JP2021091579A - Powder containing composite particle and method for producing the same, and resin composition containing the powder - Google Patents

Powder containing composite particle and method for producing the same, and resin composition containing the powder Download PDF

Info

Publication number
JP2021091579A
JP2021091579A JP2019223718A JP2019223718A JP2021091579A JP 2021091579 A JP2021091579 A JP 2021091579A JP 2019223718 A JP2019223718 A JP 2019223718A JP 2019223718 A JP2019223718 A JP 2019223718A JP 2021091579 A JP2021091579 A JP 2021091579A
Authority
JP
Japan
Prior art keywords
resin
particles
powder
volume
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019223718A
Other languages
Japanese (ja)
Other versions
JP7378284B2 (en
Inventor
祐輔 佐々木
Yusuke Sasaki
祐輔 佐々木
建治 宮田
Kenji Miyata
建治 宮田
道治 中嶋
Michiharu Nakajima
道治 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2019223718A priority Critical patent/JP7378284B2/en
Publication of JP2021091579A publication Critical patent/JP2021091579A/en
Application granted granted Critical
Publication of JP7378284B2 publication Critical patent/JP7378284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To simply prepare a heat dissipation member from powder containing boron nitride.SOLUTION: Powder contains a plurality of composite particles. Each of the plurality of composite particles contains aggregated particles in which a plurality of boron nitride primary particles are aggregated and a resin A. The resin A is arranged in a gap between the plurality of boron nitride primary particles in the aggregated particles, and there is no mass of the resin A on an outer surface of the aggregated particles.SELECTED DRAWING: Figure 2

Description

本開示は、複合粒子を含有する粉体及びその製造方法、並びに、該粉体を含有する樹脂組成物に関する。 The present disclosure relates to a powder containing composite particles, a method for producing the same, and a resin composition containing the powder.

パワーデバイス、トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、熱伝導率が高いセラミックス粉末を含有する放熱部材が用いられる。 In electronic components such as power devices, transistors, thyristors, and CPUs, it is an issue to efficiently dissipate heat generated during use. To solve this problem, a heat radiating member containing ceramic powder having high thermal conductivity is used.

セラミックス粉末としては、高熱伝導率、高絶縁性、低比誘電率等の特性を有している窒化ホウ素粉末が注目されている。窒化ホウ素粉末は、一般的に、窒化ホウ素の一次粒子が凝集してなる凝集粒子で構成されている。例えば、特許文献1には、凝集粒子の形状を一層球状化して充填性を高めると共に、粉末強度の向上を図り、さらには高純度化により、当該粉末を充填した伝熱シート等の絶縁性の向上および耐電圧の安定化を達成したとされる六方晶窒化ホウ素粉末が開示されている。 As the ceramic powder, boron nitride powder having characteristics such as high thermal conductivity, high insulation property, and low relative permittivity is attracting attention. Boron nitride powder is generally composed of agglomerated particles formed by agglomerating primary particles of boron nitride. For example, in Patent Document 1, the shape of the agglomerated particles is further spheroidized to improve the filling property, the powder strength is improved, and further, the purity is increased to improve the insulating property of the heat transfer sheet or the like filled with the powder. Hexagonal boron nitride powder, which is said to have achieved improvement and stabilization of withstand voltage, is disclosed.

特開2011−98882号公報Japanese Unexamined Patent Publication No. 2011-98882

窒化ホウ素粉末が放熱部材に用いられる場合、熱伝導率等の上記特性はもちろん重要であるが、窒化ホウ素の粉体の状態から簡便に放熱部材を作製できることが重要となる。そこで、本発明は、窒化ホウ素を含む粉体から簡便に放熱部材を作製することを目的とする。 When the boron nitride powder is used for the heat radiating member, the above-mentioned characteristics such as thermal conductivity are of course important, but it is important that the heat radiating member can be easily produced from the state of the boron nitride powder. Therefore, an object of the present invention is to easily produce a heat radiating member from a powder containing boron nitride.

本発明の一側面は、複数の複合粒子を含有する粉体であって、複数の複合粒子のそれぞれは、複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と、樹脂Aとを含み、樹脂Aが、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に配置されており、凝集粒子の外表面上に樹脂Aの塊が存在しない、粉体である。 One aspect of the present invention is a powder containing a plurality of composite particles, and each of the plurality of composite particles contains agglomerated particles formed by aggregating a plurality of boron nitride primary particles and resin A, and is a resin. A is a powder in which a plurality of boron nitride primary particles are arranged in the gaps between the agglomerated particles, and no lump of the resin A is present on the outer surface of the agglomerated particles.

この粉体に含まれる複合粒子では、窒化ホウ素一次粒子の凝集粒子内の窒化ホウ素一次粒子同士の隙間に樹脂Aが配置されているため、樹脂が凝集粒子内に存在しない場合に比べて、加圧加熱処理により複合粒子同士を結着させつつ樹脂Aを更に硬化させることができる。したがって、この粉体のみを用いて簡便に、樹脂A中に凝集粒子が分散された成形体(硬化体)を得ることができる。加えて、この複合粒子では、凝集粒子の外表面上に樹脂Aの塊が存在しないため、この粉体を含む成形体(硬化体)を作製したときに、窒化ホウ素の凝集粒子同士が接触しやすくなり、より高熱伝導率の成形体(硬化体)を得ることができる。 In the composite particles contained in this powder, since the resin A is arranged in the gaps between the boron nitride primary particles in the aggregated particles of the boron nitride primary particles, the resin A is added as compared with the case where the resin does not exist in the aggregated particles. The resin A can be further cured while binding the composite particles to each other by the pressure heat treatment. Therefore, a molded product (cured product) in which aggregated particles are dispersed in the resin A can be easily obtained by using only this powder. In addition, in this composite particle, since the lump of resin A does not exist on the outer surface of the agglomerated particles, the agglomerated particles of boron nitride come into contact with each other when a molded product (cured product) containing this powder is produced. This makes it easier to obtain a molded product (cured product) with higher thermal conductivity.

本発明の他の一側面は、樹脂Bと、上記の粉体と、を含有する樹脂組成物である。樹脂Bは、樹脂Aと異なる樹脂であってよい。 Another aspect of the present invention is a resin composition containing the resin B and the above-mentioned powder. The resin B may be a resin different from the resin A.

本発明の他の一側面は、複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と樹脂Aとを混合して組成物を用意する工程aと、組成物を粉砕する工程bと、を備え、工程aにおいて、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間の体積に対して、0.7〜2.0倍の体積の樹脂Aを混合する、粉体の製造方法である。 Another aspect of the present invention includes a step a of mixing agglomerated particles formed by aggregating a plurality of boron nitride primary particles and a resin A to prepare a composition, and a step b of pulverizing the composition. In step a, the powder production method comprises mixing 0.7 to 2.0 times the volume of the resin A with respect to the volume of the gaps between the plurality of boron nitride primary particles in the aggregated particles.

本発明によれば、窒化ホウ素を含む粉体から簡便に放熱部材を作製することができる。 According to the present invention, a heat radiating member can be easily produced from a powder containing boron nitride.

実施例の複合粒子(粉体)の外観を観察したSEM画像である。It is an SEM image which observed the appearance of the composite particle (powder) of an Example. 実施例の複合粒子(粉体)の断面を観察したSEM画像である。It is an SEM image which observed the cross section of the composite particle (powder) of an Example. 窒化ホウ素一次粒子の凝集粒子の外観を観察したSEM画像である。It is an SEM image which observed the appearance of the aggregated particle of the boron nitride primary particle.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

一実施形態に係る粉体は、複数の複合粒子を含有する。当該粉体は、複数の複合粒子の集合体ということもできる。なお、粉体とは、複数の複合粒子が別個独立に存在している状態を意味し、例えば、複数の複合粒子の略全部がバインダー(例えば樹脂)によって互いに結合しているような状態とは区別される。粉体は、それ自体が流動性を示し、任意の安息角を有するものということもできる。 The powder according to one embodiment contains a plurality of composite particles. The powder can also be said to be an aggregate of a plurality of composite particles. The powder means a state in which a plurality of composite particles exist separately and independently, and for example, a state in which substantially all of the plurality of composite particles are bonded to each other by a binder (for example, a resin). Distinguished. It can be said that the powder itself exhibits fluidity and has an arbitrary angle of repose.

複合粒子は、窒化ホウ素の粒子と樹脂との複合体である。より具体的には、複合粒子のそれぞれは、複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と、樹脂Aとを含んでいる。 The composite particle is a composite of boron nitride particles and a resin. More specifically, each of the composite particles contains agglomerated particles formed by aggregating a plurality of boron nitride primary particles and resin A.

窒化ホウ素一次粒子は、例えば鱗片状の六方晶窒化ホウ素粒子であってよい。この場合、窒化ホウ素一次粒子の長手方向の長さは、例えば、1μm以上であってよく、10μm以下であってよい。 The boron nitride primary particles may be, for example, scaly hexagonal boron nitride particles. In this case, the length of the boron nitride primary particles in the longitudinal direction may be, for example, 1 μm or more and 10 μm or less.

凝集粒子の平均径(平均粒子径)は、例えば、20μm以上、40μm以上、又は50μm以上であってよく、150μm以下、120μm以下、又は100μm以下であってよい。凝集粒子の平均径は、レーザー回折散乱法により測定される体積平均径を意味する。 The average diameter (average particle diameter) of the agglomerated particles may be, for example, 20 μm or more, 40 μm or more, or 50 μm or more, and may be 150 μm or less, 120 μm or less, or 100 μm or less. The average diameter of the agglomerated particles means the volume average diameter measured by the laser diffraction / scattering method.

凝集粒子内には、複数の窒化ホウ素一次粒子同士の隙間(空隙)が存在している。樹脂Aは、この凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に配置されている。樹脂Aは、窒化ホウ素一次粒子同士の隙間の一部に配置されていてよく、隙間の全部に配置されていてもよい。窒化ホウ素一次粒子同士の隙間のできる限り多くに樹脂Aが配置されていることが好ましい。複合粒子の断面における隙間の面積割合は、好ましくは、30%以下、20%以下、10%以下、又は5%以下であってよい。当該面積割合は、複合粒子の断面を観察したSEM像(例えば図2のようなSEM像)において、複合粒子の断面積に対する隙間の断面積の割合(隙間の断面積/複合粒子の断面積)として測定され、任意の100個の複合粒子について当該測定を行った面積割合の平均値として定義される。 In the agglomerated particles, there are gaps (voids) between the plurality of boron nitride primary particles. The resin A is arranged in the gaps between the plurality of boron nitride primary particles in the aggregated particles. The resin A may be arranged in a part of the gap between the boron nitride primary particles, or may be arranged in the entire gap. It is preferable that the resin A is arranged as much as possible in the gaps between the boron nitride primary particles. The area ratio of the gap in the cross section of the composite particle is preferably 30% or less, 20% or less, 10% or less, or 5% or less. The area ratio is the ratio of the cross-sectional area of the gap to the cross-sectional area of the composite particle (cross-sectional area of the gap / cross-sectional area of the composite particle) in the SEM image (for example, the SEM image as shown in FIG. 2) in which the cross section of the composite particle is observed. Is measured as, and is defined as the average value of the area ratio of any 100 composite particles in which the measurement was performed.

樹脂Aは、凝集粒子内の隙間に加えて、凝集粒子の外表面上の一部又は全部にも配置されていてよい。ただし、凝集粒子の外表面上に、樹脂Aの塊は存在しない。ここで、樹脂Aの塊とは、凝集粒子の外表面からの高さが3μm以上である塊状の樹脂Aを意味する。樹脂Aの塊の有無は、複合粒子の断面を観察したSEM像に基づいて判断される。 The resin A may be arranged on a part or all of the outer surface of the agglomerated particles in addition to the gaps in the agglomerated particles. However, there is no lump of resin A on the outer surface of the agglomerated particles. Here, the lump of the resin A means a lumpy resin A having a height of 3 μm or more from the outer surface of the agglomerated particles. The presence or absence of lumps of the resin A is determined based on the SEM image obtained by observing the cross section of the composite particles.

樹脂Aは、熱硬化性樹脂であってよく、熱可塑性樹脂であってもよい。樹脂Aが熱硬化性樹脂である場合、樹脂Aは、半硬化した状態であってよく、完全硬化した状態であってもよい。半硬化した状態の樹脂Aは、硬化した樹脂Aと未硬化の樹脂Aとの両方を含んでいる。 The resin A may be a thermosetting resin or a thermoplastic resin. When the resin A is a thermosetting resin, the resin A may be in a semi-cured state or may be in a completely cured state. The semi-cured resin A contains both the cured resin A and the uncured resin A.

樹脂Aとしては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、及びAES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂が挙げられる。 Examples of the resin A include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate, and polyethylene terephthalate. , Polyphenylene ether, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, and AES (Acrylonitrile, ethylene, propylene, diene rubber-styrene) resin can be mentioned.

凝集粒子内の隙間、及び、凝集粒子の外表面上には、樹脂Aに加えてその他の成分が存在していてもよい。すなわち、複合粒子は、凝集粒子及び樹脂Aに加えて、その他の成分を更に含んでいてもよい。その他の成分としては、例えば、硬化剤、硬化促進剤(硬化触媒)、カップリング剤、湿潤分散剤、及び表面調整剤が挙げられる。 In addition to the resin A, other components may be present in the gaps in the agglomerated particles and on the outer surface of the agglomerated particles. That is, the composite particles may further contain other components in addition to the agglomerated particles and the resin A. Examples of other components include a curing agent, a curing accelerator (curing catalyst), a coupling agent, a wet dispersant, and a surface conditioner.

硬化剤は、樹脂Aの種類によって適宜選択される。例えば、樹脂Aがエポキシ樹脂である場合、硬化剤としては、フェノールノボラック化合物、酸無水物、アミノ化合物、及びイミダゾール化合物が挙げられる。硬化剤の含有量は、樹脂A 100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。 The curing agent is appropriately selected depending on the type of resin A. For example, when the resin A is an epoxy resin, examples of the curing agent include phenol novolac compounds, acid anhydrides, amino compounds, and imidazole compounds. The content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin A.

硬化促進剤(硬化触媒)としては、例えば、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルフォスフェイト等のリン系硬化促進剤、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール系硬化促進剤、及び、三フッ化ホウ素モノエチルアミン等のアミン系硬化促進剤が挙げられる。 Examples of the curing accelerator (curing catalyst) include phosphorus-based curing accelerators such as tetraphenylphosphonium tetraphenylborate and triphenylphosphate, and imidazole-based curing accelerators such as 2-phenyl-4,5-dihydroxymethylimidazole. Examples thereof include amine-based curing accelerators such as boron trifluoride monoethylamine.

カップリング剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、及びアルミネート系カップリング剤が挙げられる。これらのカップリング剤に含まれる化学結合基としては、例えば、ビニル基、エポキシ基、アミノ基、メタクリル基、及びメルカプト基が挙げられる。 Examples of the coupling agent include a silane-based coupling agent, a titanate-based coupling agent, and an aluminate-based coupling agent. Examples of the chemical bonding group contained in these coupling agents include a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group.

湿潤分散剤としては、例えば、リン酸エステル塩、カルボン酸エステル、ポリエステル、アクリル共重合物、及びブロック共重合物が挙げられる。 Wet dispersants include, for example, phosphate ester salts, carboxylic acid esters, polyesters, acrylic copolymers, and block copolymers.

表面調整剤としては、例えば、アクリル系表面調整剤、シリコーン系表面調整剤、ビニル系調整剤、及びフッ素系表面調整剤が挙げられる。 Examples of the surface conditioner include an acrylic surface conditioner, a silicone type surface conditioner, a vinyl type conditioner, and a fluorine type surface conditioner.

複合粒子中の凝集粒子(窒化ホウ素一次粒子)の含有量は、複合粒子の全体積を基準として、例えば、30体積%以上、40体積%以上、又は50体積%以上であってよく、80体積%以下、70体積%以下、又は60体積%以下であってよい。 The content of the agglomerated particles (boron nitride primary particles) in the composite particles may be, for example, 30% by volume or more, 40% by volume or more, or 50% by volume or more, based on the total volume of the composite particles, and may be 80 volumes. % Or less, 70% by volume or less, or 60% by volume or less.

複合粒子中の樹脂Aの含有量は、複合粒子の全体積を基準として、例えば、30体積%以上、40体積%以上、又は50体積%以上であってよく、70体積%以下、60体積%以下、又は55体積%以下であってよい。 The content of the resin A in the composite particles may be, for example, 30% by volume or more, 40% by volume or more, or 50% by volume or more, and 70% by volume or less, 60% by volume, based on the total volume of the composite particles. It may be less than or equal to 55% by volume or less.

複合粒子中のその他の成分の含有量(合計の含有量)は、複合粒子の全体積を基準として、例えば、10体積%以下、5体積%以下、3体積%以下、又は1体積%以下であってよく、0体積%であってもよい。 The content (total content) of other components in the composite particles is, for example, 10% by volume or less, 5% by volume or less, 3% by volume or less, or 1% by volume or less based on the total volume of the composite particles. It may be present, and may be 0% by volume.

粉体(複合粒子)は、例えば、凝集粒子及び樹脂Aを混合して組成物を用意する工程aと、組成物を粉砕する工程bとを備える製造方法により製造される。樹脂Aが熱硬化性樹脂である場合、当該製造方法は、工程aと工程bとの間に、組成物中の樹脂Aを硬化させる工程cを更に備えていてよい。 The powder (composite particles) is produced, for example, by a production method including a step a of mixing agglomerated particles and a resin A to prepare a composition, and a step b of pulverizing the composition. When the resin A is a thermosetting resin, the production method may further include a step c for curing the resin A in the composition between the steps a and b.

工程aで用いられる凝集粒子は、公知の方法により製造できる。工程aでは、凝集粒子及び樹脂Aに加えて、必要に応じて上述したその他の成分を更に混合してもよく、溶媒(例えば樹脂Aを溶解させる溶媒)を更に混合してもよい。溶媒としては、例えば、アルコール系溶媒、グリコールエーテル系溶媒、芳香族系溶剤、及びケトン系溶剤が挙げられる。アルコール系溶媒としては、例えば、イソプロピルアルコール及びジアセトンアルコールが挙げられる。グリコールエーテル系溶媒としては、例えば、エチルセロソルブ及びブチルセロソルブが挙げられる。芳香族系溶剤としては、例えば、トルエン及びキシレンが挙げられる。ケトン系溶剤としては、例えば、メチルエチルケトン及びメチルイソブチルケトンが挙げられる。 The agglomerated particles used in step a can be produced by a known method. In step a, in addition to the agglomerated particles and the resin A, the above-mentioned other components may be further mixed if necessary, or a solvent (for example, a solvent for dissolving the resin A) may be further mixed. Examples of the solvent include alcohol solvents, glycol ether solvents, aromatic solvents, and ketone solvents. Examples of the alcohol solvent include isopropyl alcohol and diacetone alcohol. Examples of the glycol ether solvent include ethyl cellosolve and butyl cellosolve. Examples of the aromatic solvent include toluene and xylene. Examples of the ketone solvent include methyl ethyl ketone and methyl isobutyl ketone.

工程aにおいて、樹脂A(及び必要に応じて用いられるその他の成分)が、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に入り込むと共に、凝集粒子の外表面上にも配置される。このとき、樹脂Aの塊が生じないように、工程aにおいて凝集粒子に対して混合する樹脂Aの量を適切に設定する必要がある。具体的には、樹脂Aの配合量は、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間の体積に対して、好ましくは0.7倍以上、より好ましくは1.0倍以上、更に好ましくは1.3倍以上、特に好ましくは1.6倍以上の体積であり、好ましくは2.0倍以下、より好ましくは1.9倍以下、更に好ましくは1.8倍以下の体積であり、0.7〜2.0倍、0.7〜1.9倍、0.7〜1.8倍、1.0〜2.0倍、1.0〜1.9倍、1.0〜1.8倍、1.3〜2.0倍、1.3〜1.9倍、1.3〜1.8倍、1.6〜2.0倍、1.6〜1.9倍、又は1.6〜1.8倍の体積であってよい。 In step a, the resin A (and other components used as needed) enters the gaps between the plurality of boron nitride primary particles in the aggregated particles and is also arranged on the outer surface of the aggregated particles. At this time, it is necessary to appropriately set the amount of the resin A to be mixed with the agglomerated particles in the step a so that the lump of the resin A does not occur. Specifically, the blending amount of the resin A is preferably 0.7 times or more, more preferably 1.0 times or more, still more preferably 1.0 times or more, based on the volume of the gap between the plurality of boron nitride primary particles in the aggregated particles. Is 1.3 times or more, particularly preferably 1.6 times or more, preferably 2.0 times or less, more preferably 1.9 times or less, still more preferably 1.8 times or less. 0.7 to 2.0 times, 0.7 to 1.9 times, 0.7 to 1.8 times, 1.0 to 2.0 times, 1.0 to 1.9 times, 1.0 to 1 8.8 times, 1.3 to 2.0 times, 1.3 to 1.9 times, 1.3 to 1.8 times, 1.6 to 2.0 times, 1.6 to 1.9 times, or The volume may be 1.6 to 1.8 times.

工程bにおいて、組成物を粉砕する方法は、例えば凍結粉砕であってよい。凍結粉砕は、例えば、組成物を液体窒素で凍結した状態で粉砕する。粉砕する際の条件は、複合粒子同士が分離するように適宜選択される。具体的には、例えば、凍結粉砕機を用いて、1500〜3500rpmで1〜30秒間の条件で粉砕する。 In step b, the method for pulverizing the composition may be, for example, freeze pulverization. In freeze pulverization, for example, the composition is pulverized in a state of being frozen in liquid nitrogen. The conditions for pulverization are appropriately selected so that the composite particles are separated from each other. Specifically, for example, a freeze crusher is used to grind at 1500 to 3500 rpm for 1 to 30 seconds.

工程cにおいて樹脂Aを硬化させる方法は、樹脂A(及び必要に応じて用いられる硬化剤)の種類に応じて適宜選択される。例えば、樹脂Aがエポキシ樹脂であり、上述した硬化剤が共に用いられる場合、工程cでは、加熱により樹脂Aを硬化させることができる。工程aにおいて溶媒を用いる場合は、工程cにおいて、樹脂Aを硬化させると共に、当該溶媒を揮発させてもよい。工程cでは、樹脂Aを半硬化させてよく、完全硬化させてもよい。 The method for curing the resin A in the step c is appropriately selected depending on the type of the resin A (and the curing agent used if necessary). For example, when the resin A is an epoxy resin and the above-mentioned curing agent is used together, the resin A can be cured by heating in the step c. When a solvent is used in the step a, the resin A may be cured and the solvent may be volatilized in the step c. In step c, the resin A may be semi-cured or completely cured.

工程cでは、樹脂Aを硬化させる前に、工程aで用意した組成物をシート状に成形してもよい。具体的には、例えば、フィルムアプリケーターを用いて、当該組成物を基材上に塗工することにより、50〜400μmの厚さのシート状に成形してよい。 In the step c, the composition prepared in the step a may be formed into a sheet before the resin A is cured. Specifically, for example, a film applicator may be used to coat the composition on a substrate to form a sheet having a thickness of 50 to 400 μm.

以上説明した粉体に含まれる複合粒子では、窒化ホウ素一次粒子の凝集粒子内の窒化ホウ素一次粒子同士の隙間に樹脂Aが配置されているため、樹脂が凝集粒子内に存在しない場合に比べて、加圧加熱処理により複合粒子同士を結着させつつ樹脂Aを更に硬化させることができる。したがって、この粉体のみを用いて簡便に、樹脂A中に凝集粒子が分散された成形体(硬化体)を得ることができる。このような成形体(硬化体)は、放熱部材に好適に用いられる。 In the composite particles contained in the powder described above, since the resin A is arranged in the gaps between the boron nitride primary particles in the aggregated particles of the boron nitride primary particles, compared with the case where the resin does not exist in the aggregated particles. The resin A can be further cured while binding the composite particles to each other by the pressure heat treatment. Therefore, a molded product (cured product) in which aggregated particles are dispersed in the resin A can be easily obtained by using only this powder. Such a molded body (cured body) is preferably used as a heat radiating member.

また、凝集粒子の表面に樹脂の塊が存在する場合、成形体(硬化体)を作製したときに、凝集粒子間に樹脂が存在しやすくなり、この樹脂によって凝集粒子同士の接触が妨げられるおそれがある。これに対し、上述した複合粒子では、凝集粒子の外表面上に樹脂Aの塊が存在しないため、この粉体を含む成形体(硬化体)を作製したときに、凝集粒子同士が接触しやすくなり、凝集粒子の表面に樹脂の塊が存在する場合に比べて、より高熱伝導率の成形体(硬化体)を得ることができる。 Further, when a lump of resin is present on the surface of the agglomerated particles, the resin is likely to be present between the agglomerated particles when a molded product (cured product) is produced, and this resin may prevent the agglomerated particles from coming into contact with each other. There is. On the other hand, in the above-mentioned composite particles, since the lump of resin A does not exist on the outer surface of the aggregated particles, the aggregated particles easily come into contact with each other when a molded body (cured product) containing this powder is produced. Therefore, a molded product (cured product) having a higher thermal conductivity can be obtained as compared with the case where a resin mass is present on the surface of the aggregated particles.

粉体は、複合粒子のみからなっていてよく、複合粒子に加えて、その他の粒子を更に含有していてもよい。その他の粒子は、例えば無機材料で構成されていてよい。無機材料としては、例えば、窒化ホウ素、窒化アルミニウム、窒化珪素、酸化アルミニウム、二酸化ケイ素、酸化マグネシウム、炭化珪素、金属アルミニウム、及び黒鉛が挙げられる。粉体中の複合粒子の含有量は、粉体の全体積を基準として、例えば、40体積%以上、50体積%以上、60体積%以上、70体積%以上、80体積%以上、又は90体積%以上であってよい。 The powder may consist of only composite particles, and may further contain other particles in addition to the composite particles. The other particles may be composed of, for example, an inorganic material. Examples of the inorganic material include boron nitride, aluminum nitride, silicon nitride, aluminum oxide, silicon dioxide, magnesium oxide, silicon carbide, metallic aluminum, and graphite. The content of the composite particles in the powder is, for example, 40% by volume or more, 50% by volume or more, 60% by volume or more, 70% by volume or more, 80% by volume or more, or 90% by volume based on the total volume of the powder. It may be% or more.

その他の粒子は、複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と、樹脂とを含み、当該樹脂が、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に配置されており、凝集粒子の外表面上に当該樹脂の塊が存在する粒子(すなわち、凝集粒子の外表面上に樹脂の塊が存在すること以外は、上記の複合粒子と同様の構成を有する粒子)であってもよい。この場合、上記の複合粒子の個数割合は、多くの凝集粒子同士が接触することができ、凝集粒子間の樹脂による熱伝導性の低下を抑制できる観点から、上記の複合粒子と樹脂の塊を有する粒子との合計を基準として、好ましくは、70個数%以上、80個数%以上、又は90個数%以上である。当該個数割合は、SEMにより粒子100個の断面を観察して樹脂の塊の有無を判断し、樹脂の塊を有さない上記複合粒子の個数から算出される。 Other particles include agglomerated particles formed by aggregating a plurality of boron nitride primary particles and a resin, and the resin is arranged in a gap between a plurality of boron nitride primary particles in the agglomerated particles, and the agglomerated particles. The particles may be particles in which the resin lumps are present on the outer surface of the above-mentioned composite particles (that is, particles having the same configuration as the above-mentioned composite particles except that the resin lumps are present on the outer surface of the aggregated particles). .. In this case, the number ratio of the above-mentioned composite particles is such that many agglomerated particles can come into contact with each other and the decrease in thermal conductivity due to the resin between the agglomerated particles can be suppressed. It is preferably 70% by number or more, 80% by number or more, or 90% by number or more based on the total amount of the particles. The number ratio is calculated from the number of the composite particles having no resin lumps by observing the cross section of 100 particles by SEM to determine the presence or absence of resin lumps.

本発明の他の一実施形態は、上記の粉体(複合粒子)と、樹脂Bと、を含有する樹脂組成物である。このような樹脂組成物も、放熱部材として好適に用いられる。 Another embodiment of the present invention is a resin composition containing the above powder (composite particles) and resin B. Such a resin composition is also preferably used as a heat radiating member.

樹脂Bは、上述した樹脂Aと同一の樹脂であってよく、樹脂Aと異なる樹脂であってもよく、放熱部材に求められる特性を得やすい観点から、好ましくは樹脂Aと異なる樹脂である。樹脂Bの例は、樹脂Aの例として説明した樹脂と同じである。 The resin B may be the same resin as the resin A described above, or may be a resin different from the resin A, and is preferably a resin different from the resin A from the viewpoint of easily obtaining the characteristics required for the heat radiating member. The example of the resin B is the same as the resin described as the example of the resin A.

樹脂組成物中の複合粒子の含有量は、樹脂組成物の全体積を基準として、樹脂組成物の熱伝導率を向上させ、優れた放熱性能が得られやすい観点から、好ましくは、30体積%以上、40体積%以上、50体積%以上、又は60体積%以上であってよく、絶縁性及び機械強度の低下を抑制できる観点から、好ましくは、85体積%以下又は80体積%以下であってよい。 The content of the composite particles in the resin composition is preferably 30% by volume from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance based on the total volume of the resin composition. The above may be 40% by volume or more, 50% by volume or more, or 60% by volume or more, and is preferably 85% by volume or less or 80% by volume or less from the viewpoint of suppressing a decrease in insulating property and mechanical strength. Good.

樹脂組成物中の樹脂Bの含有量は、樹脂組成物の全体積を基準として、例えば、15体積%以上、20体積%以上、30体積%以上、又は40体積%以上であってよく、70体積%以下又は60体積%以下であってよい。 The content of the resin B in the resin composition may be, for example, 15% by volume or more, 20% by volume or more, 30% by volume or more, or 40% by volume or more, based on the total volume of the resin composition. It may be 50% by volume or less or 60% by volume or less.

樹脂組成物は、複合粒子及び樹脂B以外のその他の成分を更に含有してもよい。その他の成分は、例えば、樹脂Bを硬化させる硬化剤を更に含有してもよい。硬化剤は、樹脂Bの種類に応じて適宜選択される。硬化剤の含有量は、樹脂B 100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。 The resin composition may further contain composite particles and other components other than the resin B. Other components may further contain, for example, a curing agent that cures the resin B. The curing agent is appropriately selected according to the type of resin B. The content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin B.

樹脂組成物中のその他の成分の含有量(合計の含有量)は、樹脂組成物の全体積を基準として、例えば、10体積%以下、5体積%以下、3体積%以下、又は1体積%以下であってよく、0体積%であってもよい。 The content (total content) of other components in the resin composition is, for example, 10% by volume or less, 5% by volume or less, 3% by volume or less, or 1% by volume based on the total volume of the resin composition. It may be less than or equal to 0% by volume.

以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

窒化ホウ素一次粒子の凝集粒子(平均粒径:87μm、空隙率:49%)50体積部と、エポキシ樹脂(DIC社製、製品名:HP4032)41.5体積部と、硬化剤(DIC社製、製品名:VH4150)5.1体積部と、2種の硬化促進剤(硬化触媒)(北興化学社製、製品名:TPP)0.3体積部及び(四国化成工業社製、製品名:2PHZ−PW)0.5体積部と、カップリング剤(東レ・ダウコーニング社製、製品名:Z6040)1.6体積部と、湿潤分散剤(ビックケミージャパン社製、製品名:DIS−111)0.3体積部と、表面調整剤(ビックケミージャパン社製、製品名:BYK−300)0.4体積部と、これらの各成分の合計100質量部に対して、揮発成分である溶媒(東京化成工業社製、製品名:ジアセトンアルコール)6.5質量部とを、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」を用いて、公転速度2000rpm、自転速度800rpmで×2分間)の条件で混練して組成物を得た。 Aggregated particles of boron nitride primary particles (average particle size: 87 μm, void ratio: 49%) 50 parts by volume, epoxy resin (manufactured by DIC, product name: HP4032) 41.5 parts by volume, and curing agent (manufactured by DIC) , Product name: VH4150) 5.1 parts by volume, 2 types of curing accelerator (curing catalyst) (manufactured by Hokuko Chemical Co., Ltd., product name: TPP) 0.3 parts by volume and (manufactured by Shikoku Kasei Kogyo Co., Ltd., product name: 2PHZ-PW) 0.5 part by volume, coupling agent (manufactured by Toray Dow Corning, product name: Z6040) 1.6 parts by volume, wet dispersant (manufactured by Big Chemie Japan, product name: DIS-111) ) 0.3 parts by volume, 0.4 parts by volume of surface conditioner (manufactured by Big Chemie Japan, product name: BYK-300), and a solvent that is a volatile component with respect to a total of 100 parts by volume of each of these components. (Manufactured by Tokyo Kasei Kogyo Co., Ltd., product name: diacetone alcohol) 6.5 parts by volume using a planetary stirrer (Sinky's "Awatori Rentaro AR-250") at a revolution speed of 2000 rpm and a rotation speed of 800 rpm. The composition was obtained by kneading under the condition of (× 2 minutes).

続いて、フィルムアプリケーターを用いて、得られた組成物を厚さ100μmのシート状に成形した後、熱風乾燥機を用いて、60℃で30分間及び100℃で70分間の条件で、エポキシ樹脂を半硬化させた。 Subsequently, the obtained composition was formed into a sheet having a thickness of 100 μm using a film applicator, and then an epoxy resin was used under the conditions of 60 ° C. for 30 minutes and 100 ° C. for 70 minutes using a hot air dryer. Was semi-cured.

続いて、凍結粉砕機(安井器機株式会社社製、PV1001(S))を用いて、半硬化させた後のシート状組成物3gに対して、2800rpmで15秒間の条件で凍結粉砕を行った。これにより、複合粒子からなる粉体を得た。 Subsequently, using a freeze crusher (PV1001 (S) manufactured by Yasui Kiki Co., Ltd.), 3 g of the semi-cured sheet-like composition was freeze-crushed at 2800 rpm for 15 seconds. .. As a result, a powder composed of composite particles was obtained.

得られた複合粒子(粉体)の外観を観察したSEM画像を図1に示す。また、得られた複合粒子(粉体)4個の断面をそれぞれ観察したSEM画像のうちの一つを図2に示す。比較のため、窒化ホウ素一次粒子の凝集粒子(樹脂を含まない状態)の外観を観察したSEM画像を図3に示す。なお、図1(a)及び図3(a)は500倍、図1(b)及び図3(b)は2000倍、図2は1000倍でのSEM画像である。 FIG. 1 shows an SEM image of observing the appearance of the obtained composite particles (powder). Further, FIG. 2 shows one of the SEM images obtained by observing the cross sections of each of the four obtained composite particles (powder). For comparison, FIG. 3 shows an SEM image of the appearance of aggregated particles (without resin) of the boron nitride primary particles. 1 (a) and 3 (a) are SEM images at 500 times, FIGS. 1 (b) and 3 (b) are 2000 times, and FIG. 2 is 1000 times SEM images.

図1及び図2(更には図3との比較)から分かるとおり、得られた複合粒子では、エポキシ樹脂が、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に配置されていると共に、凝集粒子の外表面にも配置されている。また、図2から分かるとおり、凝集粒子の外表面上に、エポキシ樹脂の塊は存在していない。観察した4個の複合粒子のうち残りの3個の複合粒子についても同様であった。 As can be seen from FIGS. 1 and 2 (further, comparison with FIG. 3), in the obtained composite particles, the epoxy resin is arranged in the gaps between the plurality of boron nitride primary particles in the aggregated particles and is aggregated. It is also placed on the outer surface of the particles. Further, as can be seen from FIG. 2, no lump of epoxy resin is present on the outer surface of the agglomerated particles. The same was true for the remaining 3 composite particles out of the 4 composite particles observed.

また、複合粒子の密度を水中置換法(アルキメデス法)により測定したところ、理論密度1.735g/cmと略同じであった。このことからも、エポキシ樹脂が、凝集粒子内の複数の窒化ホウ素一次粒子同士の隙間に配置されているといえる。 Moreover, when the density of the composite particle was measured by the underwater substitution method (Archimedes method), it was substantially the same as the theoretical density of 1.735 g / cm 3. From this, it can be said that the epoxy resin is arranged in the gaps between the plurality of boron nitride primary particles in the aggregated particles.

Claims (4)

複数の複合粒子を含有する粉体であって、
前記複数の複合粒子のそれぞれは、複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と、樹脂Aとを含み、
前記樹脂Aが、前記凝集粒子内の前記複数の窒化ホウ素一次粒子同士の隙間に配置されており、
前記凝集粒子の外表面上に前記樹脂Aの塊が存在しない、粉体。
A powder containing a plurality of composite particles
Each of the plurality of composite particles contains agglomerated particles formed by aggregating a plurality of boron nitride primary particles and resin A.
The resin A is arranged in the gaps between the plurality of boron nitride primary particles in the aggregated particles.
A powder in which no lump of the resin A is present on the outer surface of the agglomerated particles.
樹脂Bと、請求項1に記載の粉体と、を含有する樹脂組成物。 A resin composition containing the resin B and the powder according to claim 1. 前記樹脂Bが前記樹脂Aと異なる樹脂である、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the resin B is a resin different from the resin A. 複数の窒化ホウ素一次粒子が凝集してなる凝集粒子と樹脂Aとを混合して組成物を用意する工程aと、
前記組成物を粉砕する工程bと、を備え、
前記工程aにおいて、前記凝集粒子内の前記複数の窒化ホウ素一次粒子同士の隙間の体積に対して、0.7〜2.0倍の体積の前記樹脂Aを混合する、粉体の製造方法。
Step a of preparing a composition by mixing the agglomerated particles formed by aggregating a plurality of boron nitride primary particles and the resin A,
The step b of pulverizing the composition is provided.
A method for producing a powder, wherein in the step a, the resin A having a volume 0.7 to 2.0 times the volume of the gaps between the plurality of boron nitride primary particles in the aggregated particles is mixed.
JP2019223718A 2019-12-11 2019-12-11 Powder containing composite particles, method for producing the same, and resin composition containing the powder Active JP7378284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223718A JP7378284B2 (en) 2019-12-11 2019-12-11 Powder containing composite particles, method for producing the same, and resin composition containing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223718A JP7378284B2 (en) 2019-12-11 2019-12-11 Powder containing composite particles, method for producing the same, and resin composition containing the powder

Publications (2)

Publication Number Publication Date
JP2021091579A true JP2021091579A (en) 2021-06-17
JP7378284B2 JP7378284B2 (en) 2023-11-13

Family

ID=76311667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223718A Active JP7378284B2 (en) 2019-12-11 2019-12-11 Powder containing composite particles, method for producing the same, and resin composition containing the powder

Country Status (1)

Country Link
JP (1) JP7378284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127729A1 (en) * 2021-12-27 2023-07-06 デンカ株式会社 Boron nitride particles and heat dissipation sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119198A1 (en) * 2014-02-05 2015-08-13 三菱化学株式会社 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2015195292A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
JP2016127046A (en) * 2014-12-26 2016-07-11 住友ベークライト株式会社 Granulated powder, resin composition for heat dissipation, heat dissipation sheet, semiconductor device, and heat dissipation member
JP2017057098A (en) * 2015-09-15 2017-03-23 三菱マテリアル株式会社 Boron nitride agglomerated particle for forming thin film, insulation coating film, production method of agglomerated particle, production method of insulation electrodeposition paint, enameled wire and coil
JP2017128476A (en) * 2016-01-20 2017-07-27 積水化学工業株式会社 Composite filler and thermosetting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119198A1 (en) * 2014-02-05 2015-08-13 三菱化学株式会社 Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2015195292A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
JP2016127046A (en) * 2014-12-26 2016-07-11 住友ベークライト株式会社 Granulated powder, resin composition for heat dissipation, heat dissipation sheet, semiconductor device, and heat dissipation member
JP2017057098A (en) * 2015-09-15 2017-03-23 三菱マテリアル株式会社 Boron nitride agglomerated particle for forming thin film, insulation coating film, production method of agglomerated particle, production method of insulation electrodeposition paint, enameled wire and coil
JP2017128476A (en) * 2016-01-20 2017-07-27 積水化学工業株式会社 Composite filler and thermosetting material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127729A1 (en) * 2021-12-27 2023-07-06 デンカ株式会社 Boron nitride particles and heat dissipation sheet

Also Published As

Publication number Publication date
JP7378284B2 (en) 2023-11-13

Similar Documents

Publication Publication Date Title
Yao et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity
JP7096921B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP6034876B2 (en) Highly filled high thermal conductivity material, method for producing the same, composition, coating liquid, and molded article
KR101493781B1 (en) High thermally conductive ceramic-poly composite and manufacturing method of the same
JP7333914B2 (en) Thermally conductive resin molding and its manufacturing method
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
Ghahramani et al. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride
CN109762204B (en) Three-dimensional structure boron nitride-graphene oxide hybrid material, preparation method thereof and application of hybrid material as filler in heat-conducting composite material
JP7079378B2 (en) Boron nitride powder and its manufacturing method, as well as composite materials and heat dissipation members
JP7267032B2 (en) Filler filling material and its manufacturing method, and high thermal conductivity insulating material and its manufacturing method
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
WO2019097852A1 (en) Filler-filled highly thermally conductive dispersion composition having excellent segregation stability, method for producing said dispersion composition, filler-filled highly thermally conductive material using said dispersion composition, method for producing said material, and molded article obtained using said material
JP2021091579A (en) Powder containing composite particle and method for producing the same, and resin composition containing the powder
WO2020138335A1 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
JP2016124908A (en) Resin molded body
JP7425589B2 (en) Powder containing composite particles and resin composition containing the powder
JP7292941B2 (en) Aluminum nitride composite filler
JP2021091803A (en) Powder containing composite particle, and resin composition containing the powder
JP7291304B2 (en) Boron nitride powder, heat-dissipating sheet, and method for producing heat-dissipating sheet
CN111542920A (en) Thermally conductive sheet precursor, thermally conductive sheet obtained from the precursor, and methods for producing the same
JP2016079353A (en) High thermal conduction organic-inorganic composite material, method for producing the same, and organic-inorganic composite film
KR101310072B1 (en) Electrically insulative and thermally conductive ceramic/polymer composit powder and method for preparatin the same
WO2021241699A1 (en) Cured sheet and method for producing same
WO2021241700A1 (en) Cured sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R150 Certificate of patent or registration of utility model

Ref document number: 7378284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150