以下であると、ろうシミの発生が抑制できている。また、ワイヤカット放電加工の際に使用されるワイヤ表面の亜鉛濃度が20質量%以下の場合に、銅板の切断端面の亜鉛濃度が1.21at%以下となり、ろうシミの発生を抑制できることがわかった。 As is clear from the results shown in Table 1, when the zinc concentration on the cut end face of the copper plate before joining is 1.21 at% or less, the occurrence of wax stains can be suppressed. Further, it was found that when the zinc concentration on the wire surface used in wire cut electric discharge machining is 20% by mass or less, the zinc concentration on the cut end surface of the copper plate is 1.21 at% or less, and the occurrence of wax stains can be suppressed. It was.

10 絶縁回路基板
11 セラミックス基板
12 回路層
121,122 小回路層
150 銅板
151,152 回路層用銅板
S1 表面
S2 切断端面(側面)
13 放熱層
131 放熱層用金属板
20 ワイヤ
30 活性金属ろう材箔
10 Insulated circuit board 11 Ceramic board 12 Circuit layer 121,122 Small circuit layer 150 Copper plate 151,152 Copper plate for circuit layer S1 Surface S2 Cut end face (side surface)
13 Heat dissipation layer 131 Heat dissipation layer metal plate 20 Wire 30 Active metal brazing material foil

Claims (2)

セラミックス基板の表面に、回路パターンに形成された回路層を有する回路基板の製造方法であって、銅又は銅合金からなる銅板をワイヤカット放電加工により前記回路パターンに切断して、切断端面の亜鉛濃度が1.21at%以下の回路層用銅板を形成する回路層用銅板形成工程と、前記回路層用銅板を前記セラミックス基板に活性金属ろう材によって接合して前記回路層を形成する接合工程とを有することを特徴とする絶縁回路基板の製造方法。 A method for manufacturing a circuit board having a circuit layer formed in a circuit pattern on the surface of a ceramics substrate. A copper plate made of copper or a copper alloy is cut into the circuit pattern by wire-cut discharge processing, and zinc on the cut end face is formed. A circuit layer copper plate forming step of forming a circuit layer copper plate having a concentration of 1.21 at% or less, and a joining step of joining the circuit layer copper plate to the ceramic substrate with an active metal brazing material to form the circuit layer. A method for manufacturing an insulated circuit board. ワイヤカット放電加工に用いられるワイヤの表面の亜鉛濃度が20質量%以下であることを特徴とする請求項1記載の絶縁回路基板の製造方法。 The method for manufacturing an insulated circuit board according to claim 1, wherein the zinc concentration on the surface of the wire used for wire cut electric discharge machining is 20% by mass or less.
JP2019224389A 2019-12-12 Manufacturing method for insulating circuit board Active JP7490950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224389A JP7490950B2 (en) 2019-12-12 Manufacturing method for insulating circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224389A JP7490950B2 (en) 2019-12-12 Manufacturing method for insulating circuit board

Publications (2)

Publication Number Publication Date
JP2021093482A true JP2021093482A (en) 2021-06-17
JP7490950B2 JP7490950B2 (en) 2024-05-28

Family

ID=

Similar Documents

Publication Publication Date Title
KR102272865B1 (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
KR102422607B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6482144B2 (en) Bonding substrate and manufacturing method of bonding substrate
JP5991102B2 (en) Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink
KR102336484B1 (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
WO2021124923A1 (en) Copper/ceramic joined body and insulated circuit board
KR102154373B1 (en) Power module
JP5991103B2 (en) Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink
JP2014177031A (en) Conjugate, substrate for power module, and substrate for power module with heat sink
TW201626510A (en) Substrate for power module and method for manufacturing the same
JP2013211546A (en) Ceramic-copper assembly and manufacturing method of the same
JP6853455B2 (en) Manufacturing method of board for power module
KR20200085743A (en) Heat sink attached power module substrate and heat sink attached power module substrate manufacturing method
JP6939973B2 (en) Copper / ceramic joints and insulated circuit boards
JP4876719B2 (en) Power element mounting unit, method for manufacturing power element mounting unit, and power module
JP7490950B2 (en) Manufacturing method for insulating circuit board
JP2021093482A (en) Manufacturing method of insulation circuit board
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards
KR102409815B1 (en) Copper/ceramic bonded body, insulated circuit board, and copper/ceramic bonded body manufacturing method, and insulated circuit board manufacturing method
JP7039933B2 (en) Bond, Insulated Circuit Board, Insulated Circuit Board with Heat Sink, Heat Sink, and Joined Body Manufacturing Method, Insulated Circuit Board Manufacturing Method, Heat Sinked Insulated Circuit Board Manufacturing Method, Heat Sink Manufacturing Method
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
KR20220113362A (en) Copper/ceramic bonded body, and insulated circuit board
JP6390481B2 (en) Manufacturing method of plated power module substrate
CN111919517A (en) Ceramic-metal joined body and method for producing same, multi-piece ceramic-metal joined body and method for producing same
WO2023120654A1 (en) Ceramic scribe circuit substrate, ceramic circuit substrate, method for manufacturing ceramic scribe circuit substrate, method for manufacturing ceramic circuit substrate, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240429