JP2021089329A - Sound insulation structure and method of manufacturing the same - Google Patents

Sound insulation structure and method of manufacturing the same Download PDF

Info

Publication number
JP2021089329A
JP2021089329A JP2019218564A JP2019218564A JP2021089329A JP 2021089329 A JP2021089329 A JP 2021089329A JP 2019218564 A JP2019218564 A JP 2019218564A JP 2019218564 A JP2019218564 A JP 2019218564A JP 2021089329 A JP2021089329 A JP 2021089329A
Authority
JP
Japan
Prior art keywords
sound insulation
core material
adhesive
insulation structure
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019218564A
Other languages
Japanese (ja)
Other versions
JP7247872B2 (en
Inventor
佑 崎本
Yu Sakimoto
佑 崎本
正治 西村
Masaharu Nishimura
正治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2019218564A priority Critical patent/JP7247872B2/en
Publication of JP2021089329A publication Critical patent/JP2021089329A/en
Application granted granted Critical
Publication of JP7247872B2 publication Critical patent/JP7247872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a sound insulation structure that has high sound insulation performance even in a gamut that a human has high auditory sensitivity to, and a method of manufacturing the same.SOLUTION: A sound insulation structure 1 comprises a plate material 10, and a plurality of core materials 20, 20, ..., which is arranged on a sound insulation surface 11 of the plate material 10 adjacently to one another. The core material 20 is formed of a rectangular thin plate material 21 which is formed in a cylindrical shape, and also has one axial end joined to the sound insulation surface 11 of the plate material 10, and the adjacent core materials 20, 20 can have their side wall parts 22 made slidable on each other.SELECTED DRAWING: Figure 1

Description

本発明は、遮音構造体およびその製造方法に関するものである。 The present invention relates to a sound insulation structure and a method for manufacturing the same.

従来、建築・鉄道分野等において遮音能力を有する構造体が求められており、そのような能力を有するものとしては、音源方向に開口部を持った空間を有してその空間内で遮音させるものが知られている。開口部を有する空間を形成するものとしては、例えば、特許文献1,2に示すような筒状のいわゆるハニカムコアが知られている。 Conventionally, a structure having sound insulation ability has been required in the fields of construction and railways, and a structure having such ability has a space having an opening in the direction of a sound source and insulates sound in the space. It has been known. As a thing that forms a space having an opening, for example, a tubular so-called honeycomb core as shown in Patent Documents 1 and 2 is known.

特開平5−92441号公報Japanese Unexamined Patent Publication No. 5-92441 特開2005−307437号公報Japanese Unexamined Patent Publication No. 2005-307437

ところで、人間は周波数が2000〜5000Hzの音について敏感であり、この周波数の音域について高い遮音性能が求められている。特許文献1では、周波数のことは述べられておらず、特許文献2では、前記周波数域よりも低い周波数で遮音性能が向上することが開示されている。つまり、特許文献1の遮音板および特許文献2の遮音構造体では、前記周波数域において、遮音性の改良の余地が残されている。 By the way, human beings are sensitive to sounds having a frequency of 2000 to 5000 Hz, and high sound insulation performance is required for the sound range of this frequency. Patent Document 1 does not describe the frequency, and Patent Document 2 discloses that the sound insulation performance is improved at a frequency lower than the frequency range. That is, in the sound insulation plate of Patent Document 1 and the sound insulation structure of Patent Document 2, there is room for improvement in sound insulation in the frequency range.

本発明は上記問題に鑑みてなされたものであり、人間の聴感的に感度の高い音域においても高い遮音性能を有する遮音構造体およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a sound insulation structure having high sound insulation performance even in a sound range having high sensitivity to human hearing, and a method for manufacturing the same.

このような課題を解決するための第一の本発明は、板材と、当該板材の遮音面において互いに隣接するように配置された複数のコア材とを備えた遮音構造体であって、前記コア材は、筒状に形成された矩形薄板材からなり、前記コア材の軸方向一端部は、前記板材の前記遮音面に接合されており、隣接する前記コア材同士は、その側壁部において互いに摺動可能であることを特徴とする。 The first invention for solving such a problem is a sound insulation structure including a plate material and a plurality of core materials arranged so as to be adjacent to each other on the sound insulation surface of the plate material. The material is a rectangular thin plate material formed in a tubular shape, one end of the core material in the axial direction is joined to the sound insulating surface of the plate material, and the adjacent core materials are joined to each other on the side wall portion thereof. It is characterized by being slidable.

このような構成の遮音構造体によれば、隣接するコア材同士が接着されておらず、互いに摺動可能であるので、コア材の振動が隣のコア材に影響を及ぼさない。したがって、各コア材は効率よく振動を減衰できる。かかる遮音構造体は、人間の聴感的に感度の高い音域、その中でも特に2500〜5000Hzの音域で減衰効率が優れている。 According to the sound insulation structure having such a configuration, the adjacent core materials are not adhered to each other and can slide with each other, so that the vibration of the core materials does not affect the adjacent core materials. Therefore, each core material can efficiently attenuate the vibration. Such a sound insulation structure has excellent attenuation efficiency in a range of human hearing sensitivity, particularly in a range of 2500 to 5000 Hz.

本発明の遮音構造体においては、前記矩形薄板材の端部同士の間に隙間が形成されており、前記コア材の側壁部は、軸線方向に沿うスリット部を有しているものが好ましい。このような遮音構造体によれば、矩形薄板材の端部同士が開いているので、コア材が振動し易く、減衰効率が高くなる。 In the sound insulation structure of the present invention, it is preferable that a gap is formed between the ends of the rectangular thin plate material, and the side wall portion of the core material has a slit portion along the axial direction. According to such a sound insulation structure, since the ends of the rectangular thin plate materials are open to each other, the core material easily vibrates and the damping efficiency becomes high.

また、本発明の遮音構造体においては、前記コア材と前記遮音面とは、エポキシ系の接着剤にて接合されているものが好ましい。このような遮音構造体によれば、容易にコア材の底面部のみを板材に固定することができる。 Further, in the sound insulation structure of the present invention, it is preferable that the core material and the sound insulation surface are joined by an epoxy adhesive. According to such a sound insulation structure, only the bottom surface portion of the core material can be easily fixed to the plate material.

さらに、本発明の遮音構造体においては、前記コア材と前記遮音面とは、硬化後のショア硬さが50以上となる接着剤にて接合されているものが好ましい。このような遮音構造体によれば、特に2500〜5000Hzの音域の減衰効率をより一層高くできる。 Further, in the sound insulation structure of the present invention, it is preferable that the core material and the sound insulation surface are joined by an adhesive having a shore hardness of 50 or more after curing. According to such a sound insulation structure, the attenuation efficiency in the sound range of 2500 to 5000 Hz can be further increased.

本発明の遮音構造体においては、前記接着剤の硬化後の前記遮音面からの高さは、前記コア材の軸線方向寸法の5%以下であるものが好ましい。このような遮音構造体によれば、コア材の下端部のみが固定され、コア材の下端部より上方は振動し易くなるので、減衰効率を高くできる。 In the sound insulation structure of the present invention, the height of the adhesive after curing from the sound insulation surface is preferably 5% or less of the axial dimension of the core material. According to such a sound insulation structure, only the lower end portion of the core material is fixed, and vibration is likely to occur above the lower end portion of the core material, so that the damping efficiency can be increased.

また、本発明の遮音構造体においては、前記コア材は、前記遮音面への接着前後においてその直径が同一であるものが好ましい。このような遮音構造体によれば、接着後のコア材に応力が加わらないので、コア材がより一層振動し易くなり、減衰効率がさらに高くなる。 Further, in the sound insulation structure of the present invention, it is preferable that the core material has the same diameter before and after adhesion to the sound insulation surface. According to such a sound insulating structure, no stress is applied to the core material after bonding, so that the core material is more likely to vibrate and the damping efficiency is further improved.

さらに、本発明の遮音構造体においては、前記板材の表面に、板状の制振材が貼り付けられているものが好ましい。このような遮音構造体によれば、6000Hz以上の音域において減衰効率をより一層高くできる。 Further, in the sound insulation structure of the present invention, it is preferable that a plate-shaped damping material is attached to the surface of the plate material. According to such a sound insulation structure, the attenuation efficiency can be further increased in the sound range of 6000 Hz or higher.

前記課題を解決するための第二の本発明は、コア材を形成するコア材形成工程と、板材の表面に接着剤を塗布する接着剤塗布工程と、前記接着剤が塗布された遮音面に前記コア材を複数並べて前記板材に接着させるコア材接着工程と、前記接着剤を硬化させる養生工程と、を備えていることを特徴とする遮音構造体の製造方法である。 The second invention for solving the above-mentioned problems is a core material forming step of forming a core material, an adhesive applying step of applying an adhesive to the surface of a plate material, and a sound insulating surface to which the adhesive is applied. A method for manufacturing a sound insulation structure, which comprises a core material bonding step of arranging a plurality of the core materials and adhering them to the plate material, and a curing step of curing the adhesive.

このような遮音構造体の製造方法によれば、隣接するコア材同士は下端部のみが接着され、下端部より上方は接着されておらず、互いに摺動可能になるので、コア材の振動が隣のコア材に影響を及ぼさない。したがって、各コア材は効率よく振動を減衰できる。 According to the method of manufacturing such a sound insulation structure, only the lower end portion of the adjacent core materials is adhered to each other, the upper portion is not adhered to each other, and the core materials can slide with each other. Does not affect the adjacent core material. Therefore, each core material can efficiently attenuate the vibration.

本発明の遮音構造体の製造方法においては、コア材形成工程では、矩形薄板材を筒状に加工してコア材を形成することが好ましい。このような遮音構造体の製造方法によれば、コア材を容易に形成できる。 In the method for producing a sound insulation structure of the present invention, in the core material forming step, it is preferable to process a rectangular thin plate material into a tubular shape to form a core material. According to the method for manufacturing such a sound insulation structure, a core material can be easily formed.

本発明の遮音構造体の製造方法においては、前記コア材接着工程では、前記コア材を原形の状態で前記板材上に並列させることが好ましい。このような遮音構造体の製造方法によれば、接着後のコア材に応力が加わらないので、コア材がより一層振動し易くなり、減衰効率がさらに高くなる。 In the method for producing a sound insulation structure of the present invention, in the core material bonding step, it is preferable that the core material is arranged in parallel on the plate material in the original state. According to such a method for manufacturing a sound insulation structure, stress is not applied to the core material after bonding, so that the core material is more likely to vibrate and the damping efficiency is further improved.

本発明の遮音構造体の製造方法においては、前記接着剤塗布工程では、前記接着剤の前記コア材への付着高さが前記コア材の軸方向寸法の5%以下となる厚さで前記接着剤を前記板材の表面に塗布することが好ましい。このような遮音構造体の製造方法によれば、コア材の下端部のみを板材に固定して、コア材の上端側の摺動部分を十分に確保することができる。 In the method for producing a sound insulation structure of the present invention, in the adhesive coating step, the adhesive has a thickness such that the adhesion height of the adhesive to the core material is 5% or less of the axial dimension of the core material. It is preferable to apply the agent to the surface of the plate material. According to such a method for manufacturing a sound insulation structure, only the lower end portion of the core material can be fixed to the plate material, and a sliding portion on the upper end side of the core material can be sufficiently secured.

本発明によれば、人間の聴感的に感度の高い音域においても高い遮音性能を得られる。 According to the present invention, high sound insulation performance can be obtained even in a range of human hearing sensitivity.

本発明の実施形態に係る遮音構造体を示した斜視図である。It is a perspective view which showed the sound insulation structure which concerns on embodiment of this invention. (a)は加工前の矩形薄板材を示した斜視図、(b)は加工形成されたコア材を示した斜視図である。(A) is a perspective view showing a rectangular thin plate material before processing, and (b) is a perspective view showing a core material formed by processing. 本発明の実施形態に係る遮音構造体を示した拡大底面図である。It is an enlarged bottom view which showed the sound insulation structure which concerns on embodiment of this invention. (a)〜(d)は、本発明の実施形態に係る遮音構造体の製造方法を説明するための斜視図である。(A)-(d) are perspective views for explaining the manufacturing method of the sound insulation structure which concerns on embodiment of this invention. 固定条件を変えて行った遮音実験の結果を示したグラフである。It is a graph which showed the result of the sound insulation experiment performed by changing the fixed condition. 接着剤を変えて行った遮音実験の結果を示したグラフである。It is a graph which showed the result of the sound insulation experiment performed by changing the adhesive. コア材の製造条件を変えて行った遮音実験の結果を示したグラフである。It is a graph which showed the result of the sound insulation experiment performed by changing the manufacturing condition of a core material. コア材の配置条件を変えて行った遮音実験の結果を示したグラフである。It is a graph which showed the result of the sound insulation experiment performed by changing the arrangement condition of a core material. 板材の構成を変えて行った遮音実験の結果を示したグラフである。It is a graph which showed the result of the sound insulation experiment performed by changing the composition of a plate material. コア材の変形例を示した斜視図である。It is a perspective view which showed the deformation example of a core material.

本発明の実施形態に係る遮音構造体について、図面を参照しながら詳細に説明する。図1に示すように、本実施形態の遮音構造体1は、板材10とコア材20と枠材30とを備えている。 The sound insulation structure according to the embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the sound insulation structure 1 of the present embodiment includes a plate material 10, a core material 20, and a frame material 30.

板材10は、コア材20を固定するベースとなる部材であって、例えば矩形平面形状を呈している。板材10は、例えばアルミニウム合金製の金属板であって、厚さ1mmである。なお、板材10の素材および厚さは、一例であって、取り付けられるコア材20の形状や重量に応じて適宜決定される。板材10の周縁部には、枠材13が取り付けられている。枠材13は、例えばアルミニウム合金製の押出形材にて構成されており、板材10の外周形状に沿った矩形枠状に形成されている。枠材13は、コア材20を囲むように、板材10の周縁部の全周に渡って取り付けられている。 The plate member 10 is a base member for fixing the core member 20, and has, for example, a rectangular planar shape. The plate material 10 is, for example, a metal plate made of an aluminum alloy and has a thickness of 1 mm. The material and thickness of the plate material 10 are an example, and are appropriately determined according to the shape and weight of the core material 20 to be attached. A frame member 13 is attached to the peripheral edge of the plate member 10. The frame material 13 is made of, for example, an extruded shape material made of an aluminum alloy, and is formed in a rectangular frame shape along the outer peripheral shape of the plate material 10. The frame member 13 is attached over the entire circumference of the peripheral edge of the plate member 10 so as to surround the core member 20.

コア材20は、図2に示すように、矩形薄板材21(図2の(a)参照)を円筒状に曲げ加工することにより形成されている。矩形薄板材21は、アルミニウム合金からなり、例えば0.2mmの薄板状に構成されている。要求される吸音性能に応じて、矩形薄板材21の素材、厚さ等が適宜決定され、コア材10のコア径やコア高さ等の形状が適宜決定される。コア径は、例えば12mm,28mm,50mmで、コア高さは、例えば12mm,25mm,50mm,100mmのものが形成される。図2の(b)に示すように、コア材20は、矩形薄板材21の端部24,24同士が重複した断面円形(の字形)状に形成されている。 As shown in FIG. 2, the core material 20 is formed by bending a rectangular thin plate material 21 (see (a) of FIG. 2) into a cylindrical shape. The rectangular thin plate member 21 is made of an aluminum alloy and is formed in a thin plate shape of, for example, 0.2 mm. The material, thickness, and the like of the rectangular thin plate material 21 are appropriately determined according to the required sound absorption performance, and the shape such as the core diameter and core height of the core material 10 is appropriately determined. The core diameters are, for example, 12 mm, 28 mm, and 50 mm, and the core heights are, for example, 12 mm, 25 mm, 50 mm, and 100 mm. As shown in FIG. 2B, the core material 20 is formed in a circular (shaped) cross section in which the ends 24, 24 of the rectangular thin plate member 21 overlap each other.

コア材20は、図1に示すように、複数設けられており、板材10の遮音面11において互いに隣接するように配置されている。コア材20の側壁部22は、隣接する他のコア材20の側壁部22に当接している。コア材20は、例えばエポキシ系の接着剤12によって板材10に固定されている。具体的には、コア材20の軸方向一端部が、板材10の遮音面11に接着されている。図3に示すように、接着剤12の硬化後の遮音面11からの高さ(接着剤12のコア材20への付着高さ)は、コア材20の軸方向寸法の5%以下となっている。つまり、コア材20は、その軸方向一端部のみが遮音面11に接着されており、一端部を除いた他端部寄り(板材10から離れた側)の部分は、隣接するコア材20と接着されておらず、側壁部22,22同士が互いに摺動可能となっている。 As shown in FIG. 1, a plurality of core materials 20 are provided, and are arranged so as to be adjacent to each other on the sound insulating surface 11 of the plate material 10. The side wall portion 22 of the core material 20 is in contact with the side wall portion 22 of another adjacent core material 20. The core material 20 is fixed to the plate material 10 by, for example, an epoxy-based adhesive 12. Specifically, one end of the core material 20 in the axial direction is adhered to the sound insulating surface 11 of the plate material 10. As shown in FIG. 3, the height of the adhesive 12 from the sound insulating surface 11 after curing (the height of the adhesive 12 adhering to the core material 20) is 5% or less of the axial dimension of the core material 20. ing. That is, only one end of the core material 20 in the axial direction is adhered to the sound insulation surface 11, and the portion near the other end (the side away from the plate 10) excluding one end is the adjacent core material 20. It is not adhered, and the side wall portions 22, 22 can slide with each other.

コア材20は、遮音面11への接着前後においてその直径が同一である。つまり、コア材20は、接着された状態で応力が掛かっていない状態である。 The core material 20 has the same diameter before and after adhesion to the sound insulating surface 11. That is, the core material 20 is in a state of being bonded and not stressed.

接着剤12は、エポキシ系の接着剤である。エポキシ系の接着剤としては、高耐久接着タイプ二液形接着剤が好適である。接着剤12は、主剤がエポキシ樹脂で構成され、硬化剤が変成シリコーン樹脂にて構成されている。接着剤12の硬化後のショア硬さは、50以上(本実施形態では62)となっている。 The adhesive 12 is an epoxy-based adhesive. As the epoxy-based adhesive, a highly durable adhesive type two-component adhesive is suitable. The main agent of the adhesive 12 is an epoxy resin, and the curing agent is a modified silicone resin. The shore hardness of the adhesive 12 after curing is 50 or more (62 in this embodiment).

次に、本実施形態の遮音構造体の製造方法を説明する。遮音構造体の製造方法は、コア材形成工程と、枠材取付工程と、接着剤塗布工程と、コア材並列工程と、養生工程と、を備えている。 Next, a method of manufacturing the sound insulation structure of the present embodiment will be described. The method for manufacturing the sound insulation structure includes a core material forming step, a frame material attaching step, an adhesive coating step, a core material parallel step, and a curing step.

コア材形成工程は、遮音構造体を製造する前の準備工程であって、コア材20を予め形成する工程である。コア材形成工程では、図2に示すように、矩形薄板材21を筒状に加工してコア材20を形成する。矩形薄板材21は、コア材20の高さ寸法(軸線方向寸法)と同等の短辺寸法と、コア材20の円周寸法よりも端部同士の重複代分大きい長辺寸法とを備えている。このような矩形薄板材21を、端部24,24同士を重複させて、全周に渡って同一の曲率になるように湾曲させる。コア材20は、接着後と同一の形状・寸法となるように形成する。つまり、コア材20は、遮音面11への接着前後においてその直径が同一である。なお、コア材20の加工方法は、前記形態に限定されるものではなく、断面C形の押出形材を形成し、所定長さで切断するようにしてもよい。 The core material forming step is a preparatory step before manufacturing the sound insulation structure, and is a step of forming the core material 20 in advance. In the core material forming step, as shown in FIG. 2, the rectangular thin plate material 21 is processed into a tubular shape to form the core material 20. The rectangular thin plate member 21 has a short side dimension equivalent to the height dimension (axis direction dimension) of the core material 20 and a long side dimension larger than the circumferential dimension of the core material 20 by the amount of overlap between the ends. There is. Such a rectangular thin plate member 21 is curved so that the ends 24, 24 overlap each other and have the same curvature over the entire circumference. The core material 20 is formed so as to have the same shape and dimensions as after bonding. That is, the core material 20 has the same diameter before and after adhesion to the sound insulating surface 11. The processing method of the core material 20 is not limited to the above-mentioned form, and an extruded shape material having a C-shaped cross section may be formed and cut to a predetermined length.

枠材取付工程は、図4の(b)に示すように、板材10(図4の(a)参照)の上に、枠材12を取り付ける工程である。枠材12は、ボルト等の締結部材を用いて板材10に取り付ける。なお、枠材12の取付手段は、締結部材に限定されるものではなく、接着剤にて取り付けてもよい。また、枠材取付工程は、下記の接着剤塗布工程の後に行ってもよい。 The frame material attaching step is a step of attaching the frame material 12 on the plate material 10 (see (a) of FIG. 4) as shown in FIG. 4 (b). The frame material 12 is attached to the plate material 10 by using a fastening member such as a bolt. The mounting means of the frame member 12 is not limited to the fastening member, and may be mounted with an adhesive. Further, the frame material attachment step may be performed after the following adhesive application step.

接着剤塗布工程は、板材の表面に接着剤を塗布する工程である。図4の(c)に示すように、接着剤12は、枠材13の内側で、板材10の遮音面11となる側の面の全面に渡って塗布する。接着剤12の塗布厚さは、コア材20を設置した際のコア材20への接着剤12の付着高さが、コア材20の軸線方向寸法の5%を超えない寸法とする。接着剤12は、コア材20を設置した際に、コア材20に押しのけられる。そのため、接着剤12の塗布厚さは、コア材10への付着高さ(例えば0.5mm程度である)より小さくしておく。 The adhesive application step is a step of applying an adhesive to the surface of the plate material. As shown in FIG. 4C, the adhesive 12 is applied to the inside of the frame material 13 over the entire surface of the plate material 10 on the side that becomes the sound insulation surface 11. The coating thickness of the adhesive 12 is such that the height of adhesion of the adhesive 12 to the core material 20 when the core material 20 is installed does not exceed 5% of the axial dimension of the core material 20. The adhesive 12 is pushed away by the core material 20 when the core material 20 is installed. Therefore, the coating thickness of the adhesive 12 is set to be smaller than the adhesion height to the core material 10 (for example, about 0.5 mm).

コア材接着工程は、接着剤12が塗布された遮音面11にコア材20を複数並べて板材10に接着させる工程である。図4の(d)に示すように、コア材20は、同一形状のものを用い、一のコア材20に対して、6個のコア材20が等角度ピッチで当接するように並列する。このとき、隣接するコア材20,20同士は、側壁部22,22同士が軸長方向の全長に渡って当接している。コア材20,20の下端部では、内側面(当接している側の反対面)に接着剤12が付着して、コア材20が板材10に接着される。接着剤12は、コア材20,20に押されて若干盛り上がるが、接着剤12の付着高さは、コア材20の軸線方向寸法の10%を超えていない。コア材20は、変形させずに、原形の状態で板材10の遮音面11上に並列させる。これによって、コア材20は、遮音面11への接着前後においてその直径が同一となる。 The core material bonding step is a step of arranging a plurality of core materials 20 on the sound insulating surface 11 coated with the adhesive 12 and adhering them to the plate material 10. As shown in FIG. 4D, core materials 20 having the same shape are used, and six core materials 20 are arranged in parallel with one core material 20 so as to be in contact with each other at an equal angle pitch. At this time, the side wall portions 22, 22 of the adjacent core materials 20, 20 are in contact with each other over the entire length in the axial length direction. At the lower ends of the core materials 20 and 20, the adhesive 12 adheres to the inner side surface (opposite surface of the abutting side), and the core material 20 is adhered to the plate material 10. The adhesive 12 is pushed by the core materials 20 and 20 and slightly swells, but the adhesive height of the adhesive 12 does not exceed 10% of the axial dimension of the core material 20. The core material 20 is arranged in parallel on the sound insulating surface 11 of the plate material 10 in the original state without being deformed. As a result, the diameter of the core material 20 becomes the same before and after the adhesion to the sound insulating surface 11.

養生工程は、所定時間養生し、接着剤12を硬化させる工程である。養生工程を経て硬化した接着剤12は、ショア硬さは、62となっている。 The curing step is a step of curing the adhesive 12 for a predetermined time. The adhesive 12 cured through the curing step has a shore hardness of 62.

次に、本実施形態の遮音構造体1および変形例に係る遮音構造体と比較例を用いて遮音効果の比較実験について説明する。比較実験は、各実施例と比較例について、遮音面側から複数の入射角で音を入射し、それぞれについて遮音量を計測した。周波数は、400Hzから5000Hzの範囲で実験した。本実験で用いたコア材20は、コア径が28mmで、コア高さが50mmである。最初に、板材10とコア材20との固定条件を変えて行った実験を説明する。 Next, a comparative experiment of the sound insulation effect will be described using the sound insulation structure 1 of the present embodiment and the sound insulation structure and the comparative example according to the modified example. In the comparative experiment, sound was incident from the sound insulation surface side at a plurality of incident angles for each example and the comparative example, and the volume insulation was measured for each. The frequency was tested in the range of 400 Hz to 5000 Hz. The core material 20 used in this experiment has a core diameter of 28 mm and a core height of 50 mm. First, an experiment conducted by changing the fixing conditions of the plate material 10 and the core material 20 will be described.

比較例は、板材10と同重量の単板のみを用いている。単板は、アルミニウム合金製の板材からなり、板材10と同じ矩形形状を呈している。実施例1aは、本実施形態の遮音構造体1であって、板材10の全面に接着剤12を塗布して、コア材20を並列している。実施例2aは、コア材20の一端面に接着剤を塗布して板材10に接合している。実施例3aは、隣接するコア材20,20同士を接着して、一体化されたコア材20,20・・を板材10に接合している。実施例4aは、ろう付けによってコア材20の下端部を板材10に接合している。 In the comparative example, only a veneer having the same weight as the plate material 10 is used. The veneer is made of a plate material made of an aluminum alloy and has the same rectangular shape as the plate material 10. The first embodiment is the sound insulation structure 1 of the present embodiment, in which the adhesive 12 is applied to the entire surface of the plate material 10 and the core materials 20 are arranged in parallel. In Example 2a, an adhesive is applied to one end surface of the core material 20 and bonded to the plate material 10. In the third embodiment, the adjacent core materials 20, 20 are adhered to each other, and the integrated core materials 20, 20, ... Are joined to the plate material 10. In the fourth embodiment, the lower end portion of the core material 20 is joined to the plate material 10 by brazing.

図5に示すように、本実験では、全ての実施例1a〜4aは、比較例(Ls参照)と比較して、音響透過損失が高く、遮音性能が高くなっている。実施例1aは、630Hz以上の範囲で、比較例よりも高い音響透過損失を得ている。その中でも特に、人間の聴覚的に感度の高い2000Hz〜5000Hzの範囲で高い音響透過損失を得ており(L1a参照)、高い遮音性能を得ていることが分かった。実施例2aは、実施例1aより音響透過損失が低いものの、実施例1aに近い実験結果を得ており、高い遮音性能を確保できている(L2a参照)。実施例3a,4aは、実施例1a,2aより音響透過損失が低いが、比較例よりは高くなっており、一定の遮音性能は得られている(L3a,L4a参照)。 As shown in FIG. 5, in this experiment, all of Examples 1a to 4a have higher sound transmission loss and higher sound insulation performance than Comparative Examples (see Ls). Example 1a obtains a higher sound transmission loss than the comparative example in the range of 630 Hz or higher. Among them, it was found that a high acoustic transmission loss was obtained in the range of 2000 Hz to 5000 Hz, which is highly sensitive to human hearing (see L1a), and a high sound insulation performance was obtained. Although the sound transmission loss of Example 2a is lower than that of Example 1a, the experimental results close to those of Example 1a have been obtained, and high sound insulation performance can be ensured (see L2a). Examples 3a and 4a have lower sound transmission losses than Examples 1a and 2a, but are higher than those of Comparative Examples, and a certain sound insulation performance is obtained (see L3a and L4a).

以上のことより、コア材20は、下端部のみが板材10に接着されることで、隣接するコア材20,20同士は固定されていない実施例1a,2aの遮音性能が、他の実施例3a,4aより高いことが分かる。これは、隣接するコア材20,20同士が固定されておらず、互いに摺動可能であるため、各コア材20の振動が隣のコア材20に影響を及ぼさないので、遮音性能が高くなっていると考えられる。実施例3a,4aでは、コア材20同士が固定されているため、実施例1a,2aより遮音性能が低くなっているが、コア材20を設けたことによって比較例より遮音性能が高くなっている。 From the above, the core material 20 has the sound insulation performance of Examples 1a and 2a in which the adjacent core materials 20 and 20 are not fixed to each other because only the lower end portion thereof is adhered to the plate material 10. It can be seen that it is higher than 3a and 4a. This is because the adjacent core materials 20 and 20 are not fixed to each other and can slide with each other, so that the vibration of each core material 20 does not affect the adjacent core material 20, so that the sound insulation performance is improved. It is thought that it is. In Examples 3a and 4a, since the core materials 20 are fixed to each other, the sound insulation performance is lower than that of Examples 1a and 2a, but the sound insulation performance is higher than that of the comparative example due to the provision of the core material 20. There is.

次に、板材10とコア材20とを接合する接着剤12の硬度を変えて行った実験を説明する。比較例は前記実験と同様である。実施例1bは、本実施形態の遮音構造体1であって、エポキシ系の接着剤12を用いて板材10とコア材20とを接着している。接着剤12のショア硬さは62である。実施例2bは、シリコーン系の接着剤を用いている。この接着剤のショア硬さは60であり、実施例1bの接着剤12より柔らかい。実施例3bは、シリコーン系の接着剤を用いている。この接着剤のショア硬さは37であり、実施例2bの接着剤よりさらに柔らかい。 Next, an experiment conducted by changing the hardness of the adhesive 12 for joining the plate material 10 and the core material 20 will be described. The comparative example is the same as the above experiment. Example 1b is the sound insulation structure 1 of the present embodiment, in which the plate material 10 and the core material 20 are adhered to each other by using an epoxy-based adhesive 12. The shore hardness of the adhesive 12 is 62. In Example 2b, a silicone-based adhesive is used. The shore hardness of this adhesive is 60, which is softer than the adhesive 12 of Example 1b. In Example 3b, a silicone-based adhesive is used. The shore hardness of this adhesive is 37, which is even softer than the adhesive of Example 2b.

図6に示すように、本実験では、実施例1b〜3bは、比較例(Ls参照)と比較して、音響透過損失が高く、遮音性能が高くなっている。実施例1b〜3bは、ともに前記実験に近い実施結果を得ており、人間が聞き取りやすい2000Hz〜5000Hzの範囲で高い音響透過損失を得ている。つまり、全ての実施例1b〜3bで高い遮音性能を得ていることが分かった。各実施例1b〜3bを比較すると、実施例1b(L1b参照)、実施例2b(L2b参照)、実施例3b(L3b参照)の順で音響透過損失が高くなっていることが分かった。つまり、接着剤は、ショア硬さが大きい方が、より音響透過損失が高く、高い遮音性能を確保できる。以上のことより、接着剤のショア硬さは50以上であるものが好ましい。さらに好ましくは、接着剤のショア硬さが実施例2bの60以上であるものである。 As shown in FIG. 6, in this experiment, Examples 1b to 3b have higher sound transmission loss and higher sound insulation performance than Comparative Examples (see Ls). In both Examples 1b to 3b, the results of the experiments are close to those of the above experiment, and high sound transmission loss is obtained in the range of 2000 Hz to 5000 Hz, which is easy for humans to hear. That is, it was found that high sound insulation performance was obtained in all Examples 1b to 3b. Comparing the respective Examples 1b to 3b, it was found that the sound transmission loss increased in the order of Example 1b (see L1b), Example 2b (see L2b), and Example 3b (see L3b). That is, the larger the shore hardness of the adhesive, the higher the sound transmission loss and the higher the sound insulation performance can be ensured. From the above, it is preferable that the shore hardness of the adhesive is 50 or more. More preferably, the shore hardness of the adhesive is 60 or more in Example 2b.

次に、コア材20の設置条件を変えて行った実験を説明する。実施例1cは、本実施形態の遮音構造体1であって、コア材20が、接着前後において同等の形状となっている。つまり、コア材20は、応力が掛かっていない状態で接着されている。一方、実施例2cは、コア材20を設置する際に、コア材20を径方向内側に圧縮している。つまり、コア材20は、応力を加えた状態で接着されている。 Next, an experiment conducted by changing the installation conditions of the core material 20 will be described. Example 1c is the sound insulation structure 1 of the present embodiment, in which the core material 20 has the same shape before and after bonding. That is, the core material 20 is adhered in a state where no stress is applied. On the other hand, in Example 2c, when the core material 20 is installed, the core material 20 is compressed inward in the radial direction. That is, the core material 20 is adhered in a stressed state.

図7に示すように、実施例1cは、630Hz以上の範囲で、比較例(Ls参照)よりも高い音響透過損失を得ている。その中でも特に、人間の聴覚的に感度の高い2000Hz〜5000Hzの範囲で高い音響透過損失を得ており、高い遮音性能を得ていることが分かった(L1c参照)。実施例2cは、1600Hz以下では実施例1cと同等の音響透過損失を得ているが、2000Hz以上では、実施例1cよりも音響透過損失が大幅に低くなることが分かった(L2c参照)。つまり、コア材20は、応力を掛けない状態である方が、高い音響透過損失を得ており、高い遮音性能を得られる。 As shown in FIG. 7, Example 1c obtains a higher sound transmission loss than Comparative Example (see Ls) in the range of 630 Hz or higher. Among them, it was found that a high acoustic transmission loss was obtained in the range of 2000 Hz to 5000 Hz, which is highly sensitive to human hearing, and a high sound insulation performance was obtained (see L1c). It was found that Example 2c obtained the same acoustic transmission loss as that of Example 1c at 1600 Hz or lower, but the acoustic transmission loss was significantly lower than that of Example 1c at 2000 Hz or higher (see L2c). That is, when the core material 20 is not stressed, a high sound transmission loss is obtained and a high sound insulation performance can be obtained.

次に、コア材20の配置条件を変えて行った実験を説明する。実施例1dは、本実施形態の遮音構造体1であって、隣り合うコア材20が、隙間なく接触している(接着はされていない)。一方、第二比較例(L2s参照)は、隣り合うコア材同士を1mm程度離して配置し、板材にコア材の一端を接着している。実施例1dのコア材の数と、第二比較例のコア材の数は同数である。よって、第二比較例の遮音構造体の面積は、実施例1dよりも大きくなっている。 Next, an experiment conducted by changing the arrangement conditions of the core material 20 will be described. Example 1d is the sound insulation structure 1 of the present embodiment, in which adjacent core materials 20 are in contact with each other without gaps (not bonded). On the other hand, in the second comparative example (see L2s), adjacent core materials are arranged at a distance of about 1 mm, and one end of the core material is adhered to the plate material. The number of core materials of Example 1d and the number of core materials of the second comparative example are the same. Therefore, the area of the sound insulation structure of the second comparative example is larger than that of the first embodiment.

図8に示すように、実施例1d(L1d参照)と第二比較例(L2s参照)とは、同等の音響透過損失を得ている。本発明の遮音構造体は、隣り合うコア材20,20同士が接触しているものの、ろう付けや接着等で一体化されていなければ、コア材同士を離して配置した第二比較例と同等の吸音効果を得られる。本発明の実施例1dの方が、遮蔽構造体の面積を第二比較例より小さくできるので、設置スペースを小さくできる。 As shown in FIG. 8, Example 1d (see L1d) and Second Comparative Example (see L2s) have obtained the same sound transmission loss. The sound insulation structure of the present invention is equivalent to the second comparative example in which the core materials 20 and 20 adjacent to each other are in contact with each other, but the core materials are not integrated by brazing or adhesion. Sound absorption effect can be obtained. In Example 1d of the present invention, the area of the shielding structure can be made smaller than that in the second comparative example, so that the installation space can be made smaller.

次に、板材の構成を変えて行った実験を説明する。実施例1eは、本実施形態の遮音構造体1である。実施例2eは、板材の透過側(コア材の接着面の裏側)の全面に制振材を貼り付けている。制振材は、板状に形成されており、例えば厚さ2mmのブチルゴムからなる。比較例は第二比較例と同じである。本実験では、周波数の範囲を10000Hzまで広げて実験を行っている。 Next, an experiment conducted by changing the composition of the plate material will be described. Example 1e is the sound insulation structure 1 of the present embodiment. In the second embodiment, the damping material is attached to the entire surface of the transparent side of the plate material (the back side of the adhesive surface of the core material). The damping material is formed in a plate shape, and is made of, for example, butyl rubber having a thickness of 2 mm. The comparative example is the same as the second comparative example. In this experiment, the frequency range is expanded to 10000 Hz.

図9に示すように、実施例1e(L5a参照)と実施例2e(L5b参照)と第二比較例(Ls2参照)とは、周波数が5000Hz以下の領域では、同等の音響透過損失を得ている。周波数が6000Hzを超えると、実施例2eが、実施例1eや第二比較例より高い音響透過損失を得ており、高い遮音性能を得ていることが分かった(L5b参照)。板材に制振材を貼り付けると、周波数が高い領域においては、質量則の効果に加えて、コインシデンス効果による遮音性能の低下が大幅に改善されると考えられる。つまり、6000Hzを超える高い周波数の帯域で遮音性能が欲しい場合には、板材に制振材を貼り付けるのが好ましい。 As shown in FIG. 9, the first comparative example (see L5a), the second comparative example (see L5b), and the second comparative example (see Ls2) obtained the same sound transmission loss in the frequency region of 5000 Hz or less. There is. It was found that when the frequency exceeded 6000 Hz, Example 2e obtained higher sound transmission loss than Example 1e and the second comparative example, and obtained high sound insulation performance (see L5b). It is considered that when the damping material is attached to the plate material, in addition to the effect of the mass law, the deterioration of the sound insulation performance due to the coincidence effect is significantly improved in the region where the frequency is high. That is, when sound insulation performance is desired in a high frequency band exceeding 6000 Hz, it is preferable to attach a damping material to the plate material.

以上説明したように、本実施形態に係る遮音構造体1およびその製造方法によれば、以下の作用効果を得られる。遮音構造体1では、隣接するコア材20,20同士が接着されておらず、互いに摺動可能であるので、各コア材20の振動が隣のコア材20に影響を及ぼさない。したがって、各コア材20,20は効率よく音のエネルギーを吸収できる。本実施形態の遮音構造体1は、人間の聴感的に感度の高い音域、その中でも特に2500〜5000Hzの音域で吸音効率が優れている。 As described above, according to the sound insulation structure 1 and the method for manufacturing the sound insulation structure 1 according to the present embodiment, the following effects can be obtained. In the sound insulation structure 1, the adjacent core materials 20 and 20 are not adhered to each other and can slide with each other, so that the vibration of each core material 20 does not affect the adjacent core material 20. Therefore, each of the core materials 20 and 20 can efficiently absorb sound energy. The sound insulation structure 1 of the present embodiment has excellent sound absorption efficiency in a sound range that is sensitive to human hearing, especially in a sound range of 2500 to 5000 Hz.

コア材20と遮音面11とは、エポキシ系の接着剤12にて接合されているので、容易にコア材20の底面部のみを板材に固定することができ、ろう付けのようにコア材20,20同士が固定されることがない。また、接着剤12の硬化後のショア硬さが50以上であるので、特に2500〜5000Hzの音域の吸音効率をより一層高くできる。 Since the core material 20 and the sound insulating surface 11 are joined by an epoxy adhesive 12, only the bottom surface of the core material 20 can be easily fixed to the plate material, and the core material 20 can be easily fixed like brazing. , 20 are not fixed to each other. Further, since the shore hardness of the adhesive 12 after curing is 50 or more, the sound absorption efficiency in the sound range of 2500 to 5000 Hz can be further increased.

接着剤12の硬化後の遮音面11からの高さ(コア材20への付着高さ)は、コア材20の軸線方向寸法の10%以下であるので、コア材20の下端部のみが板材10に固定され、コア材20の下端部より上方は振動し易くなる。したがって、吸音効率をより一層高くできる。 Since the height of the adhesive 12 from the sound insulating surface 11 (adhesion height to the core material 20) after curing is 10% or less of the axial dimension of the core material 20, only the lower end portion of the core material 20 is a plate material. It is fixed to 10 and easily vibrates above the lower end of the core material 20. Therefore, the sound absorption efficiency can be further increased.

コア材20は、遮音面11への接着前後においてその直径が同一であるので、接着後のコア材20に応力が加わらない。これによって、コア材20がより一層振動し易くなり、吸音効果がさらに高くなる。 Since the core material 20 has the same diameter before and after bonding to the sound insulating surface 11, no stress is applied to the core material 20 after bonding. As a result, the core material 20 is more likely to vibrate, and the sound absorbing effect is further enhanced.

以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、前記実施形態では、接着剤12をエポキシ系のものとしたが、これに限定されるものではない。一定以上のショア硬さが得られるものであれば、シリコーン系等の他の接着剤を用いてもよい。ショア硬さが50以上であれば、前記実施形態と同様の作用効果が得られる。 Although the embodiments of the present invention have been described above, the design can be appropriately changed within a range not contrary to the gist of the present invention. For example, in the above-described embodiment, the adhesive 12 is an epoxy-based adhesive, but the present invention is not limited to this. Other adhesives such as silicone may be used as long as a certain level of shore hardness can be obtained. When the shore hardness is 50 or more, the same action and effect as those of the above-described embodiment can be obtained.

また、前記実施形態では、コア材20は、矩形薄板材21の端部24,24同士が重複した断面円形(の字形)状を呈しているが、これに限定されるものではない。例えば、図10に示すように、矩形薄板材21の長手方向の端部24,24同士の間に隙間をあけるように形成し、コア材20の側壁部22が、軸線方向に沿うスリット部23を有する円筒形状となるようにしてもよい。また、円筒形状に限らず、スリット部23を有する楕円形や角形であってもよい。さらに、重複部もスリット部も有さない、矩形薄板材の端部同士が突き合わされた筒状であってもよい。他の形状であっても前記実施形態と同様の作用効果が得られる。なお、スリット部23を有する形状であると、コア材20が振動し易くなる。 Further, in the above-described embodiment, the core material 20 has a circular (shaped) cross section in which the ends 24, 24 of the rectangular thin plate member 21 overlap each other, but the present invention is not limited to this. For example, as shown in FIG. 10, the rectangular thin plate member 21 is formed so as to have a gap between the longitudinal end portions 24, 24, and the side wall portion 22 of the core material 20 is a slit portion 23 along the axial direction. It may have a cylindrical shape having. Further, the shape is not limited to a cylindrical shape, and may be an elliptical shape or a square shape having a slit portion 23. Further, it may have a tubular shape in which the ends of the rectangular thin plate members are butted against each other without overlapping portions or slit portions. Even with other shapes, the same effects as those of the above-described embodiment can be obtained. If the shape has the slit portion 23, the core material 20 tends to vibrate.

さらに、前記実施形態では、コア材20は、接着剤12を用いて板材10に固定されているが、これに限定されるものではない。ろう付けや溶接等他の接合方法によって固定してもよい。ろう付け等の他の接合方法であっても、一定の作用効果は得られるが接着剤を用いるのが好ましい。 Further, in the above embodiment, the core material 20 is fixed to the plate material 10 by using the adhesive 12, but the core material 20 is not limited thereto. It may be fixed by other joining methods such as brazing and welding. Even with other joining methods such as brazing, it is preferable to use an adhesive, although a certain effect can be obtained.

1 遮音構造体
10 板材
11 遮音面
12 接着剤
20 コア材
21 矩形薄板材
22 側壁部
23 スリット部
24 端部
30 枠材
1 Sound insulation structure 10 Plate material 11 Sound insulation surface 12 Adhesive 20 Core material 21 Rectangular thin plate material 22 Side wall part 23 Slit part 24 End part 30 Frame material

Claims (11)

板材と、当該板材の遮音面において互いに隣接するように配置された複数のコア材とを備えた遮音構造体であって、
前記コア材は、筒状に形成された矩形薄板材からなり、
前記コア材の軸方向一端部は、前記板材の前記遮音面に接合されており、
隣接する前記コア材同士は、その側壁部において互いに摺動可能である
ことを特徴とする遮音構造体。
A sound insulation structure including a plate material and a plurality of core materials arranged so as to be adjacent to each other on the sound insulation surface of the plate material.
The core material is a rectangular thin plate material formed in a tubular shape.
One end of the core material in the axial direction is joined to the sound insulating surface of the plate material.
A sound insulation structure characterized in that adjacent core materials are slidable with each other on their side wall portions.
前記矩形薄板材の端部同士の間に隙間が形成されており、
前記コア材の側壁部は、軸線方向に沿うスリット部を有している
ことを特徴とする請求項1に記載の遮音構造体。
A gap is formed between the ends of the rectangular thin plate material.
The sound insulation structure according to claim 1, wherein the side wall portion of the core material has a slit portion along the axial direction.
前記コア材と前記遮音面とは、エポキシ系の接着剤にて接合されている
ことを特徴とする請求項1または請求項2に記載の遮音構造体。
The sound insulation structure according to claim 1 or 2, wherein the core material and the sound insulation surface are joined with an epoxy-based adhesive.
前記コア材と前記遮音面とは、硬化後のショア硬さが50以上となる接着剤にて接合されている
ことを特徴とする請求項1または請求項2に記載の遮音構造体。
The sound insulation structure according to claim 1 or 2, wherein the core material and the sound insulation surface are joined by an adhesive having a shore hardness of 50 or more after curing.
前記接着剤の硬化後の前記遮音面からの高さは、前記コア材の軸線方向寸法の5%以下である
ことを特徴とする請求項3または請求項4に記載の遮音構造体。
The sound insulation structure according to claim 3 or 4, wherein the height of the adhesive after curing from the sound insulation surface is 5% or less of the axial dimension of the core material.
前記コア材は、前記遮音面への接着前後においてその直径が同一である
ことを特徴とする請求項3乃至請求項5のいずれか一項に記載の遮音構造体。
The sound insulation structure according to any one of claims 3 to 5, wherein the core material has the same diameter before and after adhesion to the sound insulation surface.
前記板材の表面に、板状の制振材が貼り付けられている
ことを特徴とする請求項1乃至請求項6のいずれか一項に記載の遮音構造体。
The sound insulation structure according to any one of claims 1 to 6, wherein a plate-shaped vibration damping material is attached to the surface of the plate material.
コア材を形成するコア材形成工程と、
板材の表面に接着剤を塗布する接着剤塗布工程と、
前記接着剤が塗布された遮音面に前記コア材を複数並べて前記板材に接着させるコア材接着工程と、
前記接着剤を硬化させる養生工程と、を備えている
ことを特徴とする遮音構造体の製造方法。
The core material forming process for forming the core material and
Adhesive application process to apply adhesive to the surface of the plate material,
A core material bonding step of arranging a plurality of the core materials on a sound insulating surface coated with the adhesive and adhering them to the plate material.
A method for manufacturing a sound insulation structure, which comprises a curing step of curing the adhesive.
コア材形成工程では、矩形薄板材を筒状に加工してコア材を形成する
ことを特徴とする請求項8に記載の遮音構造体の製造方法。
The method for manufacturing a sound insulation structure according to claim 8, wherein in the core material forming step, a rectangular thin plate material is processed into a tubular shape to form a core material.
前記コア材接着工程では、前記コア材を原形の状態で前記板材上に並列させる
ことを特徴とする請求項8または請求項9に記載の遮音構造体の製造方法。
The method for manufacturing a sound insulation structure according to claim 8 or 9, wherein in the core material bonding step, the core material is arranged in parallel on the plate material in the original state.
前記接着剤塗布工程では、前記接着剤の前記コア材への付着高さが前記コア材の軸方向寸法の5%以下となる厚さで前記接着剤を前記板材の表面に塗布する
ことを特徴とする請求項8乃至請求項10のいずれか一項に記載の遮音構造体の製造方法。
The adhesive coating step is characterized in that the adhesive is applied to the surface of the plate material at a thickness such that the adhesion height of the adhesive to the core material is 5% or less of the axial dimension of the core material. The method for manufacturing a sound insulation structure according to any one of claims 8 to 10.
JP2019218564A 2019-12-03 2019-12-03 sound insulation structure Active JP7247872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218564A JP7247872B2 (en) 2019-12-03 2019-12-03 sound insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218564A JP7247872B2 (en) 2019-12-03 2019-12-03 sound insulation structure

Publications (2)

Publication Number Publication Date
JP2021089329A true JP2021089329A (en) 2021-06-10
JP7247872B2 JP7247872B2 (en) 2023-03-29

Family

ID=76220261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218564A Active JP7247872B2 (en) 2019-12-03 2019-12-03 sound insulation structure

Country Status (1)

Country Link
JP (1) JP7247872B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134653A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd Sound absorbing structure
JP2011227470A (en) * 2010-03-29 2011-11-10 Shizuka Co Ltd Honeycomb panel laminating body and box-shaped structure
JP2014063008A (en) * 2012-09-21 2014-04-10 Voc Direct Co Ltd Fire proof acoustic panel and manufacturing method for the same
US20180311925A1 (en) * 2017-04-26 2018-11-01 Ford Global Technologies, Llc Cellular structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134653A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd Sound absorbing structure
JP2011227470A (en) * 2010-03-29 2011-11-10 Shizuka Co Ltd Honeycomb panel laminating body and box-shaped structure
JP2014063008A (en) * 2012-09-21 2014-04-10 Voc Direct Co Ltd Fire proof acoustic panel and manufacturing method for the same
US20180311925A1 (en) * 2017-04-26 2018-11-01 Ford Global Technologies, Llc Cellular structure

Also Published As

Publication number Publication date
JP7247872B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP2024010162A (en) Improvement in or relating to audio transducer
RU2477223C2 (en) Cellular structure for noise absorbing panels
JP6893521B2 (en) Stepped acoustic structure with multiple degrees of freedom
JP6585178B2 (en) Connector
EP3101911B1 (en) Distributed mode loudspeaker damping oscillations within exciter feet
US8116512B2 (en) Planar speaker driver
WO2015093081A1 (en) Vibration-damping material and method for attaching vibration-damping material
US20130306397A1 (en) Acoustic Diaphragm Suspending
US11021871B2 (en) Porous sound-absorbing board
JP7247872B2 (en) sound insulation structure
JP2016142300A (en) Joint unit and shield member
US8437496B2 (en) Membrane for an acoustic device and acoustic device
JP2011158158A (en) Branch pipe for flexible duct
JP4948763B2 (en) Damping coil spring and vibration damping device
JP4578986B2 (en) Dynamic microphone unit and manufacturing method thereof
JP2009198901A (en) Sound absorption structure, sound absorption structure group, acoustic chamber, method of adjusting sound absorption structure and noise reduction method
US10681468B2 (en) Speaker diaphragm and coil coupling arrangement, and method
WO2015145777A1 (en) Approaching vehicle notification sound speaker device
CN112492461B (en) Loudspeaker
JP6265539B2 (en) Capacitor headphone unit and method of manufacturing capacitor headphone fixed pole assembly
JP6395141B1 (en) Damping damper, turntable and record player
JP2012159176A (en) Method for manufacturing seismic isolation device
JP5453079B2 (en) Dynamic transducer for sound
JP7051276B2 (en) Thermoacoustic protection structure for rotating machines
JP6649606B2 (en) Speaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150