JP2021089265A - Furnace wall shape/wear measuring device and furnace wall shape/wear measuring method - Google Patents

Furnace wall shape/wear measuring device and furnace wall shape/wear measuring method Download PDF

Info

Publication number
JP2021089265A
JP2021089265A JP2020073384A JP2020073384A JP2021089265A JP 2021089265 A JP2021089265 A JP 2021089265A JP 2020073384 A JP2020073384 A JP 2020073384A JP 2020073384 A JP2020073384 A JP 2020073384A JP 2021089265 A JP2021089265 A JP 2021089265A
Authority
JP
Japan
Prior art keywords
furnace wall
axis
camera
point
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020073384A
Other languages
Japanese (ja)
Other versions
JP6743316B1 (en
Inventor
二郎 大野
Jiro Ono
二郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSK Japan Co Ltd
Original Assignee
MSK Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MSK Japan Co Ltd filed Critical MSK Japan Co Ltd
Application granted granted Critical
Publication of JP6743316B1 publication Critical patent/JP6743316B1/en
Publication of JP2021089265A publication Critical patent/JP2021089265A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

To provide a furnace wall shape/wear measuring device for providing sufficient information in a short time.SOLUTION: A furnace wall shape/wear measuring device comprises a light source that generates a mark on an intersection line between a furnace wall surface and a first plane including a light emission point O, a first camera that acquires an image of the mark, and a processor. The light source and the first camera are configured to be rotatable around a rotation axis. Using the visual field central axis of the first camera as a w-axis, the principal point C of the first camera on the w axis as the origin, and two straight lines orthogonal to each other in a plane that includes the origin and is perpendicular to the w-axis as a u-axis and a v-axis, the processor obtains, from u, v coordinates of a measurement point on the mark in the image acquired by the first camera, the azimuth angle and the elevation angle of the measurement point. From the azimuth angle, the elevation angle, and the relative positional relationship between the visual field central axis and the first plane, the furnace wall shape/wear can be determined.SELECTED DRAWING: Figure 6

Description

本発明は、炉壁の形状・損耗測定装置及び炉壁の形状・損耗測定方法に関する。本発明は特に製鋼用電気炉に適する。 The present invention relates to a furnace wall shape / wear measuring device and a furnace wall shape / wear measuring method. The present invention is particularly suitable for an electric furnace for steelmaking.

製鋼用電気炉は鉄スクラップを高温で溶解し溶融状態の鋼を取り出すプロセスを繰り返す。高温にさらされる炉壁は耐火物によって形成されている。上記のプロセスの繰り返しによって耐火物からなる炉壁の表面は徐々に損耗する。この損耗を放置すると炉体破損などの大きな事故が発生する可能性が高まる。そこで、耐火物の損耗の状態を定める方法が開発されている。 The electric furnace for steelmaking repeats the process of melting iron scrap at high temperature and taking out molten steel. The furnace wall exposed to high temperature is formed of refractory material. By repeating the above process, the surface of the refractory wall is gradually worn. If this wear is left unattended, the possibility of a major accident such as damage to the furnace body increases. Therefore, a method for determining the state of wear of the refractory has been developed.

従来の方法には耐火物の内部の温度測定に基づいて間接的に炉壁の損耗の状態を推定する方法がある(たとえば、特許文献1-3)。しかし、これらの方法では炉壁の損耗の状態を直接測定することはできなかった。また、レーザビームとリニアアレイセンサとを組み合わせて炉壁の形状を測定する方法が開発されている(たとえば、特許文献4)。しかし、この方法は測定手順が煩雑であり測定時間が長いので、たとえば、電気炉の出鋼から原料の投入の間に炉壁の形状を測定することはできない。このように、炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を短時間で提供する炉壁の形状・損耗測定装置及び炉壁の形状・損耗測定方法は従来開発されていなかった。 In the conventional method, there is a method of indirectly estimating the state of wear of the furnace wall based on the temperature measurement inside the refractory (for example, Patent Documents 1-3). However, these methods could not directly measure the state of wear of the furnace wall. Further, a method of measuring the shape of a furnace wall by combining a laser beam and a linear array sensor has been developed (for example, Patent Document 4). However, in this method, the measurement procedure is complicated and the measurement time is long, so that it is not possible to measure the shape of the furnace wall, for example, between the output of steel from an electric furnace and the input of raw materials. In this way, a furnace wall shape / wear measuring device and a furnace wall shape / wear measuring method that provide sufficient information on the wear state of the furnace wall in a short time for repair by the furnace wall repair machine have been conventionally developed. I wasn't.

特開平3-223658号公報Japanese Unexamined Patent Publication No. 3-223658 特開平8−94264号公報Japanese Unexamined Patent Publication No. 8-94264 特開2017−227350号公報Japanese Unexamined Patent Publication No. 2017-227350 特開昭58−196406号公報Japanese Unexamined Patent Publication No. 58-196406

したがって、炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を短時間で提供する炉壁の形状・損耗測定装置及び炉壁の形状・損耗測定方法に対するニーズがある。本発明の技術的課題は炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を短時間で提供する炉壁の形状・損耗測定装置及び炉壁の形状・損耗測定方法を提供することである。 Therefore, there is a need for a furnace wall shape / wear measuring device and a furnace wall shape / wear measuring method that provide sufficient information on the wear state of the furnace wall in a short time for repair by the furnace wall repair machine. The technical subject of the present invention is a furnace wall shape / wear measuring device and a furnace wall shape / wear measuring method that provide sufficient information on the wear state of the furnace wall in a short time for repair by a furnace wall repair machine. To provide.

本発明の第1の態様の炉壁の形状・損耗測定装置は、中心軸を有し、該中心軸に垂直な断面がほぼ、該中心軸上に中心を有する円形の形状を有する炉壁に使用され、該炉壁上に光線によるマークを生成する光源と、該マークの画像を取得する第1のカメラと、プロセッサと、を備える。該光源及び該第1のカメラは該中心軸の近傍に設置され、該中心軸の方向の回転軸の周りに回転可能に構成され、該光源の発光点Oは実質的に該回転軸上に位置し、該光源は該発光点Oを含む第1の平面と該炉壁の面との交線上に該マークを生成するように構成され、該光源及び該第1のカメラが相対的な位置関係を維持しながら該回転軸の周りに回転すると該第1の平面が該回転軸の周りに回転するように構成され、該第1のカメラの視野中心軸上をw軸とし、該w軸上の該第1のカメラの主点Cを原点とし、該原点を含み該w軸に垂直な面内で互いに直交する二直線をu軸及びv軸として、該プロセッサが、該回転軸の周りに回転する該第1のカメラによって取得された画像における該マーク上の測定点のu、v座標から該測定点の方位角及び仰俯角を求め、該方位角、該仰俯角及び該視野中心軸と該第1の平面との相対的な位置関係から、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向を求め、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向から炉壁の形状・損耗を定めることができるように構成されている。 The shape / wear measuring device for the furnace wall according to the first aspect of the present invention has a central axis, and the cross section perpendicular to the central axis has a circular shape having a center on the central axis. It comprises a light source that is used to generate a light beam mark on the furnace wall, a first camera that acquires an image of the mark, and a processor. The light source and the first camera are installed in the vicinity of the central axis and are configured to be rotatable around a rotation axis in the direction of the central axis, and the light emitting point O of the light source is substantially on the rotation axis. Positioned, the light source is configured to generate the mark on the intersection of the first plane containing the light emitting point O and the surface of the furnace wall, and the light source and the first camera are in relative positions. When rotating around the rotation axis while maintaining the relationship, the first plane is configured to rotate around the rotation axis, and the w axis is on the center axis of the field of view of the first camera, and the w axis is defined as the w axis. With the main point C of the first camera above as the origin, and the two straight lines including the origin and orthogonal to each other in the plane perpendicular to the w-axis as the u-axis and the v-axis, the processor is around the rotation axis. The azimuth angle and elevation / depression angle of the measurement point are obtained from the u and v coordinates of the measurement point on the mark in the image acquired by the first camera that rotates to, and the azimuth angle, the elevation / depression angle, and the center axis of the field of view are obtained. The distance between the main point C and the measurement point and the direction from the main point C to the measurement point are obtained from the relative positional relationship between the main point C and the first plane, and the main point C and the measurement point are obtained. It is configured so that the shape and wear of the furnace wall can be determined from the distance between the points and the direction from the main point C to the measurement point.

本態様の炉壁の形状・損耗測定装置は、炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を短時間で、たとえば、電気炉の出鋼から原料の投入の間に提供することができる。 The furnace wall shape / wear measuring device of this embodiment provides sufficient information on the wear state of the furnace wall in a short time for repair by the furnace wall repair machine, for example, between the steel removal of the electric furnace and the input of the raw material. Can be provided to.

本発明の第1の態様の第1の実施形態の炉壁の形状・損耗測定装置において、該第1の平面は該u軸及び該w軸が形成する平面に直交するように構成されている。 In the furnace wall shape / wear measuring device of the first embodiment of the first aspect of the present invention, the first plane is configured to be orthogonal to the plane formed by the u-axis and the w-axis. ..

本実施形態によれば、該主点Cと該測定点との間の距離を求めるための演算が簡単になる。 According to this embodiment, the calculation for obtaining the distance between the principal point C and the measurement point becomes simple.

本発明の第1の態様の第2の実施形態の炉壁の形状・損耗測定装置において、該発光点Oが該u軸上に位置するように構成されている。 In the furnace wall shape / wear measuring device of the second embodiment of the first aspect of the present invention, the light emitting point O is configured to be located on the u-axis.

本実施形態によれば、該主点Cと該測定点との間の距離を求めるための演算が簡単になる。 According to this embodiment, the calculation for obtaining the distance between the principal point C and the measurement point becomes simple.

本発明の第1の態様の第3の実施形態の炉壁の形状・損耗測定装置において、点C及び点O間の距離をd、該w軸と該第1の面との交点をP、該w軸と点O及び点Pを結ぶ直線とのなす鋭角をγとして、dが500ミリメータから1500ミリメータの範囲であり、γが8度から23度の範囲である。 In the furnace wall shape / wear measuring device of the third embodiment of the first aspect of the present invention, the distance between the points C and O is d, and the intersection of the w-axis and the first surface is P 0. the acute angle formed between the line connecting the w-axis and the point O and the point P 0 as gamma, d is from approximately 500 millimeters to 1500 millimeters, a range gamma of 23 degrees 8 degrees.

本実施形態によれば、上記の距離及び角度を適切に設定することにより高い精度で炉壁の内周に沿った形状・損耗を測定することができる。 According to this embodiment, the shape and wear along the inner circumference of the furnace wall can be measured with high accuracy by appropriately setting the above distance and angle.

本発明の第1の態様の第4の実施形態の炉壁の形状・損耗測定装置において、該光源が該第1の平面内にレーザ光線を射出するレーザライン生成器であり、該マークがレーザラインである。 In the furnace wall shape / wear measuring device of the fourth embodiment of the first aspect of the present invention, the light source is a laser line generator that emits a laser beam into the first plane, and the mark is a laser. It is a line.

本実施形態によれば、光線によるマークとしてレーザラインを使用することにより炉のプロセス間で炉が高温の状態で短時間に測定を実施することができるので、炉のプロセス間で炉が高温の状態で実施される炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を提供することができる。 According to the present embodiment, by using the laser line as a mark by light rays, it is possible to perform the measurement in a short time while the furnace is in a high temperature state between the processes of the furnace, so that the temperature of the furnace is high between the processes of the furnace. Sufficient information on the state of wear of the furnace wall can be provided for repair by the furnace wall repair machine carried out in the state.

本発明の第1の態様の第5の実施形態の炉壁の形状・損耗測定装置において、該レーザライン生成器が射出するレーザ光線の方向を変えることができるように構成されている。 The shape / wear measuring device for the furnace wall according to the fifth embodiment of the first aspect of the present invention is configured so that the direction of the laser beam emitted by the laser line generator can be changed.

本実施形態によれば、炉壁の広い範囲の内周に沿った形状・損耗を測定することができる。 According to this embodiment, it is possible to measure the shape and wear along the inner circumference of a wide range of the furnace wall.

本発明の第1の態様の第6の実施形態の炉壁の形状・損耗測定装置は、該炉壁の画像を取得する第2のカメラと、表示器と、をさらに備え、該第2のカメラは、該炉壁の内周に沿って該炉壁の画像を取得することができるように、該中心軸の近傍に設置され、該回転軸の周りに回転可能に構成され、該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を作成し、該表示器によって表示するように構成されている。 The shape / wear measuring device for the furnace wall according to the sixth embodiment of the first aspect of the present invention further includes a second camera for acquiring an image of the furnace wall, a display, and the second. The camera is installed in the vicinity of the central axis so that an image of the furnace wall can be acquired along the inner circumference of the furnace wall, and is configured to be rotatable around the rotation axis so that the processor can acquire the image. , An image in which information indicating the shape and wear of the furnace wall is added to the image of the furnace wall is created and displayed by the display.

本実施形態によれば、オペレータに炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を提供することができるので、炉壁の補修機による補修が効率的に実施できる。 According to the present embodiment, since it is possible to provide the operator with an image in which information indicating the shape and wear of the furnace wall is added to the image of the furnace wall, repair by the furnace wall repair machine can be efficiently performed.

本発明の第1の態様の第7の実施形態の炉壁の形状・損耗測定装置において、該光源がプロジェクタであり、該マークが該プロジェクタによって生成されたマークである。 In the furnace wall shape / wear measuring device of the seventh embodiment of the first aspect of the present invention, the light source is a projector, and the mark is a mark generated by the projector.

本実施形態によれば、マークの画像及び炉壁の画像を1台のカメラで取得することができる。 According to this embodiment, the image of the mark and the image of the furnace wall can be acquired by one camera.

本発明の第1の態様の第8の実施形態の炉壁の形状・損耗測定装置において、該光源及び該第1のカメラが該中心軸の近傍に回転可能に設置された該炉壁の補修機に取り付けられている。 In the furnace wall shape / wear measuring device of the eighth embodiment of the first aspect of the present invention, the repair of the furnace wall in which the light source and the first camera are rotatably installed in the vicinity of the central axis. It is attached to the machine.

本実施形態によれば、炉壁の形状・損耗測定装置を補修機と連動させることが容易になる。 According to this embodiment, it becomes easy to interlock the shape / wear measuring device of the furnace wall with the repair machine.

本発明の第2の態様の炉壁の形状・損耗測定方法は、中心軸を有し、該中心軸に垂直な断面がほぼ、該中心軸上に中心を有する円形の形状の炉壁を有する炉に使用される炉壁の形状・損耗測定方法であって、該炉壁上に光線によるマークを生成する光源と、該マークの画像を取得する第1のカメラと、プロセッサと、を使用し、該光源及び該第1のカメラは該中心軸の近傍に設置され、該中心軸の方向の回転軸の周りに回転可能に構成され、該光源の発光点Oは実質的に該回転軸上に位置し、該光源は該発光点Oを含む面と該炉壁の面との交線上に該マークが生成されるように構成され、該第1のカメラは視野中心軸が該回転軸を通過するように設置され、該方法は、該光源及び該第1のカメラが該回転軸の周りに回転しながら、所定の高さで該炉壁の内周に沿って該マークの画像を取得するステップと、該プロセッサが、該炉壁の内周に沿って取得した該マークの画像を使用して該炉壁の形状・損耗を定めるステップと、を含む。 The method for measuring the shape and wear of the furnace wall according to the second aspect of the present invention has a furnace wall having a central axis, and the cross section perpendicular to the central axis has a circular shape having a center on the central axis. A method for measuring the shape and wear of a furnace wall used in a furnace, which uses a light source that generates a mark by light rays on the furnace wall, a first camera that acquires an image of the mark, and a processor. The light source and the first camera are installed in the vicinity of the central axis and are configured to be rotatable around a rotation axis in the direction of the central axis, and the light emitting point O of the light source is substantially on the rotation axis. The light source is configured so that the mark is generated on the intersection of the surface including the light emitting point O and the surface of the furnace wall, and the central axis of the field of view of the first camera has the axis of rotation. Installed to pass through, the method acquires an image of the mark along the inner circumference of the furnace wall at a predetermined height as the light source and the first camera rotate around the axis of rotation. This includes a step of determining the shape and wear of the furnace wall by using the image of the mark acquired by the processor along the inner circumference of the furnace wall.

本態様の炉壁の形状・損耗測定方法は、炉壁の補修機による補修のために炉壁の損耗状態の十分な情報を短時間で、たとえば、電気炉の出鋼から原料の投入の間に提供することができる。 In the method for measuring the shape and wear of the furnace wall in this embodiment, sufficient information on the state of wear of the furnace wall can be obtained in a short time for repair by the repair machine of the furnace wall, for example, between the steel removal of the electric furnace and the input of raw materials. Can be provided to.

本発明の第2の態様の第1の実施形態の炉壁の形状・損耗測定方法は、該炉壁の画像を取得する第2のカメラと、表示器と、をさらに使用し、該第2のカメラは該中心軸の近傍に設置され、該回転軸の周りに回転可能に構成され、該第2のカメラによって該炉壁の内周に沿って該炉壁の画像を取得するステップと、該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を作成するステップと、該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を該表示器によって表示するステップと、をさらに含む。 The method for measuring the shape and wear of the furnace wall according to the first embodiment of the second aspect of the present invention further uses a second camera for acquiring an image of the furnace wall and a display, and the second method. The camera is installed in the vicinity of the central axis, is configured to be rotatable around the rotation axis, and the second camera acquires an image of the furnace wall along the inner circumference of the furnace wall. The step of creating an image in which the processor adds information indicating the shape and wear of the furnace wall to the image of the furnace wall, and information that the processor shows the shape and wear of the furnace wall in the image of the furnace wall. Further includes a step of displaying the image with the addition of the above on the display.

本実施形態によれば、オペレータに炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を提供することができるので炉のプロセス間で炉が高温の状態で実施される炉壁の補修機による補修が効率的に実施できる。 According to the present embodiment, since it is possible to provide the operator with an image in which information indicating the shape and wear of the furnace wall is added to the image of the furnace wall, the furnace is carried out in a high temperature state between the processes of the furnace. Repairs with a wall repair machine can be carried out efficiently.

本発明の第2の態様の第2の実施形態の炉壁の形状・損耗測定方法は、該炉壁が基準状態のときに定めた該炉壁の形状と新たに定めた該炉壁の形状との差分から該炉壁の損耗量を定める。 The method for measuring the shape and wear of the furnace wall according to the second embodiment of the second aspect of the present invention is the shape of the furnace wall determined when the furnace wall is in the reference state and the shape of the furnace wall newly determined. The amount of wear of the furnace wall is determined from the difference between.

本実施形態によれば、基準状態からの炉壁の損耗量を正確に測定することができる。 According to this embodiment, the amount of wear of the furnace wall from the reference state can be accurately measured.

製鋼用のアーク式電気炉の断面を示す図である。It is a figure which shows the cross section of the arc type electric furnace for steelmaking. 本発明の一実施形態による炉壁の形状・損耗測定装置の配置を示す透視図である。It is a perspective view which shows the shape of the furnace wall and the arrangement of the wear measuring apparatus by one Embodiment of this invention. 炉壁の形状・損耗測定装置の配置を示す平面図である。It is a top view which shows the shape of the furnace wall, and the arrangement of the wear measuring apparatus. 炉壁の形状・損耗測定装置の構成を示すブロック図である。It is a block diagram which shows the shape of the furnace wall, and the structure of the wear measuring apparatus. 基準状態の炉壁の内周の形状を定める方法を示す流れ図である。It is a flow chart which shows the method of determining the shape of the inner circumference of the furnace wall in a reference state. レーザライン生成器の発光点、第1のカメラの主点及び炉壁の位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the light emitting point of a laser line generator, the principal point of a first camera, and a furnace wall. 点O、点C、点P及び上記の点を含む面の間の位置的関係を説明するための図である。Is a diagram for explaining the positional relationship between the point O, the point C, the point P 0 and the plane including the above points. レーザライン生成器の位置調整方法を説明するための図である。It is a figure for demonstrating the position adjustment method of a laser line generator. 第1のカメラの主点Cからレーザライン上の測定点Lまでの距離の定め方を説明するための図である。It is a figure for demonstrating how to determine the distance from the principal point C of the 1st camera to the measurement point L on a laser line. 第1のカメラの画像から測定点Lの方位角α及び測定点Lの仰俯角βを定める方法を説明するための図である。It is a figure for demonstrating the method of determining the azimuth angle α of the measurement point L, and the elevation / depression angle β of a measurement point L from the image of a 1st camera. 図5のステップS1020に記載された、レーザラインの画像を使用して基準状態の炉壁の内周の形状を定める方法を示す流れ図である。FIG. 5 is a flow chart showing a method of determining the shape of the inner circumference of the furnace wall in the reference state using the image of the laser line described in step S1020 of FIG. 測定点Lの方位角α、仰俯角β及び第1のカメラの主点Cから測定点Lまでの距離lの間の関係を示す図である。It is a figure which shows the relationship between the azimuth angle α of the measurement point L, the elevation / depression angle β, and the distance l from the principal point C of the first camera to the measurement point L. 炉壁の形状・損耗測定装置によって測定された基準状態の炉壁の内周の形状を示す図である。It is a figure which shows the shape of the inner circumference of the furnace wall in a reference state measured by the shape and wear measuring apparatus of a furnace wall. 出鋼後の炉壁の内周の形状・損耗を定める方法を示す流れ図である。It is a flow chart which shows the method of determining the shape and wear of the inner circumference of a furnace wall after steel removal. 炉壁の形状・損耗測定装置によって測定された出鋼後の炉壁の内周の形状を示す図である。It is a figure which shows the shape of the inner circumference of the furnace wall after steel removal measured by the shape and wear measuring apparatus of a furnace wall. 炉壁の内周の画像及びレーザラインの画像を別々に示す図である。It is a figure which shows the image of the inner circumference of a furnace wall and the image of a laser line separately. 炉壁の内周の画像にレーザラインの画像を重ね合わせた合成画像を示す図である。It is a figure which shows the composite image which superposed the image of the laser line on the image of the inner circumference of a furnace wall.

図1は、製鋼用のアーク式電気炉300の断面を示す図である。電気炉300の炉壁310は、中心軸320を有し、中心軸320に垂直な断面が中心軸320上に中心を有するほぼ円形の形状を有する。図1に示す断面は中心軸320を含む。電気炉300には原料である鉄スクラップ及び副原料である石灰石が投入され、アークによって高温に加熱される。鉄スクラップは溶解し、鉄スクラップ中の銅、スズ、ニッケル、クロムなどの不純物は石灰石に吸収されてスラグとなる。不純物を含むスラグは比重が小さいので不純物が除去された溶鋼上に浮上する。溶鋼及びスラグは炉壁310に設けられた出鋼口及び排滓口からそれぞれ取り出される。このように、電気炉300においては、原料及び副原料の投入、原料の溶解、出鋼及び排滓のプロセスが繰り返される。 FIG. 1 is a diagram showing a cross section of an arc-type electric furnace 300 for steelmaking. The furnace wall 310 of the electric furnace 300 has a central axis 320, and has a substantially circular shape having a cross section perpendicular to the central axis 320 centered on the central axis 320. The cross section shown in FIG. 1 includes a central axis 320. Iron scrap as a raw material and limestone as an auxiliary raw material are put into the electric furnace 300 and heated to a high temperature by an arc. Iron scrap melts, and impurities such as copper, tin, nickel, and chromium in the iron scrap are absorbed by limestone and become slag. Since slag containing impurities has a small specific gravity, it floats on the molten steel from which impurities have been removed. The molten steel and slag are taken out from the steel outlet and the slag outlet provided on the furnace wall 310, respectively. In this way, in the electric furnace 300, the processes of inputting raw materials and auxiliary raw materials, melting the raw materials, ejecting steel, and discharging the raw materials are repeated.

高温にさらされる炉壁310は、耐火煉瓦及びキャスタブル耐火物によって形成されている。上記のプロセスの繰り返しによって炉壁の表面は徐々に損耗する。この損耗を放置すると炉体破損などの大きな事故が発生する可能性が高まる。そこで、炉300には、プロセス間、すなわち、出鋼から原料の投入の間などに炉壁の損耗の大きな個所にキャスタブル耐火物を吹き付けるための補修機200が設置されている。補修機200は、アーク式電気炉300の中心軸320とほぼ一致する中心軸320の方向の回転軸の周りに回転可能に構成されている。補修機200の先端にはキャスタブル耐火物を炉壁310に吹き付けるノズル210が設けられている。また、ノズル210はキャスタブル耐火物の炉壁上の吹き付け位置を変えるために角度を変化させることができるように構成されている。補修機200の回転位置とノズル210の角度を変えることにより炉壁の任意の位置にキャスタブル耐火物を吹き付けることができる。 The furnace wall 310 exposed to high temperature is formed of refractory bricks and castable refractories. The surface of the furnace wall is gradually worn by repeating the above process. If this wear is left unattended, the possibility of a major accident such as damage to the furnace body increases. Therefore, in the furnace 300, a repair machine 200 for spraying a castable refractory is installed at a place where the furnace wall is heavily worn during the process, that is, between the steel ejection and the raw material feeding. The repair machine 200 is configured to be rotatable around a rotation axis in the direction of the central axis 320, which substantially coincides with the central axis 320 of the arc-type electric furnace 300. A nozzle 210 for blowing a castable refractory onto the furnace wall 310 is provided at the tip of the repair machine 200. Further, the nozzle 210 is configured so that the angle can be changed in order to change the spraying position on the furnace wall of the castable refractory. By changing the rotation position of the repair machine 200 and the angle of the nozzle 210, a castable refractory can be sprayed on an arbitrary position on the furnace wall.

溶鋼上のスラグの位置の炉壁310の損耗が最も大きい。この溶鋼上のスラグの鉛直方向の位置を示す水平な直線をスラグライン330と呼称する。図1においてスラグライン330を破線で示している。炉壁310の形状・損耗を監視する際には炉壁310のスラグライン330の高さの部分を優先的に監視する必要がある。 The wear of the furnace wall 310 at the position of the slag on the molten steel is the largest. The horizontal straight line indicating the vertical position of the slag on the molten steel is called a slag line 330. In FIG. 1, the slag line 330 is shown by a broken line. When monitoring the shape and wear of the furnace wall 310, it is necessary to preferentially monitor the height portion of the slag line 330 of the furnace wall 310.

図2は本発明の一実施形態による炉壁の形状・損耗測定装置100の配置を示す透視図である。本実施形態において、炉壁の形状・損耗測定装置100の光源としてラインジェネレータの名称で市販されているレーザライン生成器を使用する。炉壁の形状・損耗測定装置100は、炉壁上に光線によるマークとしてレーザラインを生成するレーザライン生成器101と、レーザラインの画像を取得する第1のカメラ103と、炉壁の画像を取得する第2のカメラ105と、を含む。レーザライン生成器101、第1のカメラ103及び第2のカメラ105は、中心軸320の近傍に設置され、補修機200に固定された平板150上に設置してもよい。補修機200は中心軸320とほぼ一致する中心軸320の方向の回転軸の周りに回転可能に構成されている。レーザライン生成器101は回転軸の近傍にレーザ光線を平面内に射出するように設置される。レーザライン生成器101は上記の平面内に射出するレーザ光線の方向を変えることができるように構成してもよい。補修機200が回転軸の周りに回転すると、レーザライン生成器101も回転軸の周りに回転し、一例としてスラグライン330の高さで炉壁の内周に沿ってレーザラインを形成する。第1のカメラ103は、レーザライン生成器101とともに回転軸の周りに回転しながらスラグライン330の高さで炉壁の内周に沿ってレーザラインの画像を取得する。第2のカメラ105は、レーザライン生成器101及び第1のカメラ103とともに回転軸の周りに回転しながら内周に沿って炉壁の画像を取得する。炉壁の内周に沿ったレーザラインの画像及び内周に沿った炉壁の画像を取得するための回転軸の周りの1回転に要する時間は約10秒である。 FIG. 2 is a perspective view showing the arrangement of the shape / wear measuring device 100 of the furnace wall according to the embodiment of the present invention. In the present embodiment, a laser line generator commercially available under the name of a line generator is used as a light source of the furnace wall shape / wear measuring device 100. The furnace wall shape / wear measuring device 100 captures an image of the furnace wall, a laser line generator 101 that generates a laser line as a mark by light rays on the furnace wall, a first camera 103 that acquires an image of the laser line, and an image of the furnace wall. Includes a second camera 105 to acquire. The laser line generator 101, the first camera 103, and the second camera 105 may be installed in the vicinity of the central axis 320 and may be installed on a flat plate 150 fixed to the repair machine 200. The repair machine 200 is configured to be rotatable around a rotation axis in the direction of the central axis 320, which substantially coincides with the central axis 320. The laser line generator 101 is installed in the vicinity of the rotation axis so as to emit a laser beam in a plane. The laser line generator 101 may be configured so that the direction of the laser beam emitted into the above plane can be changed. When the repair machine 200 rotates around a rotation axis, the laser line generator 101 also rotates around the rotation axis, forming a laser line along the inner circumference of the furnace wall at the height of the slag line 330, for example. The first camera 103 acquires an image of the laser line along the inner circumference of the furnace wall at the height of the slag line 330 while rotating around the rotation axis together with the laser line generator 101. The second camera 105 acquires an image of the furnace wall along the inner circumference while rotating around the rotation axis together with the laser line generator 101 and the first camera 103. The time required for one rotation around the rotation axis for acquiring the image of the laser line along the inner circumference of the furnace wall and the image of the furnace wall along the inner circumference is about 10 seconds.

レーザラインは炉壁310の中心軸320を含む断面内において一例としてスラグライン330の高さの近傍に形成される。レーザラインの長さは一例として炉壁310上で500ミリメートルである。一般的に、本発明の一実施形態による炉壁の形状・損耗測定装置100による測定対象は、スラグラインの高さの炉壁の領域に限定されず炉底部を含む炉壁の全域である。必要に応じて、平面内に射出するレーザ光線の方向を変えることができるようにレーザライン生成器101を構成したり、レーザラインの長さをスラグラインから炉底中心部まで達するように長くできるレーザライン生成器101を構成することによって、炉底部を含む炉壁の全域を測定することができる。 The laser line is formed in the cross section including the central axis 320 of the furnace wall 310 as an example in the vicinity of the height of the slag line 330. The length of the laser line is, for example, 500 millimeters on the furnace wall 310. In general, the object of measurement by the furnace wall shape / wear measuring device 100 according to the embodiment of the present invention is not limited to the region of the furnace wall at the height of the slag line, but is the entire area of the furnace wall including the bottom of the furnace. If necessary, the laser line generator 101 can be configured so that the direction of the laser beam emitted into the plane can be changed, or the length of the laser line can be lengthened so as to reach from the slag line to the center of the furnace bottom. By configuring the laser line generator 101, the entire area of the furnace wall including the bottom of the furnace can be measured.

図3は炉壁の形状・損耗測定装置100の配置を示す平面図である。以下において、補修機200の回転軸が中心軸320と一致するものとして説明する。補修機200が中心軸320の周りに回転すると平板150も中心軸320の周りに回転する。回転中にレーザライン生成器101と第1のカメラ103との位置関係は変化しない。第2のカメラ105の視野角は一例として70度である。 FIG. 3 is a plan view showing the shape of the furnace wall and the arrangement of the wear and tear measuring device 100. Hereinafter, it is assumed that the rotation axis of the repair machine 200 coincides with the central axis 320. When the repair machine 200 rotates around the central axis 320, the flat plate 150 also rotates around the central axis 320. The positional relationship between the laser line generator 101 and the first camera 103 does not change during rotation. The viewing angle of the second camera 105 is 70 degrees as an example.

図4は炉壁の形状・損耗測定装置100の構成を示すブロック図である。炉壁の形状・損耗測定装置100は、レーザライン生成器101と、第1のカメラ103と、第2のカメラ105と、プロセッサ110と、表示器120と、を含む。また、プロセッサ110は、中心軸320の周りの回転中の周方向位置、すなわち回転角度をエンコーダなどの検出器130から取り込むことができるように構成されている。プロセッサ110は回転中の周方向位置とその位置で第1のカメラ103及び第2のカメラ105によって取得した画像とを結びつける。プロセッサ110は、第1のカメラ103によって取得したレーザラインの画像から炉壁の形状・損耗を定める。また、プロセッサ110は、第2のカメラ105によって取得した炉壁の画像と炉壁の形状・損耗の情報を合成した画像を表示器120に表示する。プロセッサ110の上記の機能は後で詳細に説明する。レーザライン生成器101のレーザの波長は一例として405ナノメータであり、第1のカメラ103は、上記の波長を選択的に透過させるフィルタを備えている。 FIG. 4 is a block diagram showing the shape of the furnace wall and the configuration of the wear and tear measuring device 100. The furnace wall shape / wear measuring device 100 includes a laser line generator 101, a first camera 103, a second camera 105, a processor 110, and a display 120. Further, the processor 110 is configured so that the circumferential position during rotation, that is, the rotation angle around the central axis 320 can be taken in from a detector 130 such as an encoder. The processor 110 associates the rotating circumferential position with the images acquired by the first camera 103 and the second camera 105 at that position. The processor 110 determines the shape and wear of the furnace wall from the image of the laser line acquired by the first camera 103. Further, the processor 110 displays on the display 120 an image obtained by combining the image of the furnace wall acquired by the second camera 105 and the information on the shape and wear of the furnace wall. The above functions of the processor 110 will be described in detail later. The laser wavelength of the laser line generator 101 is, for example, 405 nanometers, and the first camera 103 includes a filter that selectively transmits the above wavelengths.

図5は基準状態の炉壁310の内周の形状を定める方法を示す流れ図である。基準状態とは定期補修直後の耐火物の損耗がない状態をいう。定期補修とは、炉が高温の状態で実施されるプロセス間の補修とは別に、定期的に炉の温度を低くして実施される補修である。 FIG. 5 is a flow chart showing a method of determining the shape of the inner circumference of the furnace wall 310 in the reference state. The standard condition is a condition in which the refractory is not worn immediately after regular repair. Periodic repair is repair that is carried out by lowering the temperature of the furnace on a regular basis, in addition to the repair that is carried out during the process when the furnace is in a high temperature state.

図5のステップS1010において、第1のカメラ103によって基準状態の炉壁310の内周のレーザラインの画像を取得する。 In step S1010 of FIG. 5, an image of the laser line on the inner circumference of the furnace wall 310 in the reference state is acquired by the first camera 103.

図5のステップS1020において、プロセッサ110は、レーザラインの画像を使用して基準状態の炉壁の内周の形状を定める。最初に、図5のステップS1020において使用される本発明の一実施形態による測定方法について説明する。 In step S1020 of FIG. 5, the processor 110 uses the image of the laser line to determine the shape of the inner circumference of the furnace wall in the reference state. First, the measurement method according to the embodiment of the present invention used in step S1020 of FIG. 5 will be described.

図6は、レーザライン生成器101の発光点、第1のカメラ103の主点及び炉壁310の面の位置関係を説明するための図である。図6においてレーザライン生成器101の発光点及び第1のカメラ103の主点をそれぞれ点O及び点Cで表す。また、炉壁面をFで表す。レーザライン生成器101は、点Oが実質的に回転軸上に位置するように設置される。ここで、「実質的に」とは、点Oの回転軸からの距離が、点Oの高さにおける回転軸に垂直なほぼ円形の炉の断面の半径の10%以下であることをいう。レーザライン生成器101は平面π(以下、面πと呼称する)内にレーザ光線を射出し、面πと炉壁面との交線上にレーザラインを生成する。図6の点Lは、炉壁310上に形成されるレーザライン上の測定点を表す。レーザライン生成器101が回転軸の周りに回転するとレーザラインは炉壁面Fに沿って移動し、レーザライン生成器101とともに移動する第1のカメラ103が炉壁面Fの周方向の各位置においてレーザラインの画像を取得する。図6において点Pは第1のカメラ103の主点Cを通る視野中心軸と面πとの交点を表す。回転中に点O、点C及び点Pの相対的な位置関係は以下に説明するように不変である。 FIG. 6 is a diagram for explaining the positional relationship between the light emitting point of the laser line generator 101, the principal point of the first camera 103, and the surface of the furnace wall 310. In FIG. 6, the light emitting point of the laser line generator 101 and the principal point of the first camera 103 are represented by points O and C, respectively. The wall surface of the furnace is represented by F. The laser line generator 101 is installed so that the point O is substantially located on the rotation axis. Here, "substantially" means that the distance from the rotation axis of the point O is 10% or less of the radius of the cross section of the substantially circular furnace perpendicular to the rotation axis at the height of the point O. The laser line generator 101 emits a laser beam into a plane π (hereinafter referred to as a surface π) to generate a laser line on the intersection of the surface π and the furnace wall surface. Point L in FIG. 6 represents a measurement point on the laser line formed on the furnace wall 310. When the laser line generator 101 rotates around the rotation axis, the laser line moves along the furnace wall surface F, and the first camera 103 moving together with the laser line generator 101 lasers at each position in the circumferential direction of the furnace wall surface F. Get an image of the line. In FIG. 6, the point P 0 represents the intersection of the central axis of the field of view passing through the principal point C of the first camera 103 and the surface π. Point during rotation O, the relative positional relationship between the point C and the point P 0 is unchanged as described below.

図7は、点O、点C、点P及び上記の点を含む面の間の位置関係を説明するための図である。点Cを原点とし、視野中心軸をw軸とするuvw直交座標系を定める。u軸及びv軸はw軸に直交する平面内において互いに直交する二直線とする。図7においてu軸、v軸及びw軸は、それぞれeu、ev及びewで示される。本実施形態において、点Oがu軸上に位置するように構成する。点C及び点O間の距離をdで表す。u軸及びw軸を含む平面を面Ωとし、v軸及びw軸を含む平面を面Σとする。面Ω及び面Σは互いに直交する。点Oを含む面πは面Ωと直交するように定める。どのようにして面πが面Ωと直交するように面πの位置を定めるかにつては後で説明する。面π上の点O及び点Lを結ぶ直線と面Σとの交点を点P3であらわす。点P及び点P3の二点は面Σ及び面πの二平面に含まれるので、点P及び点P3を結ぶ直線は二平面の交線である。ここで点Lの座標を(u,v,w)とする。点Lから面Ωに下した垂線の足を点Luとする。点Luの座標は(u,0,w)で表せる。点Lから面Σに下した垂線の足を点Lvとする。点Lvの座標は(0,v,w)で表せる。点Lvから面Ωに下した垂線の足を点Lwとする。点Lwの座標は(0,0,w)で表せる。点O及び点Pを結ぶ直線と点C及び点Pを結ぶw軸とのなす角度(鋭角)をγで表す。点Oを通る回転軸をmで表す。図7において回転軸mは一点鎖線で示される。距離d及び角度γは固定値であり、面Σ、面π及びそれらの面内の点は相互の位置関係を維持しながら回転軸mの周りに回転する。 FIG. 7 is a diagram for explaining the positional relationship between the points O, C, P 0, and the surface including the above points. An uvw Cartesian coordinate system with the point C as the origin and the central axis of the field of view as the w axis is defined. The u-axis and v-axis are two straight lines orthogonal to each other in a plane orthogonal to the w-axis. In FIG. 7, the u-axis, v-axis and w-axis are represented by eu, ev and ew, respectively. In the present embodiment, the point O is configured to be located on the u-axis. The distance between the points C and O is represented by d. Let the plane including the u-axis and the w-axis be the plane Ω, and let the plane including the v-axis and the w-axis be the plane Σ. The plane Ω and the plane Σ are orthogonal to each other. The plane π including the point O is defined to be orthogonal to the plane Ω. How to position the surface π so that the surface π is orthogonal to the surface Ω will be described later. The intersection of the straight line connecting the points O and L on the surface π and the surface Σ is represented by the point P3. Since two points of the point P 0 and the point P3 included in the two planes of the plane Σ and surfaces [pi, the straight line connecting the point P 0 and the point P3 is the intersection line of the two planes. Here, the coordinates of the point L are (u, v, w). Let the foot of the perpendicular line drawn from the point L to the surface Ω be the point Lu. The coordinates of the point Lu can be represented by (u, 0, w). Let the foot of the perpendicular line drawn from the point L to the surface Σ be the point Lv. The coordinates of the point Lv can be represented by (0, v, w). Let the foot of the perpendicular line drawn from the point Lv to the surface Ω be the point Lw. The coordinates of the point Lw can be represented by (0, 0, w). The angle (acute angle) between w axis connecting the straight line and the point C and the point P 0 connecting the points O and the point P 0 expressed by gamma. The axis of rotation passing through the point O is represented by m. In FIG. 7, the rotation axis m is indicated by a chain double-dashed line. The distance d and the angle γ are fixed values, and the plane Σ, the plane π, and the points in the plane rotate around the rotation axis m while maintaining the mutual positional relationship.

図7において点Cを原点とするxyz直交座標系を定める。x軸はu軸と一致させる。y軸は回転軸と平行に定める。y軸及びz軸は、v軸及びw軸をそれぞれu軸の周りに角度Φ回転させたものと一致する。 In FIG. 7, an xyz Cartesian coordinate system with the point C as the origin is defined. The x-axis coincides with the u-axis. The y-axis is defined parallel to the rotation axis. The y-axis and z-axis correspond to the v-axis and w-axis rotated by an angle Φ around the u-axis, respectively.

ここで、どのようにして面πが面Ωと直交するように面πの位置を定めるかにつて説明する。第1のカメラ103の画像の垂直軸が図2の平板150と垂直になるように第1のカメラ103を平板150に固定する。レーザライン生成器101のレーザ照射面πが平板150と垂直になるようにレーザライン生成器101を平板150に固定する。平板150を水平面に対して角度Φ傾斜させた状態で補修機200に固定する。平板150の面は面Ωと一致する。 Here, how to determine the position of the surface π so that the surface π is orthogonal to the surface Ω will be described. The first camera 103 is fixed to the flat plate 150 so that the vertical axis of the image of the first camera 103 is perpendicular to the flat plate 150 of FIG. The laser line generator 101 is fixed to the flat plate 150 so that the laser irradiation surface π of the laser line generator 101 is perpendicular to the flat plate 150. The flat plate 150 is fixed to the repair machine 200 in a state where the flat plate 150 is inclined by an angle Φ with respect to the horizontal plane. The surface of the flat plate 150 coincides with the surface Ω.

図8はレーザライン生成器101の位置調整方法を説明するための図である。図8はu軸及びw軸が形成する面Ωを示す。図8においてRは反射板を示す。反射板Rはレーザ照射面πと交差する位置に鉛直方向に対して角度Φ傾斜させる。すなわち、反射板Rは面Ωと直交している。第1のカメラ103によって、反射板R上に形成されるレーザラインを観察し、レーザラインが画像の垂直軸方向となるようにレーザライン生成器101の位置及びレーザ照射面πの向きなどを調整する。点Oから反射板Rまでの距離がd1及びd2のときの、w軸及び点Cと、レーザラインとΩ面との交点とを結ぶ直線のなす角度(鋭角)をそれぞれα1及びα2で表すと、d2<d1であればα1<α2である。このように点Oから反射板Rまでの距離が大きくなると上記の角度は小さくなる。上記の角度は後で説明する方位角に対応する。 FIG. 8 is a diagram for explaining a method of adjusting the position of the laser line generator 101. FIG. 8 shows the surface Ω formed by the u-axis and the w-axis. In FIG. 8, R indicates a reflector. The reflector R is inclined at an angle Φ with respect to the vertical direction at a position intersecting the laser irradiation surface π. That is, the reflector R is orthogonal to the surface Ω. The first camera 103 observes the laser line formed on the reflector R, and adjusts the position of the laser line generator 101 and the direction of the laser irradiation surface π so that the laser line is in the vertical axis direction of the image. To do. When the distances from the point O to the reflector R are d1 and d2, the angles (acute angles) formed by the straight line connecting the w-axis and the point C and the intersection of the laser line and the Ω plane are expressed by α1 and α2, respectively. If d2 <d1, then α1 <α2. As the distance from the point O to the reflector R increases in this way, the above angle decreases. The above angle corresponds to the azimuth angle described later.

図9は点Cから点Lまでの距離lの求め方を説明するための図である。角度αは点Cと点Lwを結ぶ直線CLw(w軸)と点Cと点Luを結ぶ直線CLuとのなす角度(鋭角)であり測定点Lの方位角と呼称する。角度βは点Cと点Luを結ぶ直線CLuと点Cと点Lを結ぶ直線CLとのなす角度(鋭角)であり測定点Lの仰俯角と呼称する。図8において点P1及び点P2を結び、点Pを通る直線は、図7における面Σ及び面πの二平面の交線に対応する。 FIG. 9 is a diagram for explaining how to obtain the distance l from the point C to the point L. The angle α is an angle (acute angle) formed by the straight line CLw (w axis) connecting the point C and the point Lw and the straight line CLu connecting the point C and the point Lu, and is called the azimuth angle of the measurement point L. The angle β is an angle (acute angle) formed by the straight line CLu connecting the point C and the point Lu and the straight line CL connecting the point C and the point L, and is called the elevation / depression angle of the measurement point L. Conclusion The point P1 and the point P2 in FIG. 8, a straight line passing through the point P 0 corresponds to a line of intersection of two planes of the plane Σ and the surface π in FIG.

図9において、二点を結ぶ線分の長さを以下のように定める。

|CL| = l, |CLu | = lu, |CLw | = w, |LwLu | = u, |LwLv | = v, |CO | = d

ここで、たとえば|CL|は、点Cと点Lを結ぶ線分の長さを表す。また、2本の線分のなす角度を以下のように定める。

∠LwCLu = α, ∠LCLu = β, ∠CP0O =γ, ∠CLuO = η
∠LuCO = φ, ∠LuOC = ξ, ∠OC P0= π/2

ここで、たとえば∠LwCLuは点Cと点Lwを結ぶ線分と点Cと点Luを結ぶ線分とがなす角度を表す。
In FIG. 9, the length of the line segment connecting the two points is defined as follows.

| CL | = l, | CLu | = lu, | CLw | = w, | LwLu | = u, | LwLv | = v, | CO | = d

Here, for example, | CL | represents the length of the line segment connecting the points C and L. In addition, the angle formed by the two line segments is defined as follows.

∠LwCLu = α, ∠LCLu = β, ∠CP 0 O = γ, ∠CLuO = η
∠LuCO = φ, ∠LuOC = ξ, ∠OC P 0 = π / 2

Here, for example, ∠LwCLu represents the angle formed by the line segment connecting the point C and the point Lw and the line segment connecting the point C and the point Lu.

点C、点P0及び点Luを頂点とする三角形について以下の関係が成立する。

Figure 2021089265
点C、点P0及び点Oを頂点とする三角形について以下の関係が成立する。
Figure 2021089265
点C、点Lu及び点Oを頂点とする三角形について以下の関係が成立する。
Figure 2021089265
点C、点Lu及び点Lを頂点とする三角形について以下の関係が成立する。
Figure 2021089265
式(1)-(3)を使用して式(4)からluを消去して整理すると以下の式が得られる。
Figure 2021089265

ここで、距離d及び角度γは固定値であるので、測定点Lの方位角α及び測定点Lの仰俯角βを求めることによって式(1)-(5)を使用して点Cと測定点Lとの距離lを求めることができる。 The following relationship holds for triangles having points C, P0, and Lu as vertices.
Figure 2021089265
The following relationship holds for a triangle whose vertices are point C, point P0, and point O.
Figure 2021089265
The following relationship holds for triangles having points C, Lu, and O as vertices.
Figure 2021089265
The following relationship holds for points C, Lu, and triangles having points L as vertices.
Figure 2021089265
The following equation can be obtained by eliminating lu from the equation (4) and rearranging it using the equations (1)-(3).
Figure 2021089265

Here, since the distance d and the angle γ are fixed values, the azimuth angle α of the measurement point L and the elevation / depression angle β of the measurement point L are obtained to measure the distance d and the angle γ with the point C using equations (1)-(5). The distance l from the point L can be obtained.

製鋼用の電気炉を測定対象とする場合に距離dは500ミリメータから1500ミリメータであるのが好ましく、角度γは8度から23度であるのが好ましい。 When an electric furnace for steelmaking is used as a measurement target, the distance d is preferably 500 mm to 1500 mm, and the angle γ is preferably 8 to 23 degrees.

図10は、第1のカメラ103の画像から測定点Lの方位角α及び測定点Lの仰俯角βを定める方法を説明するための図である。第1のカメラ103の視野中心軸をy軸とし、互いに直交するu方向及びv方向のグリッドを備えた平板πuvを、平板πuvがy軸と直交し、第1のカメラ103の主点Cからの距離がwであり、u方向が画像の水平方向となるように配置する。平板πuv上の任意の点Lの座標を(u,v)で表すと、点Lの方位角α及び仰俯角βは以下の式で表せる。

Figure 2021089265
Figure 2021089265
第1のカメラ103の画像上の全ての画素に対して座標(u,v)から方位角α及び仰俯角βを定める。一般的にカメラまたはレンズを変えるごとに上記の手順によって画像上の全ての画素に対して方位角α及び仰俯角βを定める必要がある。 FIG. 10 is a diagram for explaining a method of determining the azimuth angle α of the measurement point L and the elevation / depression angle β of the measurement point L from the image of the first camera 103. The field center axis of the first camera 103 and the y-axis, a plate [pi uv having a u direction and the v direction grid orthogonal to each other, flat [pi uv is orthogonal to the y-axis, a principal point of the first camera 103 Arrange so that the distance from C is w and the u direction is the horizontal direction of the image. When the coordinates of an arbitrary point L on the flat plate π uv are expressed by (u, v), the azimuth angle α and the elevation / depression angle β of the point L can be expressed by the following equations.
Figure 2021089265
Figure 2021089265
The azimuth angle α and the elevation / depression angle β are determined from the coordinates (u, v) for all the pixels on the image of the first camera 103. Generally, every time the camera or lens is changed, it is necessary to determine the azimuth angle α and the elevation / depression angle β for all the pixels on the image by the above procedure.

図11は、図5のステップS1020に記載された、レーザラインの画像を使用して基準状態の炉壁の内周の形状を定める方法を示す流れ図である。 FIG. 11 is a flow chart showing a method of determining the shape of the inner circumference of the furnace wall in the reference state using the image of the laser line described in step S1020 of FIG.

図11のステップS2010において、プロセッサ110によって、第1のカメラ103のレーザラインの画像におけるレーザライン上の測定点Lの方位角α及び仰俯角βを定める。 In step S2010 of FIG. 11, the processor 110 determines the azimuth α and the elevation / depression angle β of the measurement point L on the laser line in the image of the laser line of the first camera 103.

図11のステップS2020において、プロセッサ110によって、方位角α、仰俯角β及び式(2)-(5)を使用して第1のカメラ103の主点Cから測定点Lまでの距離lを求める。測定点Lは炉壁310上の点であるので距離l、方位角α及び仰俯角βから炉壁310の形状が定まる。 In step S2020 of FIG. 11, the processor 110 obtains the distance l from the principal point C of the first camera 103 to the measurement point L using the azimuth angle α, the elevation / depression angle β, and equations (2)-(5). .. Since the measurement point L is a point on the furnace wall 310, the shape of the furnace wall 310 is determined from the distance l, the azimuth angle α, and the elevation / depression angle β.

図12は、測定点Lの方位角α、仰俯角β及び第1のカメラ103の主点Cから測定点Lまでの距離lの間の関係を示す図である。図12の横軸は測定点Lの方位角αを表す。単位は度である。図10の縦軸は第1のカメラ103の主点Cから測定点Lまでの距離lを表す。単位は10ミリメータ(1センチメータ)である。図12は仰俯角βの6個の異なる値に対して方位角αと距離lとの間の関係を示している。方位角α、仰俯角β、角度γ及び距離dの数値は以下のとおりである。
α= -1.0〜+1.0 deg
β= 0〜30 deg
γ= 13 deg
d= 800 mm
FIG. 12 is a diagram showing the relationship between the azimuth angle α, the elevation / depression angle β of the measurement point L, and the distance l from the principal point C of the first camera 103 to the measurement point L. The horizontal axis of FIG. 12 represents the azimuth angle α of the measurement point L. The unit is degrees. The vertical axis of FIG. 10 represents the distance l from the principal point C of the first camera 103 to the measurement point L. The unit is 10 centimeters (1 centimeter). FIG. 12 shows the relationship between the azimuth α and the distance l for six different values of the elevation / depression angle β. The numerical values of the azimuth α, the elevation / depression angle β, the angle γ, and the distance d are as follows.
α = -1.0 to +1.0 deg
β = 0 to 30 deg
γ = 13 deg
d = 800 mm

図12によると方位角に対する距離の平均勾配は300(mm/deg)である。上述のように距離が大きくなると方位角は小さくなる。第1のカメラ103の水平視野角60度、水平画素数1200とすると距離分解能は
300/(1200/60) = 15 (mm/画素)
となる。
According to FIG. 12, the average gradient of the distance with respect to the azimuth is 300 (mm / deg). As described above, the azimuth decreases as the distance increases. If the horizontal viewing angle of the first camera 103 is 60 degrees and the number of horizontal pixels is 1200, the distance resolution is
300 / (1200/60) = 15 (mm / pixel)
Will be.

本実施形態では距離lを求めるための演算を簡単にするために、点Oがu軸上に位置し、面πが面Ωと直交するように構成している。一般的に、点Oがu軸上に位置せず面πが面Ωと直交しない場合でも、測定点の方位角α、測定点の仰俯角β及び第1のカメラ103の視野中心軸と面πとの位置関係から距離lを求めることができる。 In the present embodiment, in order to simplify the calculation for obtaining the distance l, the point O is located on the u axis and the surface π is orthogonal to the surface Ω. In general, even when the point O is not located on the u-axis and the surface π is not orthogonal to the surface Ω, the azimuth angle α of the measurement point, the elevation / depression angle β of the measurement point, and the center axis and surface of the field of view of the first camera 103 The distance l can be obtained from the positional relationship with π.

図13は、炉壁の形状・損耗測定装置100によって測定された基準状態の炉壁の内周の形状を示す図である。図13の横軸は、スラグラインの高さにおける炉壁の内周に沿った位置を示す。この位置は回転軸の周りの回転角度に対応する。図13において、横軸に沿って出鋼口と排滓口の位置を示した。図13の縦軸は、第1のカメラ103の主点Cから炉壁上のスラグラインの高さの測定点Lまでの距離l、すなわちスラグラインの高さの炉壁の形状を示す。縦軸の上方向は炉壁の損耗の方向を示す。縦軸の下方向はキャスタブル耐火材の堆積の方向を示す。縦軸の目盛は20ミリメータである。 FIG. 13 is a diagram showing the shape of the inner circumference of the furnace wall in the reference state measured by the furnace wall shape / wear measuring device 100. The horizontal axis of FIG. 13 indicates the position along the inner circumference of the furnace wall at the height of the slag line. This position corresponds to the rotation angle around the axis of rotation. In FIG. 13, the positions of the steel outlet and the slag outlet are shown along the horizontal axis. The vertical axis of FIG. 13 shows the distance l from the principal point C of the first camera 103 to the measurement point L of the height of the slag line on the furnace wall, that is, the shape of the furnace wall at the height of the slag line. The upward direction on the vertical axis indicates the direction of wear of the furnace wall. The downward direction on the vertical axis indicates the direction of deposition of castable refractory material. The scale on the vertical axis is 20 millimeter.

図13の横軸方向の太い線は基準状態、すなわち炉壁の損耗がない状態における出鋼口と排滓口との間の距離lの平均値である。 The thick line in the horizontal axis direction in FIG. 13 is the average value of the distance l between the steel outlet and the slag outlet in the reference state, that is, in the state where the furnace wall is not worn.

図14は出鋼後の炉壁310の内周の形状・損耗を定める方法を示す流れ図である。出鋼後とは原料などの投入、原料の溶解、出鋼及び排滓のプロセスが終了し、次のプロセスが始まるまでの期間をいう。本実施形態によれば光線によるマークとしてレーザラインを使用することにより出鋼後に炉が高温の状態で炉壁の形状・損耗を短時間で測定することができる。 FIG. 14 is a flow chart showing a method of determining the shape and wear of the inner circumference of the furnace wall 310 after steel removal. After steel removal is the period from the completion of the process of inputting raw materials, melting of raw materials, steel ejection and slag, to the start of the next process. According to this embodiment, by using the laser line as a mark by a light beam, the shape and wear of the furnace wall can be measured in a short time while the furnace is in a high temperature state after steel removal.

図14のステップS3010において、第1のカメラ103及び第2のカメラ105によって出鋼後の炉壁の内周のレーザラインの画像及び出鋼後の炉壁の内周の画像をそれぞれ取得する。 In step S3010 of FIG. 14, the first camera 103 and the second camera 105 acquire an image of the laser line on the inner circumference of the furnace wall after steel removal and an image of the inner circumference of the furnace wall after steel removal, respectively.

図14のステップS3020において、プロセッサ110がレーザラインの画像を使用して出鋼後の炉壁の内周の形状を定める。出鋼後の炉壁の内周の形状を定める手順は、図5に示した手順と同じである。 In step S3020 of FIG. 14, the processor 110 uses the image of the laser line to determine the shape of the inner circumference of the furnace wall after steel removal. The procedure for determining the shape of the inner circumference of the furnace wall after steel removal is the same as the procedure shown in FIG.

図15は、炉壁の形状・損耗測定装置100によって測定された出鋼後の炉壁の内周の形状を示す図である。図15の横軸は、スラグラインの高さにおける炉壁の内周に沿った位置を示す。図15において、横軸に沿って出鋼口と排滓口の位置を示した。図15の縦軸は、第1のカメラ103の主点Cから炉壁上のスラグラインの高さの測定点Lまでの距離l、すなわちスラグラインの高さの炉壁の形状を示す。縦軸の上方向は炉壁の損耗の方向を示す。縦軸の下方向はキャスタブル耐火材の堆積の方向を示す。縦軸の目盛は20ミリメータである。 FIG. 15 is a diagram showing the shape of the inner circumference of the furnace wall after steel removal measured by the furnace wall shape / wear measuring device 100. The horizontal axis of FIG. 15 indicates the position along the inner circumference of the furnace wall at the height of the slag line. In FIG. 15, the positions of the steel outlet and the slag outlet are shown along the horizontal axis. The vertical axis of FIG. 15 shows the distance l from the principal point C of the first camera 103 to the measurement point L of the height of the slag line on the furnace wall, that is, the shape of the furnace wall at the height of the slag line. The upward direction on the vertical axis indicates the direction of wear of the furnace wall. The downward direction on the vertical axis indicates the direction of deposition of castable refractory material. The scale on the vertical axis is 20 millimeter.

図15の横軸方向の太い線は図13と同様に基準状態、すなわち炉壁の損耗がない状態における出鋼口と排滓口との間の距離lの平均値を示す。 The thick line in the horizontal axis direction of FIG. 15 shows the average value of the distance l between the steel outlet and the slag outlet in the reference state, that is, in the state where the furnace wall is not worn, as in FIG.

図15の測定は図12に示した基準状態から約2か月経過した後に実施された。この間に補修機によるプロセス間の補修は繰り返し実施されていた。図15によると、排滓口の付近の二個の丸で囲った箇所は損耗量が特に大きい。 The measurement of FIG. 15 was performed about 2 months after the reference state shown in FIG. During this period, repairs between processes by the repair machine were repeatedly carried out. According to FIG. 15, the amount of wear is particularly large in the two circled portions near the slag outlet.

炉壁の内周に沿った位置ごとに出鋼後の距離lと基準状態の距離lとの差から炉壁の損耗量を求めてもよい。 The amount of wear of the furnace wall may be obtained from the difference between the distance l after steel removal and the distance l in the reference state for each position along the inner circumference of the furnace wall.

図14のステップS3030において、プロセッサ110が出鋼後の炉壁の内周の画像に出鋼後の炉壁の内周の形状・損耗を示す情報を加えた合成画像を生成する。 In step S3030 of FIG. 14, the processor 110 generates a composite image in which information indicating the shape and wear of the inner circumference of the furnace wall after steel removal is added to the image of the inner circumference of the furnace wall after steel removal.

図14のステップS3040において、プロセッサ110が炉壁の内周の画像に出鋼後の炉壁の内周の形状・損耗を示す情報を加えた合成画像を表示器120に表示する。 In step S3040 of FIG. 14, the processor 110 displays on the display 120 a composite image in which information indicating the shape and wear of the inner circumference of the furnace wall after steel removal is added to the image of the inner circumference of the furnace wall.

図16は、炉壁の内周の画像及びレーザラインの画像を別々に示す図である。図16の右側のレーザラインの画像において、右方向が炉壁の損耗方向を示す。 FIG. 16 is a diagram showing an image of the inner circumference of the furnace wall and an image of the laser line separately. In the image of the laser line on the right side of FIG. 16, the right direction shows the wear direction of the furnace wall.

図17は、炉壁の内周の画像にレーザラインの画像を重ね合わせた合成画像を示す図である。図17において、基準状態で測定されたレーザライン(図に「基準ライン」と記載)を実線で示し、プロセス間で測定されたレーザライン(図に「損耗ライン」と記載)を破線で示す。レーザラインの右方向の移動は損耗を示すので損耗ラインが基準ラインと比較して右方向に移動している箇所にキャスタブル耐火材を堆積することによって効率的に炉壁の補修を実施することができる。なお、損耗ラインが基準ラインと比較して左方向に移動している箇所はキャスタブル耐火物が基準状態よりも厚く堆積された箇所である。レーザラインの画像は、炉壁の位置変化をわかりやすくするように長さに対して水平方向の変化を拡大したものであってもよい。拡大率は3倍から10倍の範囲であってもよい。レーザラインの画像に対応する箇所の損耗量を示す数字を重ね合わせてもよい。このように炉壁の画像に炉壁の形状・損耗を示す情報を加えた画像を作成し表示することによって効率的な炉壁の補修が可能となる。 FIG. 17 is a diagram showing a composite image in which an image of a laser line is superimposed on an image of the inner circumference of the furnace wall. In FIG. 17, the laser line measured in the reference state (described as “reference line” in the figure) is shown by a solid line, and the laser line measured between processes (described as “wear line” in the figure) is shown by a broken line. Since the movement of the laser line to the right indicates wear, it is possible to efficiently repair the furnace wall by depositing castable refractory material at the location where the wear line is moving to the right compared to the reference line. it can. The part where the wear line moves to the left as compared with the reference line is the part where the castable refractory is deposited thicker than the reference state. The image of the laser line may be a magnified view of the horizontal change with respect to the length so that the change in the position of the furnace wall can be easily understood. The magnification may be in the range of 3 to 10 times. A number indicating the amount of wear of the portion corresponding to the image of the laser line may be superimposed. By creating and displaying an image in which information indicating the shape and wear of the furnace wall is added to the image of the furnace wall in this way, efficient repair of the furnace wall becomes possible.

第1のカメラ103及び第2のカメラ105が回転中に同時に取得した画像に基づいて合成画像を生成してもよい。あるいは第1のカメラ103が回転中に取得した画像に基づいてあらかじめ周方向のそれぞれの位置の損耗量またはレーザライン画像を求めておき、補修機200によって補修を行う際に第2のカメラ105によって補修すべき箇所の炉壁の画像を取得し、その画像と対応する周方向の位置の損耗量またはレーザライン画像から合成画像を生成してもよい。オペレータは上記の画像を参照することにより補修機200による炉壁の補修を適切に実施することができる。 A composite image may be generated based on the images acquired simultaneously by the first camera 103 and the second camera 105 during rotation. Alternatively, the amount of wear or the laser line image at each position in the circumferential direction is obtained in advance based on the image acquired by the first camera 103 during rotation, and when the repair is performed by the repair machine 200, the second camera 105 is used. An image of the furnace wall at the location to be repaired may be acquired, and a composite image may be generated from the amount of wear or the laser line image at the position in the circumferential direction corresponding to the image. The operator can appropriately repair the furnace wall by the repair machine 200 by referring to the above image.

上記の説明は、光源としてレーザライン生成器を使用し、光線によるマークとしてレーザラインを使用する実施形態に関するものである。上述のように、光線によるマークとしてレーザラインを使用することにより炉のプロセス間で炉が高温の状態で短時間に測定を実施することができる。他の光源を使用する実施形態について以下に説明する。光源としてストライプやグリッドなどのパターンをLED光線によって炉壁に照射するプロジェクタを使用してもよい。このようなプロジェクタはたとえばOpto Engineering社から販売されている(商品名LTPRSMHP3W SERIES)。上記のプロジェクタによって発光点を含む面と炉壁の面との交線上に線または線上に配列された複数のドットを生成させることによってレーザラインを使用する場合と同様に炉壁の形状・損耗の測定を実施することができる。レーザラインを使用する場合にはレーザラインの画像を採取するカメラ及び炉壁の画像を採取するカメラの2台のカメラが必要であるが、本実施形態では1台のカメラによって光線によるマーク及び炉壁の画像を採取することができる。さらに、線または線上に配列されたドットなどの光線によるマークを生成することのできるどのような光源であっても本発明に使用することができる。 The above description relates to an embodiment in which a laser line generator is used as a light source and a laser line is used as a mark by a light beam. As described above, by using the laser line as a mark by light rays, it is possible to carry out the measurement in a short time while the furnace is in a high temperature state between the processes of the furnace. Embodiments using other light sources will be described below. As a light source, a projector that irradiates a furnace wall with a pattern such as a stripe or a grid by an LED light beam may be used. Such projectors are sold, for example, by Opto Engineering (trade name LTPRSMHP3W SERIES). The shape and wear of the furnace wall can be determined by generating a line or a plurality of dots arranged on the line on the intersection line between the surface including the light emitting point and the surface of the furnace wall by the above projector, as in the case of using the laser line. Measurements can be performed. When using a laser line, two cameras, a camera that collects an image of the laser line and a camera that collects an image of the furnace wall, are required, but in this embodiment, a single camera is used to mark and furnace with light rays. Images of the wall can be taken. In addition, any light source capable of producing marks by light rays, such as lines or dots arranged on the lines, can be used in the present invention.

Claims (12)

中心軸を有し、該中心軸に垂直な断面がほぼ、該中心軸上に中心を有する円形の形状の炉壁を有する炉に使用される炉壁の形状・損耗測定装置であって、
該炉壁上に光線によるマークを生成する光源と、該マークの画像を取得する第1のカメラと、プロセッサと、を備え、
該光源及び該第1のカメラは該中心軸の近傍に設置され、該中心軸の方向の回転軸の周りに回転可能に構成され、
該光源の発光点Oは実質的に該回転軸上に位置し、該光源は該発光点Oを含む第1の平面と該炉壁の面との交線上に該マークを生成するように構成され、
該光源及び該第1のカメラが相対的な位置関係を維持しながら該回転軸の周りに回転すると該第1の平面が該回転軸の周りに回転するように構成され、
該第1のカメラの視野中心軸上をw軸とし、該w軸上の該第1のカメラの主点Cを原点とし、該原点を含み該w軸に垂直な面内で互いに直交する二直線をu軸及びv軸として、
該プロセッサが、該回転軸の周りに回転する該第1のカメラによって取得された画像における該マーク上の測定点のu、v座標から該測定点の方位角及び仰俯角を求め、該方位角、該仰俯角及び該視野中心軸と該第1の平面との相対的な位置関係から、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向を求め、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向から炉壁の形状・損耗を定めることができるように構成された炉壁の形状・損耗測定装置。
A furnace wall shape / wear measuring device used in a furnace having a central axis and having a circular furnace wall having a cross section perpendicular to the central axis having a center on the central axis.
A light source for generating a mark by light rays on the furnace wall, a first camera for acquiring an image of the mark, and a processor are provided.
The light source and the first camera are installed in the vicinity of the central axis and are configured to be rotatable around a rotation axis in the direction of the central axis.
The light emitting point O of the light source is substantially located on the rotation axis, and the light source is configured to generate the mark on the intersection of the first plane including the light emitting point O and the surface of the furnace wall. Being done
When the light source and the first camera rotate around the rotation axis while maintaining a relative positional relationship, the first plane is configured to rotate around the rotation axis.
The w-axis is on the central axis of the field of view of the first camera, the principal point C of the first camera on the w-axis is the origin, and the origin is included and orthogonal to each other in a plane perpendicular to the w-axis. With the straight line as the u-axis and v-axis
The processor obtains the azimuth angle and elevation / depression angle of the measurement point from the u and v coordinates of the measurement point on the mark in the image acquired by the first camera rotating around the rotation axis, and the azimuth angle. From the elevation / depression angle and the relative positional relationship between the central axis of the field of view and the first plane, the distance between the main point C and the measurement point and the direction from the main point C to the measurement point are determined. The shape and wear of the furnace wall configured so that the shape and wear of the furnace wall can be determined from the distance between the main point C and the measurement point and the direction from the main point C to the measurement point. measuring device.
該第1の平面は該u軸及び該w軸が形成する平面に直交するように構成された請求項1に記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to claim 1, wherein the first plane is orthogonal to a plane formed by the u-axis and the w-axis. 該発光点Oが該u軸上に位置するように構成された請求項1または2に記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to claim 1 or 2, wherein the light emitting point O is located on the u-axis. 点C及び点O間の距離をd、該w軸と該第1の面との交点をP、該w軸と点O及び点Pを結ぶ直線とのなす鋭角をγとして、dが500ミリメータから1500ミリメータの範囲であり、γが8度から23度の範囲である請求項3に記載の炉壁の形状・損耗測定装置。 Let d be the distance between the point C and the point O, P 0 be the intersection of the w axis and the first surface, and γ be the acute angle formed by the straight line connecting the w axis and the point O and the point P 0. The shape / wear measuring device for a furnace wall according to claim 3, wherein the range is from 500 mm to 1500 mm and the γ is in the range of 8 to 23 degrees. 該光源が該第1の平面内にレーザ光線を射出するレーザライン生成器であり、該マークがレーザラインである請求項1から4のいずれかに記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to any one of claims 1 to 4, wherein the light source is a laser line generator that emits a laser beam into the first plane, and the mark is a laser line. 該レーザライン生成器が射出するレーザ光線の方向を変えることができるように構成された請求項5に記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to claim 5, which is configured so that the direction of a laser beam emitted by the laser line generator can be changed. 該炉壁の画像を取得する第2のカメラと、表示器と、をさらに備え、
該第2のカメラは、該炉壁の内周に沿って該炉壁の画像を取得することができるように、該中心軸の近傍に設置され、該回転軸の周りに回転可能に構成され、
該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を作成し、該表示器によって表示するように構成された請求項5または6に記載の炉壁の形状・損耗測定装置。
A second camera for acquiring an image of the furnace wall and a display are further provided.
The second camera is installed in the vicinity of the central axis so that an image of the furnace wall can be acquired along the inner circumference of the furnace wall, and is configured to be rotatable around the rotation axis. ,
The furnace wall according to claim 5 or 6, wherein the processor creates an image in which information indicating the shape and wear of the furnace wall is added to an image of the furnace wall, and is displayed by the display. Shape / wear measuring device.
該光源がプロジェクタであり、該マークが該プロジェクタによって生成されたマークである請求項1から4のいずれかに記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to any one of claims 1 to 4, wherein the light source is a projector, and the mark is a mark generated by the projector. 該光源及び該第1のカメラが該中心軸の近傍に回転可能に設置された該炉壁の補修機に取り付けられた請求項1から7のいずれかに記載の炉壁の形状・損耗測定装置。 The shape / wear measuring device for a furnace wall according to any one of claims 1 to 7, wherein the light source and the first camera are rotatably installed in the vicinity of the central axis of the furnace wall repair machine. .. 中心軸を有し、該中心軸に垂直な断面がほぼ、該中心軸上に中心を有する円形の形状の炉壁を有する炉に使用される炉壁の形状・損耗測定方法であって、該炉壁上に光線によるマークを生成する光源と、該マークの画像を取得する第1のカメラと、プロセッサと、を使用し、該光源及び該第1のカメラは該中心軸の近傍に設置され、該中心軸の方向の回転軸の周りに回転可能に構成され、該光源の発光点Oは実質的に該回転軸上に位置し、該光源は該発光点Oを含む第1の平面と該炉壁の面との交線上に該マークを生成するように構成され、該光源及び該第1のカメラが相対的な位置関係を維持しながら該回転軸の周りに回転すると該マークを含む該第1の面が該回転軸の周りに回転するように構成され、該第1のカメラの視野中心軸上をw軸とし、該w軸上の該第1のカメラの主点Cを原点とし、該原点を含み該w軸に垂直な面内で互いに直交する二直線をu軸及びv軸として、該方法は、
該光源及び該第1のカメラを該回転軸の周りに回転させながら、該炉壁の内周に沿って該マークの画像を取得するステップと、
該プロセッサによって、該画像における該マーク上の測定点のu、v座標から該測定点の方位角及び仰俯角を求めるステップと、
該プロセッサによって、該方位角、該仰俯角及び該視野中心軸と該第1の平面との相対的な位置関係から、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向を求め、該主点Cと該測定点との間の距離及び該主点Cから該測定点へ向かう方向から炉壁の形状・損耗を定めるステップと、を含む炉壁の形状・損耗測定方法。
A method for measuring the shape and wear of a furnace wall used in a furnace having a central axis and having a circular furnace wall having a cross section perpendicular to the central axis having a center on the central axis. A light source that generates a mark by light rays on the furnace wall, a first camera that acquires an image of the mark, and a processor are used, and the light source and the first camera are installed in the vicinity of the central axis. The light emitting point O of the light source is substantially located on the rotation axis, and the light source has a first plane including the light emitting point O, which is configured to be rotatable around a rotation axis in the direction of the central axis. It is configured to generate the mark on the intersection with the surface of the furnace wall, and includes the mark when the light source and the first camera rotate around the rotation axis while maintaining a relative positional relationship. The first surface is configured to rotate around the rotation axis, the w-axis is on the center axis of the field of view of the first camera, and the main point C of the first camera on the w-axis is the origin. In the method, the two straight lines including the origin and perpendicular to each other in the plane perpendicular to the w-axis are defined as the u-axis and the v-axis.
A step of acquiring an image of the mark along the inner circumference of the furnace wall while rotating the light source and the first camera around the rotation axis.
A step of obtaining the azimuth angle and elevation / depression angle of the measurement point from the u and v coordinates of the measurement point on the mark in the image by the processor.
From the azimuth angle, the elevation / depression angle, and the relative positional relationship between the central axis of the field of view and the first plane, the distance between the main point C and the measurement point and the main point C. A furnace wall including a step of determining a direction toward the measurement point, a distance between the main point C and the measurement point, and a step of determining the shape and wear of the furnace wall from the direction from the main point C toward the measurement point. Shape / wear measurement method.
該炉壁の画像を取得する第2のカメラと、表示器と、をさらに使用し、該第2のカメラは該回転軸の方向の中心軸の近傍に設置され、該回転軸の周りに回転可能に構成され、
該第2のカメラによって該炉壁の内周に沿って該炉壁の画像を取得するステップと、
該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を作成するステップと、
該プロセッサが、該炉壁の画像に該炉壁の形状・損耗を示す情報を加えた画像を該表示器によって表示するステップと、をさらに含む請求項10に記載の炉壁の形状・損耗測定方法。
Further using a second camera and an indicator to acquire an image of the furnace wall, the second camera is installed near the central axis in the direction of the axis of rotation and rotates around the axis of rotation. Possible to be configured
The step of acquiring an image of the furnace wall along the inner circumference of the furnace wall by the second camera, and
A step in which the processor creates an image in which information indicating the shape and wear of the furnace wall is added to the image of the furnace wall.
The shape / wear measurement of the furnace wall according to claim 10, further comprising a step in which the processor displays an image of the furnace wall in which information indicating the shape / wear of the furnace wall is added by the display device. Method.
該炉壁が基準状態のときに定めた該測定点と該第1のカメラとの間の距離と新たに定めた該測定点と該第1のカメラとの間の距離との差分から該炉壁の損耗量を定める請求項10または11に記載の炉壁の形状・損耗測定方法。 The furnace is based on the difference between the distance between the measurement point and the first camera determined when the furnace wall is in the reference state and the distance between the newly determined measurement point and the first camera. The method for measuring the shape and wear of a furnace wall according to claim 10 or 11, wherein the amount of wear of the wall is determined.
JP2020073384A 2019-11-26 2020-04-16 Furnace wall shape/wear measuring device and furnace wall shape/wear measuring method Active JP6743316B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213417 2019-11-26
JP2019213417 2019-11-26

Publications (2)

Publication Number Publication Date
JP6743316B1 JP6743316B1 (en) 2020-08-19
JP2021089265A true JP2021089265A (en) 2021-06-10

Family

ID=72047932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073384A Active JP6743316B1 (en) 2019-11-26 2020-04-16 Furnace wall shape/wear measuring device and furnace wall shape/wear measuring method

Country Status (1)

Country Link
JP (1) JP6743316B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196406A (en) * 1982-05-13 1983-11-15 Kawasaki Steel Corp Device for measuring furnace wall profile
JPS6315102A (en) * 1986-07-07 1988-01-22 Shinagawa Refract Co Ltd Wear gauge of furnace wall
JPH07333155A (en) * 1994-06-07 1995-12-22 Power Reactor & Nuclear Fuel Dev Corp In-pile inspection device
JPH09166421A (en) * 1995-12-15 1997-06-24 Asahi Glass Co Ltd Measuring method for surface three-dimensional shape
JP2001099615A (en) * 1999-09-30 2001-04-13 Nippon Crucible Co Ltd Object distance measuring instrument and three- dimensional object shape measuring instrument
JP2006260098A (en) * 2005-03-16 2006-09-28 Matsushita Electric Works Ltd Obstacle detection unit
JP2008111780A (en) * 2006-10-31 2008-05-15 Toshiba Corp Shape measuring device and shape measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196406A (en) * 1982-05-13 1983-11-15 Kawasaki Steel Corp Device for measuring furnace wall profile
JPS6315102A (en) * 1986-07-07 1988-01-22 Shinagawa Refract Co Ltd Wear gauge of furnace wall
JPH07333155A (en) * 1994-06-07 1995-12-22 Power Reactor & Nuclear Fuel Dev Corp In-pile inspection device
JPH09166421A (en) * 1995-12-15 1997-06-24 Asahi Glass Co Ltd Measuring method for surface three-dimensional shape
JP2001099615A (en) * 1999-09-30 2001-04-13 Nippon Crucible Co Ltd Object distance measuring instrument and three- dimensional object shape measuring instrument
JP2006260098A (en) * 2005-03-16 2006-09-28 Matsushita Electric Works Ltd Obstacle detection unit
JP2008111780A (en) * 2006-10-31 2008-05-15 Toshiba Corp Shape measuring device and shape measuring method

Also Published As

Publication number Publication date
JP6743316B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
CN107860331B (en) Shape measuring device, shape measuring method, and structure manufacturing method
US11344952B2 (en) Three-dimensional additive manufacturing device, three-dimensional additive manufacturing method, and three-dimensional additive manufactured product
US20190201979A1 (en) Systems and methods for z-height measurement and adjustment in additive manufacturing
US20190381736A1 (en) Additive manufacturing having optical process monitoring
BR102016026591A2 (en) METHOD AND APPARATUS FOR INSPECTING A MANUFACTURING PROCESS
KR102385607B1 (en) Focus calibration of the output radiation source of an additive manufacturing device
EP4021666A1 (en) Device and apparatus
US20210252791A1 (en) Device and method for the additive manufacture of a workpiece
CN104789959A (en) Method for managing quality of laser cladding processing, and laser cladding processing device
KR20230047214A (en) Quality assurance in formation of three-dimensional objects
JP6743316B1 (en) Furnace wall shape/wear measuring device and furnace wall shape/wear measuring method
JP2014126381A (en) Shape measurement device, structure fabrication system, shape measurement method, structure fabrication method and shape measurement program
JP6205727B2 (en) Shape measuring method, structure manufacturing method, shape measuring program, optical shape measuring apparatus, and structure manufacturing system
JP2015096808A (en) Method of measuring plate thickness
EP3072448A1 (en) Device and method for generating dental three-dimensional surface image
JP2013019786A (en) Inside tube wall inspection apparatus and inside tube wall inspection method
JPH09175457A (en) Distortion inspection method and distortion inspection device
JP2010111557A (en) Method and device for manufacturing tubular part
JP5154042B2 (en) Furnace chamber wall wear amount measurement system and furnace chamber wall wear amount measurement method
JP4524224B2 (en) Lens centering device, lens centering method, and lens centering program
JP7301914B2 (en) Surface foreign matter detection device and surface foreign matter detection method using the same
JP2014092372A (en) Bare metal position detection method and bare metal position detection device for slab
JP2022133224A (en) Apparatus and method for measuring wear amount of furnace wall
US11999110B2 (en) Quality assurance in formation of three-dimensional objects
JP6600930B1 (en) X-ray diffraction measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200529

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6743316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250