JP2021088759A5 - - Google Patents

Download PDF

Info

Publication number
JP2021088759A5
JP2021088759A5 JP2020187828A JP2020187828A JP2021088759A5 JP 2021088759 A5 JP2021088759 A5 JP 2021088759A5 JP 2020187828 A JP2020187828 A JP 2020187828A JP 2020187828 A JP2020187828 A JP 2020187828A JP 2021088759 A5 JP2021088759 A5 JP 2021088759A5
Authority
JP
Japan
Prior art keywords
mineral
processing method
slurry
raw material
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020187828A
Other languages
Japanese (ja)
Other versions
JP2021088759A (en
JP6950900B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to PE2022000793A priority Critical patent/PE20221500A1/en
Priority to US17/765,398 priority patent/US20220355313A1/en
Priority to CA3144373A priority patent/CA3144373C/en
Priority to PCT/JP2020/042427 priority patent/WO2021106631A1/en
Publication of JP2021088759A publication Critical patent/JP2021088759A/en
Publication of JP2021088759A5 publication Critical patent/JP2021088759A5/ja
Application granted granted Critical
Publication of JP6950900B2 publication Critical patent/JP6950900B2/en
Priority to CL2022000679A priority patent/CL2022000679A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

第1発明の選鉱方法は、銅鉱物とモリブデン鉱物とを含む鉱物スラリーに二亜硫酸塩を添加する条件付け工程と、前記条件付け工程の後、前記鉱物スラリーを用いて浮遊選鉱を行なう浮遊選鉱工程と、を備え、前記鉱物スラリーは鉱物と海水とを混合して得たものであり、前記鉱物スラリーの液相のpHは4〜6であることを特徴とする。
第2発明の選鉱方法は、第1発明において、前記浮遊選鉱工程において、前記鉱物スラリーに含まれる原料鉱物を、該原料鉱物よりも前記モリブデン鉱物の割合が高い浮鉱と、該原料鉱物よりも前記銅鉱物の割合が高い沈鉱とに分離することを特徴とする。
第3発明の選鉱方法は、第1または第2発明において、前記二亜硫酸塩は二亜硫酸ナトリウムまたは二亜硫酸カリウムであることを特徴とする。
第4発明の選鉱方法は、第1または第2発明において、前記条件付け工程において、前記二亜硫酸塩として二亜硫酸ナトリウムを用い、二亜硫酸ナトリウムの添加量を前記鉱物スラリーの鉱物重量に対して5〜25kg/tとすることを特徴とする。
第5発明の選鉱方法は、第1〜第4発明のいずれかにおいて、前記銅鉱物は、黄銅鉱、斑銅鉱、硫砒銅鉱、輝銅鉱、砒四面銅鉱、銅藍からなる群から選択される一種以上を含み、前記モリブデン鉱物は輝水鉛鉱であることを特徴とする。
The mineral processing method of the first invention includes a conditioning step of adding diosulfate to a mineral slurry containing a copper mineral and a molybdenum mineral, and a flotation step of performing flotation using the mineral slurry after the conditioning step. The mineral slurry is obtained by mixing minerals and seawater, and the pH of the liquid phase of the mineral slurry is 4 to 6 .
In the first invention, the mineral processing method according to the second invention is described in that, in the floating mineral processing step, the raw material mineral contained in the mineral slurry is a flotation mineral having a higher proportion of the molybdenum mineral than the raw material mineral, and the raw material mineral. It is characterized by separating into a flotation having a high proportion of the copper mineral.
The mineral processing method of the third invention is characterized in that, in the first or second invention, the disulfurous acid salt is sodium sulfite or potassium sulfite.
In the first or second invention, the mineral processing method of the fourth invention uses sodium sulfite as the disulfurous acid salt in the conditioning step, and the amount of sodium sulfite added is 5 to 5 with respect to the mineral weight of the mineral slurry. It is characterized by having a temperature of 25 kg / t.
The beneficiation method of the fifth invention is one of the first to fourth inventions, wherein the copper mineral is selected from the group consisting of chalcopyrite, bornite, enargite, chalcocite, tennantite, and covellite. Including the above, the molybdenite mineral is chalcocite.

Claims (5)

銅鉱物とモリブデン鉱物とを含む鉱物スラリーに二亜硫酸塩を添加する条件付け工程と、
前記条件付け工程の後、前記鉱物スラリーを用いて浮遊選鉱を行なう浮遊選鉱工程と、を備え
前記鉱物スラリーは鉱物と海水とを混合して得たものであり、
前記鉱物スラリーの液相のpHは4〜6である
ことを特徴とする選鉱方法。
A conditioning step of adding disulfurous acid to a mineral slurry containing chalcopyrite and molybdenum minerals,
After the conditioning step, a flotation beneficiation step of performing flotation beneficiation using the mineral slurry is provided .
The mineral slurry is obtained by mixing minerals and seawater.
A mineral processing method characterized in that the pH of the liquid phase of the mineral slurry is 4 to 6.
前記浮遊選鉱工程において、前記鉱物スラリーに含まれる原料鉱物を、該原料鉱物よりも前記モリブデン鉱物の割合が高い浮鉱と、該原料鉱物よりも前記銅鉱物の割合が高い沈鉱とに分離する
ことを特徴とする請求項1記載の選鉱方法。
In the floating mineral processing step, the raw material mineral contained in the mineral slurry is separated into a flotation having a higher proportion of the molybdenum mineral than the raw material mineral and a sedimentation having a higher proportion of the copper mineral than the raw material mineral. The mineral processing method according to claim 1, wherein the mineral processing method is characterized by the above.
前記二亜硫酸塩は二亜硫酸ナトリウムまたは二亜硫酸カリウムである
ことを特徴とする請求項1または2記載の選鉱方法。
The mineral processing method according to claim 1 or 2, wherein the disulfurous acid salt is sodium disulfite or potassium disulfurous acid.
前記条件付け工程において、前記二亜硫酸塩として二亜硫酸ナトリウムを用い、二亜硫酸ナトリウムの添加量を前記鉱物スラリーの鉱物重量に対して5〜25kg/tとする
ことを特徴とする請求項1または2記載の選鉱方法。
The first or second claim, wherein in the conditioning step, sodium sulfite is used as the disulfurous acid salt, and the amount of sodium disulfite added is 5 to 25 kg / t with respect to the mineral weight of the mineral slurry. Mineral processing method.
前記銅鉱物は、黄銅鉱、斑銅鉱、硫砒銅鉱、輝銅鉱、砒四面銅鉱、銅藍からなる群から選択される一種以上を含み、
前記モリブデン鉱物は輝水鉛鉱である
ことを特徴とする請求項1〜4のいずれかに記載の選鉱方法。
The copper minerals include one or more selected from the group consisting of chalcopyrite, bornite, enargite, chalcocite, tennantite, and covellite.
The mineral processing method according to any one of claims 1 to 4, wherein the molybdenum mineral is molybdenite.
JP2020187828A 2019-11-25 2020-11-11 Mineral processing method Active JP6950900B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PE2022000793A PE20221500A1 (en) 2019-11-25 2020-11-13 MINERAL PROCESSING METHOD
US17/765,398 US20220355313A1 (en) 2019-11-25 2020-11-13 Mineral processing method
CA3144373A CA3144373C (en) 2019-11-25 2020-11-13 Floatation separation of copper and molybdenum using disulfite
PCT/JP2020/042427 WO2021106631A1 (en) 2019-11-25 2020-11-13 Ore dressing method
CL2022000679A CL2022000679A1 (en) 2019-11-25 2022-03-21 Mineral processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212060 2019-11-25
JP2019212060 2019-11-25

Publications (3)

Publication Number Publication Date
JP2021088759A JP2021088759A (en) 2021-06-10
JP2021088759A5 true JP2021088759A5 (en) 2021-07-29
JP6950900B2 JP6950900B2 (en) 2021-10-13

Family

ID=76219467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020187828A Active JP6950900B2 (en) 2019-11-25 2020-11-11 Mineral processing method

Country Status (1)

Country Link
JP (1) JP6950900B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2082831C (en) * 1992-11-13 1996-05-28 Sadan Kelebek Selective flotation process for separation of sulphide minerals
CA2782436C (en) * 2009-12-04 2018-05-22 Barrick Gold Corporation Separation of copper minerals from pyrite using air-metabisulfite treatment
US10654048B2 (en) * 2017-03-09 2020-05-19 Chevron Phillips Chemical Company Lp Recovery of molybdenum using sodium metabisulfite and a thiocarbonate depressant

Similar Documents

Publication Publication Date Title
CN108160313B (en) A kind of method of cupric oxide ore thickness grading-reinforcing fine fraction sulfide flotation
CN105435953B (en) Beneficiation method for molybdenum-containing low-grade mixed copper ore
CN104718027B (en) The method for improving selectivity and the rate of recovery in the flotation of the nickel sulfide ores containing magnetic iron ore by using the synergy of various inhibitors
ES2884773T3 (en) A process for manufacturing reduced graphene oxide from graphite kish
CA2782436A1 (en) Separation of copper minerals from pyrite using air-metabisulfite treatment
WO2008019451A1 (en) Collectors and flotation methods
CN104259009B (en) Copper-iron-sulfur separation composite inhibitor and high-sulfur refractory copper-iron ore beneficiation method
CN102698878A (en) Pyrite inhibitor used under low-alkalinity condition
CN101972706B (en) Inhibiting agent for separating copper-molybdenum mineral and preparation method and application thereof
Castellón et al. Froth flotation of chalcopyrite/pyrite ore: a critical review
CN105903573A (en) Composite beneficiation inhibitor used for copper-arsenic separating flotation
KR101572861B1 (en) A method of flotation for copper oxide ore using multi-collector
Kloppers et al. Froth flotation of a Merensky Reef platinum bearing ore using mixtures of SIBX with a dithiophosphate and a dithiocarbamate
JP6809956B2 (en) Separation method of molybdenum concentrate
CN106475228B (en) A kind of method for floating of the difficult copper-sulphide ores of complexity
JP2021088759A5 (en)
CN103878071A (en) Combined collector for separation of copper-cobalt sulfide ores
CA2725135C (en) Processing nickel bearing sulphides
US8088347B2 (en) Process for recovering copper sulphide from copper bearing ores by froth flotation
CN110420761B (en) Application of amide compound as sulfide ore inhibitor
BRPI0510767B1 (en) Flotation Reagent for Sulphide Ores and Uses
US3827557A (en) Method of copper sulfide ore flotation
AU2002229524B2 (en) Collector for non iron metal sulphide preparation
CN104826739A (en) Atacamite and calcium silicon ore flotation separation method
RU2368427C1 (en) Flotation method of noble metals