JP2021092258A - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP2021092258A
JP2021092258A JP2019222535A JP2019222535A JP2021092258A JP 2021092258 A JP2021092258 A JP 2021092258A JP 2019222535 A JP2019222535 A JP 2019222535A JP 2019222535 A JP2019222535 A JP 2019222535A JP 2021092258 A JP2021092258 A JP 2021092258A
Authority
JP
Japan
Prior art keywords
sealing ring
plate portion
sealed
thin plate
mechanical seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019222535A
Other languages
Japanese (ja)
Other versions
JP7350447B2 (en
Inventor
典寛 名護
Norihiro Nago
典寛 名護
義博 村
Yoshihiro Mura
義博 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2019222535A priority Critical patent/JP7350447B2/en
Publication of JP2021092258A publication Critical patent/JP2021092258A/en
Application granted granted Critical
Publication of JP7350447B2 publication Critical patent/JP7350447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a mechanical seal highly strong and capable of appropriately setting the contact state of the sliding surface.SOLUTION: A mechanical seal 1 includes a pair of sealing rings 10, 20 which slide with each other, for sealing sealed fluid F, one sealing ring 10 being provided on the opposite side to the sealed fluid F in the radial direction and having a plurality of cutout grooves 13 arranged separating in the peripheral direction and opening at least to the back side. Between each of the cutout grooves 13 and a space on the sealed fluid F side, an annular secondary seal member 6 is arranged. On the other sealing ring 20 side of one sealing ring 10, a nose part 12 protruded stepwise in the axial direction and including a sliding surface 11 for sliding with the other sealing ring 20 is provided annularly over the peripheral direction.SELECTED DRAWING: Figure 6

Description

本発明は、メカニカルシールに関する。 The present invention relates to a mechanical seal.

被密封流体の漏れを防止するために、相対回転して摺動面同士が摺動する一対の密封環を備えたメカニカルシールが用いられている。このようなメカニカルシールにおいては、近年、摺動により失われるエネルギーの低減が望まれており、摺動面間の潤滑性向上を図るメカニカルシールが開発されている。 In order to prevent leakage of the fluid to be sealed, a mechanical seal having a pair of sealing rings that rotate relative to each other and slide on the sliding surfaces is used. In such mechanical seals, it has been desired in recent years to reduce the energy lost due to sliding, and mechanical seals for improving lubricity between sliding surfaces have been developed.

例えば、特許文献1に示されるメカニカルシールは、回転軸とともに回転する第1の密封環と、ハウジングに固定される第2の密封環と、を備え、これら密封環の摺動面同士を摺動させることで外径側の空間に密封される被密封流体が内径側の空間へ漏れることを防止している。また、第2の密封環の外径側には、内径方向の切欠きとして形成された第1歪制御用凹部が周方向に複数配置されているとともに、第2の密封環における摺動面と反対側には、軸方向のザグリ穴として形成された第2歪制御用凹部が周方向に複数配置されている。被密封流体の圧力が第2の密封環に作用したときには、第1歪制御用凹部及び第2歪制御用凹部を基点として第2の密封環を変形させ、歪みを生じさせることにより、第2の密封環の摺動面に凹凸が形成されるようになっている。 For example, the mechanical seal shown in Patent Document 1 includes a first sealing ring that rotates with a rotation shaft and a second sealing ring that is fixed to a housing, and slides the sliding surfaces of these sealing rings with each other. This prevents the sealed fluid sealed in the outer diameter side space from leaking into the inner diameter side space. Further, on the outer diameter side of the second sealing ring, a plurality of first strain control recesses formed as notches in the inner diameter direction are arranged in the circumferential direction, and also as a sliding surface in the second sealing ring. On the opposite side, a plurality of second strain control recesses formed as counterbore holes in the axial direction are arranged in the circumferential direction. When the pressure of the fluid to be sealed acts on the second sealing ring, the second sealing ring is deformed with the first strain control recess and the second strain control recess as base points to cause strain, thereby causing the second strain. The sliding surface of the sealing ring of the above is formed with irregularities.

特開2009−79634号公報(第7頁、第3図)Japanese Unexamined Patent Publication No. 2009-79634 (Page 7, Fig. 3)

特許文献1のメカニカルシールによれば、第1の密封環及び第2の密封環の相対回転時には、第2の密封環の摺動面に形成される凸部が第1の密封環の摺動面に摺動する実質的な摺動面として機能し、第2の密封環の摺動面に形成される凹部に被密封流体を導入し且つ摺動面間に排出することで摺動面間に動圧を発生させ、その動圧により摺動面同士を離間させ、該摺動面間に被密封流体を介在させることで潤滑性が向上し、低摩擦化を実現している。しかしながら、特許文献1のメカニカルシールにあっては、第1歪制御用凹部及び第2歪制御用凹部によって第2の密封環の内部に応力を発生させ、変形させる構成であるため、第2の密封環の強度が低下し、第2の密封環が破損してしまう虞があった。また、被密封流体の圧力が第2の密封環に作用したときに、第1歪制御用凹部及び第2歪制御用凹部を基点として変形されることで、第2の密封環は全体に分散されるようにして歪みが生じるようになっているため、摺動面の所望の位置に凹凸を形成することが困難であり、第1の密封環との摺動接触状態を適切に設定できない虞があった。 According to the mechanical seal of Patent Document 1, when the first sealing ring and the second sealing ring are relatively rotated, the convex portion formed on the sliding surface of the second sealing ring slides on the first sealing ring. It functions as a substantial sliding surface that slides on the surface, and by introducing the sealed fluid into the recess formed in the sliding surface of the second sealing ring and discharging it between the sliding surfaces, the sliding surfaces are separated from each other. By generating dynamic pressure, the sliding surfaces are separated from each other by the dynamic pressure, and a sealed fluid is interposed between the sliding surfaces, lubricity is improved and friction is reduced. However, the mechanical seal of Patent Document 1 has a configuration in which stress is generated inside the second sealing ring by the first strain control recess and the second strain control recess to deform the second seal ring. There was a risk that the strength of the sealing ring would decrease and the second sealing ring would be damaged. Further, when the pressure of the fluid to be sealed acts on the second sealing ring, the second sealing ring is dispersed throughout by being deformed with the first strain control recess and the second strain control recess as base points. Since the strain is generated in this way, it is difficult to form irregularities at a desired position on the sliding surface, and there is a risk that the sliding contact state with the first sealing ring cannot be set appropriately. was there.

本発明は、このような問題点に着目してなされたもので、強度が高く、且つ摺動面の接触状態を適切に設定できるメカニカルシールを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a mechanical seal having high strength and capable of appropriately setting a contact state of a sliding surface.

前記課題を解決するために、本発明のメカニカルシールは、
互いに相対摺動する一対の密封環を有し、被密封流体を封止するメカニカルシールであって、
一方の密封環は、径方向において前記被密封流体とは反対側に設けられ、周方向に離間しかつ少なくとも背面側に開口する複数の切欠溝が配置されており、前記切欠溝と前記被密封流体側の空間との間には、環状の二次シール部材が配置されており、
前記一方の密封環の他方の密封環側には軸方向に段状に突出し、該他方の密封環と摺動する摺動面を具えるノーズ部が周方向に亘って環状に設けられている。
これによれば、切欠溝を有するため、被密封流体の圧力により一方の密封環が被密封流体とは反対側に縮径、或いは、拡径するように変形するとともに、他方の密封環側に摺動面を具えるノーズ部が設けられているため、摺動面近傍の強度を高めて一方の密封環が破損し難くかつノーズ部の径方向位置を設定することで他方の密封環との摺動接触状態を適切に設定することができる。
In order to solve the above problems, the mechanical seal of the present invention is used.
A mechanical seal that has a pair of sealing rings that slide relative to each other and seals the fluid to be sealed.
One sealing ring is provided on the side opposite to the sealed fluid in the radial direction, and a plurality of notched grooves separated in the circumferential direction and opened at least on the back surface side are arranged, and the notched groove and the sealed groove are arranged. An annular secondary seal member is arranged between the space on the fluid side.
On the other sealing ring side of the one sealing ring, a nose portion having a sliding surface that projects in a stepwise manner in the axial direction and slides with the other sealing ring is provided in an annular shape in the circumferential direction. ..
According to this, since it has a notch groove, one of the sealing rings is deformed so as to reduce or increase the diameter on the side opposite to the sealed fluid due to the pressure of the sealed fluid, and on the other sealing ring side. Since the nose portion provided with the sliding surface is provided, the strength in the vicinity of the sliding surface is increased so that one sealing ring is less likely to be damaged and the radial position of the nose portion is set so that the sealing ring can be connected to the other sealing ring. The sliding contact state can be set appropriately.

前記摺動面における前記被密封流体と径方向反対側の端部は、前記切欠溝における前記被密封流体側の端部よりも前記被密封流体と径方向反対側に配置されていてもよい。
これによれば、一方の密封環における他方の密封環側の部位の軸方向への膨出を摺動面に好適に伝達できる。
The end portion of the sliding surface on the side opposite to the sealed fluid in the radial direction may be arranged on the side opposite to the sealed fluid in the radial direction with respect to the end portion on the sealed fluid side in the notch groove.
According to this, the axial bulge of the portion of one sealing ring on the other sealing ring side can be suitably transmitted to the sliding surface.

前記摺動面における径方向前記被密封流体側の端部は、前記切欠溝における前記被密封流体側の端部よりも前記被密封流体と径方向反対側に配置されていてもよい。
これによれば、一方の密封環における他方の密封環側の部位の軸方向への膨出を摺動面により好適に伝達できる。
The radial end of the sliding surface on the sealed fluid side may be arranged radially opposite to the sealed fluid end of the notch groove on the sealed fluid side.
According to this, the axial bulge of the portion of one sealing ring on the other sealing ring side can be more preferably transmitted to the sliding surface.

径方向断面において、前記切欠溝の最大箇所の面積は、前記ノーズ部の面積よりも大きくてもよい。
これによれば、切欠溝の径方向断面積がノーズ部の径方向断面積よりも大きいので、摺動面を確実に他方の密封環側に膨出させることができる。
In the radial cross section, the area of the maximum portion of the notch groove may be larger than the area of the nose portion.
According to this, since the radial cross-sectional area of the notch groove is larger than the radial cross-sectional area of the nose portion, the sliding surface can be surely bulged toward the other sealing ring side.

各前記切欠溝は、前記一方の密封環の中心から放射状に延びる基準面を基準として周方向に面対称を成していてもよい。
これによれば、一方の密封環が被密封流体の圧力を受けたときに、基準面を中心として切欠溝の周方向に対称に変形が生じるので、切欠溝の周方向中央部に位置する摺動面を大きく膨出させることができる。
Each of the cutout grooves may be plane-symmetrical in the circumferential direction with reference to a reference plane extending radially from the center of the one sealing ring.
According to this, when one of the sealing rings receives the pressure of the fluid to be sealed, the deformation occurs symmetrically in the circumferential direction of the notch groove with the reference plane as the center. The moving surface can be greatly expanded.

隣り合う前記切欠溝同士の間に形成された肉厚部の前記被密封流体とは径方向反対側の端部の周方向の寸法が、前記切欠溝の前記被密封流体とは径方向反対側の端部の周方向の寸法よりも長くてもよい。
これによれば、切欠溝の周方向の寸法よりも肉厚部の周方向の寸法が長いので、一方の密封環の強度を確保しつつ、摺動面の軸方向への膨出量を大きくとることができる。
The circumferential dimension of the end portion of the thick portion formed between the adjacent notch grooves on the side opposite to the sealed fluid is radially opposite to the sealed fluid of the notch groove. It may be longer than the circumferential dimension of the end of.
According to this, since the dimension in the circumferential direction of the thick portion is longer than the dimension in the circumferential direction of the notch groove, the amount of bulging of the sliding surface in the axial direction is large while ensuring the strength of one of the sealing rings. Can be taken.

前記一方の密封環は一体形成されていてもよい。
これによれば、一方の密封環は一体形成されており、一方の密封環の単位体積当たりの強度が一定であるため、一方の密封環における他方の密封環側の部位を確実に変形させることができ、且つ加工しやすい。
The one sealing ring may be integrally formed.
According to this, since one sealing ring is integrally formed and the strength of one sealing ring per unit volume is constant, the portion of one sealing ring on the other sealing ring side is surely deformed. And easy to process.

本発明の実施例1におけるメカニカルシールの一例を示す側断面図である。It is a side sectional view which shows an example of the mechanical seal in Example 1 of this invention. 静止密封環の摺動面を軸方向から見た図である。It is the figure which looked at the sliding surface of the static sealing ring from the axial direction. 静止密封環の背面を軸方向から見た図である。It is the figure which looked at the back surface of the static sealing ring from the axial direction. (a)は図3のA−A断面図、(b)は図3のB矢視図である。(A) is a cross-sectional view taken along the line AA of FIG. 3, and FIG. 3B is a view taken along the arrow B of FIG. 静止密封環がハウジング及びシールカバーに取付けられた状態を示す側断面図である。It is a side sectional view which shows the state which the static sealing ring is attached to a housing and a seal cover. (a)は静止密封環に被密封流体の圧力が作用する受圧部を示す概略図、(b)は(a)の状態から被密封流体の圧力により静止密封環が縮径した状態を示す概略図である。(A) is a schematic view showing a pressure receiving portion on which the pressure of the sealed fluid acts on the statically sealed ring, and (b) is a schematic diagram showing a state in which the statically sealed ring is reduced in diameter due to the pressure of the sealed fluid from the state of (a). It is a figure. 静止密封環の薄板部の膨出量を示す概略図である。It is the schematic which shows the bulging amount of the thin plate part of a static sealing ring. 図6のC矢視図である。It is a C arrow view of FIG. (a)はノーズ部を静止密封環の端面の内径側に配設した状態を示す概略図、(b)はノーズ部を静止密封環の端面の径方向中央部に配設した状態を示す概略図、(c)はノーズ部を静止密封環の端面の外径側に配設した状態を示す概略図である。(A) is a schematic view showing a state in which the nose portion is arranged on the inner diameter side of the end face of the static sealing ring, and (b) is a schematic view showing a state in which the nose portion is arranged in the radial center portion of the end face of the static sealing ring. FIG. 3C is a schematic view showing a state in which the nose portion is arranged on the outer diameter side of the end face of the static sealing ring. 本発明の実施例2における静止密封環を示す図である。It is a figure which shows the static sealing ring in Example 2 of this invention. 本発明の実施例3における静止密封環を示す図である。It is a figure which shows the static sealing ring in Example 3 of this invention. 本発明の実施例4における静止密封環を示す図である。It is a figure which shows the static sealing ring in Example 4 of this invention. 本発明の実施例5における静止密封環を示す図である。It is a figure which shows the static sealing ring in Example 5 of this invention.

本発明に係るメカニカルシールを実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out the mechanical seal according to the present invention will be described below based on examples.

実施例1に係る摺動部品につき、図1から図9を参照して説明する。尚、本実施例においては、メカニカルシールを構成する密封環の外径側を被密封液体側(高圧側)、内径側を漏れ側としての大気側(低圧側)として説明する。さらに尚、静止密封環の摺動面側を正面側として説明する。 The sliding parts according to the first embodiment will be described with reference to FIGS. 1 to 9. In this embodiment, the outer diameter side of the sealing ring constituting the mechanical seal will be described as the sealed liquid side (high pressure side), and the inner diameter side will be described as the atmospheric side (low pressure side) as the leakage side. Furthermore, the sliding surface side of the static sealing ring will be described as the front side.

図1に示される一般産業機械用のメカニカルシール1は、互いに対向する摺動面11,21の外径側から内径側(すなわち大気A側)に向かって漏れようとする被密封液体Fを密封するインサイド型のものであって、被取付機器を構成するハウジング4に固定されたシールカバー5に、回転が規制された状態で設けられた円環状の一方の密封環としての静止密封環10と、回転軸3に固定スリーブ2を介して回転軸3と一体的に回転可能な状態で設けられた円環状の他方の密封環としての回転密封環20と、から主に構成されている。回転密封環20は、固定スリーブ2に対して軸方向に移動可能な状態で取付けられており、図示しないスプリングによって回転密封環20が静止密封環10に向けて軸方向に付勢された状態で、回転軸3に伴い回転することにより、静止密封環10の摺動面11と回転密封環20の摺動面21とが互いに密接摺動するようになっている。尚、後述するが、静止密封環10の摺動面11は、回転密封環20側(以下、正面側ということもある)の端面10aよりも軸方向に突出して形成されるノーズ部12の端面であり、この摺動面11は、後述する被密封液体Fによる圧力が負荷される前の自然状態では、その全面にわたり軸方向に対して直交する平坦面である。また回転密封環20の摺動面21は、全面にわたり軸方向に対して直交する平坦面である。 The mechanical seal 1 for general industrial machinery shown in FIG. 1 seals the sealed liquid F that tends to leak from the outer diameter side to the inner diameter side (that is, the atmosphere A side) of the sliding surfaces 11 and 21 facing each other. A static sealing ring 10 as one of the annular sealing rings provided on the seal cover 5 fixed to the housing 4 constituting the attached device in a state where rotation is restricted. It is mainly composed of a rotary sealing ring 20 as another sealing ring of an annular shape provided on the rotating shaft 3 in a state of being integrally rotatable with the rotating shaft 3 via a fixing sleeve 2. The rotary sealing ring 20 is attached to the fixing sleeve 2 in a state where it can be moved in the axial direction, and the rotary sealing ring 20 is axially urged toward the static sealing ring 10 by a spring (not shown). By rotating along with the rotating shaft 3, the sliding surface 11 of the static sealing ring 10 and the sliding surface 21 of the rotating sealing ring 20 slide closely with each other. As will be described later, the sliding surface 11 of the static sealing ring 10 is formed so as to project axially from the end surface 10a on the rotary sealing ring 20 side (hereinafter, also referred to as the front side). The sliding surface 11 is a flat surface orthogonal to the axial direction over the entire surface in a natural state before the pressure of the sealed liquid F, which will be described later, is applied. The sliding surface 21 of the rotary sealing ring 20 is a flat surface orthogonal to the axial direction over the entire surface.

静止密封環10及び回転密封環20は、代表的にはSiC(すなわち硬質材料)同士またはSiC(すなわち硬質材料)とカーボン(すなわち軟質材料)の組み合わせで形成されるが、これに限らず、摺動材料はメカニカルシール用摺動材料として使用されているものであれば適用可能である。尚、SiCとしては、ボロン、アルミニウム、カーボン等を焼結助剤とした焼結体をはじめ、成分、組成の異なる2種類以上の相からなる材料、例えば、黒鉛粒子の分散したSiC、SiCとSiからなる反応焼結SiC、SiC−TiC、SiC−TiN等があり、カーボンとしては、炭素質と黒鉛質の混合したカーボンをはじめ、樹脂成形カーボン、焼結カーボン等が利用できる。また、上記摺動材料以外では、金属材料、樹脂材料、表面改質材料(例えばコーティング材料)、複合材料等も適用可能である。 The static sealing ring 10 and the rotary sealing ring 20 are typically formed of SiC (that is, a hard material) or a combination of SiC (that is, a hard material) and carbon (that is, a soft material), but are not limited to this. The moving material can be applied as long as it is used as a sliding material for mechanical sealing. The SiC includes a sintered body using boron, aluminum, carbon and the like as a sintering aid, and materials composed of two or more types of phases having different components and compositions, for example, SiC and SiC in which graphite particles are dispersed. There are reaction-sintered SiC, SiC-TiC, SiC-TiN and the like made of Si, and as carbon, resin-molded carbon, sintered carbon and the like can be used, including carbon in which carbon and graphite are mixed. In addition to the above sliding materials, metal materials, resin materials, surface modification materials (for example, coating materials), composite materials and the like can also be applied.

図2及び図3に示されるように、静止密封環10は、軸方向視で円環状を成す短筒状に形成されており、該静止密封環10における正面側の端面10aには、回転密封環20側に径方向の一部が突出するノーズ部12が環状に形成されている。また、静止密封環10における摺動面11の背面側(すなわち回転密封環20とは反対側)には、該背面側と内径側に開口して軸方向に延びる切欠溝13が周方向に複数等配に形成されている。なお本実施例では切欠溝13が周方向に8箇所形成されているが、切欠溝13の数は本実施例に限らない。 As shown in FIGS. 2 and 3, the static sealing ring 10 is formed in a short tubular shape forming an annular shape in the axial direction, and is rotationally sealed on the front end surface 10a of the static sealing ring 10. A nose portion 12 having a part protruding in the radial direction is formed in an annular shape on the ring 20 side. Further, on the back surface side of the sliding surface 11 of the static sealing ring 10 (that is, the side opposite to the rotary sealing ring 20), a plurality of notch grooves 13 opening on the back surface side and the inner diameter side and extending in the axial direction are plurality of in the circumferential direction. It is formed evenly. In this embodiment, eight notch grooves 13 are formed in the circumferential direction, but the number of notch grooves 13 is not limited to this embodiment.

言い換えれば、静止密封環10には、周方向に離間して複数配設される切欠溝13の間に、離間して複数配設される肉厚部としての厚板部14と、隣り合う厚板部14同士の正面側を連結し、厚板部14よりも軸方向に肉薄の第1薄板部15と、第1薄板部15から軸方向に延び隣り合う厚板部14同士の高圧側の部位を連結し、厚板部14よりも径方向に肉薄の第2薄板部16と、が形成されている。また第2薄板部16の第1薄板部15側には、径方向に段差を成す段差部16aが形成されており、この段差部16aとシールカバー5の前面部に縮径された縮径部5a(図1参照。)とが軸方向に係合することで、静止密封環10が抜け止めされている。尚、厚板部14における回転密封環20側の面である正面、及び第1薄板部15における回転密封環20側の面である正面が面一に形成されており、静止密封環10の端面10aを構成している。また、厚板部14における外周面、及び第2薄板部16における外周面が面一に形成されており、静止密封環10の外周面を構成している。段差部16a、縮径部5aは、静止密封環10が他の手段で抜け止めされていれば、無くてもよく、その場合、静止密封環10は一様の周面でもよく、また、他の凹凸形状となっていてもよい。 In other words, the static sealing ring 10 has a thickness adjacent to a thick plate portion 14 as a wall thickness portion that is disposed apart from each other between the notch grooves 13 that are arranged apart from each other in the circumferential direction. The front side of the plate portions 14 is connected to each other, and the first thin plate portion 15 which is thinner in the axial direction than the thick plate portion 14 and the high-pressure side of the thick plate portions 14 which extend in the axial direction from the first thin plate portion 15 and are adjacent to each other. The portions are connected to form a second thin plate portion 16 which is thinner in the radial direction than the thick plate portion 14. Further, a step portion 16a forming a step in the radial direction is formed on the first thin plate portion 15 side of the second thin plate portion 16, and the diameter-reduced portion is reduced to the front portion of the step portion 16a and the seal cover 5. The static sealing ring 10 is prevented from coming off by engaging with 5a (see FIG. 1) in the axial direction. The front surface of the thick plate portion 14 on the rotary sealing ring 20 side and the front surface of the first thin plate portion 15 on the rotary sealing ring 20 side are formed flush with each other, and the end surface of the static sealing ring 10 is formed. It constitutes 10a. Further, the outer peripheral surface of the thick plate portion 14 and the outer peripheral surface of the second thin plate portion 16 are formed flush with each other, forming the outer peripheral surface of the static sealing ring 10. The stepped portion 16a and the diameter-reduced portion 5a may be omitted as long as the static sealing ring 10 is prevented from coming off by other means. In that case, the static sealing ring 10 may have a uniform peripheral surface, or the other. It may have an uneven shape of.

図3及び図4に示されるように、切欠溝13は、背面視または内径方向から見て矩形状を成している。詳しくは、切欠溝13は、周方向に対向して平行に延びる一対の面13cと、これらの面13cにそれぞれ直交し該面13cの外径側の部位を繋ぐように延びる面13b(すなわち切欠溝13の外径面13b)と、各面13c及び面13bの前端側の部位を直交して繋ぐように延びる面(すなわち第1薄板部15の背面)と、で構成されている。この切欠溝13の被密封液体F(図5参照)とは径方向反対側かつ背面側の端部13aの周方向の寸法L1、言い換えれば切欠溝13と隣接する厚板部14の内径側かつ背面側端部をつなぐ円弧線は、隣り合う切欠溝13同士の被密封液体F(図5参照)とは径方向反対側かつ背面側の端部14aの周方向の離間寸法L2、言い換えれば厚板部14の内径側かつ背面側端部の周方向に延びる円弧線の寸法L2よりも短くなっている(L1<L2)。尚、切欠溝13の形状は切欠溝13の周方向中央部を通るように静止密封環10の中心から放射状に延びる面S(以下単に基準面Sという。図4(b)の二点破線を参照。)を基準として面対称に形成されていればよく、これにより、後述のように、静止密封環10が被密封液体Fの圧力を受けたときに、変形が基準面Sを中心に対称に生じ、切欠溝13を区画する第1薄板部15の周方向中央部にその変形応力が集中し、また、その変形の向きは摺動面11側に向かうため、変形応力は摺動面11に伝達され、後述する摺動面11の膨出が効率よく生じる。 As shown in FIGS. 3 and 4, the notch groove 13 has a rectangular shape when viewed from the rear or the inner diameter direction. Specifically, the notch groove 13 is formed by a pair of surfaces 13c extending in parallel facing each other in the circumferential direction and a surface 13b extending so as to connect a portion orthogonal to these surfaces 13c on the outer diameter side of the surface 13c (that is, a notch). It is composed of an outer diameter surface 13b) of the groove 13 and a surface extending so as to connect each surface 13c and a portion on the front end side of the surface 13b at right angles (that is, the back surface of the first thin plate portion 15). Dimension L1 in the circumferential direction of the end portion 13a on the side opposite to the sealed liquid F (see FIG. 5) of the notch groove 13 and on the back surface side, in other words, on the inner diameter side of the thick plate portion 14 adjacent to the notch groove 13. The arc line connecting the back end portions is the radial separation dimension L2 of the end portion 14a on the back side opposite to the sealed liquid F (see FIG. 5) between the adjacent notch grooves 13, in other words, the thickness. It is shorter than the dimension L2 of the arc line extending in the circumferential direction of the inner diameter side and the back surface side end portion of the plate portion 14 (L1 <L2). The shape of the notch groove 13 is a surface S extending radially from the center of the static sealing ring 10 so as to pass through the central portion in the circumferential direction of the notch groove 13 (hereinafter, simply referred to as a reference surface S. It suffices to be formed plane-symmetrically with reference to (see)), whereby when the statically sealed ring 10 is subjected to the pressure of the sealed liquid F, the deformation is symmetrical with respect to the reference plane S, as described later. The deformation stress is concentrated in the central portion in the circumferential direction of the first thin plate portion 15 that divides the notch groove 13, and the deformation direction is toward the sliding surface 11, so that the deformation stress is the sliding surface 11. The sliding surface 11 is efficiently bulged, which will be described later.

第1薄板部15の軸方向の厚み寸法L4は、厚板部14の軸方向の厚み寸法L5よりも短い(L4<L5)。 The axial thickness dimension L4 of the first thin plate portion 15 is shorter than the axial thickness dimension L5 of the thick plate portion 14 (L4 <L5).

第2薄板部16の厚み寸法L6は、厚板部14の径方向の厚み寸法L7よりも短い(L6<L7)。 The thickness dimension L6 of the second thin plate portion 16 is shorter than the radial thickness dimension L7 of the thick plate portion 14 (L6 <L7).

また、特に図4(a)に示されるように、ノーズ部12は、静止密封環10の端面10aの内径側に寄せて配置されている。すなわち、ノーズ部12の内径端は、第2薄板部16の内径端よりも内径側に配置されている。より詳しくは、静止密封環10の摺動面11の内径端11aが第2薄板部16の内径端である切欠溝13の外径面13bよりも内径側に配置されている。尚、本実施例では、ノーズ部12が第2薄板部16と軸方向に重畳しないようになっている形態を例示したが、少なくともノーズ部12の内径端(すなわち被密封液体Fと反対側の端部)が切欠溝13の外径端よりも内径側に配置されていれば、ノーズ部12の外径端が第2薄板部16と軸方向に一部重畳していてもよい。 Further, as shown in FIG. 4A in particular, the nose portion 12 is arranged so as to be closer to the inner diameter side of the end surface 10a of the static sealing ring 10. That is, the inner diameter end of the nose portion 12 is arranged on the inner diameter side of the inner diameter end of the second thin plate portion 16. More specifically, the inner diameter end 11a of the sliding surface 11 of the static sealing ring 10 is arranged on the inner diameter side of the outer diameter surface 13b of the notch groove 13 which is the inner diameter end of the second thin plate portion 16. In this embodiment, the nose portion 12 does not overlap with the second thin plate portion 16 in the axial direction, but at least the inner diameter end of the nose portion 12 (that is, the side opposite to the sealed liquid F) is illustrated. If the end portion) is arranged on the inner diameter side of the notch groove 13 on the inner diameter side, the outer diameter end of the nose portion 12 may partially overlap with the second thin plate portion 16 in the axial direction.

次に、メカニカルシール1の使用時の静止密封環10の形態について図5〜図9に基づいて説明する。 Next, the form of the static sealing ring 10 when the mechanical seal 1 is used will be described with reference to FIGS. 5 to 9.

図5に示されるように、静止密封環10がハウジング4及びシールカバー5に取付けられた状態にあっては、ハウジング4の正面に環状に凹溝4aが形成され、凹溝4aに配置された無端状の二次シール6例えばOリングが、周方向一様(すなわち周方向に同じような形状)に設けられ、静止密封環10の背面側(すなわち回転密封環20とは反対側)における外径側の端面に圧接されており、被密封液体Fは、二次シール6よりも外径側の静止密封環10とシールカバー5との間に浸入し、二次シール6よりも内径側の切欠溝13(すなわち大気A側)への浸入は防止されている。すなわち、静止密封環10の外周面、具体的には厚板部14、第1薄板部15、第2薄板部16、及びノーズ部12の外周面は、外径から内径に向けて被密封液体Fの圧力を受ける受圧部17として構成されている。つまり、二次シール6は静止密封環10の周囲で切欠溝13よりも被密封液体F側に配置され、切欠溝13に被密封液体Fが流入しない配置であればよい。尚、被密封液体Fによる力は、受圧部17以外にも第1薄板部15の前面(すなわち端面10a)や段差部16aの前面に背面側に向けて軸方向に作用するが、静止密封環10の外周面、特に厚板部14の外周面に支配的に作用し、後述のように静止密封環10が縮径するようになる。また、静止密封環10の内周面、具体的には厚板部14、第1薄板部15、第2薄板部16、及びノーズ部12の内周面は、被密封液体Fよりも低圧の大気A側に面している。 As shown in FIG. 5, when the static sealing ring 10 is attached to the housing 4 and the seal cover 5, a concave groove 4a is formed in an annular shape on the front surface of the housing 4 and arranged in the concave groove 4a. An endless secondary seal 6, for example, an O-ring, is provided uniformly in the circumferential direction (that is, has a similar shape in the circumferential direction), and is provided on the back side of the static sealing ring 10 (that is, the side opposite to the rotating sealing ring 20). The liquid F to be sealed is pressed against the end face on the diameter side, penetrates between the static sealing ring 10 on the outer diameter side of the secondary seal 6 and the seal cover 5, and is on the inner diameter side of the secondary seal 6. Invasion into the notch groove 13 (that is, the atmosphere A side) is prevented. That is, the outer peripheral surface of the static sealing ring 10, specifically, the outer peripheral surface of the thick plate portion 14, the first thin plate portion 15, the second thin plate portion 16, and the nose portion 12 is a liquid to be sealed from the outer diameter to the inner diameter. It is configured as a pressure receiving portion 17 that receives the pressure of F. That is, the secondary seal 6 may be arranged around the static sealing ring 10 on the side of the sealed liquid F with respect to the notch groove 13 so that the sealed liquid F does not flow into the notch groove 13. In addition to the pressure receiving portion 17, the force of the liquid to be sealed F acts on the front surface (that is, the end surface 10a) of the first thin plate portion 15 and the front surface of the step portion 16a in the axial direction toward the back surface side. It acts predominantly on the outer peripheral surface of 10, particularly the outer peripheral surface of the thick plate portion 14, and the diameter of the static sealing ring 10 is reduced as described later. Further, the inner peripheral surface of the static sealing ring 10, specifically, the inner peripheral surface of the thick plate portion 14, the first thin plate portion 15, the second thin plate portion 16, and the nose portion 12 has a lower pressure than that of the liquid F to be sealed. It faces the atmosphere A side.

図6(a)(b)に示されるように、静止密封環10の受圧部17が被密封液体Fの圧力を受けると、切欠溝13があるため、他の箇所と比較して強度的に弱い静止密封環10の軸方向背面側の部位が圧力により縮径するようになる。具体的には、特に図6(b)に示されるように、静止密封環10の受圧部17が被密封液体Fの圧力を受けると、隣り合う厚板部14の背面側の部位及び内径側の部位は互いに接続されておらず、言うなれば自由端であるので厚板部14の背面側の部位且つ内径側の部位が周方向に互いに近づくように押圧されて静止密封環10が縮径する。また、第1薄板部15およびノーズ部12には切欠溝13が無く無端環状であり、構造的強度が高いため、軸方向において摺動面11に近いほど変形しにくい。そのため、静止密封環10は背面側の部位が大きく縮径し、摺動面11側の部位が小さく縮径する。これにより、図6(b)の右図で示すように、この押圧により生じた内部応力により厚板部14よりも薄い第1薄板部15を軸方向に回転密封環20側に膨出させることができるようになっている。また、第1薄板部15が回転密封環20側に膨出されると、第1薄板部15に沿ってノーズ部12も膨出するように変形する。尚、図6では、説明の便宜上、第2薄板部16の変形量や第1薄板部15の膨出量を実際よりも大きく図示している。 As shown in FIGS. 6A and 6B, when the pressure receiving portion 17 of the static sealing ring 10 receives the pressure of the sealed liquid F, there is a notch groove 13, so that the strength is higher than that of other portions. The portion of the weak static sealing ring 10 on the back side in the axial direction is reduced in diameter by pressure. Specifically, as shown in FIG. 6B, when the pressure receiving portion 17 of the static sealing ring 10 receives the pressure of the sealed liquid F, the portion on the back surface side and the inner diameter side of the adjacent thick plate portions 14 Since these parts are not connected to each other, so to speak, they are free ends, the parts on the back surface side and the inner diameter side of the plank portion 14 are pressed so as to approach each other in the circumferential direction, and the static sealing ring 10 is reduced in diameter. To do. Further, since the first thin plate portion 15 and the nose portion 12 do not have a notch groove 13 and are endlessly annular and have high structural strength, they are less likely to be deformed as they are closer to the sliding surface 11 in the axial direction. Therefore, the portion of the static sealing ring 10 on the back surface side is greatly reduced in diameter, and the portion on the sliding surface 11 side is reduced in diameter. As a result, as shown in the right figure of FIG. 6B, the first thin plate portion 15 thinner than the thick plate portion 14 is axially bulged toward the rotary sealing ring 20 due to the internal stress generated by this pressing. Can be done. Further, when the first thin plate portion 15 is bulged toward the rotary sealing ring 20, the nose portion 12 is also deformed so as to bulge along the first thin plate portion 15. In FIG. 6, for convenience of explanation, the amount of deformation of the second thin plate portion 16 and the amount of swelling of the first thin plate portion 15 are shown larger than they actually are.

また、図6(b)に示されるように、切欠溝13は外径側に第2薄板部16が存在し、内径側の空間に連通するように開口されているので、第1薄板部15は、外径側の部位に比べて内径側の部位が変形しやすく、第1薄板部15における回転密封環20側への膨出量は内径側の部位が大きくなっている。また、ノーズ部12は、静止密封環10の端面10aの内径側に配設されているので、第1薄板部15の大きな膨出を受けて変形するようになっている。また、第1薄板部15は、その周方向両端よりも周方向中央部の方が回転密封環20側への膨出量が大きくなっている。第1薄板部15の膨出態様について、より詳しくは、第1薄板部15を回転密封環20側から軸方向に見た図である図7に示されるように、第1薄板部15の周方向中央部かつ最内径箇所(すなわち径方向において被密封流体とは最も反対側の箇所)が最も膨出し、最内径箇所から周囲に末広がり状に膨出している。尚、図7においては、第1薄板部15の膨出量を網点で概略的に図示しており、網点の濃度が高いほど軸方向への膨出量が大きいことを示している。さらに尚、図7では、説明の便宜上、ノーズ部12の図示を省略している。 Further, as shown in FIG. 6B, since the notch groove 13 has the second thin plate portion 16 on the outer diameter side and is opened so as to communicate with the space on the inner diameter side, the first thin plate portion 15 The inner diameter side portion is more easily deformed than the outer diameter side portion, and the amount of bulging toward the rotary sealing ring 20 side in the first thin plate portion 15 is larger in the inner diameter side portion. Further, since the nose portion 12 is arranged on the inner diameter side of the end surface 10a of the static sealing ring 10, it is deformed by receiving a large bulge of the first thin plate portion 15. Further, the amount of swelling of the first thin plate portion 15 toward the rotary sealing ring 20 is larger in the central portion in the circumferential direction than in both ends in the circumferential direction. Regarding the bulging mode of the first thin plate portion 15, more specifically, as shown in FIG. 7, which is a view of the first thin plate portion 15 in the axial direction from the rotary sealing ring 20 side, the circumference of the first thin plate portion 15 The central part in the direction and the innermost part (that is, the part opposite to the sealed fluid in the radial direction) bulges most, and the innermost part bulges toward the periphery in a divergent manner. In FIG. 7, the amount of swelling of the first thin plate portion 15 is schematically illustrated by halftone dots, and it is shown that the higher the density of the halftone dots, the larger the amount of swelling in the axial direction. Furthermore, in FIG. 7, the nose portion 12 is not shown for convenience of explanation.

図8に示されるように、第1薄板部15が回転密封環20側に膨出されることで、摺動面11において、第1薄板部15の周方向中央部に対応する部分は凸部8として形成され、微視的には該凸部8は回転密封環20の摺動面21と接触する部分となるとともに、第1薄板部15の周方向両端部に対応する部分および厚板部14は凹部7として形成され、微視的には回転密封環20の摺動面21と接触しない部分となる。これら、静止密封環10の摺動面11と回転密封環20の摺動面21との間に互いに接触する部分と軸方向に離間する部分とが周方向に交互に等間隔で生じる、すなわち周方向において、凸部8同士の間に凹部7が周方向に規則的に形成される。尚、被密封液体Fは気体と比べ粘度が高いため、メカニカルシール1の停止時に凹部7から低圧側の空間に漏れ出すことはなく、若しくは漏れ出す量は微量である。 As shown in FIG. 8, the first thin plate portion 15 is bulged toward the rotary sealing ring 20, so that the portion of the sliding surface 11 corresponding to the central portion in the circumferential direction of the first thin plate portion 15 is the convex portion 8. The convex portion 8 is microscopically a portion that comes into contact with the sliding surface 21 of the rotary sealing ring 20, a portion corresponding to both ends in the circumferential direction of the first thin plate portion 15, and a thick plate portion 14. Is formed as a recess 7, and is a portion that does not come into contact with the sliding surface 21 of the rotary sealing ring 20 microscopically. Between the sliding surface 11 of the static sealing ring 10 and the sliding surface 21 of the rotary sealing ring 20, portions that are in contact with each other and portions that are separated in the axial direction are alternately generated in the circumferential direction at equal intervals, that is, the circumference. In the direction, the concave portions 7 are regularly formed between the convex portions 8 in the circumferential direction. Since the sealed liquid F has a higher viscosity than the gas, it does not leak from the recess 7 into the space on the low pressure side when the mechanical seal 1 is stopped, or the amount of leakage is very small.

静止密封環10と回転密封環20とが相対回転したときには、凹部7の周方向終端には凸部8が形成されているため、凹部7内に流入した被密封液体Fが回転密封環20の回転方向に追随移動し、凹部7において被密封液体Fの圧力が高められ、圧力の高められた被密封液体Fは凹部7の終端である凸部8近傍からその周辺に流出する。これにより、静止密封環10の摺動面11と回転密封環20の摺動面21とは僅かに離間されるとともに、摺動面11,21間に存在する被密封液体Fにより、良好な潤滑状態を成すようになっている。特に、上記した厚板部14同士が周方向に近づくように押圧されることで、第1薄板部15には、膨出した凸部8が、周方向に離間して複数形成されるため、これらの凸部8の間に形成される凹部7内に被密封液体Fを保持し易く、また回転密封環20の回転により動圧を発生させることができる。 When the static sealing ring 10 and the rotary sealing ring 20 rotate relative to each other, the convex portion 8 is formed at the circumferential end of the concave portion 7, so that the sealed liquid F flowing into the concave portion 7 is the rotary sealing ring 20. Following the movement in the rotational direction, the pressure of the sealed liquid F is increased in the concave portion 7, and the sealed liquid F with increased pressure flows out from the vicinity of the convex portion 8 which is the end of the concave portion 7 to the periphery thereof. As a result, the sliding surface 11 of the static sealing ring 10 and the sliding surface 21 of the rotary sealing ring 20 are slightly separated from each other, and the sealed liquid F existing between the sliding surfaces 11 and 21 provides good lubrication. It is supposed to be in a state. In particular, by pressing the thick plate portions 14 so as to approach each other in the circumferential direction, a plurality of bulging convex portions 8 are formed on the first thin plate portion 15 so as to be separated from each other in the circumferential direction. The liquid F to be sealed can be easily held in the recesses 7 formed between the convex portions 8, and dynamic pressure can be generated by the rotation of the rotary sealing ring 20.

また、図9(a)に示されるように、ノーズ部12が第1薄板部15の内径側(すなわち静止密封環10の端面10aの内径側)に寄せて配置されることでノーズ部12を大きく膨出させることができるとともに摺動面11を大きく傾斜させることができる。これによれば、凸部8の膨出量が大きくなり、凸部8と凹部7との軸方向の距離を大きく確保できるため、摺動面11,21間に被密封液体Fを多く保持でき、摺動面11,21の潤滑性を向上させることができる。 Further, as shown in FIG. 9A, the nose portion 12 is arranged so as to be closer to the inner diameter side of the first thin plate portion 15 (that is, the inner diameter side of the end surface 10a of the static sealing ring 10). The sliding surface 11 can be greatly inclined as well as being able to bulge greatly. According to this, the amount of swelling of the convex portion 8 becomes large, and a large axial distance between the convex portion 8 and the concave portion 7 can be secured, so that a large amount of the sealed liquid F can be held between the sliding surfaces 11 and 21. , The lubricity of the sliding surfaces 11 and 21 can be improved.

また、図9(b)に示されるように、ノーズ部12が静止密封環10の端面10aの径方向中間に配設されることで、図9(a)の状態よりもノーズ部12の膨出を抑えることができるとともに摺動面11の傾斜を小さくできるため、図9(a)の状態よりも摺動面11,21間から漏れる被密封液体Fの量を少なくできる。 Further, as shown in FIG. 9B, by disposing the nose portion 12 in the radial middle of the end face 10a of the static sealing ring 10, the nose portion 12 swells more than in the state of FIG. 9A. Since the protrusion can be suppressed and the inclination of the sliding surface 11 can be reduced, the amount of the sealed liquid F leaking between the sliding surfaces 11 and 21 can be reduced as compared with the state of FIG. 9A.

さらに図9(c)に示されるように、ノーズ部12が第1薄板部15の外径側(すなわち静止密封環10の端面10aの外径側)に配設されることで、図9(b)の状態よりもノーズ部12の膨出および摺動面の傾斜を抑えることができるため、図9(b)の状態よりも更に摺動面11,21間から漏れる被密封液体Fの量を少なくできる。 Further, as shown in FIG. 9C, the nose portion 12 is arranged on the outer diameter side of the first thin plate portion 15 (that is, the outer diameter side of the end surface 10a of the static sealing ring 10), whereby FIG. Since the bulging of the nose portion 12 and the inclination of the sliding surface can be suppressed more than in the state of b), the amount of the sealed liquid F leaking from between the sliding surfaces 11 and 21 is more than in the state of FIG. 9 (b). Can be reduced.

このように、メカニカルシール1の用途に合わせてノーズ部12が形成される径方向の位置を適宜選択することにより、ノーズ部12の膨出量・摺動面11の傾斜角度を変化させ、摺動面11,21の接触具合が適切に設定することができる。尚、図9では、説明の便宜上、第1薄板部15及びノーズ部12の膨出量を実際よりも大きく図示している In this way, by appropriately selecting the radial position where the nose portion 12 is formed according to the application of the mechanical seal 1, the amount of bulge of the nose portion 12 and the inclination angle of the sliding surface 11 can be changed to slide. The contact condition of the moving surfaces 11 and 21 can be appropriately set. In FIG. 9, for convenience of explanation, the amount of swelling of the first thin plate portion 15 and the nose portion 12 is shown larger than the actual amount.

以上説明したように、静止密封環10は切欠溝13を有するため、被密封液体Fの圧力を受けたときには、厚板部14同士が近づき、静止密封環10が被密封液体Fとは反対側に縮径するように変形するが、回転密封環20側に摺動面11を具えるノーズ部12が設けられているため、摺動面11近傍の強度を高めて静止密封環10が破損し難くすることができる。さらに、ノーズ部12の径方向位置を適宜設定することでメカニカルシール1の用途に合わせて回転密封環20との摺動接触状態を適切に設定することができる。 As described above, since the static sealing ring 10 has the notch groove 13, when the pressure of the sealed liquid F is applied, the thick plates 14 approach each other, and the static sealing ring 10 is on the opposite side of the sealed liquid F. However, since the nose portion 12 having the sliding surface 11 is provided on the rotary sealing ring 20 side, the strength in the vicinity of the sliding surface 11 is increased and the static sealing ring 10 is damaged. It can be difficult. Further, by appropriately setting the radial position of the nose portion 12, the sliding contact state with the rotary sealing ring 20 can be appropriately set according to the application of the mechanical seal 1.

また、摺動面11における被密封液体Fと径方向反対側の端部である内径端11aは、切欠溝13における被密封液体F側の端部である外径面13bよりも被密封液体Fと径方向反対側に配置されている。これによれば、摺動面11の内径端11aは、被密封液体Fの圧力を受けたときに回転密封環20側に膨出する第1薄板部15に配置されているので、静止密封環10における軸方向側(すなわち回転密封環20側)への膨出を摺動面11に好適に伝達できる。 Further, the inner diameter end 11a, which is the end on the sliding surface 11 opposite to the sealed liquid F in the radial direction, is the sealed liquid F than the outer diameter surface 13b, which is the end on the sealed liquid F side in the notch groove 13. It is arranged on the opposite side in the radial direction. According to this, since the inner diameter end 11a of the sliding surface 11 is arranged on the first thin plate portion 15 that bulges toward the rotary sealing ring 20 when the pressure of the liquid to be sealed F is applied, the static sealing ring The bulge in the axial direction side (that is, the rotary sealing ring 20 side) in No. 10 can be suitably transmitted to the sliding surface 11.

また、図4(a)に示されるように、径方向断面において、切欠溝13の最大箇所の面積は、ノーズ部12の面積よりも大きい。これによれば、切欠溝13の径方向断面積がノーズ部12の径方向断面積よりも大きいので、ノーズ部12の構造強度よりも第1薄板部15の回転密封環20側への膨出が大きく作用しやすくなり、摺動面11を確実に回転密封環20側に膨出させることができる。 Further, as shown in FIG. 4A, the area of the maximum portion of the notch groove 13 in the radial cross section is larger than the area of the nose portion 12. According to this, since the radial cross-sectional area of the notch groove 13 is larger than the radial cross-sectional area of the nose portion 12, the first thin plate portion 15 bulges toward the rotary sealing ring 20 side rather than the structural strength of the nose portion 12. Can act greatly, and the sliding surface 11 can be reliably bulged toward the rotary sealing ring 20.

また、第2薄板部16は、隣り合う厚板部14同士の外径側の部位を連結しており、隣り合う厚板部14同士の間の空間である切欠溝13が被密封液体F側の空間に連通しないので、切欠溝13と被密封液体Fとの圧力差を大きく確保することができ、第1薄板部15の回転密封環20側への膨出を確実に行うことができる。 Further, the second thin plate portion 16 connects the portions on the outer diameter side of the adjacent thick plate portions 14, and the notch groove 13 which is the space between the adjacent thick plate portions 14 is on the sealed liquid F side. Since it does not communicate with the space of the above, a large pressure difference between the notch groove 13 and the liquid F to be sealed can be secured, and the first thin plate portion 15 can be reliably bulged toward the rotary sealing ring 20 side.

また、第1薄板部15の軸方向の厚み寸法L4は、厚板部14の軸方向の厚み寸法L5に比べて薄いため、静止密封環10の縮径に追従して第1薄板部15を応答性高く膨出させることができる。 Further, since the axial thickness dimension L4 of the first thin plate portion 15 is thinner than the axial thickness dimension L5 of the thick plate portion 14, the first thin plate portion 15 is made to follow the reduced diameter of the static sealing ring 10. It can be swelled with high responsiveness.

また、第2薄板部16の厚み寸法L6は、厚板部14の径方向の厚み寸法L7に比べて薄いため、静止密封環10の縮径に追従して第2薄板部16を応答性高く変形させることができる。 Further, since the thickness dimension L6 of the second thin plate portion 16 is thinner than the thickness dimension L7 in the radial direction of the thick plate portion 14, the second thin plate portion 16 is highly responsive following the reduced diameter of the static sealing ring 10. It can be transformed.

また、第1薄板部15よりも構造強度の高い厚板部14の周方向内径側の部位の寸法L2が、切欠溝13の周方向内径側の部位の寸法L1よりも長いので、静止密封環10の強度を確保できるとともに、第1薄板部15の周方向の長さが短いため、静止密封環10が縮径したときに変形する箇所が局所的となり、集中するため、回転密封環20への膨出量を大きくとることができる。 Further, since the dimension L2 of the portion on the inner diameter side in the circumferential direction of the thick plate portion 14 having higher structural strength than the first thin plate portion 15 is longer than the dimension L1 of the portion on the inner diameter side in the circumferential direction of the notch groove 13, the static sealing ring Since the strength of 10 can be secured and the length of the first thin plate portion 15 in the circumferential direction is short, the portion deformed when the diameter of the static sealing ring 10 is reduced becomes local and concentrated, so that the rotating sealing ring 20 is reached. The amount of swelling can be increased.

また、第1薄板部15において、厚板部14と第1薄板部15とが周方向に等配されており、摺動面11に等配して凹凸を形成することができるので、静止密封環10と回転密封環20との摺動性をより向上させることができる。 Further, in the first thin plate portion 15, the thick plate portion 14 and the first thin plate portion 15 are evenly arranged in the circumferential direction, and the sliding surface 11 can be evenly arranged to form irregularities, so that the first thin plate portion 15 is statically sealed. The slidability of the ring 10 and the rotary sealing ring 20 can be further improved.

また、静止密封環10は、厚板部14、第1薄板部15、第2薄板部16、ノーズ部12が一体形成されているので、各部位が別素材や別部材で形成されている静止密封環に比べて、第1薄板部15及び第2薄板部16を確実に変形させることができる。また、環状の部材に切欠溝13を切欠き形成すればよいので、静止密封環10を加工しやすい。 Further, in the static sealing ring 10, since the thick plate portion 14, the first thin plate portion 15, the second thin plate portion 16, and the nose portion 12 are integrally formed, each portion is formed of a different material or a different member. Compared with the sealed ring, the first thin plate portion 15 and the second thin plate portion 16 can be reliably deformed. Further, since the notch groove 13 may be formed in the annular member, the static sealing ring 10 can be easily processed.

次に、実施例2に係るメカニカルシールにつき、図10を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the mechanical seal according to the second embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

図10に示されるように、実施例2における静止密封環100は、切欠溝131が背面側と外径側の空間に開口するように形成されている。すなわち、第2薄板部161が第1薄板部151から軸方向に延びて隣り合う厚板部141同士の内径側の部位を連結するように形成されている。また、静止密封環100がハウジング4及びシールカバー5に取付けられた状態にあっては、ハウジング4に形成された凹溝4a’に配置された二次シール6が静止密封環100の背面側における内径側の端面に圧接されており、被密封液体Fは、摺動面111の内径側の空間に配置されている。すなわち、静止密封環100の内周面、具体的には厚板部141、第1薄板部151、第2薄板部161、及びノーズ部121の内周面は、内径から外径に向けて被密封液体Fの圧力を受ける受圧部171となっている。 As shown in FIG. 10, the static sealing ring 100 in the second embodiment is formed so that the notch groove 131 opens in the space on the back surface side and the outer diameter side. That is, the second thin plate portion 161 is formed so as to extend from the first thin plate portion 151 in the axial direction and connect the portions on the inner diameter side of the adjacent thick plate portions 141. Further, when the static sealing ring 100 is attached to the housing 4 and the seal cover 5, the secondary seal 6 arranged in the concave groove 4a'formed in the housing 4 is on the back side of the static sealing ring 100. The liquid F to be sealed is pressed against the end surface on the inner diameter side, and is arranged in the space on the inner diameter side of the sliding surface 111. That is, the inner peripheral surface of the static sealing ring 100, specifically, the inner peripheral surface of the thick plate portion 141, the first thin plate portion 151, the second thin plate portion 161 and the nose portion 121 is covered from the inner diameter to the outer diameter. It is a pressure receiving portion 171 that receives the pressure of the sealing liquid F.

図10(b)(c)に示されるように、静止密封環100の受圧部171が被密封液体Fの圧力を受けると、静止密封環100が外径側に変形して、各厚板部141が互いに遠ざかるように外径方向に移動し、これにより厚板部141よりも薄い第1薄板部151を背面側に収縮させることができるようになっている。 As shown in FIGS. 10B and 10C, when the pressure receiving portion 171 of the static sealing ring 100 receives the pressure of the liquid F to be sealed, the static sealing ring 100 is deformed to the outer diameter side, and each thick plate portion. The 141 moves in the outer radial direction so as to move away from each other, whereby the first thin plate portion 151, which is thinner than the thick plate portion 141, can be contracted toward the back surface side.

次に、実施例3に係るメカニカルシールにつき、図11を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the mechanical seal according to the third embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

図11に示されるように、実施例3における静止密封環200は、切欠溝231が背面側の空間に開口するように形成されている。すなわち、第2薄板部261が第1薄板部251の外径側の部位から軸方向に延び隣り合う厚板部241同士の外径側の部位を連結するように形成されているとともに、側板部262が第1薄板部251の内径側の部位から軸方向に延び隣り合う厚板部241同士の内径側の部位を連結するように形成されている。 As shown in FIG. 11, the static sealing ring 200 in the third embodiment is formed so that the notch groove 231 opens into the space on the back surface side. That is, the second thin plate portion 261 is formed so as to extend axially from the outer diameter side portion of the first thin plate portion 251 and connect the outer diameter side portions of the adjacent thick plate portions 241 to each other, and the side plate portion. The 262 extends axially from the inner diameter side portion of the first thin plate portion 251 and is formed so as to connect the inner diameter side portions of the adjacent thick plate portions 241 to each other.

静止密封環200は、第1薄板部251の内径側及び外径側に第2薄板部261、側板部262が設けられていることから、実施例1の形態に比べて被密封液体Fの圧力を受けた際に縮径し難いが、構造強度が確保されているので、静止密封環200の破損等を防止できる。また、側板部262により、大気A側の空間から切欠溝231内にコンタミが混入することが防止されており、切欠溝231内にコンタミが混入することにより第2薄板部261や第1薄板部251の変形が阻害されることが防止される。 Since the static sealing ring 200 is provided with the second thin plate portion 261 and the side plate portion 262 on the inner diameter side and the outer diameter side of the first thin plate portion 251, the pressure of the sealed liquid F is higher than that of the first embodiment. Although it is difficult to reduce the diameter when the ring is received, the structural strength is ensured, so that the static sealing ring 200 can be prevented from being damaged. Further, the side plate portion 262 prevents contamination from being mixed into the notch groove 231 from the space on the atmosphere A side, and the contamination is mixed into the notch groove 231 to cause the second thin plate portion 261 and the first thin plate portion. It is prevented that the deformation of 251 is inhibited.

次に、実施例4に係るメカニカルシールにつき、図12を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the mechanical seal according to the fourth embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

図12に示されるように、実施例4における静止密封環300は、切欠溝331が背面側と内径側に開放し、背面側から見て半円形状に形成されている。これによれば、静止密封環300における内径側の部位の変形代が大きく確保されているので、被密封液体Fの圧力を受けたときに、周方向に切欠溝331を挟んで対向する厚板部341の内径側の部位が外径側の部位よりも互いに近づくように縮径するとともに、切欠溝331の外径側の部位が小さくなっているので、厚板部341の近接により生じる内部応力を第2薄板部361に有効に伝達でき、静止密封環300が縮径しやすくなる。また、切欠溝331の加工性が高い。 As shown in FIG. 12, in the static sealing ring 300 of the fourth embodiment, the notch groove 331 is opened to the back surface side and the inner diameter side, and is formed in a semicircular shape when viewed from the back surface side. According to this, since the deformation allowance of the portion on the inner diameter side of the static sealing ring 300 is largely secured, when the pressure of the liquid to be sealed F is applied, the thick plates facing each other with the notch groove 331 in the circumferential direction. with the site of the inner diameter side is reduced in diameter so as to approach each other than to the region of the outer diameter side of the section 341, the site of the outer diameter side of the notch groove 331 is small, internal stress caused by the proximity of the thick portion 341 Can be effectively transmitted to the second thin plate portion 361, and the diameter of the static sealing ring 300 can be easily reduced. In addition, the notch groove 331 has high workability.

次に、実施例5に係るメカニカルシールにつき、図13を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the mechanical seal according to the fifth embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

実施例5における静止密封環400の切欠溝431は、背面側と内径側に開放し、隣接する厚板部441同士の周方向の側壁部441a,441bと、第2薄板部461の内周面461aと、第1薄板部451の背面と、により構成されている。側壁部441a,441bは、内径から外径に向けて平行に延び、内周面461aは、側壁部441a,441bの外径端から外径側に膨出するように円弧状に延びて互いを連結している。これによれば、第2薄板部461を薄く形成することができるので、第2薄板部461が変形しやすく、静止密封環400が縮径しやすくなる。 The notch groove 431 of the static sealing ring 400 in the fifth embodiment is opened to the back surface side and the inner diameter side, and the side wall portions 441a and 441b in the circumferential direction of the adjacent thick plate portions 441 and the inner peripheral surface of the second thin plate portion 461. It is composed of 461a and the back surface of the first thin plate portion 451. The side wall portions 441a and 441b extend in parallel from the inner diameter toward the outer diameter, and the inner peripheral surface 461a extends in an arc shape so as to bulge from the outer diameter end of the side wall portions 441a and 441b toward the outer diameter side. It is connected. According to this, since the second thin plate portion 461 can be formed thinly, the second thin plate portion 461 is easily deformed and the static sealing ring 400 is easily reduced in diameter.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although examples of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these examples, and any changes or additions within the scope of the gist of the present invention are included in the present invention. Is done.

例えば、前記実施例では、切欠溝13の周方向の寸法L1が厚板部14の周方向内径側の部位の寸法L2よりも短く形成されている形態を例示したが、切欠溝は厚板部の周方向よりも長く形成されていてもよい。この場合、静止密封環が縮径されたときに摺動面間に生じる凹部の周方向の寸法を大きく取ることができる。 For example, in the above-described embodiment, the configuration in which the circumferential dimension L1 of the notch groove 13 is formed shorter than the dimension L2 of the portion on the circumferential inner diameter side of the thick plate portion 14 is illustrated, but the notch groove is the thick plate portion. It may be formed longer than the circumferential direction of. In this case, when the diameter of the static sealing ring is reduced, the size of the recess formed between the sliding surfaces in the circumferential direction can be increased.

また、前記実施例では、厚板部14が周方向に等配されている形態を例示されたが、厚板部の周方向の長さや数量は自由に変更することができる。 Further, in the above embodiment, the embodiment in which the thick plate portions 14 are evenly arranged in the circumferential direction is illustrated, but the length and quantity of the thick plate portions in the circumferential direction can be freely changed.

また、前記実施例では、静止密封環10に切欠溝13が形成されている形態を例示したが、回転密封環20に切欠溝13が形成されていてもよいし、両方に切欠溝13が形成されていてもよい。 Further, in the above embodiment, the embodiment in which the notch groove 13 is formed in the static sealing ring 10 is illustrated, but the notch groove 13 may be formed in the rotary sealing ring 20, or the notch groove 13 is formed in both of them. It may have been.

また、前記実施例では、被密封流体が液体である形態を例示したが、被密封流体は、気体であってもよいし、液体と気体が混合したミスト状であってもよい。 Further, in the above embodiment, the form in which the sealed fluid is a liquid has been illustrated, but the sealed fluid may be a gas or a mist in which a liquid and a gas are mixed.

また、前記実施例では、二次シール部材が静止密封環の背面側に配設される形態を例示したが、これに限られず、例えば、静止密封環の外径側に配置されていてもよい。つまり、第2薄板部の被密封流体側の面、例えば実施例1では第2薄板部16の外周面に高い圧力がかかる状態であればよい。 Further, in the above embodiment, the form in which the secondary seal member is arranged on the back surface side of the static sealing ring has been illustrated, but the present invention is not limited to this, and for example, the secondary sealing member may be arranged on the outer diameter side of the static sealing ring. .. That is, a high pressure may be applied to the surface of the second thin plate portion on the sealed fluid side, for example, in the first embodiment, the outer peripheral surface of the second thin plate portion 16.

1 メカニカルシール
3 回転軸
6 二次シール
7 凹部
8 凸部
10,10’ 静止密封環(一方の密封環)
11,11’ 摺動面
12 ノーズ部
13,13’ 切欠溝
14,14’ 厚板部(肉厚部)
15,15’ 第1薄板部
16,16’ 第2薄板部
17 受圧部
20 回転密封環(他方の密封環)
21 摺動面
100 静止密封環
121 ノーズ部
131 切欠溝
141 厚板部(肉厚部)
151 第1薄板部
161 第2薄板部
171 受圧部
200 静止密封環
231 切欠溝
241 厚板部(肉厚部)
251 第1薄板部
261 第2薄板部
262 側板部
A 大気
F 被密封液体(被密封流体)
1 Mechanical seal 3 Rotating shaft 6 Secondary seal 7 Recess 8 Convex part 10, 10'Static sealing ring (one sealing ring)
11,11'Sliding surface 12 Nose part 13,13' Notch groove 14,14' Thick plate part (thick part)
15, 15'First thin plate part 16, 16' Second thin plate part 17 Pressure receiving part 20 Rotational sealing ring (the other sealing ring)
21 Sliding surface 100 Static sealing ring 121 Nose part 131 Notch groove 141 Thick plate part (thick part)
151 First thin plate part 161 Second thin plate part 171 Pressure receiving part 200 Static sealing ring 231 Notch groove 241 Thick plate part (thick part)
251 First thin plate part 261 Second thin plate part 262 Side plate part A Atmosphere F Sealed liquid (sealed fluid)

Claims (7)

互いに相対摺動する一対の密封環を有し、被密封流体を封止するメカニカルシールであって、
一方の密封環は、径方向において前記被密封流体とは反対側に設けられ、周方向に離間しかつ少なくとも背面側に開口する複数の切欠溝が配置されており、前記切欠溝と前記被密封流体側の空間との間には、環状の二次シール部材が配置されており、
前記一方の密封環の他方の密封環側には軸方向に段状に突出し、該他方の密封環と摺動する摺動面を具えるノーズ部が周方向に亘って環状に設けられているメカニカルシール。
A mechanical seal that has a pair of sealing rings that slide relative to each other and seals the fluid to be sealed.
One sealing ring is provided on the side opposite to the sealed fluid in the radial direction, and a plurality of notched grooves separated in the circumferential direction and opened at least on the back surface side are arranged, and the notched groove and the sealed groove are arranged. An annular secondary seal member is arranged between the space on the fluid side.
On the other sealing ring side of the one sealing ring, a nose portion having a sliding surface that projects in a stepwise manner in the axial direction and slides with the other sealing ring is provided in an annular shape in the circumferential direction. mechanical seal.
前記摺動面における前記被密封流体と径方向反対側の端部は、前記切欠溝における前記被密封流体側の端部よりも前記被密封流体と径方向反対側に配置されている請求項1に記載のメカニカルシール。 Claim 1 in which the end portion of the sliding surface opposite to the sealed fluid in the radial direction is arranged on the side opposite to the sealed fluid in the radial direction from the end portion of the notch groove on the sealed fluid side. The mechanical seal described in. 前記摺動面における径方向前記被密封流体側の端部は、前記切欠溝における前記被密封流体側の端部よりも前記被密封流体と径方向反対側に配置されている請求項2に記載のメカニカルシール。 The second aspect of the present invention, wherein the end portion on the sliding surface on the sealed fluid side is arranged on the side opposite to the sealed fluid on the radial direction with respect to the end on the sealed fluid side in the notch groove. Mechanical seal. 径方向断面において、前記切欠溝の最大箇所の面積は、前記ノーズ部の面積よりも大きい請求項1ないし3のいずれかに記載のメカニカルシール。 The mechanical seal according to any one of claims 1 to 3, wherein the area of the maximum portion of the notch groove in the radial cross section is larger than the area of the nose portion. 各前記切欠溝は、前記一方の密封環の中心から放射状に延びる基準面を基準として周方向に面対称を成している請求項1ないし4のいずれかに記載のメカニカルシール。 The mechanical seal according to any one of claims 1 to 4, wherein each of the cutout grooves is plane-symmetrical in the circumferential direction with respect to a reference plane extending radially from the center of the one sealing ring. 隣り合う前記切欠溝同士の間に形成された肉厚部の前記被密封流体とは径方向反対側の端部の周方向の寸法が、前記切欠溝の前記被密封流体とは径方向反対側の端部の周方向の寸法よりも長い請求項1ないし5のいずれかに記載のメカニカルシール。 The circumferential dimension of the end portion of the thick portion formed between the adjacent notch grooves on the side opposite to the sealed fluid in the radial direction is the side opposite to the sealed fluid in the notch groove. The mechanical seal according to any one of claims 1 to 5, which is longer than the circumferential dimension of the end of the. 前記一方の密封環は一体形成されている請求項1ないし6のいずれかに記載のメカニカルシール。 The mechanical seal according to any one of claims 1 to 6, wherein the one sealing ring is integrally formed.
JP2019222535A 2019-12-09 2019-12-09 mechanical seal Active JP7350447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222535A JP7350447B2 (en) 2019-12-09 2019-12-09 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222535A JP7350447B2 (en) 2019-12-09 2019-12-09 mechanical seal

Publications (2)

Publication Number Publication Date
JP2021092258A true JP2021092258A (en) 2021-06-17
JP7350447B2 JP7350447B2 (en) 2023-09-26

Family

ID=76312062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222535A Active JP7350447B2 (en) 2019-12-09 2019-12-09 mechanical seal

Country Status (1)

Country Link
JP (1) JP7350447B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568753U (en) * 1978-11-02 1980-05-12
JPS59500527A (en) * 1982-04-10 1984-03-29 ヘキスト・セラムテック・アクチェンゲゼルシャフト Sliding body and its manufacturing method
US4552368A (en) * 1983-12-01 1985-11-12 Flexibox Limited Backup seal with bush in form of radially floating washer
JPS6360766U (en) * 1986-10-09 1988-04-22
JPS63178671U (en) * 1987-05-13 1988-11-18
JPS63184264U (en) * 1987-05-20 1988-11-28
JPH044365A (en) * 1990-04-23 1992-01-08 Tanken Seiko Kk Mechanical seal
JPH051074U (en) * 1991-06-21 1993-01-08 イーグル工業株式会社 mechanical seal
JPH0968283A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Shaft sealing device of rotating machine
JP2002122243A (en) * 2000-10-17 2002-04-26 Eagle Ind Co Ltd Split type seal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568753U (en) * 1978-11-02 1980-05-12
JPS59500527A (en) * 1982-04-10 1984-03-29 ヘキスト・セラムテック・アクチェンゲゼルシャフト Sliding body and its manufacturing method
US4552368A (en) * 1983-12-01 1985-11-12 Flexibox Limited Backup seal with bush in form of radially floating washer
JPS6360766U (en) * 1986-10-09 1988-04-22
JPS63178671U (en) * 1987-05-13 1988-11-18
JPS63184264U (en) * 1987-05-20 1988-11-28
JPH044365A (en) * 1990-04-23 1992-01-08 Tanken Seiko Kk Mechanical seal
JPH051074U (en) * 1991-06-21 1993-01-08 イーグル工業株式会社 mechanical seal
JPH0968283A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Shaft sealing device of rotating machine
JP2002122243A (en) * 2000-10-17 2002-04-26 Eagle Ind Co Ltd Split type seal

Also Published As

Publication number Publication date
JP7350447B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
JP6861730B2 (en) Sliding parts
CA1265547A (en) Ring seals
US8523186B2 (en) Slide ring seal arrangement
US3455565A (en) Piston rings
JP2011513666A (en) Dynamic sealing
JP2008267449A (en) Backup ring
CN109073090B (en) Mechanical sealing element
JP2020530542A5 (en)
JP7374573B2 (en) sliding parts
JP4853633B2 (en) Sealing device
US20200063873A1 (en) Seal device
JPWO2019059197A1 (en) mechanical seal
JP2021092258A (en) mechanical seal
EP3722634B1 (en) Damper
JP6857100B2 (en) Sealing device
JP7350448B2 (en) mechanical seal
JP7350446B2 (en) mechanical seal
JP2021092260A (en) mechanical seal
WO2020166590A1 (en) Sliding component
JP5359638B2 (en) Sealing structure
JP6952759B2 (en) Sealing device
JP6795412B2 (en) mechanical seal
CN112302829A (en) Multi-piece seal ring assembly
WO2024034550A1 (en) Secondary seal
US20220196152A1 (en) Sliding component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7350447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150