JP2021093344A - Garnet-type solid electrolyte separator and method of producing the same - Google Patents

Garnet-type solid electrolyte separator and method of producing the same Download PDF

Info

Publication number
JP2021093344A
JP2021093344A JP2020053382A JP2020053382A JP2021093344A JP 2021093344 A JP2021093344 A JP 2021093344A JP 2020053382 A JP2020053382 A JP 2020053382A JP 2020053382 A JP2020053382 A JP 2020053382A JP 2021093344 A JP2021093344 A JP 2021093344A
Authority
JP
Japan
Prior art keywords
garnet
solid electrolyte
type solid
carbon
electrolyte separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020053382A
Other languages
Japanese (ja)
Other versions
JP7384088B2 (en
Inventor
真祈 渡辺
Masaki Watanabe
真祈 渡辺
慎吾 太田
Shingo Ota
慎吾 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US17/098,545 priority Critical patent/US20210175541A1/en
Priority to CN202011304678.0A priority patent/CN112952187A/en
Priority to EP20210699.3A priority patent/EP3836275A1/en
Priority to KR1020200165807A priority patent/KR102491026B1/en
Publication of JP2021093344A publication Critical patent/JP2021093344A/en
Application granted granted Critical
Publication of JP7384088B2 publication Critical patent/JP7384088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4556Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction coating or impregnating with a product reacting with the substrate, e.g. generating a metal coating by surface reduction of a ceramic substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4558Coating or impregnating involving the chemical conversion of an already applied layer, e.g. obtaining an oxide layer by oxidising an applied metal layer
    • C04B41/456Coating or impregnating involving the chemical conversion of an already applied layer, e.g. obtaining an oxide layer by oxidising an applied metal layer the conversion only taking place under certain conditions, e.g. avoiding damage of underlaying layers or parts of the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/463Organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • C04B41/501Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing carbon in the anion, e.g. carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a garnet-type solid electrolyte separator with high short circuit resistance, and a method of producing the same.SOLUTION: The garnet-type solid electrolyte separator includes: a garnet-type solid electrolyte; a carbon-enriched layer present on at least one surface of the garnet-type solid electrolyte separator; and a carbon-enriched part present in a range from the surface to a depth of 10 μm.SELECTED DRAWING: None

Description

本願はガーネット型固体電解質セパレータ及びその製造方法に関する。 The present application relates to a garnet type solid electrolyte separator and a method for producing the same.

全固体リチウムイオン電池において、従来からセパレータの材料にガーネット型固体電解質を使用することが検討されている。 In all-solid-state lithium-ion batteries, it has been conventionally studied to use a garnet-type solid electrolyte as a material for a separator.

特許文献1には、ガーネット型酸化物固体電解質焼結体をセパレータとした酸化物全固体電池が開示されている。
特許文献2には、ガーネット型固体電解質を含む固体電解質基板の表面に、薄い炭酸リチウム層を被覆することで短絡を抑制する技術が開示されている。具体的には、次の事項が記載されている。固体電解質の結晶粒径を10μm以下とする。これにより、固体電解質表面の凹凸が軽減し、比表面積が向上するため、端子間の距離の不均一による短絡が抑制され、界面抵抗を軽減することができる。界面抵抗が軽減することで局所への電流の集中により短絡を抑制することができる。また、固体電解質基板に100nm以下の厚さの炭酸リチウム層を形成する。これにより、固体電解質基板の穴や傷を埋め、短絡をより抑制することができる。
Patent Document 1 discloses an oxide all-solid-state battery using a garnet-type oxide solid electrolyte sintered body as a separator.
Patent Document 2 discloses a technique for suppressing a short circuit by coating a thin lithium carbonate layer on the surface of a solid electrolyte substrate containing a garnet-type solid electrolyte. Specifically, the following items are described. The crystal particle size of the solid electrolyte is 10 μm or less. As a result, the unevenness of the surface of the solid electrolyte is reduced and the specific surface area is improved, so that short circuits due to non-uniform distance between terminals are suppressed, and interfacial resistance can be reduced. By reducing the interfacial resistance, short circuit can be suppressed by concentrating the current locally. Further, a lithium carbonate layer having a thickness of 100 nm or less is formed on the solid electrolyte substrate. As a result, holes and scratches on the solid electrolyte substrate can be filled, and short circuits can be further suppressed.

特開2018−142432号公報JP-A-2018-142432 特開2017−199539号公報JP-A-2017-199539

特許文献2に記載されているように、固体電解質層の表面に炭酸リチウム層を被覆することで、確かに短絡は抑制される。しかしながら、この効果は限定的であり、4mA/cm以上の高い電流密度で数十分以上に亘って電流を流し、金属リチウムの溶解析出を繰り返すような条件においては、短絡を抑制しきれない。よって、特許文献2に記載されている発明では、短絡耐性についてまだまだ改善の余地があった。 As described in Patent Document 2, by coating the surface of the solid electrolyte layer with a lithium carbonate layer, short circuits are certainly suppressed. However, this effect is limited, and a short circuit cannot be suppressed under the condition that a current is passed for several tens of minutes or more at a high current density of 4 mA / cm 2 or more and the dissolution and precipitation of metallic lithium are repeated. .. Therefore, in the invention described in Patent Document 2, there is still room for improvement in short-circuit resistance.

そこで、上記実情を鑑み、本願では短絡耐性の高いガーネット型固体電解質セパレータ及びその製造方法を提供することを課題とする。 Therefore, in view of the above circumstances, it is an object of the present application to provide a garnet-type solid electrolyte separator having high short-circuit resistance and a method for producing the same.

本発明者らは、上記課題について鋭意検討した結果、ガーネット型固体電解質焼結体の表面に炭素濃化層を設け、さらに表面付近の内部に炭素濃化部を備えることで、さらに短絡耐性が向上されることを知見した。当該知見に基づいて、本願では上記課題を解決するための以下の手段を開示する。 As a result of diligent studies on the above problems, the present inventors have further improved short-circuit resistance by providing a carbon-concentrated layer on the surface of the garnet-type solid electrolyte sintered body and further providing a carbon-concentrated portion inside the vicinity of the surface. It was found that it was improved. Based on this finding, the present application discloses the following means for solving the above problems.

すなわち、本願は上記課題を解決するための1つの手段として、ガーネット型固体電解質を含み、少なくとも一方の表面に炭素濃化層が存在するとともに、該表面から深さ10μmの位置までの範囲に炭素濃化部が存在している、ガーネット型固体電解質セパレータを開示する。 That is, the present application contains a garnet-type solid electrolyte as one means for solving the above-mentioned problems, a carbon-concentrated layer is present on at least one surface, and carbon is provided in a range from the surface to a depth of 10 μm. Disclosed is a garnet-type solid electrolyte separator in which a concentrated portion is present.

上記ガーネット型固体電解質セパレータにおいて、ガーネット型固体電解質は(Li7−3Y−Z,Al)(La)(Zr2−Z,M)O12(M=Nb、Taからなる群より選ばれる少なくとも1つ以上の元素。Y、Zは、0≦Y<0.22、0≦Z≦2の範囲の任意の数である。)であることが好ましい。また、ガーネット型固体電解質セパレータの表面のXPSスペクトルにおいて、LiCOのピークが存在することが好ましい。EDXにより算出される上記表面の組成は、炭素濃度が6.8質量%以上であることが好ましい。若しくは、EDXにより算出される上記表面の組成は、質量基準で炭素/酸素比が0.17以上であり、炭素/ジルコニウム比が0.23以上であることが好ましい。さらに、ガーネット型固体電解質セパレータを炭素濃化部が露出するように厚さ方向に割断したときの、EDXにより算出される割断面の組成において、上記表面から深さ10μmの位置まで範囲の平均炭素濃度が10質量%以上であることが好ましい。より好ましくは平均炭素濃度が20質量%以上である。 In the above garnet type solid electrolyte separator, the garnet type solid electrolyte is selected from the group consisting of (Li 7-3Y-Z , Al Y ) (La 3 ) (Zr 2-Z , M Z ) O 12 (M = Nb, Ta). At least one or more elements, Y and Z are preferably any number in the range of 0 ≦ Y <0.22, 0 ≦ Z ≦ 2). Further, it is preferable that a peak of Li 2 CO 3 is present in the XPS spectrum of the surface of the garnet type solid electrolyte separator. The surface composition calculated by EDX preferably has a carbon concentration of 6.8% by mass or more. Alternatively, the surface composition calculated by EDX preferably has a carbon / oxygen ratio of 0.17 or more and a carbon / zirconium ratio of 0.23 or more on a mass basis. Further, in the composition of the fractured surface calculated by EDX when the garnet type solid electrolyte separator is divided in the thickness direction so that the carbon-enriched portion is exposed, the average carbon in the range from the surface to the position of 10 μm in depth is obtained. The concentration is preferably 10% by mass or more. More preferably, the average carbon concentration is 20% by mass or more.

また、本願は上記課題を解決するための1つの手段として、ガーネット型固体電解質焼結体の表面に酸素元素を含む溶媒を接触させる溶媒接触工程と、溶媒接触工程後に、上記表面を炭素濃化層の生成温度以上の温度で加熱する加熱工程と、を有する、ガーネット型固体電解質セパレータの製造方法を開示する。 Further, in the present application, as one means for solving the above-mentioned problems, a solvent contacting step of bringing a solvent containing an oxygen element into contact with the surface of a garnet-type solid electrolyte sintered body, and a carbon enrichment of the surface after the solvent contacting step. Disclosed is a method for producing a garnet-type solid electrolyte separator, which comprises a heating step of heating at a temperature equal to or higher than the layer formation temperature.

上記ガーネット型固体電解質セパレータの製造方法において、溶媒はアルコールであることが好ましい。また加熱工程において、上記表面を450℃以上700℃未満の温度で加熱することが好ましい。 In the method for producing the garnet-type solid electrolyte separator, the solvent is preferably alcohol. Further, in the heating step, it is preferable to heat the surface at a temperature of 450 ° C. or higher and lower than 700 ° C.

本開示によれば、従来技術に比べて限界電流密度が高く、短絡耐性に優れたガーネット型固体電解質セパレータを提供することができる。また、当該ガーネット型固体電解質セパレータの製造方法を提供することができる。 According to the present disclosure, it is possible to provide a garnet-type solid electrolyte separator having a high critical current density and excellent short-circuit resistance as compared with the prior art. Further, it is possible to provide a method for producing the garnet-type solid electrolyte separator.

セパレータの割断面の表面付近に着目した模式図である。It is a schematic diagram paying attention to the vicinity of the surface of the split cross section of a separator. 製造方法10のフローチャートである。It is a flowchart of manufacturing method 10. 炭素が濃化する推定メカニズムを説明する図である。It is a figure explaining the estimation mechanism of carbon enrichment. 実施例1、比較例1、2のXPSスペクトル(O−1s)である。It is XPS spectrum (O-1s) of Example 1 and Comparative Examples 1 and 2. 実施例1、比較例1、2のXPSスペクトル(C−1s)である。It is XPS spectrum (C-1s) of Example 1 and Comparative Examples 1 and 2. 比較例1に係るセパレータの割断面のSEM像である。6 is an SEM image of a split cross section of the separator according to Comparative Example 1. 比較例2に係るセパレータの割断面のSEM像である。6 is an SEM image of a split cross section of the separator according to Comparative Example 2. 実施例1に係るセパレータの割断面のSEM像である。6 is an SEM image of a split cross section of the separator according to the first embodiment. 比較例1に係るセパレータの割断面の平均炭素濃度をSEM−EDXにより算出した結果である。This is the result of calculating the average carbon concentration of the fractured surface of the separator according to Comparative Example 1 by SEM-EDX. 比較例2に係るセパレータの割断面の平均炭素濃度をSEM−EDXにより算出した結果である。This is the result of calculating the average carbon concentration of the fractured surface of the separator according to Comparative Example 2 by SEM-EDX. 比較例3に係るセパレータの割断面の平均炭素濃度をSEM−EDXにより算出した結果である。This is the result of calculating the average carbon concentration of the fractured surface of the separator according to Comparative Example 3 by SEM-EDX. 実施例1に係るセパレータの割断面の平均炭素濃度をSEM−EDXにより算出した結果である。This is the result of calculating the average carbon concentration of the fractured surface of the separator according to Example 1 by SEM-EDX. 実施例2に係るセパレータの割断面の平均炭素濃度をSEM−EDXにより算出した結果である。This is the result of calculating the average carbon concentration of the fractured surface of the separator according to Example 2 by SEM-EDX.

本明細書において、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。 In the present specification, the notation "A to B" for the numerical values A and B means "A or more and B or less". When a unit is attached only to the numerical value B in such a notation, the unit shall be applied to the numerical value A as well.

[ガーネット型固体電解質セパレータ]
本開示のガーネット型固体電解質セパレータは、ガーネット型固体電解質を含み、少なくとも一方の表面に炭素濃化層が存在するとともに、該表面から深さ10μmの位置までの範囲に炭素濃化部が存在していることを特徴としている。
[Garnet type solid electrolyte separator]
The garnet-type solid electrolyte separator of the present disclosure contains a garnet-type solid electrolyte, has a carbon-enriched layer on at least one surface, and has a carbon-enriched portion in a range from the surface to a depth of 10 μm. It is characterized by being.

本開示のガーネット型固体電解質セパレータは、上記の特徴を有することにより、従来よりも高い限界電流密度を有し、優れた短絡耐性を示す。 The garnet-type solid electrolyte separator of the present disclosure has the above-mentioned characteristics, has a higher current density than the conventional one, and exhibits excellent short-circuit resistance.

以下、それぞれの構成について説明する。 Each configuration will be described below.

(ガーネット型固体電解質)
本開示において、ガーネット型固体電解質とはLiイオン伝導性を有し、少なくともLiを含み、Li12の化学組成で表される、ガーネット型の結晶構造を有する固体電解質である。ここで、XはAの価数をa、Bの価数をbとしたとき、X=24−3a−2bの関係を満たす。このようなガーネット型固体電解質としては、例えば、LLZと呼ばれる(Li7−3Y−Z,Al)(La)(Zr2−Z,M)O12(M=Nb、Taからなる群より選ばれる少なくとも1つ以上の元素。Y、Zは、0≦Y<0.22、0≦Z≦2の範囲の任意の数である。)を挙げることができる。LLZとしては、公知の組成のものを採用することができる。例えば、代表的な組成としてLiLaZr12を挙げることができる。
(Garnet type solid electrolyte)
In the present disclosure, the garnet-type solid electrolyte is a solid electrolyte having Li ion conductivity, containing at least Li, and having a garnet-type crystal structure represented by the chemical composition of Li x A 3 B 2 O 12. .. Here, X satisfies the relationship of X = 24-3a-2b, where a is the valence of A and b is the valence of B. Examples of such a garnet-type solid electrolyte include a group of (Li 7-3Y-Z , Al Y ) (La 3 ) (Zr 2-Z , M Z ) O 12 (M = Nb, Ta) called LLZ. At least one or more elements selected from the above. Y and Z are arbitrary numbers in the range of 0 ≦ Y <0.22 and 0 ≦ Z ≦ 2). As the LLZ, one having a known composition can be adopted. For example, Li 7 La 3 Zr 2 O 12 can be mentioned as a typical composition.

ガーネット型固体電解質の含有量は、ガーネット型固体電解質セパレータを100質量%としたとき、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。ガーネット型固体電解質の含有量が50質量%未満であると、リチウムイオン伝導性が低下する場合がある。ガーネット型固体電解質の含有量の上限は特に限定されず、99質量%以下としてもよい。 The content of the garnet-type solid electrolyte is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more, when the garnet-type solid electrolyte separator is 100% by mass. Is even more preferable. If the content of the garnet-type solid electrolyte is less than 50% by mass, the lithium ion conductivity may decrease. The upper limit of the content of the garnet-type solid electrolyte is not particularly limited, and may be 99% by mass or less.

(炭素濃化層)
本開示のガーネット型固体電解質セパレータは少なくとも一方の表面に炭素濃化層を備えている。「炭素濃化層」とは、炭素元素濃度がその他の部分よりも高い領域が層状に存在している部分を指す。炭素濃化層はガーネット型固体電解質セパレータの両方の表面に備えられていてもよい。ここで、「表面」とはガーネット型固体電解質セパレータをリチウムイオン電池に使用したときに、正極層又は負極層に接する又は対向する面を意味する。
(Carbon concentrated layer)
The garnet-type solid electrolyte separator of the present disclosure has a carbon-concentrated layer on at least one surface. The "carbon-enriched layer" refers to a portion in which a region having a higher carbon element concentration than the other portion exists in a layered manner. The carbon-enriched layer may be provided on both surfaces of the garnet-type solid electrolyte separator. Here, the “surface” means a surface that is in contact with or faces the positive electrode layer or the negative electrode layer when the garnet type solid electrolyte separator is used in a lithium ion battery.

炭素濃化層はLiCO(炭酸リチウム)を主体としていることが好ましい。「主体としている」とは、炭素濃化層におけるLiCOの含有量が50質量%以上である。好ましくは80質量%以上であり、より好ましくは90質量%以上である。LiCOの含有量の上限は特に限定されず、炭素濃化層は全てLiCOからなっていてもよい。 The carbon-enriched layer is preferably mainly composed of Li 2 CO 3 (lithium carbonate). “Mainly” means that the content of Li 2 CO 3 in the carbon-enriched layer is 50% by mass or more. It is preferably 80% by mass or more, and more preferably 90% by mass or more. The upper limit of the content of Li 2 CO 3 is not particularly limited, and the carbon-enriched layer may be entirely composed of Li 2 CO 3 .

ガーネット型固体電解質セパレータは、表面に炭素濃化層を備えることにより、短絡耐性を向上することができる。これは、固体電解質焼結体の表面に存在するマイクロクラック等の欠陥が炭素濃化層によって被覆されているため、当該欠陥を起点とするリチウムの析出、進展を抑制できると考えられるためである。 The garnet-type solid electrolyte separator can improve short-circuit resistance by providing a carbon-concentrated layer on the surface. This is because defects such as microcracks existing on the surface of the solid electrolyte sintered body are covered with the carbon-concentrated layer, and it is considered that the precipitation and progress of lithium originating from the defects can be suppressed. ..

炭素濃化層の厚さは特に限定されないが、上記の効果が十分に奏される厚さであることが好ましい。これは、次のとおりXPS(X線光電子分光法)及び/又はEDX(エネルギー分散型X線分析)の分析結果から判断することができる。 The thickness of the carbon-enriched layer is not particularly limited, but it is preferable that the thickness is such that the above effects are sufficiently exhibited. This can be judged from the analysis results of XPS (X-ray photoelectron spectroscopy) and / or EDX (energy dispersive X-ray analysis) as follows.

炭素濃化層を有する表面をXPSで分析する場合、XPSスペクトルにおいてLiCOのピークが存在することが好ましい。XPSスペクトルにおいてLiCOのピークの存在が確認できることは、炭素濃化層がピークを確認できる程度の厚さを有していることを示すものであるからである。XPSスペクトルにおいてLiCOのピークの存在が確認できれば、炭素濃化層の厚さが上記の効果を奏するのに十分であると判断することができる。LiCOのピークは、例えばXPSのO1sスペクトルにおいて531.5±0.3eV付近に存在し、及びC1sスペクトルにおいて289.6±0.5eV付近に存在する。 When analyzing a surface having a carbon-enriched layer by XPS, it is preferable that a peak of Li 2 CO 3 is present in the XPS spectrum. The fact that the presence of the Li 2 CO 3 peak can be confirmed in the XPS spectrum indicates that the carbon-enriched layer has a thickness such that the peak can be confirmed. If the presence of the Li 2 CO 3 peak can be confirmed in the XPS spectrum, it can be determined that the thickness of the carbon-enriched layer is sufficient to exert the above effect. The peak of Li 2 CO 3 is present, for example, near 531.5 ± 0.3 eV in the XPS O1s spectrum and around 289.6 ± 0.5 eV in the C1s spectrum.

炭素濃化層を有する表面をEDXで分析する場合、EDXにより算出される表面組成の炭素濃度が6.8質量%以上であることが好ましく、7.3質量%以上であることがより好ましい。表面組成の炭素濃度が6.8質量%以上であると、炭素濃化層の厚さが上記の効果を奏するのに十分であると判断することができる。表面組成の炭素濃度の上限は特に限定されないが、炭素濃度が15.5質量%未満であることが好ましく、9.4以下であることがより好ましい。表面組成の炭素濃度が15.5質量%以上であると、炭素濃化層が厚くなりすぎ、ガーネット型固体電解質セパレータの界面抵抗が増加する虞がある。 When the surface having the carbon-concentrated layer is analyzed by EDX, the carbon concentration of the surface composition calculated by EDX is preferably 6.8% by mass or more, and more preferably 7.3% by mass or more. When the carbon concentration of the surface composition is 6.8% by mass or more, it can be determined that the thickness of the carbon-enriched layer is sufficient to exert the above effect. The upper limit of the carbon concentration of the surface composition is not particularly limited, but the carbon concentration is preferably less than 15.5% by mass, and more preferably 9.4 or less. If the carbon concentration of the surface composition is 15.5% by mass or more, the carbon-concentrated layer becomes too thick, and the interfacial resistance of the garnet-type solid electrolyte separator may increase.

ここで、EDXは測定条件が分析結果に影響を与える場合がある。そこで、次のように規格化した値を用いてもよい。すなわち、EDXにより算出させる表面組成において、質量比で炭素/酸素比が0.17以上であることが好ましく、炭素/ジルコニウム比が0.23以上であることが好ましい。質量比の上限は特に限定されないが、炭素/酸素比は0.24未満であることが好ましく、0.19以下であることがより好ましい。また、炭素/ジルコニウム比は1.2未満であることが好ましく、0.37以下であることがより好ましい。 Here, in EDX, the measurement conditions may affect the analysis result. Therefore, the standardized values may be used as follows. That is, in the surface composition calculated by EDX, the carbon / oxygen ratio is preferably 0.17 or more, and the carbon / zirconium ratio is preferably 0.23 or more in terms of mass ratio. The upper limit of the mass ratio is not particularly limited, but the carbon / oxygen ratio is preferably less than 0.24, more preferably 0.19 or less. The carbon / zirconium ratio is preferably less than 1.2, more preferably 0.37 or less.

EDXとしては、SEM(走査型電子顕微鏡)を併用したSEM−EDXを用いることができる。 As the EDX, SEM-EDX combined with SEM (scanning electron microscope) can be used.

(炭素濃化部)
本開示のガーネット型固体電解質セパレータは、表面(炭素濃化層が形成されている側の表面)から深さ10μmの位置までの範囲に炭素濃化部が存在している。
(Carbon enrichment part)
The garnet-type solid electrolyte separator of the present disclosure has a carbon-enriched portion in a range from the surface (the surface on the side where the carbon-enriched layer is formed) to a position at a depth of 10 μm.

「表面から深さ10μmの位置まで」とは、ガーネット型固体電解質セパレータの厚さ方向の範囲を定めるものであり、ガーネット型固体電解質セパレータを電池に使用する場合の積層方向の範囲を定めるものである。厚さ方向の範囲は上記のとおり、表面から10μmの位置までの範囲である。
「炭素濃化部」とは、炭素元素濃度がその他の部分よりも高い領域であり、LiCOを主体としていることが好ましい。炭素濃化部の有無はSEM像等により特定することができる。炭素濃化部はガーネット型固体電解質セパレータの表面付近(表面から深さ10μmの範囲)に存在する欠陥(固体電解質間の隙間等)に形成される。通常、原料である固体電解質焼結体はこのような欠陥を多数有するため、本開示における炭素濃化部は表面付近に多数点在して形成されている。
"From the surface to a position of 10 μm in depth" defines the range in the thickness direction of the garnet-type solid electrolyte separator, and defines the range in the stacking direction when the garnet-type solid electrolyte separator is used in a battery. is there. As described above, the range in the thickness direction is the range from the surface to the position of 10 μm.
The "carbon-enriched portion" is a region in which the carbon element concentration is higher than that of other portions, and it is preferable that the "carbon-enriched portion" is mainly composed of Li 2 CO 3. The presence or absence of the carbon-enriched portion can be specified by an SEM image or the like. The carbon-enriched portion is formed in a defect (gap between solid electrolytes, etc.) existing near the surface of the garnet-type solid electrolyte separator (within a depth of 10 μm from the surface). Since the solid electrolyte sintered body, which is a raw material, usually has many such defects, many carbon-enriched portions in the present disclosure are formed scattered near the surface.

本開示のガーネット型固体電解質セパレータは、炭素濃化部が表面から深さ10μmの位置までの範囲に炭素濃化部が存在することにより、限界電流密度を向上し、短絡耐性を向上することができる。これは、リチウムの析出、進展の起点となる欠陥に炭素濃化部が形成されていることにより、リチウムデンドライトの進展が抑制されると考えられるためである。 In the garnet-type solid electrolyte separator of the present disclosure, the critical current density can be improved and the short-circuit resistance can be improved by having the carbon-enriched portion in a range from the surface to a depth of 10 μm. it can. This is because it is considered that the progress of lithium dendrite is suppressed by the formation of the carbon-enriched portion in the defect which is the starting point of the precipitation and growth of lithium.

ここで、炭素濃化部は上記のとおりガーネット型固体電解質セパレータの表面付近に多数点在して形成されている。このように炭素濃化部が多数点在していることはSEM像等により特定することができるが、定量化することは難しい。そこで、本願では、EDXから算出される平均炭素濃度から、炭素濃化部の分布の度合いを定量することとした。EDXとしては例えばSEM−EDXを用いることができる。 Here, as described above, a large number of carbon-enriched portions are formed scattered near the surface of the garnet-type solid electrolyte separator. The fact that a large number of carbon-enriched portions are scattered in this way can be identified by an SEM image or the like, but it is difficult to quantify them. Therefore, in the present application, the degree of distribution of the carbon-enriched portion is quantified from the average carbon concentration calculated from EDX. As the EDX, for example, SEM-EDX can be used.

具体的には次のように行う。まず、ガーネット型固体電解質セパレータを炭素濃化部が露出するように厚さ方向に割断する。一般的に、セラミックスは不純物濃度が高い部分からから破断する傾向にある。ガーネット型固体電解質セパレータにあっては、炭素濃化部が不純物に該当するため、通常の割断方法で炭素濃化部を露出するように割断することができる。割断方法としては、例えば、セパレータの表面をエタノールに浸漬する方法等で、表面に存在するLiを除去したのち、表面にダイヤモンドペン等で線状痕を付与し、これに沿って劈開させる方法等で行うことができる。
このような割断方法を用いると、炭素濃化部が露出するように割断されるので、表面の炭素濃度と表面付近の割断面の炭素濃度とは差異が生じ得る。そのため、表面よりも表面付近の割断面の炭素濃度の方が高くなる傾向にある。
Specifically, it is performed as follows. First, the garnet-type solid electrolyte separator is cut in the thickness direction so that the carbon-enriched portion is exposed. In general, ceramics tend to break from a portion having a high impurity concentration. In the garnet type solid electrolyte separator, since the carbon-enriched portion corresponds to an impurity, the carbon-enriched portion can be cut so as to be exposed by a usual cutting method. As a cutting method, for example, a method of immersing the surface of the separator in ethanol or the like to remove Li existing on the surface, then making a linear mark on the surface with a diamond pen or the like, and cleaving along the surface. Can be done with.
When such a cutting method is used, the carbon-enriched portion is cut so as to be exposed, so that a difference may occur between the carbon concentration on the surface and the carbon concentration on the split section near the surface. Therefore, the carbon concentration of the fractured surface near the surface tends to be higher than that of the surface.

次に割断面に対してEDXにより面分析を行う。図1に割断面の表面付近に着目した模式図を示した。図1の紙面上下方向が厚さ方向であり、紙面左右方向が厚さ方向に直交する方向である。Aは炭素濃化層であり、Bは炭素濃化部である。破線で示す範囲Cが面分析の測定範囲である。Oは測定範囲の中心点であり、中心点とは測定範囲の厚さ方向及び厚さ方向に直交する方向の長さをそれぞれ垂直に2等分する直線の交点である。 Next, surface analysis is performed on the fractured surface by EDX. FIG. 1 shows a schematic view focusing on the vicinity of the surface of the fractured surface. The vertical direction of the paper surface in FIG. 1 is the thickness direction, and the horizontal direction of the paper surface is the direction orthogonal to the thickness direction. A is a carbon-enriched layer, and B is a carbon-enriched portion. The range C shown by the broken line is the measurement range of the surface analysis. O is the center point of the measurement range, and the center point is the intersection of the thickness direction of the measurement range and the intersection of straight lines that vertically divide the length in the direction orthogonal to the thickness direction into two equal parts.

面分析は、中心点が表面から深さ10μmまでの範囲に含まれているように行う。また、表面から深さ10μmまでの範囲に対する厚さ方向の測定範囲の割合が60%以上となるように測定する。表面から10μmまでの範囲のみについて面分析を行うことが困難であるためである。ただし、精度を向上する観点から、好ましくは上記測定領域の割合が70%以上となるように測定することであり、より好ましくは上記測定領域の割合が80%以上となるように測定することであり、さらに好ましくは上記測定領域の割合が90%以上となるように測定することである。ここで、表面から深さ10μmまでの範囲について、2以上の面分析を行ってもよい。その場合は、厚さ方向の測定範囲の合計から上記の割合を算出する。面分析の厚さ方向の範囲は5〜10μmとする。面分析の厚さ方向に直交する方向の範囲については特に限定されないが、例えば25〜30μmとする。 The surface analysis is performed so that the center point is included in the range from the surface to a depth of 10 μm. Further, the measurement is performed so that the ratio of the measurement range in the thickness direction to the range from the surface to the depth of 10 μm is 60% or more. This is because it is difficult to perform surface analysis only in the range from the surface to 10 μm. However, from the viewpoint of improving the accuracy, it is preferable to measure so that the ratio of the measurement region is 70% or more, and more preferably, the measurement is performed so that the ratio of the measurement region is 80% or more. Yes, and more preferably, the measurement is performed so that the ratio of the measurement region is 90% or more. Here, two or more surface analyzes may be performed for a range from the surface to a depth of 10 μm. In that case, the above ratio is calculated from the total of the measurement ranges in the thickness direction. The range in the thickness direction of the surface analysis is 5 to 10 μm. The range of the direction orthogonal to the thickness direction of the surface analysis is not particularly limited, but is, for example, 25 to 30 μm.

このような面分析は、例えば次のように行う。すなわち、割断面の厚さ方向について8.7±5μmの範囲、厚さ方向に直交する方向について25μmの範囲を設定して面分析を行う。この場合、厚さ方向における表面から10μmの位置までの範囲のうち、63%を分析するように設定されている。 Such surface analysis is performed, for example, as follows. That is, the surface analysis is performed by setting a range of 8.7 ± 5 μm in the thickness direction of the fractured surface and a range of 25 μm in the direction orthogonal to the thickness direction. In this case, 63% of the range from the surface to the position of 10 μm in the thickness direction is set to be analyzed.

上記の測定条件を満たすようにEDXを用いて、割断面について面分析を行うことで、表面から深さ10μmの位置まで範囲の平均炭素濃度を算出することができる。表面から深さ10μmまでの範囲について2以上の面分析を行った場合は、得られた結果の平均値を表面から深さ10μmの位置まで範囲の平均炭素濃度とする。ここで、本明細書における「平均炭素濃度」とは、EDXにより算出される炭素、ジルコニウム、及び酸素の合計の質量に対する炭素の質量の割合(質量比で炭素/(炭素+ジルコニウム+酸素))を意味する。 By performing surface analysis on the fractured surface using EDX so as to satisfy the above measurement conditions, the average carbon concentration in the range from the surface to the position at a depth of 10 μm can be calculated. When two or more surface analyzes are performed in the range from the surface to the depth of 10 μm, the average value of the obtained results is taken as the average carbon concentration in the range from the surface to the depth of 10 μm. Here, the "average carbon concentration" in the present specification is the ratio of the mass of carbon to the total mass of carbon, zirconium, and oxygen calculated by EDX (mass ratio: carbon / (carbon + zirconium + oxygen)). Means.

また、平均炭素濃度を算出する際に次の事情を考慮して算出してもよい。後述するように、本開示のガーネット型固体電解質セパレータの製造方法では、炭素濃化層等の生成の材料となる溶媒をガーネット型固体電解質焼結体に接触させている。このようにしてガーネット型固体電解質セパレータを製造している場合、平均炭素濃度は表面から内部に向けて減少する傾向になる。このような傾向は、ガーネット型固体電解質セパレータの割断面に対して、複数箇所について面分析を行うことで特定することができる。よって、割断面の平均炭素濃度について特定の傾向がみられるようであれば、それを考慮して平均炭素濃度を算出してよい。例えば、表面から深さ10μmの位置まで範囲のうち、60%以上を含むように測定された平均炭素濃度値と、深さ10μm以上の範囲で適宜設定(適宜設定する値は10μmに近い方がよい)して測定された平均炭素濃度値とが、比例関係にあると仮定して、表面から深さ10μmの位置までの範囲の平均炭素濃度を計算してもよい。 Further, when calculating the average carbon concentration, the following circumstances may be taken into consideration when calculating the average carbon concentration. As will be described later, in the method for producing a garnet-type solid electrolyte separator of the present disclosure, a solvent that is a material for producing a carbon-enriched layer or the like is brought into contact with the garnet-type solid electrolyte sintered body. When the garnet type solid electrolyte separator is produced in this way, the average carbon concentration tends to decrease from the surface to the inside. Such a tendency can be identified by performing surface analysis at a plurality of locations on the fractured surface of the garnet-type solid electrolyte separator. Therefore, if a specific tendency is observed in the average carbon concentration of the fractured surface, the average carbon concentration may be calculated in consideration of this tendency. For example, the average carbon concentration value measured so as to include 60% or more of the range from the surface to the position of 10 μm in depth and the appropriate setting in the range of 10 μm or more in depth (the value to be appropriately set is closer to 10 μm). You may calculate the average carbon concentration in the range from the surface to the position of 10 μm in depth, assuming that the average carbon concentration value measured in (may) is in a proportional relationship.

このようにして、表面から深さ10μmの位置まで範囲の平均炭素濃度を算出することができる。好ましい平均炭素濃度は次のとおりである。すなわち、EDXにより算出される割断面の組成において、表面から深さ10μmの位置まで範囲の平均炭素濃度は10質量%以上であることが好ましい。平均炭素濃度が10質量%以上であると、セパレータの限界電流密度を向上し、短絡耐性を向上することができる。より好ましくは、平均炭素濃度が20質量%以上である。平均炭素濃度の上限は特に限定されず、平均炭素濃度が40質量%以下でとしてもよい。平均炭素濃度が40質量%を超えている場合は、表面付近のセパレータ内部に炭素濃化部が多量に形成されていることを示すものである。このように炭素濃化部が多量に形成されていると、ガーネット型固体電解質セパレータの強度が低下し、割れ等を引き起こす問題が生じる。 In this way, the average carbon concentration in the range from the surface to the position of 10 μm in depth can be calculated. The preferred average carbon concentration is as follows. That is, in the composition of the fractured surface calculated by EDX, the average carbon concentration in the range from the surface to the position at a depth of 10 μm is preferably 10% by mass or more. When the average carbon concentration is 10% by mass or more, the limit current density of the separator can be improved and the short circuit resistance can be improved. More preferably, the average carbon concentration is 20% by mass or more. The upper limit of the average carbon concentration is not particularly limited, and the average carbon concentration may be 40% by mass or less. When the average carbon concentration exceeds 40% by mass, it indicates that a large amount of carbon-enriched portions are formed inside the separator near the surface. If a large amount of carbon-enriched portion is formed in this way, the strength of the garnet-type solid electrolyte separator is lowered, which causes a problem of causing cracks and the like.

また、表面から深さ10μmの位置まで範囲の平均炭素濃度が、深さ10μmを超える範囲の平均炭素濃度の倍以上であることが好ましい。これにより内部に比べて表面付近に炭素濃化部が多数点在することとなるため、短絡耐性が向上する。ここで、深さ10μmを超える範囲の平均炭素濃度とは、深さ10μmを超える範囲に中心点が含まれるように面分析を行ったときの平均炭素濃度であり、2以上面分析を行った場合は、得られた平均炭素濃度の平均値である。深さ10μmを超える範囲の平均炭素濃度を算出する際は測定範囲の中心点が10μm超50μm以下の範囲に含まれるように面分析を行う。 Further, it is preferable that the average carbon concentration in the range from the surface to the position of 10 μm in depth is at least twice the average carbon concentration in the range exceeding 10 μm in depth. As a result, a large number of carbon-enriched portions are scattered near the surface as compared with the inside, so that the short-circuit resistance is improved. Here, the average carbon concentration in the range exceeding 10 μm is the average carbon concentration when the surface analysis is performed so that the center point is included in the range exceeding 10 μm, and two or more surface analyzes are performed. In the case, it is the average value of the obtained average carbon concentration. When calculating the average carbon concentration in the range exceeding 10 μm in depth, surface analysis is performed so that the center point of the measurement range is included in the range of more than 10 μm and 50 μm or less.

(ガーネット型固体電解質セパレータ)
以上、本開示のガーネット型固体電解質セパレータについて説明した。上記に説明したとおり、本開示のガーネット型固体電解質セパレータは表面に炭素濃化層を有し、さらに表面付近の内部に炭素濃化部が存在している。これにより、相乗的に限界電流密度を向上することができるため、優れた短絡耐性を示すことができる。
(Garnet type solid electrolyte separator)
The garnet-type solid electrolyte separator of the present disclosure has been described above. As described above, the garnet-type solid electrolyte separator of the present disclosure has a carbon-enriched layer on the surface, and further has a carbon-enriched portion inside near the surface. As a result, the critical current density can be synergistically improved, so that excellent short-circuit resistance can be exhibited.

本開示のガーネット型固体電解質セパレータは、全固体電池用のセパレータとして用いることができる。例えば、リチウムイオン全固体電池のセパレータとして好適に用いることができる。 The garnet-type solid electrolyte separator of the present disclosure can be used as a separator for an all-solid-state battery. For example, it can be suitably used as a separator for a lithium ion all-solid-state battery.

[ガーネット型固体電解質セパレータの製造方法]
次に上記したガーネット型固体電解質セパレータの製造方法について説明する。上記したガーネット型固体電解質セパレータの製造方法は特に限定されるものではないが、本願では次の製造方法を開示する。
[Manufacturing method of garnet type solid electrolyte separator]
Next, the method for producing the above-mentioned garnet-type solid electrolyte separator will be described. The method for producing the above-mentioned garnet-type solid electrolyte separator is not particularly limited, but the following production method is disclosed in the present application.

すなわち、ガーネット型固体電解質焼結体の表面に酸素元素を含む溶媒を接触させる溶媒接触工程と、溶媒接触工程後に、上記表面を炭素濃化層の生成温度以上の温度で加熱する加熱工程と、を有する、ガーネット型固体電解質セパレータの製造方法を開示する。 That is, a solvent contact step of contacting the surface of the garnet type solid electrolyte sintered body with a solvent containing an oxygen element, and a heating step of heating the surface at a temperature equal to or higher than the formation temperature of the carbon-enriched layer after the solvent contact step. Disclose a method for producing a garnet-type solid electrolyte separator having the above.

以下、本開示のガーネット型固体電解質セパレータの製造方法について、一実施形態であるガーネット型固体電解質セパレータの製造方法10(以下、「製造方法10」ということがある)を用いて説明する。図2は製造方法10のフローチャートである。 Hereinafter, the method for producing the garnet-type solid electrolyte separator of the present disclosure will be described using the method 10 for producing the garnet-type solid electrolyte separator according to the embodiment (hereinafter, may be referred to as “production method 10”). FIG. 2 is a flowchart of the manufacturing method 10.

図2のとおり、製造方法10は溶媒接触工程S1と加熱工程S2とを備えている。 As shown in FIG. 2, the manufacturing method 10 includes a solvent contacting step S1 and a heating step S2.

(溶媒接触工程S1)
溶媒接触工程S1は、ガーネット型固体電解質焼結体の表面に酸素元素を含む溶媒を接触させる工程である。ガーネット型固体電解質焼結体の表面に酸素元素を含む溶媒を接触させることにより、後述する加熱工程S2において、ガーネット型固体電解質と溶媒とが反応し、LiCOを析出させることができる。LiCOが表面で析出すると炭素濃化層となり、表面付近の内部で析出すると炭素濃化部となる。
(Solvent contact step S1)
The solvent contact step S1 is a step of bringing a solvent containing an oxygen element into contact with the surface of the garnet type solid electrolyte sintered body. By bringing a solvent containing an oxygen element into contact with the surface of the garnet-type solid electrolyte sintered body, the garnet-type solid electrolyte and the solvent can react with each other in the heating step S2 described later to precipitate Li 2 CO 3. When Li 2 CO 3 is deposited on the surface, it becomes a carbon-enriched layer, and when it is deposited inside near the surface, it becomes a carbon-enriched part.

ガーネット型固体電解質焼結体は、ガーネット型固体電解質を主体とする焼結体である。具体的には、ガーネット型固体電解質を50質量%以上含むものであり、好ましくは80質量%以上、より好ましくは90質量%以上含むものである。ガーネット型固体電解質の含有量の上限は特に限定されず、ガーネット型固体電解質焼結体がガーネット型固体電解質のみからなっていてもよい。このようなガーネット型固体電解質焼結体は公知の方法により作製することができる。例えば、ガーネット型固体電解質含む焼結体材料をアルゴン雰囲気下、400℃〜500℃の条件で焼結することにより作製することができる。 The garnet-type solid electrolyte sintered body is a sintered body mainly composed of a garnet-type solid electrolyte. Specifically, it contains 50% by mass or more of the garnet-type solid electrolyte, preferably 80% by mass or more, and more preferably 90% by mass or more. The upper limit of the content of the garnet-type solid electrolyte is not particularly limited, and the garnet-type solid electrolyte sintered body may consist only of the garnet-type solid electrolyte. Such a garnet-type solid electrolyte sintered body can be produced by a known method. For example, it can be produced by sintering a sintered body material containing a garnet-type solid electrolyte under the conditions of 400 ° C. to 500 ° C. in an argon atmosphere.

酸素元素を含む溶媒は、酸素元素を含み、且つ、後述する加熱工程S2においてLiCOを析出させることが可能な溶媒であれば特に限定されない。例えば、水等の極性溶媒やアルコール、ワックス等の炭素元素を含む材料を溶解した酸素元素を含む溶媒(ケトン類(アセトン、メチルエチルケトン等)、エーテル類(ジエチルエーテル、ジブチルエーテル等)等)を挙げることができる。ガーネット型固体電解質焼結体への浸水性の観点から、好ましくは水又はアルコールである。より好ましくはアルコールである。水よりもアルコールの方が、穏やかにLiCO生成反応が進むためである。水を用いるとガーネット型固体電解質焼結体中のリチウムイオンが水中に溶出し、水素イオンに置換されて、リチウムイオン伝導度を低下させる虞がある。アルコールとしては、メタノールやエタノール、プロパノール、ブタノール等を挙げることができる。好ましくはエタノールである。 The solvent containing an oxygen element is not particularly limited as long as it is a solvent containing an oxygen element and capable of precipitating Li 2 CO 3 in the heating step S2 described later. Examples thereof include polar solvents such as water and solvents containing oxygen elements in which materials containing carbon elements such as alcohol and wax are dissolved (ketones (acetone, methyl ethyl ketone, etc.), ethers (diethyl ether, dibutyl ether, etc.), etc.). be able to. From the viewpoint of water immersion in the garnet-type solid electrolyte sintered body, water or alcohol is preferable. More preferably, it is alcohol. This is because the Li 2 CO 3 formation reaction proceeds more gently with alcohol than with water. When water is used, lithium ions in the garnet-type solid electrolyte sintered body are eluted in water and replaced with hydrogen ions, which may reduce the lithium ion conductivity. Examples of the alcohol include methanol, ethanol, propanol, butanol and the like. Ethanol is preferred.

ガーネット型固体電解質焼結体の表面に上記溶媒を接触させる方法は特に限定されないが、例えばピペット等を用いて上記溶媒を滴下して、表面に含浸させる方法を挙げることができる。また、ガーネット型固体電解質焼結体の表面を上記の溶媒に浸漬させてもよい。表面への上記溶媒の接触は、表面の少なくとも一部でもよいが、表面全体に上記溶媒を接触させることが好ましい。 The method of bringing the solvent into contact with the surface of the garnet-type solid electrolyte sintered body is not particularly limited, and examples thereof include a method of dropping the solvent using a pipette or the like to impregnate the surface. Further, the surface of the garnet-type solid electrolyte sintered body may be immersed in the above solvent. The contact of the solvent with the surface may be at least a part of the surface, but it is preferable to bring the solvent into contact with the entire surface.

ガーネット型固体電解質焼結体の表面に接触させる上記溶媒の量は、加熱工程S2において、炭素濃化層及び炭素濃化部が適切に生成するようを適宜設定する。溶媒の種類によって必要な量が異なる場合があるためである。 The amount of the solvent to be brought into contact with the surface of the garnet-type solid electrolyte sintered body is appropriately set so that the carbon-enriched layer and the carbon-enriched portion are appropriately formed in the heating step S2. This is because the required amount may differ depending on the type of solvent.

また、溶媒接触工程S1において、ガーネット型固体電解質焼結体の表面に上記溶媒に接触させるとともに表面を研磨(湿式研磨)してもよい。これにより、表面を平滑にすることができ、炭素濃化層の厚さも均一にすることができる。研磨にはサンドペーパー等を用いることができる。 Further, in the solvent contact step S1, the surface of the garnet-type solid electrolyte sintered body may be brought into contact with the solvent and the surface may be polished (wet polishing). As a result, the surface can be smoothed and the thickness of the carbon-enriched layer can be made uniform. Sandpaper or the like can be used for polishing.

(加熱工程S2)
加熱工程S2は、溶媒接触工程S1後に行うものであり、ガーネット型固体電解質焼結体の表面を炭素濃化層の生成温度以上の温度で加熱する工程である。溶媒接触工程S1により、上記の溶媒がガーネット型固体電解質焼結体の表面及び表面付近の欠陥(焼結欠陥、ミクロボイド、ミクロクラック)に浸漬しているため、加熱工程S2により当該表面を加熱することで、ガーネット型固体電解質焼結体の表面に炭素濃化層を形成し、表面付近の内部に炭素濃化部を形成することができる。
(Heating step S2)
The heating step S2 is performed after the solvent contact step S1 and is a step of heating the surface of the garnet-type solid electrolyte sintered body at a temperature equal to or higher than the formation temperature of the carbon-concentrated layer. Since the solvent is immersed in the surface of the garnet-type solid electrolyte sintered body and defects (sintering defects, microvoids, microcracks) near the surface in the solvent contact step S1, the surface is heated by the heating step S2. As a result, a carbon-enriched layer can be formed on the surface of the garnet-type solid electrolyte sintered body, and a carbon-enriched portion can be formed inside the vicinity of the surface.

ここで、本発明者らは、炭素濃化層及び炭素濃化部は次のような炭素が濃化するメカニズムによって形成していると推定している。図3に溶媒としてエタノールを用いた場合の模式図を示した。上記したようにガーネット型固体電解質焼結体の表面及び表面付近の内部には欠陥(連通孔等)が存在する。そのため、(a)溶媒接触工程S1により当該欠陥にエタノールが接触し、(b)浸透する。また、(c)エタノール中に残留する水分に大気中のCOが吸収される。そして、(d)加熱工程S2により当該表面を加熱することで、ガーネット型固体電解質焼結体、水及びCOの反応が促進されLiCOが生成し、それにより炭素が濃化する。かかるメカニズムにより炭素濃化層及び炭素濃化部が形成すると考えられる。なお、上述したように、炭素が濃化した部分は割れやすいため、(e)EDX測定の際に行う割断はこのような部分を起点に割れる傾向にある。 Here, the present inventors presume that the carbon-enriched layer and the carbon-enriched portion are formed by the following carbon enrichment mechanism. FIG. 3 shows a schematic diagram when ethanol is used as the solvent. As described above, there are defects (communication holes, etc.) on the surface of the garnet-type solid electrolyte sintered body and inside near the surface. Therefore, ethanol comes into contact with the defect in (a) solvent contact step S1 and (b) permeates. Further, (c) CO 2 in the atmosphere is absorbed by the moisture remaining in ethanol. Then, by heating the surface in (d) heating step S2, the reaction of the garnet-type solid electrolyte sintered body, water and CO 2 is promoted to generate Li 2 CO 3 , which concentrates carbon. It is considered that a carbon-enriched layer and a carbon-enriched portion are formed by such a mechanism. As described above, since the carbon-enriched portion is easily cracked, the splitting performed at the time of (e) EDX measurement tends to be cracked starting from such a portion.

加熱工程S2における加熱温度は、炭素濃化層の生成温度以上の温度であれば特に限定されないが、反応を促進する観点から450℃以上が好ましい。ただし、反応速度が速すぎると、生成する炭素濃化層が厚くなりすぎ、電池作成の際にセパレータと負極との界面形成が困難となる。また、炭素濃化層に多数の凹凸が生じてしまい好ましくない。そのため、加熱温度は700℃未満であることが好ましく、550℃以下であることがより好ましい。 The heating temperature in the heating step S2 is not particularly limited as long as it is a temperature equal to or higher than the formation temperature of the carbon-enriched layer, but is preferably 450 ° C. or higher from the viewpoint of promoting the reaction. However, if the reaction rate is too fast, the carbon-enriched layer formed becomes too thick, and it becomes difficult to form an interface between the separator and the negative electrode when manufacturing the battery. In addition, a large number of irregularities are generated in the carbon-enriched layer, which is not preferable. Therefore, the heating temperature is preferably less than 700 ° C, more preferably 550 ° C or lower.

加熱工程S2における加熱時間は特に限定されず、加熱温度に従って適宜設定する。例えば、15分〜1時間の間に設定することが好ましい。
加熱工程S2の加熱方法は特に限定されないが、例えばホットプレート等を用いて行うことができる。加熱雰囲気は大気雰囲気中でもよい。
The heating time in the heating step S2 is not particularly limited, and is appropriately set according to the heating temperature. For example, it is preferable to set it between 15 minutes and 1 hour.
The heating method in the heating step S2 is not particularly limited, but it can be performed using, for example, a hot plate or the like. The heating atmosphere may be an atmospheric atmosphere.

以上の工程を備えることにより、本開示のガーネット型固体電解質セパレータを製造することができる。 By providing the above steps, the garnet-type solid electrolyte separator of the present disclosure can be produced.

以下、実施例を用いて本開示のガーネット型固体電解質セパレータについてさらに説明する。 Hereinafter, the garnet-type solid electrolyte separator of the present disclosure will be further described with reference to Examples.

[ガーネット型固体電解質セパレータの作製]
ガーネット型固体電解質セパレータの基礎となる焼結体にLLZ焼結体を用いた。LLZ焼結体は豊島製作所製であり、φ11.2mm×t3mmの円盤形状である。組成はLi6.6LaZr1.6Ta0.412であり、相対密度が97%以上である。このLLZ焼結体に対し以下の表面処理を行い、実施例1〜3及び比較例1〜4に係るガーネット型固体電解質セパレータを作製した。
[Preparation of garnet type solid electrolyte separator]
An LLZ sintered body was used as the sintered body that became the basis of the garnet type solid electrolyte separator. The LLZ sintered body is manufactured by Toyoshima Seisakusho and has a disk shape of φ11.2 mm × t3 mm. The composition is Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 , and the relative density is 97% or more. The following surface treatment was performed on this LLZ sintered body to prepare garnet-type solid electrolyte separators according to Examples 1 to 3 and Comparative Examples 1 to 4.

比較例1に係るセパレータは、アルゴン雰囲気下において上記のLLZ焼結体の一方の表面全体を#2000のサンドペーパーで研磨することにより作製した。
比較例2に係るセパレータは、大気中で上記のLLZ焼結体の一方の表面全体を#2000のサンドペーパーで研磨した後、大気中で450℃のホットプレートにて当該表面を15分間加熱し、その後放冷することにより作製した。
比較例3に係るセパレータは、上記のLLZ焼結体の一方の表面全体に対し、大気中でエタノールを滴下しながら#2000のサンドペーパーで研磨し、その後大気中で400℃のホットプレートにて当該表面を10分間加熱し、その後放冷することにより作製した。
実施例1に係るセパレータは、上記のLLZ焼結体の一方の表面全体に対し、大気中でエタノールを滴下しながら#2000のサンドペーパーで研磨し、その後大気中で450℃のホットプレートにて当該表面を15分間加熱し、その後放冷することにより作製した。
実施例2に係るセパレータは、上記のLLZ焼結体の一方の表面全体に対し、大気中でエタノールを滴下しながら#2000のサンドペーパーで研磨し、その後大気中で550℃のホットプレートにて当該表面を1時間加熱し、その後放冷することにより作製した。
実施例3に係るセパレータは、上記のLLZ焼結体の一方の表面全体に対し、大気中で水を滴下しながら#2000のサンドペーパーで研磨し、その後大気中で550℃のホットプレートにて当該表面を1時間加熱し、その後放冷することにより作製した。
比較例4に係るセパレータは、上記のLLZ焼結体の一方の表面全体に対し、大気中でエタノールを滴下しながら#2000のサンドペーパーで研磨し、その後大気中で700℃のホットプレートにて当該表面を1時間加熱し、その後放冷することにより作製した。
The separator according to Comparative Example 1 was produced by polishing the entire surface of one of the above LLZ sintered bodies with # 2000 sandpaper in an argon atmosphere.
For the separator according to Comparative Example 2, the entire surface of one of the above LLZ sintered bodies was sanded with # 2000 sandpaper in the air, and then the surface was heated in the air on a hot plate at 450 ° C. for 15 minutes. After that, it was produced by allowing it to cool.
The separator according to Comparative Example 3 was polished with # 2000 sandpaper while dropping ethanol in the air on the entire surface of one surface of the above LLZ sintered body, and then on a hot plate at 400 ° C. in the air. The surface was heated for 10 minutes and then allowed to cool.
The separator according to Example 1 was polished with # 2000 sandpaper while dropping ethanol in the air on the entire surface of one surface of the above LLZ sintered body, and then on a hot plate at 450 ° C. in the air. The surface was heated for 15 minutes and then allowed to cool.
The separator according to Example 2 was polished with # 2000 sandpaper while dropping ethanol in the air on the entire surface of one surface of the LLZ sintered body, and then on a hot plate at 550 ° C. in the air. The surface was heated for 1 hour and then allowed to cool.
The separator according to Example 3 was polished with # 2000 sandpaper while dropping water in the air on the entire surface of one surface of the above LLZ sintered body, and then on a hot plate at 550 ° C. in the air. The surface was heated for 1 hour and then allowed to cool.
The separator according to Comparative Example 4 was polished with # 2000 sandpaper while dropping ethanol in the air on the entire surface of one surface of the above LLZ sintered body, and then on a hot plate at 700 ° C. in the air. The surface was heated for 1 hour and then allowed to cool.

[評価]
(限界電流密度の測定)
実施例1、2及び比較例1〜4に係るセパレータそれぞれについて、上記の処理を行った面に金属リチウム箔(厚さ50μm)を接着し、他方の面に銅箔(厚さ10μm)を接着し、実施例1、2及び比較例1〜4に係る評価用電池(ハーフセル)を作製した。
[Evaluation]
(Measurement of critical current density)
For each of the separators according to Examples 1 and 2 and Comparative Examples 1 to 4, a metallic lithium foil (thickness 50 μm) was adhered to the surface subjected to the above treatment, and a copper foil (thickness 10 μm) was adhered to the other surface. Then, the evaluation batteries (half cells) according to Examples 1 and 2 and Comparative Examples 1 to 4 were produced.

次に、上記において作製した評価用電池それぞれに対して、積層方向の上下面からφ11.28mmの鉄製ピン2本を用いて、200〜300kgfの荷重をかけて拘束し、電気化学評価装置(北斗電工製 充放電評価システム)に接続した状態で60℃に加温した。
そして、評価用電池に対し、低電流モードで±0.1mA/cm、±0.25mA/cm、±0.4mA/cm、±0.5mA/cm、±1mA/cm、±2mA/cm、±4mA/cm、±8mA/cm、±16mA/cmの順に段階的に上昇させながら、それぞれの電流モードについて1hずつ通電し、その際の電圧を測定した。電圧値が0V近くに急激に減少した時点で短絡したと判断し、その時点における限界電流密度(CCD:Critical Current Density)を、短絡した時点よりも1段低い電流密度とした。結果を表1に示した。ここで、実施例1及び比較例1、3はそれぞれ4例ずつ、実施例2及び比較例2はそれぞれ2例ずつ行った。また、比較例4はLLZ焼結体表面の炭素濃化層が厚く、金属Liとの界面形成が困難であったため測定できなかった。
Next, each of the evaluation batteries manufactured above was restrained by applying a load of 200 to 300 kgf using two iron pins of φ11.28 mm from the upper and lower surfaces in the stacking direction, and the electrochemical evaluation device (Hokuto). It was heated to 60 ° C. while connected to an electrochemical charge / discharge evaluation system).
Then, for the evaluation battery, ± 0.1 mA / cm 2 , ± 0.25 mA / cm 2 , ± 0.4 mA / cm 2 , ± 0.5 mA / cm 2 , ± 1 mA / cm 2 , in the low current mode, While gradually increasing ± 2 mA / cm 2, ± 4 mA / cm 2 , ± 8 mA / cm 2 , and ± 16 mA / cm 2 , the current was applied for 1 hour for each current mode, and the voltage at that time was measured. It was determined that a short circuit occurred when the voltage value suddenly decreased to near 0 V, and the critical current density (CCD: Critical Current Density) at that time was set to a current density one step lower than that at the time of the short circuit. The results are shown in Table 1. Here, Example 1 and Comparative Examples 1 and 3 were performed in 4 cases each, and Example 2 and Comparative Example 2 were performed in 2 cases each. Further, Comparative Example 4 could not be measured because the carbon-concentrated layer on the surface of the LLZ sintered body was thick and it was difficult to form an interface with the metal Li.

Figure 2021093344
Figure 2021093344

表1の結果のとおり、比較例1〜3の限界電流密度は2mA/cm以下であったが、実施例1の限界電流密度は最大で8mA/cm、実施例2の限界電流密度は最大で4mA/cmであった。この結果から、実施例1、2は比較例1〜3に比べて限界電流密度が高く、優れた短絡耐性を示すといえる。 As shown in the results of Table 1, the limit current densities of Comparative Examples 1 to 3 were 2 mA / cm 2 or less, but the limit current density of Example 1 was 8 mA / cm 2 at the maximum, and the limit current density of Example 2 was. The maximum was 4 mA / cm 2 . From this result, it can be said that Examples 1 and 2 have a higher critical current density than Comparative Examples 1 to 3 and exhibit excellent short-circuit resistance.

(XPSによる表面分析)
実施例1及び比較例1、2に係るセパレータについて、処理を行った側の表面をXPSによって測定した。XPS装置はアルバックファイ製PHI−5000 VersaProve IIを用いた。得られたスペクトル(O−1sスペクトル及びC−1sスペクトルを図4、5に示した。
(Surface analysis by XPS)
For the separators according to Example 1 and Comparative Examples 1 and 2, the surface on the treated side was measured by XPS. As the XPS apparatus, PHI-5000 VersaProve II manufactured by ULVAC-PHI was used. The obtained spectra (O-1s spectrum and C-1s spectrum are shown in FIGS. 4 and 5).

図4、5から、実施例1、比較例2のXPSスペクトルにおいて、明瞭なLiCOのピークが観測された。よって、実施例1、比較例2に係るセパレータ表面にはLiCOの層(炭素濃化層)が存在していると考えられ、さらに当該炭素濃化層はXPSで観測できる程度以上の厚みを持っているものであると考えられる。一方で、比較例1にはLiCOのピークが観測できなかった。 From FIGS. 4 and 5, clear Li 2 CO 3 peaks were observed in the XPS spectra of Example 1 and Comparative Example 2. Therefore, it is considered that a layer of Li 2 CO 3 (carbon-enriched layer) exists on the surface of the separator according to Example 1 and Comparative Example 2, and the carbon-enriched layer is more than observable by XPS. It is considered to have a thickness. On the other hand, the peak of Li 2 CO 3 could not be observed in Comparative Example 1.

(EDXによる表面分析)
実施例1〜3及び比較例1〜4に係るセパレータについて、処理を行った側の表面をSEM−EDXによって測定し、表面組成(質量%)を算出した。SEMは日立ハイテクノロジーズ製SU−8000を用いた。EDXは堀場製作所製X−max 80mmを用いて、加速電圧を5kVとして測定した。測定は任意の3領域で行い、炭素、酸素、ジルコニウムの含有量を算出した。表2、3に結果を示した。
(Surface analysis by EDX)
For the separators according to Examples 1 to 3 and Comparative Examples 1 to 4, the surface on the treated side was measured by SEM-EDX, and the surface composition (mass%) was calculated. As the SEM, SU-8000 manufactured by Hitachi High-Technologies Corporation was used. The EDX was measured using an X-max 80 mm 2 manufactured by HORIBA, Ltd. with an acceleration voltage of 5 kV. The measurement was carried out in any three regions, and the contents of carbon, oxygen and zirconium were calculated. The results are shown in Tables 2 and 3.

表2は実施例1及び比較例1、2の結果について詳細に説明したものである。元素比較は平均値に基づいて算出している。
表3は実施例1〜3及び比較例1〜4について、表面処理の条件と表面組成の結果とを比較できるように掲載したものである。表3の炭素濃度、C/Zr比、C/O比は表2と同様に、平均値に基づいて算出されている。
Table 2 describes in detail the results of Example 1 and Comparative Examples 1 and 2. Element comparison is calculated based on the average value.
Table 3 shows Examples 1 to 3 and Comparative Examples 1 to 4 so that the surface treatment conditions and the results of the surface composition can be compared. The carbon concentration, C / Zr ratio, and C / O ratio in Table 3 are calculated based on the average values as in Table 2.

Figure 2021093344
Figure 2021093344

Figure 2021093344
Figure 2021093344

表2より、比較例1の炭素濃度よりも比較例2の炭素濃度の方が高く、比較例2の炭素濃度よりも実施例1の炭素濃度の方が高いことが分かった。表面組成における炭素濃度はLiCO由来であると考えられるため、炭素濃度が高いほど炭素濃化層が厚いと考えられる。規格化した炭素/ジルコニウム比、及び炭素/酸素比からも、同様の傾向が読み取れる。
このことから、LLZ焼結体の表面に対して、溶媒を接触させてから加熱処理を行うことにより、より厚みを持った炭素濃化層を形成することができると考えられる。
From Table 2, it was found that the carbon concentration of Comparative Example 2 was higher than the carbon concentration of Comparative Example 1, and the carbon concentration of Example 1 was higher than the carbon concentration of Comparative Example 2. Since the carbon concentration in the surface composition is considered to be derived from Li 2 CO 3, it is considered that the higher the carbon concentration, the thicker the carbon-enriched layer. A similar tendency can be read from the standardized carbon / zirconium ratio and carbon / oxygen ratio.
From this, it is considered that a thicker carbon-enriched layer can be formed by contacting the surface of the LLZ sintered body with a solvent and then performing a heat treatment.

次に、表3の結果から表面処理の条件について検討した。実施例1〜3より、溶媒としては水及びアルコールの何れも用いることができることが確認できた。また、加熱温度については、450℃〜550℃の範囲では特に問題が起こらないことが確認できた。一方で、比較例3は400℃で加熱処理されており、炭素濃度が実施例に比べて低かった。そのため炭素濃化層の厚みが十分でなく、表1の通り限界電流密度が低かったと考えられる。また、比較例4では700℃で加熱処理を行っているため、実施例よりも炭素濃度は高いが、表面に多数の凹凸を有する炭素濃化層が生成したため、電池の使用には適さなかった。 Next, the surface treatment conditions were examined from the results in Table 3. From Examples 1 to 3, it was confirmed that either water or alcohol can be used as the solvent. Further, it was confirmed that no particular problem occurred in the heating temperature in the range of 450 ° C. to 550 ° C. On the other hand, Comparative Example 3 was heat-treated at 400 ° C., and the carbon concentration was lower than that of Example. Therefore, it is probable that the thickness of the carbon-enriched layer was not sufficient and the critical current density was low as shown in Table 1. Further, in Comparative Example 4, since the heat treatment was performed at 700 ° C., the carbon concentration was higher than that in Example, but a carbon-concentrated layer having a large number of irregularities was formed on the surface, so that it was not suitable for use in a battery. ..

(SEM−EDXによる割断面分析)
実施例1及び比較例1、2に係るセパレータを割断し、その割断面についてSEM−EDXによる分析を行った。割断は、セパレータ表面にダイヤモンドペンを用いて線状痕を付与し、当該線状痕を挟んでセパレータ両端をプライヤーで保持し、曲げ応力を付加して線状痕に沿って劈開させる方法で行った。図6〜図8に実施例1及び比較例1、2に係るセパレータの表面(金属Li箔/LLZ(セパレータ)界面)付近のSEM像を示した。図6は比較例1のSEM像であり、図7は比較例2のSEM像であり、図8は実施例1のSEM像である。
(Analysis of fractured surface by SEM-EDX)
The separators according to Example 1 and Comparative Examples 1 and 2 were cut, and the split cross sections thereof were analyzed by SEM-EDX. The cutting is performed by making a linear mark on the surface of the separator using a diamond pen, holding both ends of the separator with pliers across the linear mark, and applying bending stress to cleave along the linear mark. It was. 6 to 8 show SEM images near the surface (metal Li foil / LLZ (separator) interface) of the separator according to Example 1 and Comparative Examples 1 and 2. FIG. 6 is an SEM image of Comparative Example 1, FIG. 7 is an SEM image of Comparative Example 2, and FIG. 8 is an SEM image of Example 1.

図6〜図8より、比較例1、2のSEM像には軽元素を示す黒い領域は少ないが、実施例1のSEM像では表面付近に黒い領域が集中していることが確認できた。このことから、実施例1のセパレータの表面付近に何らかの元素が濃化していると考えられる。セパレータの作製方法から、セパレータ内部にもLiCOが生成していると推測できるため、黒い領域は炭素が濃化した領域であると予想される。そこで、実施例1、2及び比較例1〜3に係るセパレータの割断面に対してEDXを用いて炭素濃度を算出した。 From FIGS. 6 to 8, it was confirmed that the SEM images of Comparative Examples 1 and 2 had few black regions showing light elements, but the SEM images of Example 1 had black regions concentrated near the surface. From this, it is considered that some element is concentrated near the surface of the separator of Example 1. Since it can be inferred from the method for producing the separator that Li 2 CO 3 is also generated inside the separator, it is expected that the black region is a region where carbon is concentrated. Therefore, the carbon concentration was calculated using EDX for the fractured faces of the separators according to Examples 1 and 2 and Comparative Examples 1 to 3.

EDXによる分析は、2視野ずつ、且つ断面を数個の領域に分けてそれぞれ面分析を行い、測定領域の平均炭素濃度(質量%)を算出した。比較例1の面分析はセパレータの厚さ方向10μm、厚さ方向に直交する方向25μmの範囲で行った。比較例2、3及び実施例1、2の面分析はセパレータの厚さ方向5μm、厚さ方向に直交する方向25μmの範囲で行った。結果には厚さ方向における分析範囲の中心点の位置を記載した。また、平均炭素濃度は、表面付近(表面から深さ10μmの位置までの範囲)と、内部(表面から深さ10μmを超える範囲)との領域を分けて算出し、各領域において2以上測定した場合は、それらの平均値を各領域における平均炭素濃度とした。 In the analysis by EDX, the average carbon concentration (mass%) of the measurement region was calculated by performing surface analysis for each of the two visual fields and dividing the cross section into several regions. The surface analysis of Comparative Example 1 was performed in the range of 10 μm in the thickness direction of the separator and 25 μm in the direction orthogonal to the thickness direction. The surface analysis of Comparative Examples 2 and 3 and Examples 1 and 2 was performed in the range of 5 μm in the thickness direction of the separator and 25 μm in the direction orthogonal to the thickness direction. The position of the center point of the analysis range in the thickness direction was described in the result. The average carbon concentration was calculated separately for the vicinity of the surface (the range from the surface to the position of 10 μm in depth) and the inside (the range of more than 10 μm in depth from the surface), and 2 or more were measured in each region. In the case, the average value thereof was taken as the average carbon concentration in each region.

比較例1では表面から中心点までの距離8.3μm、18μm、29μm、41μm、53μm、66μmの位置において面分析を行った。比較例2では、表面から中心点までの距離3.75μm、9.67μm、16.1μm、22.1μm、29.1μm、36.1μm、42.9μm、49.7μmの位置において面分析を行った。比較例3では、表面から中心点までの距離2.46μm、6.93μm、11.7μm、16.48μm、21.10μm、25.48μm、30.12μmの位置において面分析を行った。実施例1では、表面から中心点までの距離2.46μm、6.93μm、11.7μm、16.5μm、21.2μm、25.5μm、30.1μmの位置において面分析を行った。実施例2では、表面から中心点までの距離2.41μm、7.04μm、11.9μm、16.9μm、22.2μm、28.0μm、34.4μmの位置において面分析を行った。
結果を図9〜図13に示した。図9は比較例1の結果であり、図10は比較例2の結果であり、図11は比較例3の結果であり、図12は実施例1の結果であり、図13は実施例2の結果である。
In Comparative Example 1, surface analysis was performed at distances of 8.3 μm, 18 μm, 29 μm, 41 μm, 53 μm, and 66 μm from the surface to the center point. In Comparative Example 2, surface analysis was performed at distances of 3.75 μm, 9.67 μm, 16.1 μm, 22.1 μm, 29.1 μm, 36.1 μm, 42.9 μm, and 49.7 μm from the surface to the center point. It was. In Comparative Example 3, surface analysis was performed at distances of 2.46 μm, 6.93 μm, 11.7 μm, 16.48 μm, 21.10 μm, 25.48 μm, and 30.12 μm from the surface to the center point. In Example 1, surface analysis was performed at distances of 2.46 μm, 6.93 μm, 11.7 μm, 16.5 μm, 21.2 μm, 25.5 μm, and 30.1 μm from the surface to the center point. In Example 2, surface analysis was performed at the distances from the surface to the center point at 2.41 μm, 7.04 μm, 11.9 μm, 16.9 μm, 22.2 μm, 28.0 μm, and 34.4 μm.
The results are shown in FIGS. 9 to 13. 9 is the result of Comparative Example 1, FIG. 10 is the result of Comparative Example 2, FIG. 11 is the result of Comparative Example 3, FIG. 12 is the result of Example 1, and FIG. 13 is the result of Example 2. Is the result of.

図9によれば、比較例1の表面付近の平均炭素濃度は8.92%であり、内部の平均炭素濃度は6.15%であった。図10によれば、比較例2の表面付近の平均炭素濃度は3.62%であり、内部の平均炭素濃度は2.55%であった。このように比較例1、2の平均炭素濃度は、表面付近と内部との間に大きな違いはなかった。これに対し、図11によれば、比較例3の表面付近の平均炭素濃度は9.67%であり、内部の平均炭素濃度は3.08%であった。このように比較例3は内部の平均炭素濃度に比べて表面付近の平均炭素濃度が大きいことから、表面付近で炭素元素が濃化していることが確認できた。しかし、後述する実施例1、2に比べてまだまだ小さい値であった。 According to FIG. 9, the average carbon concentration near the surface of Comparative Example 1 was 8.92%, and the average carbon concentration inside was 6.15%. According to FIG. 10, the average carbon concentration near the surface of Comparative Example 2 was 3.62%, and the average carbon concentration inside was 2.55%. As described above, the average carbon concentrations of Comparative Examples 1 and 2 were not significantly different between the vicinity of the surface and the inside. On the other hand, according to FIG. 11, the average carbon concentration near the surface of Comparative Example 3 was 9.67%, and the average carbon concentration inside was 3.08%. As described above, in Comparative Example 3, since the average carbon concentration near the surface was higher than the average carbon concentration inside, it was confirmed that the carbon element was concentrated near the surface. However, the value was still smaller than that of Examples 1 and 2 described later.

一方で、図12、13によれば、実施例1、2では平均炭素濃度について、表面付近と内部との間に大きな違いがあり、平均炭素濃度は表面に近いほど高いことが分かった。具体的には実施例1における表面付近の平均炭素濃度は49.3%、内部の平均炭素濃度は10.3%であり、実施例2における表面付近の平均炭素濃度は22.4%、内部の平均炭素濃度は8.46%であった。これらの結果から、SEM像において観測された黒い領域は炭素が濃化した領域であると考えられ、また先の結果を考慮すると、この炭素はLiCO由来であると考えられる。また、表面付近の平均炭素濃度が10%以上、好ましくは20%以上であると優れた短絡耐性を示すものと考えられる。 On the other hand, according to FIGS. 12 and 13, it was found that in Examples 1 and 2, there was a large difference in the average carbon concentration between the vicinity of the surface and the inside, and the average carbon concentration was higher as it was closer to the surface. Specifically, the average carbon concentration near the surface in Example 1 was 49.3%, the average carbon concentration inside was 10.3%, and the average carbon concentration near the surface in Example 2 was 22.4%, inside. The average carbon concentration of was 8.46%. From these results, the black region observed in the SEM image is considered to be a carbon-enriched region, and considering the previous results, this carbon is considered to be derived from Li 2 CO 3. Further, it is considered that excellent short-circuit resistance is exhibited when the average carbon concentration near the surface is 10% or more, preferably 20% or more.

(考察)
以上の結果から、ガーネット型固体電解質セパレータの表面付近はLiCO由来の炭素に富む組織であることが分かった。セラミックスのような脆性材料は、表面にある微細な凹部やクラックを起点に亀裂が進展して割断されることが知られている。従って、割断面の表面付近には焼結時に生じたボイドやクラックといった欠陥が露出していると考えられる。実施例1ではこのような欠陥にLiCOが多く分布していることから(図8)、表面処理の際にエタノールが欠陥部に浸透し、熱処理によってエタノールとガーネット型固体電解質とが反応することにより、LiCOが生成したと考えられる。
そして、LiCOは金属リチウムとのぬれ性が極めて低いため、欠陥部を覆う炭酸リチウムがリチウムデンドライトの進展を妨げることで、短絡耐性が向上したと考えられる(表1)。
(Discussion)
From the above results, it was found that the vicinity of the surface of the garnet-type solid electrolyte separator is a carbon-rich structure derived from Li 2 CO 3. It is known that brittle materials such as ceramics are cut by developing cracks starting from minute recesses or cracks on the surface. Therefore, it is considered that defects such as voids and cracks generated during sintering are exposed near the surface of the fractured surface. In Example 1, since a large amount of Li 2 CO 3 is distributed in such defects (Fig. 8), ethanol permeates the defects during surface treatment, and ethanol reacts with the garnet-type solid electrolyte by heat treatment. By doing so, it is considered that Li 2 CO 3 was generated.
Since Li 2 CO 3 has extremely low wettability with metallic lithium, it is considered that the lithium carbonate covering the defective portion hinders the progress of lithium dendrite, thereby improving the short-circuit resistance (Table 1).

Claims (10)

ガーネット型固体電解質を含み、少なくとも一方の表面に炭素濃化層が存在するとともに、該表面から深さ10μmの位置までの範囲に炭素濃化部が存在している、ガーネット型固体電解質セパレータ。 A garnet-type solid electrolyte separator containing a garnet-type solid electrolyte, having a carbon-concentrated layer on at least one surface and a carbon-concentrated portion in a range from the surface to a depth of 10 μm. ガーネット型固体電解質が(Li7−3Y−Z,Al)(La)(Zr2−Z,M)O12(M=Nb、Taからなる群より選ばれる少なくとも1つ以上の元素。Y、Zは、0≦Y<0.22、0≦Z≦2の範囲の任意の数である。)である、請求項1に記載のガーネット型固体電解質セパレータ。 A garnet-type solid electrolyte is at least one element selected from the group consisting of (Li 7-3Y-Z , Al Y ) (La 3 ) (Zr 2-Z , M Z ) O 12 (M = Nb, Ta). The garnet-type solid electrolyte separator according to claim 1, wherein Y and Z are arbitrary numbers in the range of 0 ≦ Y <0.22 and 0 ≦ Z ≦ 2. 前記表面のXPSスペクトルにおいて、LiCOのピークが存在する、請求項1又は2に記載のガーネット型固体電解質セパレータ。 The garnet-type solid electrolyte separator according to claim 1 or 2, wherein a peak of Li 2 CO 3 is present in the XPS spectrum of the surface. EDXにより算出される前記表面の組成において、炭素濃度が6.8質量%以上である、請求項1〜3のいずれか1項に記載のガーネット型固体電解質セパレータ。 The garnet-type solid electrolyte separator according to any one of claims 1 to 3, wherein the carbon concentration is 6.8% by mass or more in the surface composition calculated by EDX. EDXにより算出される前記表面の組成において、質量基準で炭素/酸素比が0.17以上であり、炭素/ジルコニウム比が0.23以上である、請求項1〜4のいずれか1項に記載のガーネット型固体電解質セパレータ。 The method according to any one of claims 1 to 4, wherein the surface composition calculated by EDX has a carbon / oxygen ratio of 0.17 or more and a carbon / zirconium ratio of 0.23 or more on a mass basis. Garnet type solid electrolyte separator. 前記ガーネット型固体電解質セパレータを前記炭素濃化部が露出するように厚さ方向に割断したときの、EDXにより算出される割断面の組成において、前記表面から深さ10μmの位置まで範囲の平均炭素濃度が10質量%以上である、請求項1〜5のいずれか1項に記載のガーネット型固体電解質セパレータ。 When the garnet-type solid electrolyte separator is divided in the thickness direction so that the carbon-enriched portion is exposed, the average carbon in the range from the surface to a depth of 10 μm in the composition of the fractured surface calculated by EDX. The garnet-type solid electrolyte separator according to any one of claims 1 to 5, wherein the concentration is 10% by mass or more. 前記平均炭素濃度が20質量%以上である、請求項6に記載のガーネット型固体電解質セパレータ。 The garnet-type solid electrolyte separator according to claim 6, wherein the average carbon concentration is 20% by mass or more. ガーネット型固体電解質焼結体の表面に酸素元素を含む溶媒を接触させる溶媒接触工程と、
前記溶媒接触工程後に、前記表面を炭素濃化層の生成温度以上の温度で加熱する加熱工程と、
を有する、ガーネット型固体電解質セパレータの製造方法。
A solvent contact step in which a solvent containing an oxygen element is brought into contact with the surface of a garnet-type solid electrolyte sintered body,
After the solvent contact step, a heating step of heating the surface at a temperature equal to or higher than the formation temperature of the carbon-enriched layer, and a heating step.
A method for producing a garnet-type solid electrolyte separator.
前記溶媒がアルコールである、請求項8に記載のガーネット型固体電解質セパレータの製造方法。 The method for producing a garnet-type solid electrolyte separator according to claim 8, wherein the solvent is alcohol. 前記加熱工程において、前記表面を450℃以上700℃未満の温度で加熱する、請求項8又は9に記載のガーネット型固体電解質セパレータの製造方法。 The method for producing a garnet-type solid electrolyte separator according to claim 8 or 9, wherein in the heating step, the surface is heated at a temperature of 450 ° C. or higher and lower than 700 ° C.
JP2020053382A 2019-12-10 2020-03-24 Garnet type solid electrolyte separator and its manufacturing method Active JP7384088B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/098,545 US20210175541A1 (en) 2019-12-10 2020-11-16 Garnet-type solid electrolyte separator and method of producing the same
CN202011304678.0A CN112952187A (en) 2019-12-10 2020-11-19 Garnet-type solid electrolyte separator and method for producing same
EP20210699.3A EP3836275A1 (en) 2019-12-10 2020-11-30 Garnet-type solid electrolyte separator and method of producing the same
KR1020200165807A KR102491026B1 (en) 2019-12-10 2020-12-01 Garnet-type solid electrolyte separator and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019223210 2019-12-10
JP2019223210 2019-12-10

Publications (2)

Publication Number Publication Date
JP2021093344A true JP2021093344A (en) 2021-06-17
JP7384088B2 JP7384088B2 (en) 2023-11-21

Family

ID=76312807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053382A Active JP7384088B2 (en) 2019-12-10 2020-03-24 Garnet type solid electrolyte separator and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7384088B2 (en)
KR (1) KR102491026B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157394A (en) * 2016-03-01 2017-09-07 富士通株式会社 All-solid battery
JP2017199539A (en) * 2016-04-27 2017-11-02 日本特殊陶業株式会社 Solid electrolyte structure, lithium battery, and method of manufacturing solid electrolyte structure
JP2019033053A (en) * 2017-08-10 2019-02-28 トヨタ自動車株式会社 Lithium solid battery and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662802B2 (en) 2017-02-27 2020-03-11 国立大学法人北陸先端科学技術大学院大学 Oxide all solid state battery
WO2019212026A1 (en) * 2018-05-01 2019-11-07 日本特殊陶業株式会社 Ion conductive powder, ion conductive molded article, and electricity storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157394A (en) * 2016-03-01 2017-09-07 富士通株式会社 All-solid battery
JP2017199539A (en) * 2016-04-27 2017-11-02 日本特殊陶業株式会社 Solid electrolyte structure, lithium battery, and method of manufacturing solid electrolyte structure
JP2019033053A (en) * 2017-08-10 2019-02-28 トヨタ自動車株式会社 Lithium solid battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP7384088B2 (en) 2023-11-21
KR102491026B1 (en) 2023-01-26
KR20210074190A (en) 2021-06-21

Similar Documents

Publication Publication Date Title
Liu et al. Local electronic structure variation resulting in Li ‘filament’formation within solid electrolytes
JP4914831B2 (en) Manufacturing method of fuel cell
JP4987703B2 (en) Method for producing solid oxide electrolyte membrane
JP5999357B2 (en) Sputtering target and manufacturing method thereof
Lee et al. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO
WO2005101549A1 (en) Negative electrode member for secondary lithium battery and process for producing the same
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
Kharchenko et al. Study of nanostructural changes in a Ni-containing cermet material during reduction and oxidation at 600° C
JP2017199539A (en) Solid electrolyte structure, lithium battery, and method of manufacturing solid electrolyte structure
Kharchenko et al. Nanostructural changes in a Ni/NiO cermet during high-temperature reduction and reoxidation
JP7384088B2 (en) Garnet type solid electrolyte separator and its manufacturing method
CN113016095B (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
CN117096426A (en) Positive electrode of solid lithium battery
Spirin et al. Effect of structural parameters of Ni-ScSZ cermet components on the SOFC anodes characteristics
US20210175541A1 (en) Garnet-type solid electrolyte separator and method of producing the same
JP2017088931A (en) Titanium alloy for solid polymer electrolyte fuel cell, titanium material using the same and solid polymer electrolyte fuel cell using the same
WO2014024975A1 (en) Sputtering target and method for producing same
KR20230087556A (en) Electrodes for redox flow batteries, and methods for producing electrodes for redox flow batteries
JP2007005112A (en) Separator for solid polymer fuel cell and its manufacturing method
Oladoye et al. Evaluation of CoBlast™ coated titanium alloy as Proton Exchange Membrane fuel cells bipolar plates
KR102117420B1 (en) Preparing method of aluminum alloy coating layer without crack
KR101709602B1 (en) Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
JP6376062B2 (en) Method for producing solid electrolyte layer
WO2017082257A1 (en) Titanium material, separator, and solid polymer fuel cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151