JP2021091619A - Dental oral composition and composition for treating bacterial infection - Google Patents

Dental oral composition and composition for treating bacterial infection Download PDF

Info

Publication number
JP2021091619A
JP2021091619A JP2019221658A JP2019221658A JP2021091619A JP 2021091619 A JP2021091619 A JP 2021091619A JP 2019221658 A JP2019221658 A JP 2019221658A JP 2019221658 A JP2019221658 A JP 2019221658A JP 2021091619 A JP2021091619 A JP 2021091619A
Authority
JP
Japan
Prior art keywords
nanobubbles
composition
dental
root canal
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019221658A
Other languages
Japanese (ja)
Other versions
JP7446099B2 (en
Inventor
猛 大平
Takeshi Ohira
猛 大平
中島 美砂子
Misako Nakajima
美砂子 中島
直樹 森川
Naoki Morikawa
直樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2019221658A priority Critical patent/JP7446099B2/en
Publication of JP2021091619A publication Critical patent/JP2021091619A/en
Application granted granted Critical
Publication of JP7446099B2 publication Critical patent/JP7446099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

To provide a dental oral composition that is suitable as an agent to control the infection of an intractable infected root canal tooth, has excellent permeability to a tooth root canal, and used for removing a smear layer, bacteria, and biofilms.SOLUTION: A dental oral composition includes an antibacterial agent and nanobubbles, the surface of the nanobubble being charged positively. The surface tension of positive nanobubble water that has decreased due to inclusion of the nanobubbles causes an increase of permeation power, and acts synergistically with the antibacterial action of the antibacterial agent, so that the infection of a tooth and an oral cavity can be controlled.SELECTED DRAWING: Figure 3

Description

本発明は、歯のう蝕治療、抜髄・感染根管治療、歯周疾患治療、修復・補綴治療、インプラント周囲炎治療等に用いる、歯内・歯外部、歯周組織、舌、口蓋、口腔内修復物・補綴物の細菌を抑制する抗菌剤とプラス帯電性ナノバブル(以下、プラスナノバブルという)とを含有する歯科口腔用組成物および細菌感染治療用組成物に関する。 The present invention is used for dental caries treatment, demyelination / infected root canal treatment, periodontal disease treatment, restoration / prosthesis treatment, peri-implantitis treatment, etc. The present invention relates to a dental and oral composition containing an antibacterial agent that suppresses bacteria in an internal restoration / prosthesis and a positively charged nanobubble (hereinafter referred to as plus nanobubble), and a composition for treating bacterial infection.

超高齢化社会において歯の健康・機能維持は健康長寿を達成する上で必須である。深い虫歯で神経を除去(抜髄)すると、除去後20年ぐらいまでの間に再感染して根の下に膿が溜まる根尖性歯周炎(感染根管)となることがあり(頻度15〜20%、年間1,000万件)、さらにその約25%は難治性に陥り、抜歯・破折の一途を辿る。そこで、本発明者は「抜髄しても根尖性歯周炎に至らないようにする歯髄再生治療法」を開発し、すでに臨床研究5症例で安全性を確認し、有効性を示唆した(非特許文献1)。さらにイヌ根尖性歯周炎モデルにおいても、除菌後、抜髄歯と同様の治療法を行うことにより、根尖歯周組織および歯髄の再生に成功している(非特許文献2)。一方、難治性感染根管の病因は通常根管貼薬に用いる水酸化カルシウム製剤に対して耐性のE. faecalis(Enterococcus faecalis)が象牙細管や複雑な細孔をもつ歯根の奥深くに侵入し、バイオフィルムを形成するためと推定されている(非特許文献3)。したがって、難治性感染根管治療においては、根管の洗浄・貼薬、および根尖歯周組織の化学的・物理的刺激の可及的除去法の開発が重要である。 In a super-aging society, maintaining dental health and function is essential for achieving healthy longevity. When nerves are removed (extracted) with deep tooth decay, apical periodontitis (infected root canal) may occur in which pus accumulates under the roots due to reinfection within about 20 years after removal (frequency 15). ~ 20%, 10 million cases per year), and about 25% of them become intractable and continue to have tooth extractions and fractures. Therefore, the present inventor has developed a "pulp regeneration treatment method for preventing apical periodontitis even after demyelination", and has already confirmed the safety in 5 clinical studies and suggested its effectiveness () Non-Patent Document 1). Furthermore, in the canine apical periodontitis model, the apical periodontal tissue and pulp have been successfully regenerated by performing the same treatment method as for the demyelinated tooth after eradication (Non-Patent Document 2). On the other hand, the etiology of refractory infected root canals is that E. faecalis (Enterococcus faecalis), which is resistant to calcium hydroxide preparations usually used for root canal patches, invades deep into dentinal tubules and tooth roots with complicated pores. It is presumed to form a biofilm (Non-Patent Document 3). Therefore, in the treatment of intractable infected root canals, it is important to develop a method for cleaning and patching the root canal and removing the chemical and physical irritation of the apical periodontium as much as possible.

難治性感染根管は咬合に影響を与えるばかりでなく、慢性の感染源として免疫力の衰えた高齢者の全身に多大な影響を及ぼす。骨粗鬆症治療薬服用中の場合顎骨壊死の危険性により抜歯できない場合も多い。また、抜歯してインプラントを適用できる症例は中高齢者では減少する。したがって、難治性感染根管歯の感染を制御し、抜歯や破折を回避し、歯の機能回復を図ることは、超高齢社会で健康維持に重要である。 Refractory infected root canals not only affect occlusion, but also have a great effect on the whole body of the elderly with weakened immunity as a chronic source of infection. If you are taking an osteoporosis drug, you may not be able to extract teeth due to the risk of jaw bone necrosis. In addition, the number of cases in which implants can be applied by extracting teeth decreases in middle-aged and elderly people. Therefore, controlling infection of intractable root canal teeth, avoiding tooth extraction and fracture, and recovering tooth function are important for maintaining health in a super-aging society.

本発明の発明者は、歯科用ナノバブル発生装置を用いて、ナノサイズの超微細な気泡(マイナス帯電性ナノバブル)の優れた浸透亢進作用を利用して、標的となる患部に薬剤を有利に浸透させ得る薬剤組成物を提案している(特許文献1)。しかし、難治性感染根管歯の感染を制御する薬剤として、マイナス帯電性ナノバブル(以下、マイナスナノバブルという)と併用すると、根管内の除菌ができない抗菌剤があるという問題を見出した。そこで、マイナスナノバブルを抗菌ナノパーティクルと併用することにより、浸透亢進作用やスミヤー層除去効果を発揮でき、1〜2週間ごとに根管洗浄および貼薬処置の根管治療を繰り返すことにより根管内の除菌が可能となった。しかしながら、根管完全除菌(根管内細菌が検出限界以下になる)には数回にわたる根管治療が必要という問題があった。 The inventor of the present invention uses a dental nanobubble generator to advantageously permeate a drug into a target affected area by utilizing the excellent permeation-enhancing effect of nano-sized ultrafine bubbles (negatively charged nanobubbles). We have proposed a drug composition that can be used (Patent Document 1). However, we have found that there is an antibacterial agent that cannot eradicate bacteria in the root canal when used in combination with negatively charged nanobubbles (hereinafter referred to as minus nanobubbles) as a drug for controlling infection of intractable root canal teeth. Therefore, by using minus nanobubbles in combination with antibacterial nanoparticles, it is possible to exert an effect of enhancing penetration and removing the smear layer, and by repeating root canal cleaning and root canal treatment every 1 to 2 weeks, the inside of the root canal can be treated. Can be sterilized. However, there is a problem that several root canal treatments are required for complete root canal eradication (bacteria in the root canal fall below the detection limit).

国際公開 WO2016/084780A1号International release WO2016 / 084780A1

Nakashima M., Iohara K., Murakami M., Nakamura H., Sato Y., Ariji Y., Matsushita K.: Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res Therapy Mar 9; 8(1):61, 2017.Nakashima M., Iohara K., Murakami M., Nakamura H., Sato Y., Ariji Y., Matsushita K .: Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res Therapy Mar 9; 8 (1): 61, 2017. 藤田将典、庵原耕一郎、堀場直樹、立花克郎、中村洋、中島美砂子:「感染根管歯におけるナノバブルと超音波を用いた根管内無菌化と歯髄再生」日本歯科保存 学雑誌. 57(2): 170-179, 2014.Masanori Fujita, Koichiro Anhara, Naoki Horiba, Katsuro Tachibana, Hiroshi Nakamura, Misako Nakajima: "Intra-root canal sterilization and pulp regeneration using nanobubbles and ultrasound in infected root canal teeth" Japanese Dental Conservation Journal. 57 (2) ): 170-179, 2014. 興地隆史:「歯内療法の争点―難治性根尖性歯周炎の病因と臨床―」Niigata Dent. J. 36(2): 1-15, 2006Takashi Okiji: "Issues in Endodontics-Pathogenesis and Clinic of Refractory Apical Periodontitis-" Niigata Dent. J. 36 (2): 1-15, 2006

本発明はかかる問題に鑑みてなされたものであって、難治性感染根管歯の感染を制御する薬剤としてより好適な、より短期間で根管完全除菌が可能な、歯の根管への浸透性がより良好であり、スミヤー層除去、細菌除去、バイオフィルム除去のために用いられるプラス帯電性ナノバブル(以下、プラスナノバブルという)含有の歯科口腔用組成物および細菌感染治療用組成物を提供することを目的とする。 The present invention has been made in view of such a problem, and is more suitable as a drug for controlling infection of a refractory infected root canal tooth, to a root canal of a tooth capable of complete eradication of the root canal in a shorter period of time. Dental and oral compositions containing positively charged nanobubbles (hereinafter referred to as plus nanobubbles) and compositions for treating bacterial infections, which have better permeability and are used for removing smear layers, removing bacteria, and removing biofilms. The purpose is to provide.

本発明にかかる歯の根管内の洗浄・貼薬用に適した歯科口腔用組成物薬剤は、以下の構成を備えている。
抗菌剤と、ナノバブルとを含有しており、前記ナノバブルは、その表面がプラスに帯電したプラスナノバブルであることを特徴とする、歯科口腔用組成物。
組成物中に含有される表面がプラスに帯電したプラスナノバブルにより水の表面張力が小さくなり、水の浸透性が高くなる。プラスナノバブル水の浸透性が抗菌剤の抗菌作用と相乗的に作用することによって、歯の根管部の深部まで抗菌剤を行き渡らせることができ、歯および口腔内の感染を制御することができる。また、表面がプラスに帯電したプラスナノバブルを用いることにより抗菌効果に優れた歯科口腔用組成物となる。
The dental and oral composition agent suitable for cleaning and patching the root canal of a tooth according to the present invention has the following constitution.
A dental or oral composition containing an antibacterial agent and nanobubbles, wherein the nanobubbles are positively charged plus nanobubbles on the surface thereof.
The surface tension of water is reduced by the positively charged plus nanobubbles contained in the composition, and the permeability of water is increased. The permeability of plus nanobubble water acts synergistically with the antibacterial action of the antibacterial agent, so that the antibacterial agent can be distributed deep into the root canal of the tooth and infection in the tooth and oral cavity can be controlled. .. Further, by using plus nanobubbles whose surface is positively charged, a composition for dentistry and oral cavity having an excellent antibacterial effect can be obtained.

前記プラスナノバブルは、ゼータ電位がプラスで、濃度が1×10〜1×10個/mL、平均気泡径が10〜300nmであることが好ましい。 The plus nanobubbles preferably have a positive zeta potential, a concentration of 1 × 10 6 to 1 × 10 9 cells / mL, and an average bubble diameter of 10 to 300 nm.

前記抗菌剤は、抗菌ナノパーティクル、抗生剤、抗菌薬、抗真菌剤、抗ウィルス剤、消毒剤、根管拡大剤、抗炎症剤、創傷治癒や組織再生を促進する生理活性物質および幹細胞由来セクレトーム・エクソゾーム・miRNAからなる群のいずれか一つ以上を含むことが好ましい。また、前記抗菌剤が、カチオン性抗菌剤であることがより好ましい。 The antibacterial agents include antibacterial nanoparticles, antibiotics, antibacterial agents, antifungal agents, antiviral agents, disinfectants, root tube enlargers, antiinflammatory agents, physiologically active substances that promote wound healing and tissue regeneration, and stem cell-derived secretome. -It is preferable to include any one or more of the group consisting of exosome and miRNA. Further, it is more preferable that the antibacterial agent is a cationic antibacterial agent.

本発明のプラスナノバブル含有の歯科口腔用組成物を含有する、歯の根管内、歯の歯周組織内、歯のう蝕または舌苔の細菌感染治療用組成物。 A composition for treating bacterial infection in tooth root canals, tooth periodontium, tooth caries or tongue coating, which comprises the plus nanobubble-containing dental oral composition of the present invention.

本発明の歯科口腔用組成物は、抗菌剤とプラスナノバブルとを併用することにより、効果的に歯の根管内のスミヤー層の除去、細菌・バイオフィルムの除去ならびに歯髄および根尖歯周組織の抗炎症・治癒促進・再生促進が可能である。したがって、根管の洗浄・貼薬により、難治性感染根管歯を完全除菌し、細菌感染を制御し、治癒・再生が促進できる細菌感染治療用組成物を提供することができる。 The dental and oral composition of the present invention effectively removes the smear layer in the root canal of the tooth, removes bacteria and biofilm, and the pulp and apical periodontium by using an antibacterial agent and plus nanobubbles in combination. It is possible to promote anti-inflammatory, healing, and regeneration. Therefore, it is possible to provide a composition for treating bacterial infection, which can completely eradicate intractable infected root canal teeth, control bacterial infection, and promote healing and regeneration by cleaning and patching the root canal.

イヌ歯での難治性感染根管モデルの作製法を模式的に示す断面図である。It is sectional drawing which shows typically the method of making the refractory infected root canal model in a dog tooth. イヌ難治性感染根管モデルにおけるナノバブルと抗菌ナノパーティクルの併用による根管洗浄と貼薬処置を模式的に示す断面図である。It is sectional drawing which shows typically the root canal cleaning and patch treatment by the combined use of nanobubbles and antibacterial nanoparticles in a canal refractory root canal model. イヌ難治性感染根管モデルにおける抗菌ナノパーティクル・ナノバブル水の根管洗浄と貼薬後の根管内の細菌コロニー数の経時的な変化を示すグラフである。(A)抗菌ナノパーティクル最終濃度0.006%(w/v)・98%マイナスナノバブル水、抗菌ナノパーティクル最終濃度0.006%(w/v)のみ、(B)抗菌ナノパーティクル最終濃度0.006%(w/v)・98%プラスナノバブル水、プラスナノバブル水のみ。It is a graph which shows the time-dependent change of the number of bacterial colonies in a root canal after root canal washing and application of antibacterial nanoparticle nanobubble water in a canal refractory infection root canal model. (A) Antibacterial nanoparticle final concentration 0.006% (w / v) / 98% minus nanobubble water, antibacterial nanoparticle final concentration 0.006% (w / v) only, (B) Antibacterial nanoparticle final concentration 0. 006% (w / v) / 98% plus nano bubble water, plus nano bubble water only. イヌ難治性感染根管モデルにおける98%ナノバブル水と最終濃度0.006%(w/v)抗菌ナノパーティクルの根管治療による根尖病変の骨吸収像の変化を治療開始前および治療2か月から4か月後にCBCTにて検査し、OsiriXにより解析した図である。(A)術前と、抗菌ナノパーティクルおよびプラスナノバブル水の併用による根管洗浄と貼薬の根管治療後3か月のCBCTによる骨吸収像の変化を示す図面代用写真、(B)抗菌ナノパーティクルのみ、(C)抗菌ナノパーティクルとマイナスナノバブル水の併用、(D)抗菌ナノパーティクルおよびプラスナノバブル水の併用による根管洗浄と貼薬の治療2か月から4か月後の骨吸収体積を術前と統計学的に比較したグラフである。**P<0.01 術前との比較。Changes in bone resorption image of apical lesions due to root canal treatment of 98% nanobubble water and final concentration 0.006% (w / v) antibacterial nanoparticles in a canal refractory infected root canal model before the start of treatment and 2 months after treatment It is a figure which was inspected by CBCT 4 months after, and was analyzed by OsiriX. (A) Drawing substitute photograph showing changes in bone resorption image by CBCT 3 months after root canal cleaning and root canal treatment by combined use of antibacterial nanoparticles and plus nano bubble water before surgery, (B) antibacterial nano Only particles, (C) combined use of antibacterial nanoparticles and minus nanobubble water, (D) combined use of antibacterial nanoparticles and plus nanobubble water for root canal cleaning and patch treatment 2 to 4 months after bone resorption volume It is a graph comparing preoperatively and statistically. ** P <0.01 Comparison with preoperative. マイナス若しくはプラスナノバブル水の各種薬剤併用による5分間洗浄後の象牙細管内深部に対して、蛍光薬剤(テトラサイクリン)を浸透させた蛍光実体顕微鏡写真を示す。(A)薬剤なし、(B)抗菌ナノパーティクル、(C)グルコン酸クロルヘキシジン、(D)塩化ベンザルコニウム、(E)塩化セチルピリジニウム、(F)ドキシサイクリン、(G)テトラサイクリン・薬剤なし。 (上段)蒸留水、(中段)マイナスナノバブル水併用、(下段)プラスナノバブル水併用A fluorescent stereomicrograph in which a fluorescent agent (tetracycline) is impregnated into the deep part of the dentinal tubule after washing with various agents of minus or plus nanobubble water for 5 minutes is shown. (A) No drug, (B) Antibacterial nanoparticles, (C) Chlorhexidine gluconate, (D) Benzalkonium chloride, (E) Cetylpyridinium chloride, (F) Doxycycline, (G) Tetracycline-No drug. (Upper) Distilled water, (Middle) Minus nano bubble water, (Lower) Plus nano bubble water マイナス若しくはプラスナノバブル水の各種薬剤併用により、根管内のスミヤー層を5分間洗浄後の走査電子顕微鏡像の図面代用写真である。(A)薬剤なし、(B)グルコン酸クロルヘキシジン、(C)塩化セチルピリジニウム、(D)洗浄なし。 (上段)蒸留水、(中段)マイナスナノバブル水併用、(下段)プラスナノバブル水併用It is a drawing substitute photograph of a scanning electron microscope image after washing the smear layer in a root canal for 5 minutes by using various chemicals of minus or plus nano bubble water in combination. (A) No drug, (B) Chlorhexidine gluconate, (C) Cetylpyridinium chloride, (D) No cleaning. (Upper) Distilled water, (Middle) Minus nano bubble water, (Lower) Plus nano bubble water 洗浄後の象牙細管数(象牙質壁 1mmあたりの象牙細管の個数)を統計学的に解析したグラフである。P<0.05、**P<0.01処置無しとの比較。P<0.05、##P<0.01。It is a graph which statistically analyzed the number of ivory tubules after washing ( the number of ivory tubules per 1 mm 2 of the dentin wall). * P <0.05, ** P <0.01 Comparison with no treatment. # P <0.05, ## P < 0.01.

本発明の歯科口腔用組成物は、抗菌剤とプラスナノバブルとを含有している。好ましくは、歯科口腔用組成物の成分である抗菌剤として、抗菌ナノパーティクル、抗生剤、抗菌薬、抗真菌剤、抗ウィルス剤、消毒剤、根管拡大剤、創傷治癒や組織再生を促進する生理活性物質抗炎症剤、創傷治癒や組織再生を促進する生理活性物質および幹細胞由来セクレトーム・エクソゾーム・miRNAからなる群のいずれか一つ以上を含む。 The dental and oral composition of the present invention contains an antibacterial agent and plus nanobubbles. Preferably, as an antibacterial agent which is a component of a dental or oral composition, it promotes antibacterial nanoparticles, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, a disinfectant, a root canal enlarger, wound healing and tissue regeneration. Physioactive substances Includes any one or more of the group consisting of anti-inflammatory agents, bioactive substances that promote wound healing and tissue regeneration, and stem cell-derived secretome, exosome, and miRNA.

抗菌ナノパーティクルは、シアノアクリレートポリマーすなわちアクリレート系ポリマー粒子であり、細菌壁の糖鎖ペプチド表層と親和性が高い。抗菌ナノパーティクルが細菌に吸着すると、その部分は細菌壁の合成が阻害される。よって、細菌は内圧が保てずに自己融解する特徴を有する。抗菌ナノパーティクルは生分解されるため蓄積されず安全性が高く、耐性ができず自然環境を崩さない。シアノアクリレートナノポリマーの原料として用いられるモノマーの側鎖構造体は直鎖のn−ブチル基であり、代謝系にてホルムアルデヒドを生じないため安全である。また、抗菌ナノパーティクルは低濃度で抗菌効果を有する。 The antibacterial nanoparticles are cyanoacrylate polymers, that is, acrylate-based polymer particles, and have a high affinity for the surface layer of the sugar chain peptide on the bacterial wall. When antibacterial nanoparticles are adsorbed on bacteria, the synthesis of the bacterial wall is inhibited in that part. Therefore, bacteria have the characteristic of autolyzing without maintaining internal pressure. Since antibacterial nanoparticles are biodegraded, they are not accumulated and are highly safe, cannot withstand, and do not destroy the natural environment. The side chain structure of the monomer used as a raw material for the cyanoacrylate nanopolymer is a linear n-butyl group and is safe because it does not generate formaldehyde in the metabolic system. In addition, antibacterial nanoparticles have an antibacterial effect at a low concentration.

抗菌ナノパーティクルの平均粒径は、細菌壁の合成を阻害する観点から、10〜2,000nmが好ましく、50〜1,000nmがより好ましく、100〜500nmがさらに好ましい。本発明において平均粒径とは、モード径(最頻度粒子径)をいう。また、本発明において範囲「A〜B」はA以上B以下を示す The average particle size of the antibacterial nanoparticles is preferably 10 to 2,000 nm, more preferably 50 to 1,000 nm, and even more preferably 100 to 500 nm from the viewpoint of inhibiting the synthesis of the bacterial wall. In the present invention, the average particle size means the mode diameter (most frequent particle size). Further, in the present invention, the range "A to B" indicates A or more and B or less.

歯科口腔用組成物に含まれる抗菌ナノパーティクルの濃度(w/v)は、0.0001〜0.3%が好ましく、0.001〜0.06%がより好ましく、0.002〜0.01%がさらに好ましい。なお、本発明において抗菌ナノパーティクルの濃度は、重量/容量パーセント(%(w/v))すなわち歯科口腔用組成物100(mL)に含まれる抗菌ナノパーティクルの重量(g)で示す。 The concentration (w / v) of the antibacterial nanoparticles contained in the dental or oral composition is preferably 0.0001 to 0.3%, more preferably 0.001 to 0.06%, and 0.002 to 0.01. % Is more preferable. In the present invention, the concentration of antibacterial nanoparticles is indicated by weight / volume percent (% (w / v)), that is, the weight (g) of antibacterial nanoparticles contained in the dental orally composition 100 (mL).

抗菌ナノパーティクルは、例えば、特許第4963221号に記載の方法により製造することができる。この方法により製造される抗菌ナノパーティクルは多孔性である。このため、抗菌ナノパーティクルの孔の内部に薬剤を抱合させることが可能である。抗菌ナノパーティクルに抱合させる薬剤としては、例えば、アンピシリン、ドキシサイクリン、バンコマイシン、レボフロキサシン等の抗生剤・抗菌剤が挙げられる。また、例えば、抗真菌剤、抗ウィルス剤、消毒剤、根管拡大剤、抗炎症剤、創傷治癒や組織再生を促進する生理活性物質および幹細胞由来セクレトーム・エクソゾーム・miRNAがあげられる。 The antibacterial nanoparticles can be produced, for example, by the method described in Japanese Patent No. 4963221. The antibacterial nanoparticles produced by this method are porous. Therefore, it is possible to conjugate the drug inside the pores of the antibacterial nanoparticles. Examples of the drug to be conjugated to the antibacterial nanoparticles include antibiotics and antibacterial agents such as ampicillin, doxycycline, vancomycin, and levofloxacin. Examples include antifungal agents, antiviral agents, disinfectants, root canal enlargers, anti-inflammatory agents, bioactive substances that promote wound healing and tissue regeneration, and stem cell-derived secretome exosome miRNA.

抗菌ナノパーティクルに抗菌剤を抱合させることで、抗菌ナノパーティクルの吸着性により抗菌剤を細菌壁に付着させ、効果的に抗菌作用を奏する。ただし、上述したとおり、抗菌ナノパーティクルは細菌壁の合成を阻害して細菌を自己融解することにより抗菌作用を奏するから、抗菌剤を抱合させないで用いることもできる。 By conjugating the antibacterial agent with the antibacterial nanoparticles, the antibacterial agent adheres to the bacterial wall due to the adsorptivity of the antibacterial nanoparticles, and effectively exerts an antibacterial action. However, as described above, since the antibacterial nanoparticles exert an antibacterial action by inhibiting the synthesis of the bacterial wall and autolyzing the bacteria, they can be used without conjugating the antibacterial agent.

抗菌剤にはナノバブルの性質に影響を及ぼすものも存在する。しかし、抗菌剤を抗菌ナノパーティクルに抱合させた状態で用いることにより、抗菌剤によるナノバブルへの影響を抑制できる。 Some antibacterial agents affect the properties of nanobubbles. However, by using the antibacterial agent in a state of being conjugated to the antibacterial nanoparticles, the influence of the antibacterial agent on the nanobubbles can be suppressed.

抗菌ナノパーティクルに薬剤を抱合させる方法としては、薬剤の水溶液中に抗菌ナノパーティクルを浸漬させる方法や、薬剤の共存下において、シアノアクリレート系モノマーをアニオン重合させる方法等が挙げられる。これら例示した二つの方法では、簡便であり抱合率が高くなることから、後者のアニオン重合させる方法がより好ましい。 Examples of the method of conjugating the drug with the antibacterial nanoparticles include a method of immersing the antibacterial nanoparticles in an aqueous solution of the drug, a method of anionic polymerization of a cyanoacrylate-based monomer in the coexistence of the drug, and the like. The latter method of anionic polymerization is more preferable because the two methods exemplified above are simple and have a high conjugation rate.

抗菌ナノパーティクルに抱合させる薬剤の濃度は、当該薬剤の性質、使用時の容量などに応じて適宜設定することができる。抗菌剤を抱合させる場合、通常、抗菌ナノパーティクル100重量%中に0.1〜0.8重量%程度である。 The concentration of the drug to be conjugated to the antibacterial nanoparticles can be appropriately set according to the properties of the drug, the volume at the time of use, and the like. When the antibacterial agent is conjugated, it is usually about 0.1 to 0.8% by weight in 100% by weight of the antibacterial nanoparticles.

歯科口腔用組成物の成分である抗菌剤として、上記抗菌ナノパーティクルの他、抗生剤、抗菌薬、抗真菌剤、抗ウィルス剤、消毒剤、根管拡大剤、創傷治癒や組織再生を促進する生理活性物質、抗炎症剤、創傷治癒や組織再生を促進する生理活性物質および幹細胞由来セクレトーム・エクソゾーム・miRNAが挙げられる。好適にはドキシサイクリン塩酸塩水和物、レボフロキサシン水和物、グルコン酸クロルヘキシジン、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウム、グリチルリチン酸モノアンモニウム、アクリノール、次亜塩素酸ナトリウム、ポピドンヨード、フッ化第一錫、EDTA、クエン酸、MTAD、Tetraclean、トリプシン、キモトリプシン、CCR3拮抗剤、ALK5阻害剤、間葉系幹細胞セクレトーム・エクソゾームである。より好適にはドキシサイクリン塩酸塩水和物、グルコン酸クロルヘキシジン、塩化ベンザルコニウム、塩化セチルピリジニウムである。 As antibacterial agents that are components of dental and oral compositions, in addition to the above antibacterial nanoparticles, antibiotics, antibacterial agents, antifungal agents, antiviral agents, disinfectants, root canal enlargers, wound healing and tissue regeneration are promoted. Examples include bioactive substances, anti-inflammatory agents, bioactive substances that promote wound healing and tissue regeneration, and stem cell-derived secretome exosome miRNA. Preferably, doxicycline hydrochloride hydrate, levofloxacin hydrate, chlorhexidine gluconate, benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, monoammonium glycyrrhizinate, acrinol, sodium hypochlorite, povidone iodine, stannous fluoride. , EDTA, citric acid, MTAD, Tetracrene, trypsin, chymotrypsin, CCR3 antagonist, ALK5 inhibitor, mesenchymal stem cell secretome exosome. More preferably, doxycycline hydrochloride hydrate, chlorhexidine gluconate, benzalkonium chloride, cetylpyridinium chloride.

抗菌剤は、そのイオン的な性質により、塩化セチルピリジニウム、塩化クロルヘキシジン、塩化ベンゼトニウム、塩化ベンザルコニウム、塩化デカリウム、グルコン酸クロルヘキシジン等のカチオン性抗菌剤;プロタミン、ドデシルジアミノエチルグリシン等の両性抗菌剤;トリクロサン、3−メチル−4−イソプロピルメチルフェノール、チモール、カルバクロール、ファルネソール、ビサボロール、シネオール等の非イオン性抗菌剤に分類されるが、中でも、口腔内で効果的に抗菌効果を発揮させる観点からカチオン性抗菌剤が好ましい。また、ヒノキチオール;ラウロイルサルコシンナトリウム;l−メントール等の他の一般的な抗菌剤を用いることもできる。 Antibacterial agents are cationic antibacterial agents such as cetylpyridinium chloride, chlorhexidine chloride, benzethonium chloride, benzalkonium chloride, depotassium chloride, and chlorhexidine gluconate due to their ionic properties; and amphoteric antibacterial agents such as protamine and dodecyldiaminoethylglycine. It is classified into nonionic antibacterial agents such as triclosan, 3-methyl-4-isopropylmethylphenol, thymol, carbachlor, farnesol, bisabolol, and cineole. Among them, the viewpoint of effectively exerting an antibacterial effect in the oral cavity. Therefore, a cationic antibacterial agent is preferable. Other common antibacterial agents such as hinokitiol; sodium lauroyl sarcosine; l-menthol can also be used.

本発明の発明者は、既に、歯科用ナノバブル発生装置を用いて、ナノバブルがスミヤー層(根管拡大清掃時に生じる細菌が混じった切削片が象牙質の象牙細管に詰まったもの)を除去できること、人工的にアパタイト表面に作製したE. faecalisのバイオフィルムを除去できることについて特許出願をしている(特願2017−152594)。当該特許出願に係る明細書において、抜去歯のin vitro実験によりナノバブルが象牙細管内1mm以上深部へ薬剤を浸透させることを明らかにした。なお、以下では、表面の帯電性の正負を問わない場合、単にナノバブルと記載することもある。 The inventor of the present invention has already used a dental nanobubble generator to remove nanobubbles from the smear layer (cut pieces mixed with bacteria generated during root canal enlargement cleaning in dentin dentin tubules). A patent application has been filed for the ability to remove E. faecalis biofilms artificially formed on the surface of apatite (Japanese Patent Application No. 2017-152594). In the specification relating to the patent application, it was clarified by an in vitro experiment of the extracted tooth that nanobubbles permeate the drug deeper than 1 mm in the dentinal tubule. In the following, when the positive or negative of the chargeability of the surface does not matter, it may be simply described as nanobubbles.

ナノバブルは、圧壊時に発生するフリーラジカルの作用により菌の増殖を抑制する。さらに溶液中の微粒子(ナノバブル)の周りに形成される電気二重層中の、液体流動が起こり始める「すべり面」の電位であるゼータ電位が、微粒子の流動性、凝集性、保存性などに関係すると考えられる。 Nanobubbles suppress the growth of bacteria by the action of free radicals generated during crushing. Furthermore, the zeta potential, which is the potential of the "slip surface" where liquid flow begins to occur in the electric double layer formed around the fine particles (nanobubbles) in the solution, is related to the fluidity, cohesiveness, storage stability, etc. of the fine particles. It is thought that.

ナノバブルは、液状もしくはゲル状を呈する形態中に超微細な気泡として含有されており、気体(空気、二酸化炭素、窒素、酸素、オゾン等)がナノサイズの気泡内に導入されている。すなわち、ナノバブルは、高い内圧と帯電荷を有しており、その表面特性やブラウン運動のごとき運動特性等に基づくところの有効な除去促進作用によって、効果的に菌の増殖を抑制できる。ナノバブルに含有される気体は、一種または二種以上を用いることができる。二種以上の気体を用いる場合としては、例えば、気体Aのみからなるナノバブルと気体Bのみからなるナノバブルとの混合物を用いる場合もあれば、気体Aと気体Bとの混合物を含むナノバブルを用いる場合もある。 Nanobubbles are contained as ultrafine bubbles in a liquid or gel-like form, and a gas (air, carbon dioxide, nitrogen, oxygen, ozone, etc.) is introduced into the nano-sized bubbles. That is, nanobubbles have a high internal pressure and an electric charge, and can effectively suppress the growth of bacteria by an effective removal promoting action based on their surface characteristics, kinetic characteristics such as Brownian motion, and the like. As the gas contained in the nanobubbles, one kind or two or more kinds can be used. When two or more kinds of gases are used, for example, there are cases where a mixture of nanobubbles consisting of only gas A and nanobubbles consisting of only gas B is used, and cases where nanobubbles containing a mixture of gas A and gas B are used. There is also.

本発明の歯科口腔用組成物が液体製剤である場合、これを構成する溶液は水溶液であることが好ましい。本発明において、ナノバブル状態にある気体を含む水溶液をナノバブル水といい、ナノバブル状態にある気体を含むゲルをナノバブルゲルという。 When the dental or oral composition of the present invention is a liquid preparation, the solution constituting the composition is preferably an aqueous solution. In the present invention, an aqueous solution containing a gas in a nanobubble state is referred to as nanobubble water, and a gel containing a gas in a nanobubble state is referred to as a nanobubble gel.

ナノバブル水において、水溶液のpHは特に限定されるものではないが、例えば5.00〜7.00の弱酸性から中性とすることが可能である。なお、ナノバブルのゼータ電位の絶対値は、時間を経ても大きくは変化しない。また、ナノバブル水において、硬度は特に限定されるものではないが、例えば硬度20〜30とすることが可能である。 In nanobubble water, the pH of the aqueous solution is not particularly limited, but can be, for example, 5.00 to 7.00, from weakly acidic to neutral. The absolute value of the zeta potential of nanobubbles does not change significantly over time. Further, in nanobubble water, the hardness is not particularly limited, but can be set to, for example, 20 to 30.

ナノバブルの気泡径としては、その平均気泡径(モード径、最頻度気泡径)は60〜300nmが好ましく、80〜250nmがより好ましく、更に好適には100〜200nmがさらに好ましい。ナノバブルの気泡径(直径、サイズ)を上記の範囲に設定することにより、有効な除去促進作用が得られ、抗菌剤との併用によって高い抗菌効果を奏する。ナノバブルの気泡径が小径であるほど、一般的に長期保存の安定性に優れる。 The average bubble diameter (mode diameter, most frequent bubble diameter) of the nanobubbles is preferably 60 to 300 nm, more preferably 80 to 250 nm, and even more preferably 100 to 200 nm. By setting the bubble diameter (diameter, size) of the nanobubbles in the above range, an effective removal promoting action can be obtained, and a high antibacterial effect can be obtained when used in combination with an antibacterial agent. The smaller the bubble diameter of nanobubbles, the better the stability of long-term storage in general.

ナノバブルは、気泡径がナノサイズであることによりその表面張力により内圧が高くなる。ここで、ナノバブルの内圧は、一般にナノバブルの気泡径に対して、Young−Laplace(ヤング−ラプラス)の式により求められ、本発明に用いたナノバブルは、約3〜300気圧程度の内圧を有している。 Since the diameter of nanobubbles is nano-sized, the internal pressure of nanobubbles increases due to the surface tension of the nanobubbles. Here, the internal pressure of the nanobubbles is generally obtained by the Young-Laplace equation with respect to the bubble diameter of the nanobubbles, and the nanobubbles used in the present invention have an internal pressure of about 3 to 300 atm. ing.

このように高い内圧を備えたナノバブルが水溶液中で安定に存在する理由の一つとしては、ナノバブル周辺の電荷をもったイオン成分の存在が挙げられる。すなわち、気泡径が小さくなるにしたがって、余分なイオンが気体と液体との界面に保持され、ゼータ電位が大きくなることがナノバブルの消失抑制に関与していると推定される。イオン成分によって、ナノバブル間やナノバブルと液体との間で静電作用が働き、静電作用がナノバブルの消滅を防いで液中におけるナノバブルを安定化していると考えられる。 One of the reasons why nanobubbles having such a high internal pressure are stably present in an aqueous solution is the presence of charged ionic components around the nanobubbles. That is, it is presumed that as the bubble diameter decreases, excess ions are retained at the interface between the gas and the liquid, and the zeta potential increases, which is involved in suppressing the disappearance of nanobubbles. It is considered that the ionic component acts as an electrostatic action between nanobubbles or between nanobubbles and liquid, and the electrostatic action prevents the disappearance of nanobubbles and stabilizes the nanobubbles in the liquid.

本発明の歯科口腔用組成物は、表面がプラス(正)に帯電したプラス帯電性のプラスナノバブルを含有している。プラスナノバブル(Plus charged nano-bubble)は、従来の気泡とは異なり、帯電性球状コンデンサと同様の作用を有する。表面が正に帯電したナノバブルを用いることにより、内部がマイナスに帯電した菌に対して電気的なショックを与えることができるから、抗菌効果に優れた歯科口腔用組成物となる。 The dental and oral composition of the present invention contains positively charged plus nanobubbles whose surface is positively charged. Unlike conventional bubbles, Plus charged nano-bubbles have the same function as charged spherical capacitors. By using nanobubbles whose surface is positively charged, it is possible to give an electrical shock to bacteria whose inside is negatively charged, so that a composition for dental or oral cavity having an excellent antibacterial effect can be obtained.

菌の内部のゼータ電位は−60mV〜−30mV程度である。このような菌に電気的なショックを与えるために、ナノバブルの水中でのゼータ電位がプラスであるプラスナノバブルが好ましい。そして、そのゼータ電位は、+5mV〜150mVが好ましく、+20mV〜150mVがより好ましく、+30mV〜150mVがさらに好ましい。 The zeta potential inside the bacterium is about -60 mV to -30 mV. In order to give an electrical shock to such bacteria, plus nanobubbles in which the zeta potential of the nanobubbles in water is positive are preferable. The zeta potential is preferably +5 mV to 150 mV, more preferably +20 mV to 150 mV, and even more preferably +30 mV to 150 mV.

また、ナノバブルの濃度は、一般に規定容積中に含まれるバブル(気泡)の個数として示され、本発明では、1×10〜1×10個/mLが好ましく、1×10〜1×10個/mLがより好ましく、5×10〜1×10個/mLがさらに好ましい。ここで、かかるナノバブルの存在量が少なくなりすぎると、除去促進作用を有利に発揮できなくなるからである。 The concentration of nanobubbles is generally indicated as the number of bubbles (bubbles) contained in a specified volume. In the present invention, 1 × 10 6 to 1 × 10 9 bubbles / mL is preferable, and 1 × 10 7 to 1 × 10 9 pieces / mL is more preferable, and 5 × 10 7 to 1 × 10 9 pieces / mL is even more preferable. Here, if the abundance of such nanobubbles becomes too small, the removal promoting action cannot be advantageously exerted.

なお、上記の如きナノバブルのサイズやその個数濃度やゼータ電位は、市販のナノ粒子測定装置を用いて測定することができる。例えば、(株)島津製作所のナノ粒子分布測定装置(SALD−7100)や、日本カンタム・デザイン(株)のナノ粒子解析装置(ナノサイトNS500)、マイクロトラック・ベル(株)のZetaView等が挙げられる。また、ゼータ電位の測定装置として、マルバルーン事業部スペクトリス(株)から入手することのできるゼータサイザーナノZ、大塚電子(株)のゼータ電位測定システム(ELSZ−2000Z)、協和界面化学(株)のゼータ電位測定装置(ZC−3000)等があげられる。本発明においては、ナノサイトNS500およびZetaViewを測定に用いている。このため、測定装置によって測定値が異なる場合、ナノサイトNS500または同等品、およびのZetaViewまたは同等品を用いて得られる測定値をナノバブルの特性値とする。 The size of the nanobubbles, the concentration thereof, and the zeta potential as described above can be measured using a commercially available nanoparticle measuring device. For example, Shimadzu Corporation's nanoparticle distribution measuring device (SALD-7100), Nippon Quantum Design Co., Ltd.'s nanoparticle analyzer (Nanosite NS500), Microtrack Bell Co., Ltd.'s ZetaView, etc. Be done. In addition, as a zeta potential measuring device, Zetasizer Nano Z, which can be obtained from Spectris Co., Ltd., Marballoon Division, Zeta Potential Measuring System (ELSZ-2000Z), Otsuka Electronics Co., Ltd., Kyowa Surface Chemistry Co., Ltd. Zeta potential measuring device (ZC-3000) and the like. In the present invention, nanosite NS500 and ZetaView are used for measurement. Therefore, when the measured value differs depending on the measuring device, the measured value obtained by using Nanosite NS500 or an equivalent product and ZetaView or an equivalent product is used as the characteristic value of nanobubbles.

ところで、本発明において、ナノサイズの気泡径を有するナノバブルは、公知の各種のナノバブル発生装置を用いて形成され得るものである。特に、高分子樹脂フィルムに初期破壊現象であるクレーズを生成してなる通気性フィルムを通じて、それによる気体透過量の制御下において、所定の気体を放出せしめることによって、ナノバブルが形成されるようにした装置(例えば、特許第3806008号公報、特許第5390212号公報に記載)が有利に用いられる。 By the way, in the present invention, nanobubbles having a nano-sized bubble diameter can be formed by using various known nanobubble generators. In particular, nanobubbles are formed by releasing a predetermined gas under the control of the amount of gas permeated through a breathable film formed by generating a craze, which is an initial destruction phenomenon, in a polymer resin film. Devices (eg, described in Japanese Patent No. 3806008, Japanese Patent No. 5390212) are used advantageously.

ナノバブル水もしくはナノバブルゲルの製造方法は、特に限定されるものではないが、例えば下記である。即ち、少なくとも、気体透過部に気体透過量を制限し得る高分子樹脂フィルムにクレーズを生成してなる通気性フィルムを配する筒状の気体透過装置を該筒状の循環路内に設置することにより、該筒状気体透過部の外周径と該筒状循環路の内周径との差異により形成される間隙に、ポンプを用いて液圧を調製して、水もしくはゲル状流動体を導入するとともに、気体透過装置の気体透過部に加圧状態を調整して気体を供給することにより、水もしくはゲル状流動体にナノサイズの微細な気泡が混入される。 The method for producing nanobubble water or nanobubble gel is not particularly limited, but is, for example, as follows. That is, at least, a tubular gas permeation device for arranging a breathable film formed by generating craze on a polymer resin film capable of limiting the amount of gas permeation in the gas permeation portion is installed in the tubular circulation path. As a result, a hydraulic pressure is adjusted using a pump in the gap formed by the difference between the outer peripheral diameter of the tubular gas permeation portion and the inner peripheral diameter of the tubular circulation path, and water or a gel-like fluid is introduced. At the same time, by adjusting the pressurized state and supplying the gas to the gas permeation portion of the gas permeation device, nano-sized fine bubbles are mixed into the water or gel-like fluid.

また、気泡となる気体雰囲気中において、マイクロメーターサイズに微細化された液体を更に破砕することによって、液体に囲まれた帯電したナノバブルを生成させ、これを、重力、遠心力、電磁気力、等を用いて捕集することによって水などの液体に帯電したナノバブル水などのナノバブル分散液を製造できる。 Further, in a gas atmosphere that becomes bubbles, the liquid finely divided into micrometer size is further crushed to generate charged nanobubbles surrounded by the liquid, which are generated by gravity, centrifugal force, electromagnetic force, etc. It is possible to produce a nanobubble dispersion liquid such as nanobubble water charged in a liquid such as water by collecting using the above.

気体雰囲気に電場を印加してマイナス側を接地することによってマイナスに帯電したナノバブルを生成させ、破砕する部材を接地することによってプラスに帯電したナノバブルを生成させることができる。 By applying an electric field to the gas atmosphere and grounding the negative side, negatively charged nanobubbles can be generated, and by grounding the crushing member, positively charged nanobubbles can be generated.

本発明の歯科口腔用組成物は、抗菌剤を含有する液体もしくはゲル状の予備組成物と、プラスナノバブルを含有する水の液体あるいはゲルの固体とを混合して調製することができる。なお、歯科口腔用組成物は、抗菌剤以外の、細胞抽出物、細胞培養上清、微生物発酵産物、植物抽出物、精製タンパク質等の種々の組成物と組み合わせて使用可能である。ただし、これらは、歯科口腔用組成物の機能、特にナノバブルと抗菌剤との併用による細菌感染制御作用を阻害しない範囲で用いられる。 The dental and oral composition of the present invention can be prepared by mixing a liquid or gel-like precomposition containing an antibacterial agent with a water liquid or gel solid containing plus nanobubbles. The dental and oral composition can be used in combination with various compositions other than antibacterial agents, such as cell extracts, cell culture supernatants, microbial fermentation products, plant extracts, and purified proteins. However, these are used as long as they do not interfere with the function of the dental or oral composition, particularly the bacterial infection control action by the combined use of nanobubbles and an antibacterial agent.

本発明の歯科口腔用組成物は、口腔内付着物の除去促進剤として用いることができる。口腔内付着物は、例えば、スミヤー層、歯垢(プラーク)、バイオフィルム又は舌苔である。
スミヤー層を除去するための口腔内付着物の除去促進剤では、単にスミヤー層を除去するのみならず象牙質強度を保持する必要がある。なお、スミヤー層は、その一部が象牙細管内まで入り込み、この象牙細管内まで入り込んだスミヤー層はスミヤープラグ又はスミヤー栓と呼ばれることがある。
プラーク、バイオフィルム又は舌苔を除去するための口腔内付着物の除去促進剤では、ナノバブルを含有するゲルであるナノバブルゲルを適用する。ナノバブルゲルの粘度は、特に限定されるものではないが、例えば450Mpa・s以下である。ナノバブルゲルの粘度が高すぎると流動性が低下するため利便性が低下するおそれがあるからである。
The dental and oral composition of the present invention can be used as an agent for promoting removal of oral deposits. Oral deposits are, for example, smear layers, plaques, biofilms or tongue coating.
An oral adhering substance removal accelerator for removing the smear layer needs to not only remove the smear layer but also maintain dentin strength. A part of the smear layer penetrates into the ivory tubule, and the smear layer that penetrates into the ivory tubule may be called a smear plug or a smear plug.
As a removal accelerator for oral deposits for removing plaque, biofilm or tongue coating, nanobubble gel, which is a gel containing nanobubbles, is applied. The viscosity of the nanobubble gel is not particularly limited, but is, for example, 450 Mpa · s or less. This is because if the viscosity of the nanobubble gel is too high, the fluidity is lowered and the convenience may be lowered.

また、本発明の歯科口腔用組成物は、中高齢者の狭窄根管を拡大するための根管拡大補助剤として用いることができる。この場合、歯科口腔用組成物は、根管拡大清掃剤をさらに含むこととなる。根管拡大清掃剤は、特に限定されるものではないが、例えばEDTA、クエン酸、MTAD、Tetraclean等が挙げられる。 In addition, the dental and oral composition of the present invention can be used as a root canal enlargement aid for enlarging a stenotic root canal in middle-aged and elderly people. In this case, the dental oral composition will further include a root canal enlargement cleaning agent. The root canal enlargement cleaning agent is not particularly limited, and examples thereof include EDTA, citric acid, MTAD, and Tetracrene.

本発明の歯科口腔用組成物は、抗菌剤とプラスナノバブルとの相乗的な作用により、歯の根管内の細菌感染を治療できる。このため、難治性感染根管の洗浄・貼薬、および根尖歯周組織の化学的・物理的刺激の可及的除去に有効な、歯の根管内、歯の歯周組織内、歯のう蝕または舌苔の細菌感染治療用組成物として用いることができる。 The dental and oral composition of the present invention can treat bacterial infection in the root canal of a tooth by the synergistic action of an antibacterial agent and plus nanobubbles. Therefore, it is effective for cleaning and patching intractable infected root canals and removing chemical and physical irritation of the apical periodontium as much as possible, in the root canal of the tooth, in the periodontal tissue of the tooth, and in the tooth. It can be used as a composition for treating bacterial infection of caries or tongue moss.

[実施例1]
1歳齢のイヌに全身麻酔を施した後、イヌ上下顎小臼歯部に抜髄処置を行い、根尖部まで#50〜55で拡大した。5%次亜塩素酸ナトリウム溶液と3%過酸化水素水で交互洗浄後、さらに生理食塩水で洗浄した。根管口に綿球をおき、根管を開放状態にして1か月そのまま放置した。さらに、生理食塩水で洗浄後、ペーパーポイントで根管内を完全乾燥し、セメントとレジンにて完全に仮封した。4か月後、歯科用CT(CBCT・コーンビームCT)にて根尖部透過像により、感染根管が作製されたことを確認した(図1)。
[Example 1]
After general anesthesia was applied to a 1-year-old dog, the upper and lower premolars of the dog were demyelinated, and the dog was expanded to the apex at # 50-55. After alternating washing with a 5% sodium hypochlorite solution and a 3% hydrogen peroxide solution, the washing was further carried out with physiological saline. A cotton ball was placed at the root canal opening, and the root canal was left open for 1 month. Furthermore, after washing with physiological saline, the inside of the root canal was completely dried with a paper point, and the inside of the root canal was completely temporarily sealed with cement and resin. Four months later, it was confirmed that an infected root canal was prepared by apical transmission images on a dental CT (CBCT / cone beam CT) (Fig. 1).

根管内の細菌数を計測するため、生理食塩水に浸した#55の滅菌済みペーパーポイントを根管内に1分入れて釣菌を行い、根管内の細菌簡易培養検査用液体培地プラディア(製品名、昭和薬品化工(株)製)にペーパーポイントを入れた。ついで、段階希釈法にて血液寒天培地バイタルメディア(製品名,極東製薬工業(株)製)に播種し、2日間嫌気培養後コロニーの数をカウントした。 In order to measure the number of bacteria in the root canal, # 55 sterilized paper points soaked in physiological saline were placed in the root canal for 1 minute to fish, and the liquid medium Pradia for simple culture examination of bacteria in the root canal was performed. Paper points were added to (Product name, manufactured by Showa Yakuhin Kako Co., Ltd.). Then, the cells were seeded on a blood agar medium Vital Media (product name, manufactured by Far East Pharmaceutical Co., Ltd.) by a serial dilution method, and the number of colonies was counted after anaerobic culture for 2 days.

イヌの歯を抜髄後1か月根管開放し4か月封鎖すると、CBCTにおいて根尖部に透過像が認められた(図1参照)。HE染色像においては、歯槽骨の吸収および根尖部歯周組織の破壊がみられ、炎症性細胞の浸潤がみられた。根管内細菌をプラディア培地で観察すると、培地が混濁し陽性を示した。細菌数は無限大であった。よって、抜髄後1か月根管開放し4か月封鎖することにより難治性感染根管モデルが作製できることが示された。 When the dog's tooth was opened for 1 month after demyelination and closed for 4 months, a transmission image was observed at the apex on CBCT (see FIG. 1). In the HE-stained image, alveolar bone resorption and apical periodontal tissue destruction were observed, and inflammatory cell infiltration was observed. When the bacteria in the root canal were observed on the Pradia medium, the medium became turbid and showed a positive result. The number of bacteria was infinite. Therefore, it was shown that a refractory infected root canal model can be prepared by opening the root canal for 1 month and blocking it for 4 months after demyelination.

(イヌ難治性感染根管モデルにおけるナノバブル水と抗菌ナノパーティクルとの併用による根管内の除菌効果)
上記の難治性感染根管に対して、まず、根管内の細菌数を段階希釈法にて2日間嫌気培養後、コロニーの数をカウントした。釣菌後の根管に6%次亜塩素酸ナトリウムと3%過酸化水素水にてそれぞれ計2mLずつ交互に洗浄を行い、さらに生理食塩水5mLにて根管を洗浄した。引き続き、滅菌ペーパーポイントにて根管内を乾燥し、最終濃度で0.006%w/vの抗菌ナノパーティクルを含有するマイナスナノバブル水あるいはプラスナノバブル水2mLを左側上下顎小臼歯の根管内に注入し洗浄を2分行った。右側上下顎小臼歯は最終濃度0.006%w/vの抗菌ナノパーティクルのみ2mLにて洗浄、あるいはプラスナノバブル水のみ2mLにて洗浄した。その後、左側はマイナスナノバブル水あるいはプラスナノバブル水5mLおよび生理食塩水5mLにて洗浄した。右側は生理食塩水のみ5mLにて洗浄した。ペーパーポイントで根管内を完全乾燥し、左側は洗浄と同様の抗菌ナノパーティクル・ナノバブル水、右側は抗菌ナノパーティクルのみあるいはナノバブル水のみをペーパーポイントに浸して根管内に挿入し、貼薬処置を行い、仮封した(図2参照)。
(Effect of sterilization in root canal by combined use of nanobubble water and antibacterial nanoparticles in canal refractory root canal model)
For the above-mentioned refractory infected root canal, first, the number of bacteria in the root canal was anaerobically cultured for 2 days by a serial dilution method, and then the number of colonies was counted. The root canal after fishing was washed alternately with 6% sodium hypochlorite and 3% hydrogen peroxide solution, for a total of 2 mL each, and the root canal was further washed with 5 mL of physiological saline. Subsequently, the inside of the root canal is dried with a sterile paper point, and 2 mL of minus nanobubble water or plus nanobubble water containing 0.006% w / v antibacterial nanoparticles at the final concentration is placed in the root canal of the left upper and lower jaw humerus. It was injected and washed for 2 minutes. The right upper and lower premolars were washed with only 2 mL of antibacterial nanoparticles having a final concentration of 0.006% w / v, or with only 2 mL of plus nanobubble water. Then, the left side was washed with 5 mL of minus nanobubble water or plus nanobubble water and 5 mL of physiological saline. The right side was washed with 5 mL of saline only. Completely dry the inside of the root canal with a paper point, soak the left side with antibacterial nanoparticle / nanobubble water similar to cleaning, and the right side with only antibacterial nanoparticles or nanobubble water in the paper point and insert it into the root canal, and apply the patch. Was performed and temporarily sealed (see Fig. 2).

1週間から2週間後に2回目の釣菌を行った後、前回と同様にナノバブル水と抗菌ナノパーティクルあるいは抗菌ナノパーティクルのみあるいはナノバブル水のみを用いて洗浄および貼薬処置を行った。さらにその1週間から2週間後に3回目の釣菌を行い、再度前回と同様の洗浄および貼薬処置を行った。同様の操作を数回行った。釣菌したサンプルは2日間嫌気培養後コロニー数を測定し、統計処理を行った。 After 1 to 2 weeks later, the second fishing bacterium was carried out, and then the washing and patching treatment were performed using nanobubble water and antibacterial nanoparticles, antibacterial nanoparticles alone, or nanobubble water only, as in the previous time. Furthermore, one to two weeks after that, a third fishing bacterium was carried out, and the same washing and patching treatment as the previous treatment was performed again. The same operation was performed several times. After anaerobic culture for 2 days, the number of colonies was measured and statistically processed.

細菌数はマイナスナノバブル水と抗菌ナノパーティクルの併用(マイナスナノバブル・ナノバーティクル)による洗浄および貼薬により徐々に減少がみられ、5回の洗浄および貼薬により細菌は検出限界以下に減少した。抗菌ナノパーティクルのみ(ナノパーティクル)ではほとんど減少はみられなかった(図3A)。一方、プラスナノバブル水と抗菌ナノパーティクルの併用(プラスナノバブル・ナノパーティクル)による洗浄および貼薬により、細菌数は1回目で急激に減少し、2回目で検出限界以下となった。ただし、プラスナノバブルのみ(プラスナノバブル)では、ほとんど細菌数の変化はみられなかった(図3B)。よって、抗菌ナノパーティクルのみあるいはプラスナノバブル水のみでは細菌除去効果がないことが示された。この結果から、抗菌ナノパーティクルとナノバブル水との併用による抗菌効果は、ナノバブル水のナノバブル表面が正負のいずれに帯電しているかの影響を受けることが分かる。 The number of bacteria gradually decreased by washing and patching with a combination of minus nanobubble water and antibacterial nanoparticles (minus nanobubble nanoverticle), and the number of bacteria decreased below the detection limit by washing and patching 5 times. Almost no decrease was observed with antibacterial nanoparticles alone (nanoparticles) (Fig. 3A). On the other hand, the number of bacteria decreased sharply at the first time and fell below the detection limit at the second time due to cleaning and patching with the combined use of plus nanobubble water and antibacterial nanoparticles (plus nanobubbles / nanoparticles). However, there was almost no change in the number of bacteria with only plus nanobubbles (plus nanobubbles) (Fig. 3B). Therefore, it was shown that the antibacterial nanoparticles alone or the plus nanobubble water alone did not have a bacterial removing effect. From this result, it can be seen that the antibacterial effect of the combined use of antibacterial nanoparticles and nanobubble water is affected by whether the nanobubble surface of the nanobubble water is charged positively or negatively.

(イヌ難治性感染根管モデルにおけるナノバブル・抗菌ナノパーティクルによる根尖病変の縮小)
難治性根管治療開始時および根管治療開始後2か月から4か月のCBCT検査を行った。根尖部の透過像(図4A)をOsiriXプログラムにより画像解析し、体積を測定した。結果は開始前/開始後の体積比で表した。
その結果、抗菌ナノパーティクルのみを根管治療に用いた場合は2か月経過後1.2であり、4か月経過後1.5となり根尖病変の拡大がみられた(図4B)。マイナスナノバブル水あるいはプラスナノバブル水と抗菌ナノパーティクルを併用した場合、いずれの場合でも術前と比べて、根管治療開始後3か月または4か月の時点において、有意に根尖部の骨添加による根尖透過像(根尖病変)の縮小がみられた(**P<0.01)(図4C、図4D)。
(Reduction of apical lesions by nanobubbles and antibacterial nanoparticles in a canal refractory root canal model)
CBCT examination was performed at the start of intractable root canal treatment and 2 to 4 months after the start of root canal treatment. The transmission image of the apex (FIG. 4A) was image-analyzed by the OsiriX program, and the volume was measured. The results were expressed as a volume ratio before / after the start.
As a result, when only antibacterial nanoparticles were used for root canal treatment, it was 1.2 after 2 months and 1.5 after 4 months, and the apical lesion was enlarged (Fig. 4B). When minus nanobubble water or plus nanobubble water is used in combination with antibacterial nanoparticles, significantly bone addition at the apex is significantly performed 3 or 4 months after the start of root canal treatment compared to before surgery. The apical transmission image (apical lesion) was reduced due to ( ** P <0.01) (Fig. 4C, Fig. 4D).

図3A〜図3Bと図4A〜図4Dに示した結果から、ナノバブル水と抗菌ナノパーティクルとを併用することにより、難治性感染根管の除菌効果に優れる歯科口腔用組成物が得られることが分かった。また、抗菌ナノパーティクルを併用するナノバブル水として、プラスナノバブル水を用いることにより、マイナスナノバブル水よりも早期に根管内の細菌数を検出限界以下にすることができた。この結果は、表面が正に帯電したプラスナノバブルは、表面が負に帯電したマイナスナノバブルよりも、抗菌ナノパーティクルとの併用による除菌効果が高いことを示唆している。 From the results shown in FIGS. 3A to 3B and 4A to 4D, it is possible to obtain a dental oral composition having an excellent sterilizing effect on intractable infected root canals by using nanobubble water and antibacterial nanoparticles in combination. I found out. In addition, by using plus nanobubble water as nanobubble water in which antibacterial nanoparticles are used in combination, the number of bacteria in the root canal could be reduced to below the detection limit earlier than minus nanobubble water. This result suggests that positive nanobubbles with a positively charged surface have a higher sterilizing effect when used in combination with antibacterial nanoparticles than negative nanobubbles with a negatively charged surface.

[実施例2]
(ナノバブル水の個数濃度・粒径分布測定・ゼータ電位測定)
4種類の溶液[50%プラスナノバブル水、50%マイナスナノバブル水、最終濃度0.2%グルコン酸クロルヘキシジンと50%ナノバブル水との混合物、0.2%グルコン酸クロルヘキシジン]をそれぞれ10mLずつ調製した。調製した溶液について、水中に存在する超微細気泡の個数濃度・粒度分布をナノサイトNS500およびZetaViewにより測定した。なお、実施例では、プラスナノバブル水はプラスナノバブル発生装置(NFPNC00003α、アクティベーションブラシ型、大平研究所(株)製)で空気と純水を用いて製造したナノバブル水を用いた。マイナスナノバブル水は歯科用ナノバブル発生装置 FOAMEST 8(登録商標、(株)ナック製)で空気と純水を用いて製造したナノバブル水を用いた。ナノバブル水の%は、ナノバブル発生装置で製造した原液の希釈液における割合を示している。
[Example 2]
(Measurement of number concentration, particle size distribution, zeta potential of nanobubble water)
Four kinds of solutions [50% plus nanobubble water, 50% minus nanobubble water, final concentration 0.2% chlorhexidine gluconate and 50% nanobubble water mixture, 0.2% chlorhexidine gluconate] were prepared by 10 mL each. For the prepared solution, the number concentration and particle size distribution of hyperfine bubbles existing in water were measured by Nanosite NS500 and ZetaView. In the examples, as the plus nano bubble water, nano bubble water produced by a plus nano bubble generator (NFPNC00003α, activation brush type, manufactured by Ohira Laboratory Co., Ltd.) using air and pure water was used. As the minus nanobubble water, nanobubble water produced by using air and pure water with a dental nanobubble generator FOAMEST 8 (registered trademark, manufactured by NAC Co., Ltd.) was used. The% of nanobubble water indicates the ratio of the undiluted solution produced by the nanobubble generator in the diluted solution.

ナノサイトNS500およびZetaViewによる測定は、シリンジでサンプル約5mLを採水し、サンプル注入口にアプライして測定を実施した。結果を表1に示す。なお、表1では、50%ナノバブル水をNB、最終濃度0.2%グルコン酸クロルヘキシジンと50%ナノバブル水との混合物をCHX+NB、最終濃度0.2%グルコン酸クロルヘキシジンをCHXと記す。 For the measurement by Nanosite NS500 and ZetaView, about 5 mL of the sample was sampled with a syringe and applied to the sample injection port for measurement. The results are shown in Table 1. In Table 1, 50% nanobubble water is referred to as NB, a mixture of chlorhexidine gluconate having a final concentration of 0.2% and 50% nanobubble water is referred to as CHX + NB, and chlorhexidine gluconate having a final concentration of 0.2% is referred to as CHX.

Figure 2021091619
Figure 2021091619

その結果、表1に示すように、最終濃度0.2%グルコン酸クロルヘキシジンと50%ナノバブル水との混合物では、50%プラスナノバブル水からのナノバブル減衰が見られなかった。したがって、グルコン酸クロルヘキシジンはナノバブル特性に影響を与えず、ナノバブル水との併用が可能であることが示唆された。なお、ナノバブルを含まないCHXの測定結果は、不純物としてナノサイズの粒子がカウントされたものである。ナノバブル混合あり/なしとの差分を取ることにより、ナノバブル含有/不含を判断することができる。 As a result, as shown in Table 1, in the mixture of chlorhexidine gluconate having a final concentration of 0.2% and 50% nanobubble water, no nanobubble attenuation from 50% plus nanobubble water was observed. Therefore, it was suggested that chlorhexidine gluconate does not affect the nanobubble properties and can be used in combination with nanobubble water. The measurement result of CHX containing no nanobubbles is that nano-sized particles are counted as impurities. The presence / absence of nanobubbles can be determined by taking the difference between the presence / absence of nanobubble mixing.

[実施例3]
(ナノバブル水による根管象牙質細管浸透作用)
イヌ抜去歯前歯の擬似根管を#60まで根管拡大形成し、根尖をユニファスト(多目的常温重合レジン、製品名、(株)ジーシー製)にて閉鎖した。5%次亜塩素酸ナトリウム2mLおよび5mL生理食塩水で洗浄し、さらにスメアクリーン(3%EDTA水溶液、製品名、日本歯科薬品(株)製)を2分間根管内に適用し、4℃で生理食塩水内にて保存した。根管内をブローチ綿栓にて乾燥した。薬剤として、最終濃度0.006%(w/v)抗菌ナノパーティクル、0.2%グルコン酸クロルヘキシジン、0.02%塩化ベンザルコニウム、0.12%塩化セチルピリジニウム、最終濃度35μg/mLドキシサイクリン塩酸塩水和物を用いて、マイナスもしくはプラスナノバブル水と混合、あるいは薬剤単独(大塚蒸留水希釈)で用いた。さらに薬剤の浸透を検出するために、自家蛍光をもつテトラサイクリンを最終濃度5mg/mLで混合した。ピペットにて薬液を根管内に輸送して5分間適用し、根管象牙細管内に薬剤を浸透させた。生理食塩水にて洗浄後、ブローチ綿栓にて薬液を除去し、根管内を乾燥させた。歯は歯髄腔が平行になるように金属製の台にユーティリティーワックス(製品名、カボデンタルシステムズジャパン(株)製)、ユニファストIII(超速硬性常温重合レジン、製品名、(株)ジーシー製)にて固定した。ユニファストIIIが硬化したらゼーゲミクロトーム(製品名、来夏マイクロシステムズ(株)製)にて厚さ約300μmの切片標本を作製し、実体蛍光顕微鏡にて観察した。
[Example 3]
(Nano bubble water penetrates root canal dentin tubules)
The pseudo-root canal of the anterior tooth of the canal extracted tooth was expanded to # 60, and the apex was closed with Unifast (multipurpose room temperature polymerization resin, product name, manufactured by GC Corporation). Wash with 2 mL of 5% sodium hypochlorite and 5 mL saline, and apply smear clean (3% EDTA aqueous solution, product name, manufactured by Nippon Dental Co., Ltd.) into the root canal for 2 minutes at 4 ° C. It was stored in physiological saline. The inside of the root canal was dried with a brooch cotton plug. As a drug, final concentration 0.006% (w / v) antibacterial nanoparticles, 0.2% chlorhexidine gluconate, 0.02% benzalkonium chloride, 0.12% cetylpyridinium chloride, final concentration 35 μg / mL doxycycline hydrochloride Using salt hydrate, it was mixed with minus or plus nanobubble water, or used alone as a drug (diluted with Otsuka distilled water). Further, to detect drug penetration, autofluorescent tetracycline was mixed at a final concentration of 5 mg / mL. The drug solution was transported into the root canal with a pipette and applied for 5 minutes to allow the drug to penetrate into the root canal dentinal tubule. After washing with physiological saline, the chemical solution was removed with a brooch cotton plug, and the inside of the root canal was dried. The teeth are placed on a metal base so that the pulp cavities are parallel. Utility wax (product name, manufactured by Cabo Dental Systems Japan Co., Ltd.), Unifast III (ultrafast-hardening room temperature polymerization resin, product name, manufactured by GC Corporation). It was fixed at. When Unifast III was cured, a section specimen having a thickness of about 300 μm was prepared by Seege Microtome (product name, manufactured by Microsystems, Inc. next summer) and observed with a stereoscopic fluorescence microscope.

Figure 2021091619
Figure 2021091619

図5A〜図5Fは、ブタ歯根内の根管壁(RC)から象牙細管内深部に対して、蛍光薬剤(テトラサイクリン)を浸透させた蛍光実体顕微鏡写真である。また、表2は、象牙細管内深部に対する浸透度を3段階(++、+、−)で示したものである。図5および表3に示すように、抗菌ナノパーティクルに関しては、マイナスナノバブル水およびプラスナノバブル水とも蒸留水に比べて有意な象牙細管深部への浸透促進がみられた(B)。また、塩化ベンザルコニウムではナノバブルが正負のいずれに帯電しているかによって差はみられなかったが(D)、グルコン酸クロルヘキシジン(C)や塩化セチルピリジニウム(E)およびドキシサイクリン塩酸塩水和物(F)ではプラスナノバブル水はマイナスナノバブル水に比べて有意な浸透促進がみられた。これらの結果から、象牙細管内深部に対する抗菌剤の浸透促進効果は、プラスナノバブル水のほうがマイナスナノバブル水よりも優れるといえる。 5A-5F are fluorescence stereomicrographs in which a fluorescent agent (tetracycline) is infiltrated from the root canal wall (RC) in the pig tooth root to the deep part in the dentinal canal. In addition, Table 2 shows the penetrance into the deep part of the ivory canaliculus in three stages (++, +,-). As shown in FIGS. 5 and 3, with respect to antibacterial nanoparticles, both minus nanobubble water and plus nanobubble water showed significant promotion of penetration into the deep dentinal tubules as compared with distilled water (B). In benzalkonium chloride, there was no difference depending on whether the nanobubbles were charged positively or negatively (D), but chlorhexidine gluconate (C), cetylpyridinium chloride (E) and doxycycline hydrochloride hydrate (F). ), The plus nanobubble water showed a significant promotion of permeation as compared with the minus nanobubble water. From these results, it can be said that the effect of promoting the penetration of the antibacterial agent into the deep part of the dentinal tubule is superior to that of the plus nanobubble water than that of the minus nanobubble water.

[実施例4]
(ブタ根管象牙質スミヤー層除去)
割りやすいように予めDisc(研磨ディスク)で切れ目を入れたブタ歯の擬似根管をKファイル(製品名、マニー(株)製)にて#70まで根管拡大形成し、5%次亜塩素酸ナトリウム2mL及び3%過酸化水素水2mLにて交互洗浄した。5mL生理食塩水でさらに洗浄、4℃で生理食塩水内にて保存した。薬剤として、0.2%グルコン酸クロルヘキシジン、0.12%塩化セチルピリジニウムを用いて、マイナスもしくはプラスナノバブル水、あるいは大塚蒸留水と混合し、9種類のスミヤー層除去剤2mLを5分間適用し、スミヤー層を洗浄した。生理食塩水にて洗浄後、抜歯柑子にて半分に割り、2%グルタールアルデヒドにて12時間固定し、30、50、70、90、100%エタノールにて脱水後、白金10kVにて蒸着した。蒸着は、マグネトロンスパッタ装置(製品名:MSP−20−UM、(株)真空デバイス製)を用いて導電膜蒸着(スパッターコーティング)により行った。その後、それぞれの標本を走査電子顕微鏡(製品名:VE9800、(株)キーエンス製)にて、根管中央部のところを観察した。
[Example 4]
(Removal of porcine root canal dentin smear layer)
A pseudo root canal of a pig tooth that has been pre-cut with a Disc (polishing disc) to make it easier to break is formed by expanding the root canal to # 70 with a K file (product name, manufactured by Manny Co., Ltd.), and 5% hypochlorous acid. Alternate washing was performed with 2 mL of sodium acid acid and 2 mL of 3% hydrogen peroxide solution. It was further washed with 5 mL saline and stored in saline at 4 ° C. Using 0.2% chlorhexidine gluconate and 0.12% cetylpyridinium chloride as chemicals, mix with minus or plus nanobubble water or distilled water from Otsuka, and apply 2 mL of 9 types of smear layer remover for 5 minutes. The smear layer was washed. After washing with physiological saline, it was divided in half with tooth-extracted citrus, fixed with 2% glutaraldehyde for 12 hours, dehydrated with 30, 50, 70, 90, 100% ethanol, and then vapor-deposited with platinum 10 kV. .. The vapor deposition was carried out by conductive film deposition (sputter coating) using a magnetron sputtering apparatus (product name: MSP-20-UM, manufactured by Vacuum Device Co., Ltd.). Then, each specimen was observed at the central part of the root canal with a scanning electron microscope (product name: VE9800, manufactured by KEYENCE CORPORATION).

洗浄後の象牙細管数を計測したところ、スミヤー層は蒸留水ではほとんど除去できなかったが、単独で用いた場合(薬剤なし)、プラスナノバブル水はマイナスナノバブル水よりも有意にスミヤー層除去を促進する効果がみられた(##P<0.01)(図6A、図7)。一方、0.2%グルコン酸クロルヘキシジンおよび0.12%塩化セチルピリジニウムでは、プラスナノバブル水と併用した場合に、マイナスナノバブル水と併用した場合よりも有意にスミヤー層除去を促進する効果がみられた(P<0.05)(図6B、図6C、図7)。 When the number of ivory tubules after washing was measured, the smear layer could hardly be removed with distilled water, but when used alone (without chemicals), plus nanobubble water significantly promoted smear layer removal than minus nanobubble water. ( ## P <0.01) (Fig. 6A, Fig. 7). On the other hand, 0.2% chlorhexidine gluconate and 0.12% cetylpyridinium chloride had the effect of significantly promoting the removal of the smear layer when used in combination with plus nanobubble water than when used in combination with minus nanobubble water. ( # P <0.05) (FIGS. 6B, 6C, 7).

本発明は、う蝕治療、抜髄・感染根管治療、歯周病治療、口腔ケアに利用できる。 The present invention can be used for caries treatment, demyelination / infected root canal treatment, periodontal disease treatment, and oral care.

Claims (9)

抗菌剤と、ナノバブルとを含有しており、
前記ナノバブルは、その表面がプラスに帯電したプラスナノバブルであることを特徴とする、歯科口腔用組成物。
Contains antibacterial agents and nanobubbles,
The nanobubble is a composition for dentistry and oral cavity, characterized in that the surface thereof is a positively charged plus nanobubble.
前記ナノバブルのゼータ電位がプラスである、請求項1に記載の歯科口腔用組成物。 The dental or oral composition according to claim 1, wherein the zeta potential of the nanobubbles is positive. 前記プラスナノバブルの濃度が1×10〜1×10個/mLであり、
前記プラスナノバブルの平均気泡径が10〜300nmである、
請求項1または2に記載の歯科口腔用組成物。
The concentration of the plus nanobubbles is 1 × 10 6 to 1 × 10 9 cells / mL.
The average bubble diameter of the plus nanobubbles is 10 to 300 nm.
The dental or oral composition according to claim 1 or 2.
前記抗菌剤が、抗菌ナノパーティクル、抗生剤、抗菌薬、抗真菌剤、抗ウィルス剤、消毒剤、根管拡大剤、抗炎症剤、創傷治癒や組織再生を促進する生理活性物質および幹細胞由来セクレトーム・エクソゾーム・miRNAからなる群のいずれか一つ以上を含む請求項1または2に記載の歯科口腔用組成物。 The antibacterial agent is an antibacterial nanoparticle, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, a disinfectant, a root canal enlarger, an anti-inflammatory agent, a physiologically active substance that promotes wound healing and tissue regeneration, and a stem cell-derived secretome. The dental or oral composition according to claim 1 or 2, which comprises any one or more of the groups consisting of exosomes and miRNAs. 前記抗菌剤が、カチオン性抗菌剤である請求項1または2に記載の歯科口腔用組成物。 The dental or oral composition according to claim 1 or 2, wherein the antibacterial agent is a cationic antibacterial agent. 請求項1〜5のいずれか1項に記載の歯科口腔用組成物を含有する、歯の根管内の細菌感染治療用組成物。 A composition for treating bacterial infection in the root canal of a tooth, which comprises the composition for dental and oral cavity according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の歯科口腔用組成物を含有する、歯の歯周組織内の細菌感染治療用組成物。 A composition for treating bacterial infection in the periodontal tissue of a tooth, which comprises the composition for dental and oral cavity according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の歯科口腔用組成物を含有する、歯のう蝕の細菌感染治療用組成物。 A composition for treating bacterial infection of dental caries, which comprises the composition for dental and oral cavity according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の歯科口腔用組成物を含有する、舌苔の細菌感染治療用組成物。 A composition for treating bacterial infection of tongue coating, which comprises the composition for dental and oral cavity according to any one of claims 1 to 5.
JP2019221658A 2019-12-06 2019-12-06 Composition for treating infection in root canals and dentinal tubules of teeth Active JP7446099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019221658A JP7446099B2 (en) 2019-12-06 2019-12-06 Composition for treating infection in root canals and dentinal tubules of teeth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221658A JP7446099B2 (en) 2019-12-06 2019-12-06 Composition for treating infection in root canals and dentinal tubules of teeth

Publications (2)

Publication Number Publication Date
JP2021091619A true JP2021091619A (en) 2021-06-17
JP7446099B2 JP7446099B2 (en) 2024-03-08

Family

ID=76312988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221658A Active JP7446099B2 (en) 2019-12-06 2019-12-06 Composition for treating infection in root canals and dentinal tubules of teeth

Country Status (1)

Country Link
JP (1) JP7446099B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9241885B2 (en) 2004-01-29 2016-01-26 The Procter & Gamble Company Oral care compositions comprising increased bioavailable levels of quaternary ammonium antimicrobials
JP4144669B2 (en) 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 Method for producing nanobubbles
JP5544181B2 (en) 2010-01-29 2014-07-09 公立大学法人 滋賀県立大学 Electrochemical synthesis of ozone fine bubbles
JP2012217516A (en) 2011-04-05 2012-11-12 Cogit:Kk Roller for massage and roller type massage instrument using the same
JP5926891B2 (en) 2011-04-08 2016-05-25 ライオン株式会社 Oral care unit
JP2013180956A (en) 2012-02-29 2013-09-12 Sunstar Engineering Inc Bactericidal agent composition
WO2016084780A1 (en) 2014-11-24 2016-06-02 有限会社中島工業 Drug composition for accelerated penetration of affected area

Also Published As

Publication number Publication date
JP7446099B2 (en) 2024-03-08

Similar Documents

Publication Publication Date Title
Solovyeva et al. Cleaning effectiveness of root canal irrigation with electrochemically activated anolyte and catholyte solutions: a pilot study
Antunes et al. Comparative effects of final canal irrigation with chitosan and EDTA
WO2016084780A1 (en) Drug composition for accelerated penetration of affected area
Tay et al. Microporous, demineralized collagen matrices in intact radicular dentin created by commonly used calcium-depleting endodontic irrigants
JP7216003B2 (en) Accelerator for removal of deposits on teeth and oral cavity
Marais Cleaning efficacy of a new root canal irrigation solution: a preliminary evaluation
Kaptan et al. In vitro assessment of the recurrent doses of topical gaseous ozone in the removal of Enterococcus faecalis biofilms in root canals
Srinivasan et al. Ozone: A paradigm shift in dental therapy
Vandrangi et al. Multisonic ultracleaning in molars with the GentleWave system
Yao et al. In vitro and in vivo research of atmosphere pressure nonequilibrium plasmas on root canal disinfection: implication for alternative strategy for irrigation
Kim et al. Effect of two graphene derivatives on Enterococcus faecalis biofilms and cytotoxicity
JP7446099B2 (en) Composition for treating infection in root canals and dentinal tubules of teeth
Amaral et al. Evaluation of the effects of the solution used for electrochemical dissolution of nickel–titanium endodontic files on dentine structure, microhardness and cell viability
JP7050612B2 (en) Dental Oral Composition
Campos-Ibarra et al. Biocompatible antimicrobial irrigants and nanoparticles-sealers for endodontics
Lakshmaiah et al. Comparative Evaluation of Microhardness, Smear Layer Removal Efficacy and Depth of Penetration Using Punica granatum, Emblica officinalis and Sodium Hypochlorite As Endodontic Irrigants: An In Vitro Study
Sabry et al. Comparative study of the antibacterial effect of nano-silver irrigant, sodium hypochlorite and chlorhexidine against Enterococcus faecalis biofilm
Navarro-Escobar et al. Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine
Kishore et al. Determination of Antimicrobial Efficacy of Calcium hydroxide, Ozonated sesame oil and their combination as intra canal medicament against Enterococcus faecalis–A Study in Fathima Institute of Medical Sciences, Kadapa.
Dako et al. The use of calcium hydroxide as an intracanal medicament in the treatment of large periapical lesions. a review
Muni et al. Marginal Adaptation And Sealing Ability Evaluation Of New Nano materials As Root End Filling Material (An Invitro Study)
Hassan et al. Evaluation of antimicrobial efficacy of calcium hydroxide with different vehicles against Enterococcus faecalis, an in vitro study
Gunec et al. Comparison of different final irrigant agitation techniques for the removal of Enterococcus faecalis biofilms from root canals: an in vitro study
Sastika et al. Application of calcium hydroxide with vehicles relate to the pH change, calcium ion diffusion, roughness, and frequency of chemical compound in root canal
Soares et al. Mechanical and acid root treatment on periodontally affected human teeth-a scanning electronic microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150