JP2021086065A - Optical unit with shake correction function - Google Patents

Optical unit with shake correction function Download PDF

Info

Publication number
JP2021086065A
JP2021086065A JP2019216282A JP2019216282A JP2021086065A JP 2021086065 A JP2021086065 A JP 2021086065A JP 2019216282 A JP2019216282 A JP 2019216282A JP 2019216282 A JP2019216282 A JP 2019216282A JP 2021086065 A JP2021086065 A JP 2021086065A
Authority
JP
Japan
Prior art keywords
movable body
gimbal frame
receiving member
sphere
support portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019216282A
Other languages
Japanese (ja)
Other versions
JP7360914B2 (en
Inventor
伸司 南澤
Shinji Minamizawa
伸司 南澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2019216282A priority Critical patent/JP7360914B2/en
Priority to CN202011377196.8A priority patent/CN112882312B/en
Priority to CN202011379258.9A priority patent/CN112882314B/en
Publication of JP2021086065A publication Critical patent/JP2021086065A/en
Application granted granted Critical
Publication of JP7360914B2 publication Critical patent/JP7360914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

To prevent a gimbals frame from coming off and reduce the size of an optical unit with a shake correction function.SOLUTION: A movable body connection mechanism 11 for connecting a movable body 4 and a gimbals frame 10 so as to be rotatable around a first axis R1 brings a ball 15 fixed to a thrust receiving member 16 and a concave surface 19 provided to a support part 20 of the gimbals frame 10 into point contact. The thrust receiving member 16 is held to a holding part 13 provided in a holder 31 that encloses a camera module 3 and provided with an arm part 94 extending toward a side face 41 of the camera module 3. The arm part 94 overlaps the support part 20 as seen from the optical axis direction. A clearance M between the tip of the arm part 94 and the side face 41 in the first axis direction is narrower than a thickness dimension N of the support part 20 in the first axis direction. Therefore, the gimbals frame 10 is prevented from coming off utilizing the side face 41 of the camera module 3, so that the height size of the holder 31 can be reduced.SELECTED DRAWING: Figure 9

Description

本発明は、ジンバル機構により可動体と固定体とを接続する振れ補正機能付き光学ユニットに関する。 The present invention relates to an optical unit with a runout correction function that connects a movable body and a fixed body by a gimbal mechanism.

携帯端末や移動体に搭載される光学ユニットには、携帯端末や移動体の移動時の撮影画像の乱れを抑制するために、カメラモジュールが搭載される可動体を所定の軸回りに回転させて振れを補正する機構を備えるものがある。特許文献1には、この種の振れ補正機能付き光学ユニットが開示される。 In the optical unit mounted on the mobile terminal or mobile body, the movable body on which the camera module is mounted is rotated around a predetermined axis in order to suppress the disturbance of the captured image when the mobile terminal or mobile body is moved. Some are equipped with a mechanism for correcting runout. Patent Document 1 discloses this kind of optical unit with a runout correction function.

特許文献1の振れ補正機能付き光学ユニットは、可動体と、固定体と、可動体と固定体とを接続するジンバル機構を備える。ジンバル機構は、可動体を所定の回転軸線回りに回転可能に支持する。ジンバル機構は、金属製の矩形枠状のジンバルフレーム(バネ部材)と、ジンバルフレームと可動体および固定体とを接続する接続機構と、を備える。接続機構は、金属製の球体と、球体が固定された球体固定部(接合部)と、球体が接触する半球状凹部を備える球体支持部と、を備える。 The optical unit with a runout correction function of Patent Document 1 includes a movable body, a fixed body, and a gimbal mechanism for connecting the movable body and the fixed body. The gimbal mechanism rotatably supports the movable body around a predetermined rotation axis. The gimbal mechanism includes a metal rectangular frame-shaped gimbal frame (spring member) and a connecting mechanism for connecting the gimbal frame to a movable body and a fixed body. The connection mechanism includes a metal sphere, a sphere fixing portion (joint portion) to which the sphere is fixed, and a sphere support portion having a hemispherical recess with which the sphere contacts.

ジンバル機構において、球体固定部と球体支持部の一方はジンバルフレームの回転軸線上の対角位置に設けられ、他方は、可動体の回転軸線上の対角位置に設けられている。球体支持部は、例えば、半球状凹部が形成された金属製の支持部材(スラスト受け部材)を可動体および固定体に固定することによって構成される。 In the gimbal mechanism, one of the sphere fixing portion and the sphere supporting portion is provided at a diagonal position on the rotation axis of the gimbal frame, and the other is provided at a diagonal position on the rotation axis of the movable body. The sphere support portion is configured by, for example, fixing a metal support member (thrust receiving member) having a hemispherical recess formed to the movable body and the fixed body.

特願2015−217432号公報Japanese Patent Application No. 2015-217432

振れ補正機能付き光学ユニットを搭載する携帯端末や移動体が外部から衝撃を受けた場合には、接続機構には、可動体の重量など起因して回転軸線と交差する方向の負荷がかかる場合がある。すなわち、接続機構には、光軸方向の負荷がかかる場合がある。従って、外部からの衝撃を受けると、ジンバルフレームが撓んで、球体固定部に固定された球体が球体支持部に設けられた半球状凹部から外れるおそれがある。その結果、ジンバルフレームが可動体および固定体から外れて、ジンバルフレームと可動体および固定体との接続状態が解除されるおそれがある。 When a mobile terminal or a moving body equipped with an optical unit with a runout correction function receives an impact from the outside, a load may be applied to the connection mechanism in the direction intersecting the rotation axis due to the weight of the moving body or the like. is there. That is, the connection mechanism may be loaded in the optical axis direction. Therefore, when an impact from the outside is received, the gimbal frame may bend and the sphere fixed to the sphere fixing portion may come off from the hemispherical recess provided in the sphere support portion. As a result, the gimbal frame may come off from the movable body and the fixed body, and the connection state between the gimbal frame and the movable body and the fixed body may be released.

本発明者は、ジンバルフレームおよび可動体を回転可能に接続する接続機構を備えた振れ補正機能付き光学ユニットにおいて、ジンバルフレームが可動体および固定体から外れることを規制する抜け防止構造を提案している。すなわち、特願2019−197808の振れ補正機能付き光学ユニットは、可動体が樹脂製のホルダを備え、固定体が樹脂製のケースを備える。ホルダおよびケースには、半球状凹部を備えたスラスト受け部材を保持する保持部が設けられている。保持部は、スラスト受け部材が配置される凹部と、凹部に配置されるスラスト受け部材と対向する対向壁部を備えている。保持部は、半球状凹部が設けられたジンバルフレームの端部がスラスト受け部材と対向壁部との隙間を通過できないように対向壁部の配置を設定している。 The present inventor has proposed a pull-out prevention structure that regulates the gimbal frame from coming off the movable body and the fixed body in an optical unit with a runout correction function provided with a connection mechanism for rotatably connecting the gimbal frame and the movable body. There is. That is, the optical unit with a runout correction function of Japanese Patent Application No. 2019-197808 includes a case in which the movable body is made of resin and the fixed body is made of resin. The holder and the case are provided with a holding portion for holding a thrust receiving member having a hemispherical recess. The holding portion includes a recess in which the thrust receiving member is arranged and a facing wall portion facing the thrust receiving member arranged in the recess. In the holding portion, the arrangement of the facing wall portion is set so that the end portion of the gimbal frame provided with the hemispherical recess cannot pass through the gap between the thrust receiving member and the facing wall portion.

しかしながら、特願2019−197808で提案したジンバルフレームの抜け防止構
造は、保持部に凹部および対向壁部を設ける必要があり、保持部の形状が複雑である。従って、保持部が設けられたホルダおよびケースを薄型化することが難しいので、振れ補正機能付き光学ユニットの小型化に不利である。
However, in the gimbal frame detachment prevention structure proposed in Japanese Patent Application No. 2019-197808, it is necessary to provide a recess and a facing wall portion in the holding portion, and the shape of the holding portion is complicated. Therefore, it is difficult to reduce the thickness of the holder and the case provided with the holding portion, which is disadvantageous in reducing the size of the optical unit with the shake correction function.

本発明の課題は、このような点に鑑みて、ジンバルフレームの抜け防止を図るとともに、振れ補正機能付き光学ユニットの小型化を図ることにある。 In view of these points, an object of the present invention is to prevent the gimbal frame from coming off and to reduce the size of the optical unit with a runout correction function.

上記の課題を解決するために、本発明の振れ補正機能付き光学ユニットは、カメラモジュールを備える可動体と、前記可動体を前記カメラモジュールの光軸と交差する第1軸回りに揺動可能に支持すると共に、前記可動体を前記光軸および前記第1軸と交差する第2軸回りに揺動可能に支持するジンバル機構と、前記ジンバル機構を介して前記可動体を支持する固定体と、を有し、前記ジンバル機構は、ジンバルフレームと、前記ジンバルフレームおよび前記可動体を前記第1軸回りに回転可能に接続する可動体接続機構を備え、前記可動体接続機構は、球体および当該球体が固定された金属製のスラスト受け部材を備える可動体側ジンバルフレーム受け部材と、前記ジンバルフレームにおいて前記球体と接触する凹曲面を有する可動体側支持部と、を備え、前記可動体は、前記カメラモジュールの外周側を囲むホルダを備え、前記ホルダは、前記可動体側ジンバルフレーム受け部材を、前記球体の中心を前記第1軸が通過する位置に保持する保持部を備え、前記光軸に沿った方向を光軸方向とし、前記第1軸に沿った方向を第1軸方向とした場合に、前記可動体側ジンバルフレーム受け部材は、前記カメラモジュールの外周面に向けて延びる腕部を備え、前記腕部は、前記光軸方向から見て前記可動体側支持部と重なっており、前記腕部の先端と前記外周面との前記第1軸方向の離間距離は、前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭いことを特徴とする。 In order to solve the above problems, the optical unit with a shake correction function of the present invention can swing a movable body including a camera module and the movable body around a first axis intersecting the optical axis of the camera module. A gimbal mechanism that supports the movable body and swingably supports the movable body around a second axis that intersects the optical axis and the first axis, and a fixed body that supports the movable body via the gimbal mechanism. The gimbal mechanism includes a gimbal frame and a movable body connecting mechanism for rotatably connecting the gimbal frame and the movable body around the first axis, and the movable body connecting mechanism includes a sphere and the sphere. The movable body includes a movable body side gimbal frame receiving member having a metal thrust receiving member fixed to the gimbal frame, and a movable body side supporting portion having a concave curved surface in contact with the sphere in the gimbal frame, and the movable body is the camera module. The holder includes a holder that surrounds the outer peripheral side of the gimbal, and the holder includes a holding portion that holds the movable body side gimbal frame receiving member at a position where the first axis passes through the center of the sphere, and is provided in a direction along the optical axis. Is the optical axis direction, and the direction along the first axis is the first axis direction, the movable body side gimbal frame receiving member includes an arm portion extending toward the outer peripheral surface of the camera module, and the arm. The portion overlaps the movable body side support portion when viewed from the optical axis direction, and the distance between the tip of the arm portion and the outer peripheral surface in the first axial direction is the first of the movable body side support portions. It is characterized in that it is narrower than the thickness dimension in the axial direction.

本発明によれば、可動体とジンバルフレームとを第1軸回りに回転可能に接続する可動体接続機構は、可動体側ジンバルフレーム受け部材に設けられた球体と、ジンバルフレームの可動体側支持部に設けられた凹曲面とを備えている。従って、凹曲面に球体を点接触させることによって可動体とジンバルフレームとを接続できる。ここで、可動体側ジンバルフレーム受け部材は、カメラモジュールを保持するホルダに保持されており、カメラモジュールの外周面に向けて延びる腕部を備えている。腕部は、光軸方向から見てジンバルフレームの可動体側支持部と重なっている。また、腕部の先端とカメラモジュールの外周面との第1軸方向の離間距離は、可動体側支持部の第1軸方向の厚み寸法よりも狭い。従って、外部から衝撃を受けたときに、ジンバルフレームが撓んで可動体支持部に設けられた凹曲面が球体から第1軸方向に離間した場合でも、可動体側支持部は、腕部とカメラモジュールとの隙間を通過できない。従って、ジンバルフレームが可動体から外れてしまうことを防止あるいは抑制できる。 According to the present invention, the movable body connecting mechanism for rotatably connecting the movable body and the gimbal frame around the first axis is provided on a sphere provided on the movable body side gimbal frame receiving member and a movable body side support portion of the gimbal frame. It has a concave curved surface provided. Therefore, the movable body and the gimbal frame can be connected by bringing the sphere into point contact with the concave curved surface. Here, the movable body side gimbal frame receiving member is held by a holder that holds the camera module, and includes an arm portion that extends toward the outer peripheral surface of the camera module. The arm portion overlaps with the movable body side support portion of the gimbal frame when viewed from the optical axis direction. Further, the distance between the tip of the arm portion and the outer peripheral surface of the camera module in the first axial direction is narrower than the thickness dimension of the movable body side support portion in the first axial direction. Therefore, even if the gimbal frame bends when an impact is received from the outside and the concave curved surface provided on the movable body support portion is separated from the sphere in the first axial direction, the movable body side support portion is the arm portion and the camera module. Cannot pass through the gap with. Therefore, it is possible to prevent or suppress the gimbal frame from coming off the movable body.

また、本発明によれば、カメラモジュールの外周面をジンバルフレームの抜け防止のための対向壁部として利用する。従って、ホルダに可動体側ジンバルフレーム受け部材と対向する抜け防止用の壁を形成する必要がないので、ホルダを単純な形状にすることができ、ホルダの薄型化を図ることができる。よって振れ補正機能付き光学ユニットの小型化に有利である。 Further, according to the present invention, the outer peripheral surface of the camera module is used as an opposing wall portion for preventing the gimbal frame from coming off. Therefore, since it is not necessary to form a wall for preventing the holder from coming off facing the movable body side gimbal frame receiving member, the holder can be made into a simple shape and the holder can be made thinner. Therefore, it is advantageous for miniaturization of the optical unit with the runout correction function.

本発明において、前記ホルダは筒状であり、前記ホルダは、前記第1軸方向の対角位置に外周側に張り出す張り出し部を備え、前記張り出し部の内側に前記保持部が形成されていることが好ましい。このようにすると、保持部を容易に形成できる。また、ホルダの構造を単純化できる。 In the present invention, the holder has a tubular shape, and the holder is provided with an overhanging portion that overhangs to the outer peripheral side at a diagonal position in the first axial direction, and the holding portion is formed inside the overhanging portion. Is preferable. In this way, the holding portion can be easily formed. Moreover, the structure of the holder can be simplified.

本発明において、前記張り出し部は、前記第1軸方向で前記スラスト受け部材に前記可
動体側支持部とは反対側から接触する背壁部と、前記背壁部の周方向の両側で前記光軸方向に延びて当該周方向で対向する一対の側壁部と、を備え、前記一対の側壁部は、前記可動体側支持部を周方向に位置決めすることが好ましい。このようにすると、スラスト受け部材の周方向の位置精度を高めることができる。また、可動体側ジンバルフレーム受け部材を保持部に挿入する際に、一対の側壁部をガイド部として利用できる。
In the present invention, the overhanging portion includes a back wall portion that contacts the thrust receiving member in the first axial direction from the side opposite to the movable body side support portion, and the optical axis on both sides of the back wall portion in the circumferential direction. It is preferable that the pair of side wall portions extending in the direction and facing each other in the circumferential direction are provided, and the pair of side wall portions positions the movable body side support portion in the circumferential direction. In this way, the positional accuracy of the thrust receiving member in the circumferential direction can be improved. Further, when the movable body side gimbal frame receiving member is inserted into the holding portion, the pair of side wall portions can be used as the guide portion.

本発明において、前記ホルダは、前記スラスト受け部材を前記光軸方向に位置決めする位置決め部を備えることが好ましい。このようにすると、スラスト受け部材に固定される球体の光軸方向の位置精度を高めることができる。 In the present invention, the holder preferably includes a positioning portion for positioning the thrust receiving member in the optical axis direction. In this way, the position accuracy of the sphere fixed to the thrust receiving member in the optical axis direction can be improved.

本発明において、前記ホルダは金属製であり、前記カメラモジュールは、前記ホルダの内周側に嵌まっており、前記スラスト受け部材は、前記ホルダに溶接されていることが好ましい。上記のように、本発明では、ホルダの形状を単純化できるので、金属製にすることができる。従って、ホルダを薄型化でき、振れ補正機能付き光学ユニットの小型化を図ることができる。また、スラスト受け部材を溶接で固定することにより、固定強度を高めることができ、組立時間を短縮できる。 In the present invention, it is preferable that the holder is made of metal, the camera module is fitted on the inner peripheral side of the holder, and the thrust receiving member is welded to the holder. As described above, in the present invention, since the shape of the holder can be simplified, it can be made of metal. Therefore, the holder can be made thinner, and the optical unit with the runout correction function can be made smaller. Further, by fixing the thrust receiving member by welding, the fixing strength can be increased and the assembly time can be shortened.

本発明において、前記スラスト受け部材は、前記張り出し部の前記光軸方向の端部から突出していることが好ましい。このようにすると、スラスト受け部材を溶接で固定しやすい。 In the present invention, it is preferable that the thrust receiving member protrudes from the end portion of the overhanging portion in the optical axis direction. In this way, the thrust receiving member can be easily fixed by welding.

本発明において、前記光軸方向の一方を第1方向とし、前記光軸方向の他方を第2方向とし、前記光軸回りを周方向とした場合に、前記スラスト受け部材は、前記球体が固定された球体固定部を備え当該球体を介して前記支持部と前記第1軸方向で対向する板部と、前記板部の前記球体固定部よりも前記第2方向における前記周方向の両端から前記支持部が位置する側に突出する一対の前記腕部と、を備え、一対の前記腕部のそれぞれは、前記板部の前記周方向の端から前記第1軸方向に屈曲する突出板部分と、前記突出板部分の前記板部とは反対側の端から前記周方向を前記板部とは反対側に屈曲する延設板部分と、を備え、一対の前記腕部のそれぞれは、前記延設板部分が前記外周面と対向し、前記延設板部分と前記外周面との前記第1軸方向の離間距離が前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭いことが好ましい。このようにすると、各腕部とカメラモジュールの外周面とが第1軸方向で対向する面積を大きくすることができる。従って、可動体側支持部が、腕部とカメラモジュールとの隙間を通過することを防止しやすい。 In the present invention, when one of the optical axis directions is the first direction, the other of the optical axis directions is the second direction, and the circumference of the optical axis is the circumferential direction, the sphere is fixed to the thrust receiving member. The plate portion provided with the sphere fixing portion and facing the support portion in the first axial direction via the sphere, and the plate portion from both ends in the circumferential direction in the second direction from the sphere fixing portion of the plate portion. A pair of the arm portions projecting to the side where the support portion is located, and each of the pair of the arm portions is a projecting plate portion that bends in the first axial direction from the circumferential end of the plate portion. The projecting plate portion includes an extending plate portion that bends in the circumferential direction from the end opposite to the plate portion to the opposite side of the plate portion, and each of the pair of the arm portions has the extending plate portion. The installation plate portion faces the outer peripheral surface, and the separation distance between the extension plate portion and the outer peripheral surface in the first axial direction is narrower than the thickness dimension of the movable body side support portion in the first axial direction. preferable. By doing so, it is possible to increase the area where each arm portion and the outer peripheral surface of the camera module face each other in the first axis direction. Therefore, it is easy to prevent the movable body side support portion from passing through the gap between the arm portion and the camera module.

本発明において、前記固定体側支持部は、前記凹曲面が形成された凸部と、前記凸部から前記周方向の両側へ延びる縁部を備え、一対の前記腕部のそれぞれは、前記光軸方向から見て前記突出板部分が前記縁部と重なっており、前記延設板部分と前記外周面との前記第1軸方向の離間距離は、前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭く、前記可動体側支持部の前記第1軸方向の厚み寸法は、前記凸部の前記第1軸方向の突出寸法および前記縁部の厚み寸法を含むことが好ましい。このようにすると、外部から衝撃を受けたときに、ジンバルフレームが撓んで凸部の先端がカメラモジュールの外周面に当たる位置まで移動したときでも、スラスト受け部材の突出板部分によって可動体側支持部が第2方向に抜けてしまうことを防止できる。 In the present invention, the fixed body side support portion includes a convex portion on which the concave curved surface is formed and an edge portion extending from the convex portion to both sides in the circumferential direction, and each of the pair of the arm portions has the optical axis. The protruding plate portion overlaps the edge portion when viewed from the direction, and the distance between the extending plate portion and the outer peripheral surface in the first axial direction is the distance between the movable body side support portion and the first axial direction. It is narrower than the thickness dimension, and the thickness dimension of the movable body side support portion in the first axial direction preferably includes the protrusion dimension of the convex portion in the first axial direction and the thickness dimension of the edge portion. In this way, even when the gimbal frame bends and the tip of the convex portion moves to a position where it hits the outer peripheral surface of the camera module when an impact is received from the outside, the movable body side support portion is provided by the protruding plate portion of the thrust receiving member. It is possible to prevent it from coming off in the second direction.

本発明において、前記縁部は、前記凸部を中心として同心円状に形成されていることが好ましい。このようにすると、ジンバルフレームが第1軸回りに傾いて組み立てられたとしても、縁部の周方向への突出寸法が変化しない。従って、ジンバルフレームが傾いたことによって可動体側支持部がスラスト受け部材から抜けてしまうことを防止できる。 In the present invention, the edge portion is preferably formed concentrically around the convex portion. In this way, even if the gimbal frame is assembled so as to be tilted around the first axis, the protruding dimension of the edge portion in the circumferential direction does not change. Therefore, it is possible to prevent the movable body side support portion from coming off from the thrust receiving member due to the tilting of the gimbal frame.

本発明において、前記ジンバルフレームは、一対の前記突出板部分の間を経由して前記
光軸方向に延びる第1ジンバルフレーム延設部を備え、前記第1ジンバルフレーム延設部は、前記第1方向の先端に前記可動体側支持部を備えるとともに、前記可動体側支持部の前記第2方向に一対の前記突出板部分の間に位置する通過部を備え、前記可動体側支持部の前記周方向の幅寸法は、前記通過部の前記周方向の幅寸法よりも長く、かつ、一対の前記突出板部分の間隔よりも長いことが好ましい。このようにすると、一対の突出板部分によって可動体側支持部が抜けることを規制できる。また、第2ジンバルフレーム延設部を撓ませて付勢力を発生させ、当該付勢力によってスラスト受け部材を保持部に仮固定することができる。したがって、組立が容易である。
In the present invention, the gimbal frame includes a first gimbal frame extension portion extending in the optical axis direction via between the pair of projecting plate portions, and the first gimbal frame extension portion is the first gimbal frame extension portion. The movable body side support portion is provided at the tip in the direction, and a passing portion located between the pair of protruding plate portions in the second direction of the movable body side support portion is provided, and the movable body side support portion is provided in the circumferential direction. The width dimension is preferably longer than the width dimension of the passing portion in the circumferential direction and longer than the distance between the pair of protruding plate portions. In this way, it is possible to prevent the movable body side support portion from coming off by the pair of protruding plate portions. Further, the extending portion of the second gimbal frame can be bent to generate an urging force, and the thrust receiving member can be temporarily fixed to the holding portion by the urging force. Therefore, it is easy to assemble.

本発明において、前記ジンバル機構は、前記ジンバルフレームおよび前記固定体を前記第2軸回りに回転可能に接続する固定体接続機構を備え、前記固定体接続機構は、前記球体および当該球体が固定された金属製の前記スラスト受け部材を備える固定体側ジンバルフレーム受け部材と、前記ジンバルフレームにおいて前記球体と接触する前記凹曲面を有する固定体側支持部と、を備え、前記固定体は、前記可動体の外周側を囲むケースを備え、前記ケースは、前記第2軸が通過する位置を前記光軸方向に切欠いた切欠き部を備え、前記固定体側ジンバルフレーム受け部材は、前記切欠き部に配置されて前記球体の中心を前記第2軸が通過する位置に保持されることが好ましい。このようにすると、固定体接続機構においても、可動体接続機構で使用した可動体側ジンバルフレーム受け部材と同一の固定体側ジンバルフレーム受け部材を用いることができる。従って、固定体接続機構と可動体接続機構で部品の共通化を図ることができる。 In the present invention, the gimbal mechanism includes a fixed body connecting mechanism that rotatably connects the gimbal frame and the fixed body around the second axis, and the fixed body connecting mechanism is such that the sphere and the sphere are fixed. The fixed body side gimbal frame receiving member including the metal thrust receiving member and the fixed body side support portion having the concave curved surface in contact with the sphere in the gimbal frame are provided, and the fixed body is of the movable body. The case includes a case surrounding the outer peripheral side, the case includes a notch portion in which the position through which the second axis passes is cut out in the optical axis direction, and the fixed body side gimbal frame receiving member is arranged in the notch portion. It is preferable that the center of the sphere is held at a position where the second axis passes. In this way, even in the fixed body connecting mechanism, the same fixed body side gimbal frame receiving member as the movable body side gimbal frame receiving member used in the movable body connecting mechanism can be used. Therefore, it is possible to standardize the parts between the fixed body connecting mechanism and the movable body connecting mechanism.

本発明において、前記ケースは金属製であり、前記固定体側ジンバルフレーム受け部材に設けられた前記スラスト受け部材は、前記ケースに溶接されていることが好ましい。このようにすると、ケースを薄型化でき、振れ補正機能付き光学ユニットの小型化を図ることができる。従って、固定体接続機構においても、スラスト受け部材を溶接で固定できる。従って、固定強度を高めることができ、組立時間を短縮できる。 In the present invention, it is preferable that the case is made of metal and the thrust receiving member provided on the fixed body side gimbal frame receiving member is welded to the case. In this way, the case can be made thinner, and the optical unit with the runout correction function can be made smaller. Therefore, even in the fixed body connecting mechanism, the thrust receiving member can be fixed by welding. Therefore, the fixing strength can be increased and the assembly time can be shortened.

本発明によれば、可動体とジンバルフレームとを第1軸回りに回転可能に接続する可動体接続機構は、可動体側ジンバルフレーム受け部材に設けられた球体と、ジンバルフレームの可動体側支持部に設けられた凹曲面とを備えている。従って、凹曲面に球体を点接触させることによって可動体とジンバルフレームとを接続できる。ここで、可動体側ジンバルフレーム受け部材は、カメラモジュールを保持するホルダに保持されており、カメラモジュールの外周面に向けて延びる腕部を備えている。腕部は、光軸方向から見てジンバルフレームの可動体側支持部と重なっている。また、腕部の先端とカメラモジュールの外周面との第1軸方向の離間距離は、可動体側支持部の第1軸方向の厚み寸法よりも狭い。従って、外部から衝撃を受けたときに、ジンバルフレームが撓んで可動体支持部に設けられた凹曲面が球体から第1軸方向に離間した場合でも、可動体側支持部は、腕部とカメラモジュールとの隙間を通過できない。従って、ジンバルフレームが可動体から外れてしまうことを防止あるいは抑制できる。 According to the present invention, the movable body connecting mechanism for rotatably connecting the movable body and the gimbal frame around the first axis is provided on a sphere provided on the movable body side gimbal frame receiving member and a movable body side support portion of the gimbal frame. It has a concave curved surface provided. Therefore, the movable body and the gimbal frame can be connected by bringing the sphere into point contact with the concave curved surface. Here, the movable body side gimbal frame receiving member is held by a holder that holds the camera module, and includes an arm portion that extends toward the outer peripheral surface of the camera module. The arm portion overlaps with the movable body side support portion of the gimbal frame when viewed from the optical axis direction. Further, the distance between the tip of the arm portion and the outer peripheral surface of the camera module in the first axial direction is narrower than the thickness dimension of the movable body side support portion in the first axial direction. Therefore, even if the gimbal frame bends when an impact is received from the outside and the concave curved surface provided on the movable body support portion is separated from the sphere in the first axial direction, the movable body side support portion is the arm portion and the camera module. Cannot pass through the gap with. Therefore, it is possible to prevent or suppress the gimbal frame from coming off the movable body.

また、本発明によれば、カメラモジュールの外周面をジンバルフレームの抜け防止のための対向壁部として利用する。従って、ホルダに可動体側ジンバルフレーム受け部材と対向する抜け防止用の壁を形成する必要がないので、ホルダを単純な形状にすることができ、ホルダの薄型化を図ることができる。よって振れ補正機能付き光学ユニットの小型化に有利である。 Further, according to the present invention, the outer peripheral surface of the camera module is used as an opposing wall portion for preventing the gimbal frame from coming off. Therefore, since it is not necessary to form a wall for preventing the holder from coming off facing the movable body side gimbal frame receiving member, the holder can be made into a simple shape and the holder can be made thinner. Therefore, it is advantageous for miniaturization of the optical unit with the runout correction function.

本発明を適用した振れ補正機能付き光学ユニットの斜視図である。It is a perspective view of the optical unit with a runout correction function to which this invention is applied. カバーを外した振れ補正機能付き光学ユニットの平面図である。It is a top view of the optical unit with a runout correction function with a cover removed. 振れ補正機能付き光学ユニットの分解斜視図である。It is an exploded perspective view of the optical unit with a runout correction function. ジンバルフレーム受け部材の分解斜視図である。It is an exploded perspective view of the gimbal frame receiving member. ジンバルフレームの側面図と、ジンバルフレームおよびジンバルフレーム受け部材の側面図である。It is a side view of a gimbal frame and a side view of a gimbal frame and a gimbal frame receiving member. 可動体接続機構の斜視図である。It is a perspective view of the movable body connection mechanism. 可動体接続機構をカメラモジュール側から見た図(図6のA方向から見た図)である。It is the figure which looked at the movable body connection mechanism from the camera module side (the figure which looked at the direction A of FIG. 6). 可動体接続機構の平面図である。It is a top view of the movable body connection mechanism. 可動体接続機構を第1軸に沿って切断した断面図である。It is sectional drawing which cut the movable body connection mechanism along the 1st axis. 固定体接続機構を外周側から見た図である。It is the figure which looked at the fixed body connection mechanism from the outer peripheral side. 固定体接続機構を第2軸に沿って切断した断面図である。It is sectional drawing which cut the fixed body connection mechanism along the 2nd axis. 固定体接続機構の分解斜視図である。It is an exploded perspective view of the fixed body connection mechanism. 固定体接続機構の斜視図である。It is a perspective view of the fixed body connection mechanism.

以下に図面を参照して、本発明を適用した振れ補正機能付き光学ユニットの実施形態を説明する。 An embodiment of an optical unit with a runout correction function to which the present invention is applied will be described below with reference to the drawings.

(全体構成)
図1は、振れ補正機能付き光学ユニットの斜視図である。図2は、カバーを外した振れ補正機能付き光学ユニットを被写体側から見た場合の平面図である。図3は、振れ補正機能付き光学ユニットの分解斜視図である。図1、図2に示すように、振れ補正機能付き光学ユニット1は、レンズ2などの光学素子を備えたカメラモジュール3を有する。振れ補正機能付き光学ユニット1は、例えば、カメラ付き携帯電話機、ドライブレコーダー等の撮影機器、或いは、ヘルメット、自転車、ラジコンヘリコプター等の移動体に搭載されるアクションカメラやウエアラブルカメラに搭載される。これらの光学機器では、撮影時に光学機器が傾くと、カメラモジュール3が傾いて、撮影画像が乱れる。振れ補正機能付き光学ユニット1は、撮影画像の乱れを回避するために、ジャイロスコープ等の検出手段によって検出された加速度や角速度、振れ量等に基づいて、カメラモジュール3の傾きを補正する。
(overall structure)
FIG. 1 is a perspective view of an optical unit with a runout correction function. FIG. 2 is a plan view of the optical unit with a shake correction function with the cover removed when viewed from the subject side. FIG. 3 is an exploded perspective view of an optical unit with a runout correction function. As shown in FIGS. 1 and 2, the optical unit 1 with a shake correction function includes a camera module 3 provided with an optical element such as a lens 2. The optical unit 1 with a shake correction function is mounted on, for example, a mobile phone with a camera, a photographing device such as a drive recorder, or an action camera or a wearable camera mounted on a moving body such as a helmet, a bicycle, or a radio-controlled helicopter. In these optical devices, if the optical device is tilted during shooting, the camera module 3 is tilted and the captured image is distorted. The optical unit 1 with a shake correction function corrects the tilt of the camera module 3 based on the acceleration, the angular velocity, the amount of shake, etc. detected by a detection means such as a gyroscope in order to avoid distortion of the captured image.

以下の説明では、互いに直交する3軸をX軸、Y軸、Z軸とする。また、X軸に沿った方向をX軸方向、X軸方向の一方側を−X方向、他方側を+X方向とする。Y軸に沿った方向をY軸方向、Y軸方向の一方側を−Y方向、他方側を+Y方向とする。Z軸に沿った方向をZ軸方向、Z軸方向の一方側を−Z方向、他方側を+Z方向とする。Z軸方向は、カメラモジュール3の光軸Lに沿った光軸方向である。−Z方向は、光軸方向の一方であり、第1方向である。+Z方向は、光軸方向の他方であり、第2方向である。また、−Z方向(第1方向)は、カメラモジュール3の像側であり、+Z方向(第2方向)は、カメラモジュール3の被写体側である。 In the following description, the three axes orthogonal to each other are defined as the X-axis, the Y-axis, and the Z-axis. Further, the direction along the X-axis is the X-axis direction, one side of the X-axis direction is the −X direction, and the other side is the + X direction. The direction along the Y-axis is the Y-axis direction, one side of the Y-axis direction is the −Y direction, and the other side is the + Y direction. The direction along the Z axis is the Z axis direction, one side of the Z axis direction is the −Z direction, and the other side is the + Z direction. The Z-axis direction is the optical axis direction along the optical axis L of the camera module 3. The −Z direction is one of the optical axis directions and is the first direction. The + Z direction is the other of the optical axis directions and is the second direction. Further, the −Z direction (first direction) is the image side of the camera module 3, and the + Z direction (second direction) is the subject side of the camera module 3.

図1に示すように、振れ補正機能付き光学ユニット1は、カメラモジュール3を備えた可動体4と、可動体4を回転可能に支持するジンバル機構5と、ジンバル機構5を介して可動体4を支持する固定体6と、固定体6に対して可動体4を揺動させる振れ補正用駆動機構7を備える。振れ補正機能付き光学ユニット1は、カメラモジュール3の光軸Lと交差し、且つ、互いに交差する2軸回りに可動体4を揺動させて振れ補正を行う。本例では、振れ補正機能付き光学ユニット1は、カメラモジュール3の光軸Lと直交し、且つ、互いに直交する2軸回りに可動体4を揺動させて振れ補正を行う。すなわち、振れ補正機能付き光学ユニット1では、X軸回りの振れ補正と、Y軸回りの振れ補正と、を行うことにより、ピッチング方向の振れ補正、および、ヨーイング方向の振れ補正を行う。 As shown in FIG. 1, the optical unit 1 with a shake correction function includes a movable body 4 provided with a camera module 3, a gimbal mechanism 5 that rotatably supports the movable body 4, and a movable body 4 via the gimbal mechanism 5. A fixed body 6 for supporting the fixed body 6 and a runout correction drive mechanism 7 for swinging the movable body 4 with respect to the fixed body 6 are provided. The optical unit 1 with a shake correction function performs shake correction by swinging the movable body 4 around two axes that intersect the optical axis L of the camera module 3 and intersect with each other. In this example, the optical unit 1 with a shake correction function swings the movable body 4 around two axes orthogonal to the optical axis L of the camera module 3 and orthogonal to each other to perform shake correction. That is, in the optical unit 1 with a runout correction function, runout correction in the pitching direction and runout correction in the yawing direction are performed by performing runout correction around the X-axis and runout correction around the Y-axis.

可動体4は、ジンバル機構5により、光軸Lと直交する第1軸R1回りに回転可能に支持されるとともに、光軸Lおよび第1軸R1と直交する第2軸R2回りに回転可能に支持される。第1軸R1および第2軸R2は、X軸およびY軸に対して45度傾斜する。第1軸R1回りの回転および第2軸R2回りの回転を合成することにより、可動体4は、X軸回りおよびY軸回りに回転する。以下、第1軸R1と一致する軸方向を第1軸方向とし、第2軸R2と一致する軸方向を第2軸方向とする。 The movable body 4 is rotatably supported around the first axis R1 orthogonal to the optical axis L by the gimbal mechanism 5, and is rotatably supported around the second axis R2 orthogonal to the optical axis L and the first axis R1. Be supported. The first axis R1 and the second axis R2 are tilted 45 degrees with respect to the X axis and the Y axis. By synthesizing the rotation around the first axis R1 and the rotation around the second axis R2, the movable body 4 rotates around the X axis and the Y axis. Hereinafter, the axial direction that coincides with the first axis R1 is referred to as the first axial direction, and the axial direction that coincides with the second axis R2 is referred to as the second axial direction.

図2、図3に示すように、ジンバル機構5は、ジンバルフレーム10と、可動体4の第1軸R1上の対角位置に設けられる可動体接続機構11と、固定体6の第2軸R2上の対角位置に設けられる固定体接続機構12と、を備える。ジンバルフレーム10は、金属製の板ばねである。可動体接続機構11は、ジンバルフレーム10および可動体4を第1軸R1回りに回転可能に接続する。固定体接続機構12は、ジンバルフレーム10および固定体6を第2軸R2回りに回転可能に接続する。 As shown in FIGS. 2 and 3, the gimbal mechanism 5 includes a gimbal frame 10, a movable body connecting mechanism 11 provided diagonally on the first axis R1 of the movable body 4, and a second axis of the fixed body 6. A fixed body connecting mechanism 12 provided at a diagonal position on R2 is provided. The gimbal frame 10 is a metal leaf spring. The movable body connecting mechanism 11 rotatably connects the gimbal frame 10 and the movable body 4 around the first axis R1. The fixed body connecting mechanism 12 rotatably connects the gimbal frame 10 and the fixed body 6 around the second axis R2.

図4は、ジンバルフレーム受け部材17の分解斜視図である。図4(a)は、径方向外側から見た分解斜視図であり、図4(b)は、径方向内側から見た分解斜視図である。可動体接続機構11は、金属製の球体15および当該球体15が固定された金属製のスラスト受け部材16を備えるジンバルフレーム受け部材17と、ジンバルフレーム10において球体15と接触する凹曲面19を有する支持部20と、を備える。ジンバルフレーム受け部材17は、可動体4に設けられた保持部13に保持される。固定体接続機構12は、金属製の球体15および当該球体15が固定された金属製のスラスト受け部材16を備えるジンバルフレーム受け部材17と、ジンバルフレーム10において球体15と接触する凹曲面19を有する支持部20と、を備える。ジンバルフレーム受け部材17は、固定体6に設けられた切欠き部14に保持される。図4に示すように、ジンバルフレーム受け部材17は、球体15の中心が第1軸R1上もしくは第2軸R2上に配置されるように保持される。 FIG. 4 is an exploded perspective view of the gimbal frame receiving member 17. FIG. 4A is an exploded perspective view seen from the outside in the radial direction, and FIG. 4B is an exploded perspective view seen from the inside in the radial direction. The movable body connecting mechanism 11 has a gimbal frame receiving member 17 including a metal sphere 15 and a metal thrust receiving member 16 to which the sphere 15 is fixed, and a concave curved surface 19 that contacts the sphere 15 in the gimbal frame 10. A support portion 20 and a support portion 20 are provided. The gimbal frame receiving member 17 is held by a holding portion 13 provided on the movable body 4. The fixed body connecting mechanism 12 has a gimbal frame receiving member 17 including a metal sphere 15 and a metal thrust receiving member 16 to which the sphere 15 is fixed, and a concave curved surface 19 that contacts the sphere 15 in the gimbal frame 10. A support portion 20 and a support portion 20 are provided. The gimbal frame receiving member 17 is held by a notch 14 provided in the fixed body 6. As shown in FIG. 4, the gimbal frame receiving member 17 is held so that the center of the sphere 15 is arranged on the first axis R1 or the second axis R2.

ここで、可動体4の保持部13に保持されるジンバルフレーム受け部材17を可動体側ジンバルフレーム受け部材とし、固定体6の切欠き部14に保持されるジンバルフレーム受け部材17を固定体側ジンバルフレーム受け部材とする場合に、可動体側ジンバルフレーム受け部材と固定体側ジンバルフレーム受け部材とは同一の部材なので、同一の符号17を付して説明する。また、ジンバルフレーム10において、可動体4に保持されたジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)と接触する凹曲面19を有する支持部20を可動体側支持部とし、固定体6に保持されたジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)と接触する凹曲面19を有する支持部20を固定体側支持部とする場合に、可動体側支持部と固定体側支持部とは同一の構成を備えるので、同一の符号20を付して説明する。 Here, the gimbal frame receiving member 17 held by the holding portion 13 of the movable body 4 is used as the movable body side gimbal frame receiving member, and the gimbal frame receiving member 17 held by the notch portion 14 of the fixed body 6 is used as the fixed body side gimbal frame. In the case of using the receiving member, since the movable body side gimbal frame receiving member and the fixed body side gimbal frame receiving member are the same members, they will be described with the same reference numerals 17. Further, in the gimbal frame 10, the support portion 20 having the concave curved surface 19 in contact with the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) held by the movable body 4 is used as the movable body side support portion and is held by the fixed body 6. When the support portion 20 having a concave curved surface 19 in contact with the gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) is used as the fixed body side support portion, the movable body side support portion and the fixed body side support portion have the same configuration. The present invention will be described with reference to the same reference numeral 20.

図2に示すように、振れ補正用駆動機構7は、可動体4をX軸回りに回転させる駆動力を発生させる第1磁気駆動機構7Xと、可動体4をY軸回りに回転させる駆動力を発生させる第2磁気駆動機構7Yを備える。第1磁気駆動機構7Xは、可動体4の−Y方向側に配置される。第2磁気駆動機構7Yは、可動体4の−X方向側に配置される。図3に示すように、第1磁気駆動機構7Xは、1組の磁石25Xおよびコイル26Xを備える。第2磁気駆動機構7Yは、1組の磁石25Yおよびコイル26Yを備える。第1磁気駆動機構7Xの磁石25Xおよびコイル26Xは、Y軸方向で対向する。第2磁気駆動機構7Yの磁石25Yおよびコイル26Yは、X軸方向で対向する。本例では、磁石25X、25Yは可動体4に配置され、コイル26X、26Yは固定体6に配置される。なお、磁石25X、25Yを固定体6に配置し、コイル26X、26Yを可動体4に配置することもできる。 As shown in FIG. 2, the runout correction drive mechanism 7 includes a first magnetic drive mechanism 7X that generates a driving force that rotates the movable body 4 around the X axis, and a driving force that rotates the movable body 4 around the Y axis. A second magnetic drive mechanism 7Y is provided. The first magnetic drive mechanism 7X is arranged on the −Y direction side of the movable body 4. The second magnetic drive mechanism 7Y is arranged on the −X direction side of the movable body 4. As shown in FIG. 3, the first magnetic drive mechanism 7X includes a set of magnets 25X and coils 26X. The second magnetic drive mechanism 7Y includes a set of magnets 25Y and a coil 26Y. The magnet 25X and the coil 26X of the first magnetic drive mechanism 7X face each other in the Y-axis direction. The magnet 25Y and the coil 26Y of the second magnetic drive mechanism 7Y face each other in the X-axis direction. In this example, the magnets 25X and 25Y are arranged on the movable body 4, and the coils 26X and 26Y are arranged on the fixed body 6. The magnets 25X and 25Y can be arranged on the fixed body 6, and the coils 26X and 26Y can be arranged on the movable body 4.

(可動体)
図3に示すように、可動体4は、カメラモジュール3と、カメラモジュール3を囲む枠状のホルダ31を備える。カメラモジュール3は、Z軸方向から見た場合の形状が8角形の本体部32と、本体部32の中央部分から第2方向に突出する鏡筒部33と、本体部32の−Z方向の端部に配置される基板34を備える。カメラモジュール3は、鏡筒部33に保持されるレンズ2と、基板34に搭載される撮像素子(不図示)を備える。撮像素子は本体部32に収容され、レンズ2の光軸L上に配置される。本体部32は、外周側へ突出する複数の突出部30を備える。突出部30は、+Y方向の側面および−Y方向の側面の−Z方向の端部にそれぞれ2箇所ずつ形成されている。
(Movable body)
As shown in FIG. 3, the movable body 4 includes a camera module 3 and a frame-shaped holder 31 that surrounds the camera module 3. The camera module 3 has an octagonal main body 32 when viewed from the Z-axis direction, a lens barrel 33 protruding in the second direction from the central portion of the main body 32, and the main body 32 in the −Z direction. A substrate 34 is provided at the end. The camera module 3 includes a lens 2 held by the lens barrel 33 and an image sensor (not shown) mounted on the substrate 34. The image sensor is housed in the main body 32 and is arranged on the optical axis L of the lens 2. The main body 32 includes a plurality of projecting portions 30 projecting toward the outer peripheral side. Two protrusions 30 are formed on the side surface in the + Y direction and the end portion in the −Z direction on the side surface in the −Y direction.

ホルダ31は、カメラモジュール3の−X方向でカメラモジュール3の本体部32の側面に沿ってY軸方向に延びる第1側板部35、およびカメラモジュール3の+X方向で本体部32の側面に沿ってY軸方向に延びる第2側板部36を備える。また、ホルダ31は、カメラモジュール3の−Y方向で本体部32の側面に沿ってX軸方向に延びる第3側板部37、およびカメラモジュール3の+Y方向で本体部32の側面に沿ってX軸方向に延びる第4側板部38を備える。さらに、ホルダ31は、第1側板部35と第3側板部37とを接続する角部、および、第2側板部36と第4側板部38とを接続する角部に形成された張り出し部39を備える。張り出し部39は、第1軸方向の対角に位置しており、外周側へ張り出している。各張り出し部39には、可動体接続機構11のジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)を保持する保持部13が設けられている。各保持部13は、張り出し部39の内周側に形成された凹部である。 The holder 31 has a first side plate portion 35 extending in the Y-axis direction along the side surface of the main body portion 32 of the camera module 3 in the −X direction of the camera module 3, and a holder 31 along the side surface of the main body portion 32 in the + X direction of the camera module 3. A second side plate portion 36 extending in the Y-axis direction is provided. Further, the holder 31 has a third side plate portion 37 extending in the X-axis direction along the side surface of the main body portion 32 in the −Y direction of the camera module 3, and an X along the side surface of the main body portion 32 in the + Y direction of the camera module 3. A fourth side plate portion 38 extending in the axial direction is provided. Further, the holder 31 has an overhanging portion 39 formed at a corner portion connecting the first side plate portion 35 and the third side plate portion 37 and a corner portion connecting the second side plate portion 36 and the fourth side plate portion 38. To be equipped. The overhanging portion 39 is located diagonally in the first axial direction and overhangs toward the outer peripheral side. Each overhanging portion 39 is provided with a holding portion 13 for holding the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) of the movable body connecting mechanism 11. Each holding portion 13 is a recess formed on the inner peripheral side of the overhanging portion 39.

第1側板部35の外側面には、第2磁気駆動機構7Yの磁石25Yが固定される。第3側板部37の外側面には、磁石25Xが固定される。ホルダ31は磁性材料からなり、磁石25X、25Yに対するヨークとして機能する。本形態では、ホルダは磁性金属からなる筒状部材であり、深絞り加工により形成されている。磁石25X、25Yは、径方向外側を向く面の磁極が、Z軸方向の中央を周方向に延びる着磁分極線を境にして異なるように着磁されている。 A magnet 25Y of the second magnetic drive mechanism 7Y is fixed to the outer surface of the first side plate portion 35. A magnet 25X is fixed to the outer surface of the third side plate portion 37. The holder 31 is made of a magnetic material and functions as a yoke for magnets 25X and 25Y. In this embodiment, the holder is a tubular member made of magnetic metal and is formed by deep drawing. The magnets 25X and 25Y are magnetized so that the magnetic poles of the surfaces facing outward in the radial direction are different with respect to the magnetizing polarization line extending in the circumferential direction in the center in the Z-axis direction.

ホルダ31は、第3側板部37および第4側板部38の−Z方向の縁を+Z方向に切り欠いた位置決め凹部40を備える。可動体4を組み立てる際、ホルダ31の内側へ−Z方向(像側)からカメラモジュール3を挿入する。その際、カメラモジュール3の突出部30がホルダ31の位置決め凹部40に挿入され、突出部30が位置決め凹部の+Z方向の縁に当接する。これにより、カメラモジュール3がホルダ31に対してZ軸方向(光軸方向)に位置決めされる。 The holder 31 includes a positioning recess 40 in which the edges of the third side plate portion 37 and the fourth side plate portion 38 in the −Z direction are cut out in the + Z direction. When assembling the movable body 4, the camera module 3 is inserted into the inside of the holder 31 from the −Z direction (image side). At that time, the protruding portion 30 of the camera module 3 is inserted into the positioning recess 40 of the holder 31, and the protruding portion 30 comes into contact with the edge of the positioning recess in the + Z direction. As a result, the camera module 3 is positioned in the Z-axis direction (optical axis direction) with respect to the holder 31.

(固定体)
図1、図3に示すように、固定体6は、金属製のケース50と、ケース50に+Z方向の側から被せられた第1カバー8と、ケース50を−Z方向の側から覆う第2カバー9と、を備える。固定体6には、フレキシブルプリント基板60に固定されたコイル26X、26Yが保持される。ケース50は、可動体4の外周側を囲む矩形枠状である。ケース50、第1カバー8、および第2カバー9は非磁性の金属からなる。ケース50、第1カバー8、および第2カバー9は、溶接により互いに固定される。第1カバー8は、略矩形の開口部を備えている。図1に示すように、振れ補正機能付き光学ユニット1は、ジンバルフレーム10の一部が、第1カバー8の開口部から+Z方向に突出する。また、ジンバルフレーム10の径方向の中央に設けられた中央穴73からは、カメラモジュール3の鏡筒部33が+Z方向に突出する。
(Fixed body)
As shown in FIGS. 1 and 3, the fixed body 6 covers the metal case 50, the first cover 8 that covers the case 50 from the + Z direction side, and the case 50 from the −Z direction side. It includes 2 covers 9. The fixed body 6 holds the coils 26X and 26Y fixed to the flexible printed circuit board 60. The case 50 has a rectangular frame shape that surrounds the outer peripheral side of the movable body 4. The case 50, the first cover 8, and the second cover 9 are made of non-magnetic metal. The case 50, the first cover 8, and the second cover 9 are fixed to each other by welding. The first cover 8 has a substantially rectangular opening. As shown in FIG. 1, in the optical unit 1 with a runout correction function, a part of the gimbal frame 10 projects in the + Z direction from the opening of the first cover 8. Further, the lens barrel portion 33 of the camera module 3 projects in the + Z direction from the central hole 73 provided in the center of the gimbal frame 10 in the radial direction.

ケース50は、可動体4の−X方向でY軸方向に延びる第1枠部51、可動体4の+X方向でY軸方向に延びる第2枠部52、可動体4の−Y方向でX軸方向に延びる第3枠部
53、および可動体4の+Y方向でX軸方向に延びる第4枠部54を備える。ケース50において、第1枠部51と第4枠部54との間には、第1枠部51および第4枠部54に対して45°傾斜した第1傾斜枠部55が形成されている。また、第2枠部52と第3枠部53との間には、第2枠部52および第3枠部53に対して45°傾斜した第2傾斜枠部56が形成されている。さらに、第1枠部51と第3枠部53との間には、第1枠部51および第3枠部53に対して45°傾斜した第3傾斜枠部57が形成されている。第1傾斜枠部55および第2傾斜枠部56には、固定体接続機構12のジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)を保持するための切欠き部14が形成されている。切欠き部14は、ケース50における第2軸方向の対角位置に配置される。各切欠き部14は、ケース50の+Z方向の縁から−Z方向へ切り欠かれている。
The case 50 has a first frame portion 51 extending in the Y-axis direction in the −X direction of the movable body 4, a second frame portion 52 extending in the Y-axis direction in the + X direction of the movable body 4, and an X in the −Y direction of the movable body 4. A third frame portion 53 extending in the axial direction and a fourth frame portion 54 extending in the + Y direction of the movable body 4 in the X-axis direction are provided. In the case 50, a first inclined frame portion 55 inclined by 45 ° with respect to the first frame portion 51 and the fourth frame portion 54 is formed between the first frame portion 51 and the fourth frame portion 54. .. Further, between the second frame portion 52 and the third frame portion 53, a second inclined frame portion 56 inclined by 45 ° with respect to the second frame portion 52 and the third frame portion 53 is formed. Further, between the first frame portion 51 and the third frame portion 53, a third inclined frame portion 57 inclined by 45 ° with respect to the first frame portion 51 and the third frame portion 53 is formed. The first inclined frame portion 55 and the second inclined frame portion 56 are formed with notches 14 for holding the gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) of the fixed body connecting mechanism 12. The notch portion 14 is arranged at a diagonal position in the second axial direction in the case 50. Each notch portion 14 is notched in the −Z direction from the + Z direction edge of the case 50.

第1枠部51および第3枠部53には、コイル配置穴58が設けられている。各コイル配置穴58は、貫通穴であり、それぞれ第1磁気駆動機構7Xのコイル26X、および、第2磁気駆動機構7Yのコイル26Yが配置される。コイル26X、26Yは、周方向に長い長円形の空芯コイルであり、+Z方向側および−Z方向側に位置する2本の長辺が有効辺として利用される。第1枠部51および第3枠部53の径方向外側には、フレキシブルプリント基板60が固定されている。フレキシブルプリント基板60は、第3枠部53のコイル配置穴58に対して径方向外側から重なる第1基板部分61、および、第1枠部51のコイル配置穴58に対して径方向外側から重なる第2基板部分62を備える。第1基板部分61には、コイル26Xが固定され、第2基板部分62にコイル26Yが固定される。コイル26Xおよびコイル26Yは、フレキシブルプリント基板60に電気的に接続されている。 Coil arrangement holes 58 are provided in the first frame portion 51 and the third frame portion 53. Each coil arrangement hole 58 is a through hole, and the coil 26X of the first magnetic drive mechanism 7X and the coil 26Y of the second magnetic drive mechanism 7Y are arranged, respectively. The coils 26X and 26Y are oval air core coils long in the circumferential direction, and two long sides located on the + Z direction side and the −Z direction side are used as effective sides. A flexible printed circuit board 60 is fixed to the outside of the first frame portion 51 and the third frame portion 53 in the radial direction. The flexible printed circuit board 60 overlaps the coil arrangement hole 58 of the third frame portion 53 from the outside in the radial direction with respect to the first substrate portion 61 and the coil arrangement hole 58 of the first frame portion 51 from the outside in the radial direction. A second substrate portion 62 is provided. The coil 26X is fixed to the first substrate portion 61, and the coil 26Y is fixed to the second substrate portion 62. The coil 26X and the coil 26Y are electrically connected to the flexible printed circuit board 60.

第1基板部分61および第2基板部分62には、それぞれ、矩形の磁性板64が配置される。第1基板部分61に配置された磁性板64は、磁石25Xと対向しており、可動体4をX軸回りの回転方向における基準回転位置に復帰させるための磁気バネを構成する。また、第2基板部分62に配置された磁性板64は、磁石25Yと対向しており、可動体4をY軸回りの回転方向における基準回転位置に復帰させるための磁気バネを構成する。また、コイル26X、26Yの中心穴と重なる位置には、磁気センサ65が配置される。磁気センサ65は、例えば、ホール素子である。振れ補正機能付き光学ユニット1は、コイル26Xの中心に配置される磁気センサ65の出力から、可動体4のX軸回りの揺動角度を検出する。また、コイル26Yの中心に配置される磁気センサ65の出力から、可動体4のY軸回りの揺動角度を検出する。 A rectangular magnetic plate 64 is arranged on the first substrate portion 61 and the second substrate portion 62, respectively. The magnetic plate 64 arranged on the first substrate portion 61 faces the magnet 25X, and constitutes a magnetic spring for returning the movable body 4 to a reference rotation position in the rotation direction around the X axis. Further, the magnetic plate 64 arranged on the second substrate portion 62 faces the magnet 25Y, and constitutes a magnetic spring for returning the movable body 4 to the reference rotation position in the rotation direction around the Y axis. Further, the magnetic sensor 65 is arranged at a position overlapping the center holes of the coils 26X and 26Y. The magnetic sensor 65 is, for example, a Hall element. The optical unit 1 with a runout correction function detects the swing angle of the movable body 4 around the X axis from the output of the magnetic sensor 65 arranged at the center of the coil 26X. Further, the swing angle of the movable body 4 around the Y axis is detected from the output of the magnetic sensor 65 arranged at the center of the coil 26Y.

(ジンバルフレーム)
図2、図3に示すように、ジンバルフレーム10は、Z軸方向から見て略正方形のジンバルフレーム本体部70と、ジンバルフレーム本体部70における第1軸方向の対角位置から径方向外側に向かって−Z方向に屈曲してZ軸方向に延びる第1ジンバルフレーム延設部71と、ジンバルフレーム本体部70における第2軸方向の対角位置から径方向外側に向かって−Z方向に屈曲してZ軸方向に延びる第2ジンバルフレーム延設部72と、を備える。ジンバルフレーム本体部70の中央には、ジンバルフレーム本体部70を貫通する中央穴73が設けられている。図2に示すように、ジンバルフレーム本体部70は、Z軸方向から見た場合にカメラモジュール3の本体部32と重なる。
(Gimbal frame)
As shown in FIGS. 2 and 3, the gimbal frame 10 has a substantially square gimbal frame main body 70 when viewed from the Z-axis direction, and the gimbal frame main body 70 radially outward from the diagonal position in the first axial direction. The first gimbal frame extension 71 that bends in the -Z direction and extends in the Z-axis direction, and the gimbal frame main body 70 that bends in the -Z direction from the diagonal position in the second axis direction to the outside in the radial direction. A second gimbal frame extension portion 72 extending in the Z-axis direction is provided. A central hole 73 penetrating the gimbal frame main body 70 is provided in the center of the gimbal frame main body 70. As shown in FIG. 2, the gimbal frame main body 70 overlaps with the main body 32 of the camera module 3 when viewed from the Z-axis direction.

図5(a)は、ジンバルフレーム10の側面図であり、第1軸方向から見た図である。図5(b)は、ジンバルフレーム10およびジンバルフレーム受け部材17の側面図であり、第2軸方向から見た図である。図3、図5に示すように、ジンバルフレーム本体部70は、第2軸方向の中央で第1軸方向に延びる長方形形状の中央板部分75と、中央板部分75から第2軸方向の両側に向かって+Z方向に傾斜する台形形状の一対の角板部分76を備える。ジンバルフレーム本体部70は、第2軸方向の角板部分76が中央板部分7
5よりも可動体4から離間している。従って、ジンバルフレーム10の−Z方向側で可動体4が第1軸R1回りに回転して可動体4の第2軸方向の両端がZ軸方向に移動した場合においても、可動体4とジンバルフレーム10とが衝突することを回避できる。
FIG. 5A is a side view of the gimbal frame 10 and is a view seen from the first axis direction. FIG. 5B is a side view of the gimbal frame 10 and the gimbal frame receiving member 17, and is a view seen from the second axial direction. As shown in FIGS. 3 and 5, the gimbal frame main body 70 has a rectangular central plate portion 75 extending in the first axial direction at the center in the second axial direction, and both sides of the central plate portion 75 in the second axial direction. It includes a pair of trapezoidal square plate portions 76 that incline in the + Z direction toward. In the gimbal frame main body 70, the square plate portion 76 in the second axial direction is the central plate portion 7.
It is farther from the movable body 4 than the 5. Therefore, even when the movable body 4 rotates around the first axis R1 on the −Z direction side of the gimbal frame 10 and both ends of the movable body 4 in the second axis direction move in the Z axis direction, the movable body 4 and the gimbal It is possible to avoid collision with the frame 10.

図3、図5に示すように、第1ジンバルフレーム延設部71は、ジンバルフレーム本体部70の中央板部分75から第1軸方向に向かって−Z方向に傾斜する第1ジンバルフレーム延設部第1延設部分81と、第1ジンバルフレーム延設部第1延設部分81の−Z方向でZ軸方向に延びる第1ジンバルフレーム延設部第2延設部分82とを備える。第1ジンバルフレーム延設部71は、第1ジンバルフレーム延設部第2延設部分82の−Z方向の先端に、可動体接続機構11を構成する支持部20(可動体側支持部)を備える。支持部20は、径方向外側の端面の周方向の中央部分に、径方向内側に窪む凹曲面19を備える。 As shown in FIGS. 3 and 5, the first gimbal frame extension portion 71 is a first gimbal frame extension portion that is inclined in the −Z direction from the central plate portion 75 of the gimbal frame main body portion 70 toward the first axial direction. A first gimbal frame extension portion 81 and a first gimbal frame extension portion second extension portion 82 extending in the −Z direction of the first gimbal frame extension portion 81 in the Z-axis direction are provided. The first gimbal frame extension portion 71 includes a support portion 20 (movable body side support portion) constituting the movable body connecting mechanism 11 at the tip of the first gimbal frame extension portion second extension portion 82 in the −Z direction. .. The support portion 20 includes a concave curved surface 19 that is recessed inward in the radial direction at the central portion in the circumferential direction of the end face on the outer side in the radial direction.

第1ジンバルフレーム延設部71の先端に設けられた支持部20(可動体側支持部)は、周方向の中央部分に、径方向内側に突出する凸部21を備える。凸部21は、第1ジンバルフレーム延設部第2延設部分82にプレス加工によって形成されている。凹曲面19は、凸部21に形成されている。また、凸部21には、凹曲面19とは反対側に凸曲面18が形成されている。また、支持部20(可動体側支持部)は、凸部21から周方向の両側へ延びる縁部22を備える。縁部22は、凸部21の周方向の両側において、凸部21を中心として同心円状に形成されている。ここで、凹曲面19は、可動体接続機構11を構成する球体15の曲率半径よりも曲率半径が大きい。また、第1ジンバルフレーム延設部第2延設部分82は、支持部20の+Z方向に、周方向の幅が支持部20よりも狭い通過部84を備える。 The support portion 20 (movable body side support portion) provided at the tip of the first gimbal frame extension portion 71 includes a convex portion 21 projecting inward in the radial direction at a central portion in the circumferential direction. The convex portion 21 is formed by press working on the second extending portion 82 of the first gimbal frame extending portion. The concave curved surface 19 is formed on the convex portion 21. Further, the convex portion 21 is formed with a convex curved surface 18 on the opposite side of the concave curved surface 19. Further, the support portion 20 (movable body side support portion) includes edge portions 22 extending from the convex portion 21 to both sides in the circumferential direction. The edge portions 22 are formed concentrically with the convex portion 21 as the center on both sides of the convex portion 21 in the circumferential direction. Here, the concave curved surface 19 has a radius of curvature larger than the radius of curvature of the sphere 15 constituting the movable body connecting mechanism 11. Further, the first gimbal frame extension portion second extension portion 82 includes a passage portion 84 having a width in the circumferential direction narrower than that of the support portion 20 in the + Z direction of the support portion 20.

図3、図5に示すように、第2ジンバルフレーム延設部72は、ジンバルフレーム本体部70の一対の角板部分76のそれぞれから第2軸方向に向かって−Z方向に傾斜する第2ジンバルフレーム延設部第1延設部分85と、第2ジンバルフレーム延設部第1延設部分85の−Z方向の端からZ軸方向に延びる第2ジンバルフレーム延設部第2延設部分86とを備える。第2ジンバルフレーム延設部72は、第2ジンバルフレーム延設部72第2延設部の第1方向の先端に、固定体接続機構12を構成する支持部20(固定体側支持部)を備える。支持部20は、径方向外側の端面の周方向の中央部分に、径方向内側に窪む凹曲面19を備える。 As shown in FIGS. 3 and 5, the second gimbal frame extension portion 72 is inclined in the −Z direction from each of the pair of square plate portions 76 of the gimbal frame main body portion 70 in the second axial direction. The first extension portion 85 of the gimbal frame extension portion and the second extension portion of the second gimbal frame extension portion extending in the Z-axis direction from the -Z direction end of the second gimbal frame extension portion first extension portion 85. It is equipped with 86. The second gimbal frame extension portion 72 includes a support portion 20 (fixed body side support portion) constituting the fixed body connecting mechanism 12 at the tip of the second gimbal frame extension portion 72 in the first direction of the second gimbal frame extension portion 72. .. The support portion 20 includes a concave curved surface 19 that is recessed inward in the radial direction at the central portion in the circumferential direction of the end face on the outer side in the radial direction.

第2ジンバルフレーム延設部72の先端に設けられた支持部20(固定体側支持部)は、第1ジンバルフレーム延設部71の先端に設けられた支持部20(可動体側支持部)と同一形状である。すなわち、第2ジンバルフレーム延設部72の先端において、支持部20(固定体側支持部)は、周方向の中央部分に、径方向内側に突出する凸部21を備える。凸部21は、第2ジンバルフレーム延設部第2延設部分86にプレス加工によって形成されている。凹曲面19は、凸部21に形成されている。また、凸部21には、凹曲面19とは反対側に凸曲面18が形成されている。また、支持部20(可動体側支持部)は、凸部21から周方向の両側へ延びる縁部22を備える。縁部22は、凸部21の周方向の両側において、凸部21を中心として同心円状に形成されている。凹曲面19は、固定体接続機構12を構成する球体15の曲率半径よりも曲率半径が大きい。また、第2ジンバルフレーム延設部第2延設部分86は、支持部20の+Z方向に、周方向の幅が支持部20よりも狭い通過部84を備える。 The support portion 20 (fixed body side support portion) provided at the tip of the second gimbal frame extension portion 72 is the same as the support portion 20 (movable body side support portion) provided at the tip of the first gimbal frame extension portion 71. The shape. That is, at the tip of the second gimbal frame extension portion 72, the support portion 20 (fixed body side support portion) includes a convex portion 21 projecting inward in the radial direction at the central portion in the circumferential direction. The convex portion 21 is formed by press working on the second extending portion 86 of the second gimbal frame extending portion. The concave curved surface 19 is formed on the convex portion 21. Further, the convex portion 21 is formed with a convex curved surface 18 on the opposite side of the concave curved surface 19. Further, the support portion 20 (movable body side support portion) includes edge portions 22 extending from the convex portion 21 to both sides in the circumferential direction. The edge portions 22 are formed concentrically with the convex portion 21 as the center on both sides of the convex portion 21 in the circumferential direction. The concave curved surface 19 has a radius of curvature larger than the radius of curvature of the sphere 15 constituting the fixed body connecting mechanism 12. Further, the second extended portion 86 of the second gimbal frame extending portion includes a passing portion 84 whose width in the circumferential direction is narrower than that of the support portion 20 in the + Z direction of the support portion 20.

ここで、各第1ジンバルフレーム延設部71の支持部20(可動体側支持部)には、可動体4の各保持部13に保持されたジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)の球体15が接触する。これにより、図2に示すように、ジンバルフレーム10と可動体4とを第1軸R1回りに回転可能に接続する可動体接続機構11が構成
される。より具体的には、可動体4の保持部13は、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)を、第1軸R1が球体15の中心を通過する位置に保持する。第1ジンバルフレーム延設部71の支持部20の凹曲面19には、第1軸方向から球体15が部分的に挿入される。これにより、凹曲面19と球体15とが第1軸R1線上で点接触する状態となるので、可動体4とジンバルフレーム10とは、第1軸R1線回りに回転可能な状態で接続される。
Here, the support portion 20 (movable body side support portion) of each first gimbal frame extension portion 71 has a gimbal frame receiving member 17 (movable body side gimbal frame receiving member) held by each holding portion 13 of the movable body 4. Spheres 15 come into contact with each other. As a result, as shown in FIG. 2, a movable body connecting mechanism 11 for rotatably connecting the gimbal frame 10 and the movable body 4 around the first axis R1 is configured. More specifically, the holding portion 13 of the movable body 4 holds the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) at a position where the first axis R1 passes through the center of the sphere 15. The sphere 15 is partially inserted into the concave curved surface 19 of the support portion 20 of the first gimbal frame extension portion 71 from the first axial direction. As a result, the concave curved surface 19 and the sphere 15 are in a state of point contact on the first axis R1 line, so that the movable body 4 and the gimbal frame 10 are connected in a rotatable state around the first axis R1 line. ..

また、第2ジンバルフレーム延設部72の支持部20(固定体側支持部)には、固定体6の切欠き部14に保持されたジンバルフレーム受け部材17の球体15が接触する。これにより、図2に示すように、ジンバルフレーム10と固定体6とを第2軸R2回りに回転可能に接続する。固定体接続機構12が構成される。より具体的には、固定体6の切欠き部14は、ジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)を、第2軸R2が球体15の中心を通過する位置に保持する。第2ジンバルフレーム延設部72の支持部20の凹曲面19には、第2軸方向から球体15が部分的に挿入される。これにより、凹曲面19と球体15とが第2軸R2線上において点で接触する状態となるので、固定体6とジンバルフレーム10とは、第2軸R2線回りに回転可能な状態で接続される。 Further, the support portion 20 (fixed body side support portion) of the second gimbal frame extension portion 72 comes into contact with the sphere 15 of the gimbal frame receiving member 17 held by the notch portion 14 of the fixed body 6. As a result, as shown in FIG. 2, the gimbal frame 10 and the fixed body 6 are rotatably connected around the second axis R2. The fixed body connection mechanism 12 is configured. More specifically, the notch 14 of the fixed body 6 holds the gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) at a position where the second axis R2 passes through the center of the sphere 15. The sphere 15 is partially inserted into the concave curved surface 19 of the support portion 20 of the second gimbal frame extension portion 72 from the second axial direction. As a result, the concave curved surface 19 and the sphere 15 come into contact with each other at a point on the second axis R2 line, so that the fixed body 6 and the gimbal frame 10 are connected in a rotatable state around the second axis R2 line. To.

(可動体接続機構および固定体接続機構の共通部分の構成)
次に、可動体接続機構11および固定体接続機構12をより詳細に説明する。本形態では、可動体接続機構11および。固定体接続機構12は、共通する構成を備える。すなわち、可動体4の保持部13は第1軸R1上に構成され、固定体6の切欠き部14は第2軸R2上に構成されているが、保持部13および切欠き部14に保持されたジンバルフレーム受け部材17は、同一の部材である。また、ジンバルフレーム10には、第1軸R1上の対角位置、および第2軸R2上の対角位置に、同一形状の支持部20が設けられ、各支持部20には、ジンバルフレーム受け部材17の球体15に点接触する凹曲面19が形成されている。
(Composition of common parts of movable body connection mechanism and fixed body connection mechanism)
Next, the movable body connecting mechanism 11 and the fixed body connecting mechanism 12 will be described in more detail. In this embodiment, the movable body connecting mechanism 11 and. The fixed body connecting mechanism 12 has a common configuration. That is, the holding portion 13 of the movable body 4 is configured on the first axis R1, and the notch portion 14 of the fixed body 6 is configured on the second axis R2, but is held by the holding portion 13 and the notch portion 14. The gimbal frame receiving member 17 is the same member. Further, the gimbal frame 10 is provided with support portions 20 having the same shape at diagonal positions on the first axis R1 and diagonal positions on the second axis R2, and each support portion 20 is provided with a gimbal frame receiver. A concave curved surface 19 is formed that makes point contact with the sphere 15 of the member 17.

(ジンバルフレーム受け部材)
図4に示すように、ジンバルフレーム受け部材17は、金属製の球体15および当該球体15が固定された金属製のスラスト受け部材16を備える。スラスト受け部材16は、球体15が固定された球体固定部90を備える板部91と、板部91の−Z方向(第1方向)の端から第1軸方向に直角に屈曲する足部92を備える。
(Gimbal frame receiving member)
As shown in FIG. 4, the gimbal frame receiving member 17 includes a metal sphere 15 and a metal thrust receiving member 16 to which the sphere 15 is fixed. The thrust receiving member 16 includes a plate portion 91 having a sphere fixing portion 90 to which the sphere 15 is fixed, and a foot portion 92 that bends at a right angle in the first axial direction from the end of the plate portion 91 in the −Z direction (first direction). To be equipped.

板部91は、全体としてZ軸方向(光軸方向)に長い長方形形状である。球体固定部90は、板部91に設けられた円形の貫通穴である。貫通穴の内径寸法は、球体15の直径よりも小さい。球体15は、球体固定部90に部分的に挿入された状態で、溶接によってスラスト受け部材16に固定される。 The plate portion 91 has a rectangular shape that is long in the Z-axis direction (optical axis direction) as a whole. The sphere fixing portion 90 is a circular through hole provided in the plate portion 91. The inner diameter of the through hole is smaller than the diameter of the sphere 15. The sphere 15 is fixed to the thrust receiving member 16 by welding in a state of being partially inserted into the sphere fixing portion 90.

さらに、スラスト受け部材16は、板部91の球体固定部90よりも+Z方向(第2方向)における周方向の両端から第1軸方向もしくは第2軸方向を支持部20が位置する側に突出する一対の腕部94を備える。可動体接続機構11では、腕部94が第1軸方向へ突出し、固定体接続機構12では、腕部94が第2軸方向へ突出する。一対の腕部94は、周方向で対向する。図4に示すように、一対の腕部94のそれぞれは、板部91の周方向の端から第1軸方向もしくは第2軸方向に屈曲する突出板部分95と、突出板部分95の板部91とは反対側の端から周方向を板部91とは反対側に屈曲する延設板部分96と、を備える。 Further, the thrust receiving member 16 projects from both ends in the circumferential direction in the + Z direction (second direction) to the side where the support portion 20 is located in the first axial direction or the second axial direction with respect to the spherical fixing portion 90 of the plate portion 91. A pair of arm portions 94 are provided. In the movable body connecting mechanism 11, the arm portion 94 protrudes in the first axial direction, and in the fixed body connecting mechanism 12, the arm portion 94 protrudes in the second axial direction. The pair of arm portions 94 face each other in the circumferential direction. As shown in FIG. 4, each of the pair of arm portions 94 has a protruding plate portion 95 that bends in the first axial direction or the second axial direction from the circumferential end of the plate portion 91, and a plate portion of the protruding plate portion 95. An extension plate portion 96 that bends in the circumferential direction from the end opposite to the plate portion 91 to the side opposite to the plate portion 91 is provided.

足部92は、板部91の−Z方向(第1方向)の端から第1軸方向に直角に屈曲する足部突出板部分97と、足部突出板部分97における板部91とは反対側の端から−Z方向
(第1方向)に直角に屈曲する足部延設板部分98を備える。足部延設板部分98と板部91との距離は、一対の腕部94に設けられた延設板部分96と板部91との距離と同一である。また、足部突出板部分97は、足部延設板部分98と繋がる先端部分の周方向の幅が、板部91の周方向の幅よりも狭くなっている。
The foot portion 92 is opposite to the foot portion protruding plate portion 97 that bends at a right angle in the first axial direction from the end of the plate portion 91 in the −Z direction (first direction) and the plate portion 91 in the foot portion protruding plate portion 97. A foot extension plate portion 98 that bends at a right angle in the −Z direction (first direction) from the side end is provided. The distance between the foot extension plate portion 98 and the plate portion 91 is the same as the distance between the extension plate portion 96 provided on the pair of arm portions 94 and the plate portion 91. Further, the width of the tip portion of the foot protruding plate portion 97 connected to the foot extending plate portion 98 in the circumferential direction is narrower than the width of the plate portion 91 in the circumferential direction.

図5(b)に示すように、可動体接続機構11では、スラスト受け部材16の板部91は、球体15を介して第1ジンバルフレーム延設部71の支持部20と第1軸方向で対向する。同様に、固定体接続機構12では、スラスト受け部材16の板部91は、球体15を介して第2ジンバルフレーム延設部72の支持部20と第2軸方向で対向する。足部92は、支持部20の−Z方向に位置し、Z軸方向で支持部20と対向する。 As shown in FIG. 5B, in the movable body connecting mechanism 11, the plate portion 91 of the thrust receiving member 16 is connected to the support portion 20 of the first gimbal frame extension portion 71 via the sphere 15 in the first axial direction. opposite. Similarly, in the fixed body connecting mechanism 12, the plate portion 91 of the thrust receiving member 16 faces the support portion 20 of the second gimbal frame extending portion 72 in the second axial direction via the sphere 15. The foot portion 92 is located in the −Z direction of the support portion 20 and faces the support portion 20 in the Z-axis direction.

(可動体接続機構)
図6は、可動体接続機構11の斜視図である。図7は、可動体接続機構11をカメラモジュール3側から見た図(図6のA方向から見た図)である。図8は、可動体接続機構11の平面図である。図9は、可動体接続機構11を第1軸R1に沿って切断した断面図である。図6、図8に示すように、ホルダ31は、第1軸方向の対角位置に外周側へ張り出した張り出し部39を備えており、張り出し部39の内側に保持部13が形成されている。保持部13は、第1軸方向でカメラモジュール3とは反対側、すなわち第1軸方向で外周側へ凹んだ凹部である。
(Movable body connection mechanism)
FIG. 6 is a perspective view of the movable body connecting mechanism 11. FIG. 7 is a view of the movable body connecting mechanism 11 as viewed from the camera module 3 side (viewed from the direction A in FIG. 6). FIG. 8 is a plan view of the movable body connecting mechanism 11. FIG. 9 is a cross-sectional view of the movable body connecting mechanism 11 cut along the first axis R1. As shown in FIGS. 6 and 8, the holder 31 is provided with an overhanging portion 39 overhanging to the outer peripheral side at a diagonal position in the first axial direction, and a holding portion 13 is formed inside the overhanging portion 39. .. The holding portion 13 is a concave portion recessed on the side opposite to the camera module 3 in the first axis direction, that is, on the outer peripheral side in the first axis direction.

図8に示すように、張り出し部39は、Z軸方向および周方向に広がる背壁部101と、背壁部101の周方向の両側でZ軸方向に延びて周方向で対向する一対の側壁部102を備える。保持部13は、背壁部101および一対の側壁部102によって囲まれる凹部である。保持部13は、+Z方向および−Z方向(光軸方向の一方および他方)に開口するとともに、第1軸R1方向の内周側、すなわち、カメラモジュール3の側に開口する。 As shown in FIG. 8, the overhanging portion 39 includes a back wall portion 101 extending in the Z-axis direction and the circumferential direction, and a pair of side walls extending in the Z-axis direction on both sides of the back wall portion 101 in the circumferential direction and facing each other in the circumferential direction. A unit 102 is provided. The holding portion 13 is a recess surrounded by a back wall portion 101 and a pair of side wall portions 102. The holding portion 13 opens in the + Z direction and the −Z direction (one and the other in the optical axis direction), and also opens on the inner peripheral side in the first axis R1 direction, that is, on the side of the camera module 3.

振れ補正機能付き光学ユニット1を組み立てる際には、可動体接続機構11のジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)は、図5(b)に示すように、第1ジンバルフレーム延設部71の支持部20の凹曲面19を球体15に接触させた状態とされ、第1ジンバルフレーム延設部第2延設部分82と一緒に、+Z方向の側から保持部13に挿入される。第1ジンバルフレーム延設部71は、ジンバルフレーム10の第1軸方向の対角位置の2箇所に設けられている。2箇所の第1ジンバルフレーム延設部71をホルダ31の第1軸方向の対角位置に設けられた2箇所の保持部13へ挿入する際、第1ジンバルフレーム延設部71が内周側へ撓むように構成することで、第1ジンバルフレーム延設部71は外周側へ付勢される。これにより、ジンバルフレーム受け部材17には、球体15を介して第1ジンバルフレーム延設部71からの付勢力が作用する。従って、図8、図9に示すように、背壁部101は、スラスト受け部材16の板部91にジンバルフレーム10の支持部20とは反対側から接触する。 When assembling the optical unit 1 with the runout correction function, the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) of the movable body connecting mechanism 11 extends the first gimbal frame as shown in FIG. 5 (b). The concave curved surface 19 of the support portion 20 of the portion 71 is brought into contact with the sphere 15, and is inserted into the holding portion 13 from the + Z direction side together with the first gimbal frame extension portion and the second extension portion 82. .. The first gimbal frame extension 71 is provided at two positions diagonally in the first axial direction of the gimbal frame 10. When the two first gimbal frame extension portions 71 are inserted into the two holding portions 13 provided at diagonal positions in the first axial direction of the holder 31, the first gimbal frame extension portion 71 is on the inner peripheral side. The first gimbal frame extending portion 71 is urged toward the outer peripheral side by being configured to bend to. As a result, the gimbal frame receiving member 17 is subjected to the urging force from the first gimbal frame extending portion 71 via the sphere 15. Therefore, as shown in FIGS. 8 and 9, the back wall portion 101 contacts the plate portion 91 of the thrust receiving member 16 from the side opposite to the support portion 20 of the gimbal frame 10.

図8に示すように、一対の側壁部102は、スラスト受け部材16の周方向の両側に位置する。一対の側壁部102には、それぞれ一対の腕部94の延設板部分96の先端が対向する。従って、スラスト受け部材16は、一対の側壁部102によって周方向に位置決めされる。また、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)を保持部13に挿入するとき、一対の腕部94が一対の側壁部102によってガイドされる。 As shown in FIG. 8, the pair of side wall portions 102 are located on both sides of the thrust receiving member 16 in the circumferential direction. The tips of the extension plate portions 96 of the pair of arm portions 94 face each other with the pair of side wall portions 102. Therefore, the thrust receiving member 16 is positioned in the circumferential direction by the pair of side wall portions 102. Further, when the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) is inserted into the holding portion 13, the pair of arm portions 94 are guided by the pair of side wall portions 102.

本形態では、ホルダ31は金属製であり、溶接によりスラスト受け部材16がホルダ31に固定される。図6、図9に示すように、スラスト受け部材16は、板部91の+Z方向の端部がホルダ31の張り出し部39に設けられた背壁部101から+Z方向に突出しており、背壁部101の+Z方向の端部に板部91が溶接される。そのため、図6に示す
溶接位置P1に溶接痕が形成される。上記のように、ジンバルフレーム受け部材17には、第1ジンバルフレーム延設部71から外周側へ付勢する付勢力が作用するので、組立時には、第1ジンバルフレーム延設部71によってジンバルフレーム受け部材17が背壁部101に押し付けられ、且つ、一対の側壁部102によって周方向の位置決めがなされて、ジンバルフレーム受け部材17が保持部13に仮固定される。従って、スラスト受け部材16をホルダ31に溶接する際に仮固定用の治具を必要としない。
In this embodiment, the holder 31 is made of metal, and the thrust receiving member 16 is fixed to the holder 31 by welding. As shown in FIGS. 6 and 9, in the thrust receiving member 16, the end portion of the plate portion 91 in the + Z direction protrudes in the + Z direction from the back wall portion 101 provided in the overhanging portion 39 of the holder 31, and the back wall. The plate portion 91 is welded to the end portion of the portion 101 in the + Z direction. Therefore, a welding mark is formed at the welding position P1 shown in FIG. As described above, since the urging force urging the gimbal frame receiving member 17 from the first gimbal frame extending portion 71 to the outer peripheral side acts, the gimbal frame receiving member 71 receives the gimbal frame at the time of assembly. The member 17 is pressed against the back wall portion 101 and is positioned in the circumferential direction by the pair of side wall portions 102, so that the gimbal frame receiving member 17 is temporarily fixed to the holding portion 13. Therefore, when welding the thrust receiving member 16 to the holder 31, a jig for temporary fixing is not required.

第1ジンバルフレーム延設部71の支持部20に設けられた凹曲面19と球体15とを接触させた状態では、第1ジンバルフレーム延設部第2延設部分82は、一対の腕部94の間を経由してZ軸方向に延びる。より具体的には、図7に示すように、第1ジンバルフレーム延設部第2延設部分82の−Z方向の先端に設けられた支持部20(可動体側支持部)は、一対の腕部94の−Z方向に位置し、通過部84は、一対の腕部94の間に位置する。また、支持部20の−Z方向には、足部92が配置される。 In a state where the concave curved surface 19 provided on the support portion 20 of the first gimbal frame extension portion 71 and the sphere 15 are in contact with each other, the first gimbal frame extension portion second extension portion 82 has a pair of arm portions 94. It extends in the Z-axis direction via the space. More specifically, as shown in FIG. 7, the support portion 20 (movable body side support portion) provided at the tip of the first gimbal frame extension portion second extension portion 82 in the −Z direction has a pair of arms. The passage portion 84 is located between the pair of arm portions 94, which is located in the −Z direction of the portion 94. Further, the foot portion 92 is arranged in the −Z direction of the support portion 20.

ここで、図7、図8に示すように、支持部20の周方向の幅H1は、通過部84の周方向の幅H2よりも長く、かつ、一対の腕部94の周方向の間隔H3よりも長い。従って、Z軸方向(光軸方向)から見た場合に、一対の腕部94は、支持部20の周方向の両端部分と重なる。すなわち、図7に示すように、支持部20は、凹曲面19が設けられた凸部21が一対の腕部94の間に配置されるとともに、凸部21の周方向の両側へ延びる縁部22は、Z軸方向(光軸方向)から見た場合に、一対の腕部94と重なる。従って、一対の腕部94は、支持部20が+Z方向へ抜けることを規制している。 Here, as shown in FIGS. 7 and 8, the circumferential width H1 of the support portion 20 is longer than the circumferential width H2 of the passing portion 84, and the circumferential distance H3 of the pair of arm portions 94. Longer than. Therefore, when viewed from the Z-axis direction (optical axis direction), the pair of arm portions 94 overlap with both end portions of the support portion 20 in the circumferential direction. That is, as shown in FIG. 7, the support portion 20 has a convex portion 21 provided with a concave curved surface 19 arranged between a pair of arm portions 94, and an edge portion extending on both sides of the convex portion 21 in the circumferential direction. The 22 overlaps with the pair of arm portions 94 when viewed from the Z-axis direction (optical axis direction). Therefore, the pair of arm portions 94 restricts the support portion 20 from coming off in the + Z direction.

図8、図9に示すように、可動体4は、保持部13が第1軸方向の内周側へ開口しており、保持部13の開口と第1軸方向で対向する対向壁部を備える。本形態では、対向壁部は、カメラモジュール3の外周面である。図3に示すように、カメラモジュール3の本体部32は、Z軸方向から見て8角形である。従って、カメラモジュール3の外周面は、第1軸方向の一方の角部および他方の角部に、それぞれ、第1軸R1に対して垂直な側面41を備える。ホルダ31の内側にカメラモジュール3が嵌まった状態では、側面41は、保持部13の第1軸方向の開口と第1軸方向で対向する対向壁部を構成する。 As shown in FIGS. 8 and 9, in the movable body 4, the holding portion 13 opens to the inner peripheral side in the first axial direction, and the opening of the holding portion 13 and the facing wall portion facing the opening in the first axial direction are formed. Be prepared. In this embodiment, the facing wall portion is the outer peripheral surface of the camera module 3. As shown in FIG. 3, the main body 32 of the camera module 3 is octagonal when viewed from the Z-axis direction. Therefore, the outer peripheral surface of the camera module 3 is provided with a side surface 41 perpendicular to the first axis R1 at one corner portion and the other corner portion in the first axis direction, respectively. When the camera module 3 is fitted inside the holder 31, the side surface 41 constitutes an opening of the holding portion 13 in the first axial direction and a facing wall portion facing the opening in the first axial direction.

図9に示すように、側面41(カメラモジュール3の外周面)は、第1軸方向においてスラスト受け部材16の一対の腕部94に対向するとともに、第1軸方向においてスラスト受け部材16の足部92に対向する。第1軸方向において、一対の腕部94の先端と側面41(対向壁部)との間の離間距離M、すなわち、側面41と各腕部94の延設板部分96との間の離間距離Mは、第1軸方向における支持部20の厚み寸法Nよりも狭い。ここで、支持部20の厚み寸法Nとは、図8、図9に示すように、支持部20における凸部21の突出寸法、および、縁部22の厚み寸法を含む支持部20全体の厚み寸法である。なお、本形態では、凸部21の突出寸法を含まない縁部22の第1軸方向における厚み寸法N1よりも、離間距離Mの方が狭い。 As shown in FIG. 9, the side surface 41 (the outer peripheral surface of the camera module 3) faces the pair of arms 94 of the thrust receiving member 16 in the first axial direction, and the legs of the thrust receiving member 16 face the first axial direction. Facing the unit 92. In the first axial direction, the separation distance M between the tip of the pair of arm portions 94 and the side surface 41 (opposing wall portion), that is, the separation distance between the side surface 41 and the extension plate portion 96 of each arm portion 94. M is narrower than the thickness dimension N of the support portion 20 in the first axial direction. Here, as shown in FIGS. 8 and 9, the thickness dimension N of the support portion 20 is the thickness of the entire support portion 20 including the protrusion dimension of the convex portion 21 in the support portion 20 and the thickness dimension of the edge portion 22. It is a dimension. In this embodiment, the separation distance M is narrower than the thickness dimension N1 in the first axial direction of the edge portion 22 that does not include the protruding dimension of the convex portion 21.

(固定体接続機構)
図10は、固定体接続機構12を外周側から見た図である。図11は、固定体接続機構12を第2軸R2に沿って切断した断面図である。図12は、固定体接続機構12の分解斜視図である。図13は、固定体接続機構12の斜視図である。図3、図12、図13に示すように、固定体6のケース50は、第2軸方向の対角位置に配置される第1傾斜枠部55および第2傾斜枠部56が、それぞれ、切欠き部14を備えている。
(Fixed body connection mechanism)
FIG. 10 is a view of the fixed body connecting mechanism 12 as viewed from the outer peripheral side. FIG. 11 is a cross-sectional view of the fixed body connecting mechanism 12 cut along the second axis R2. FIG. 12 is an exploded perspective view of the fixed body connecting mechanism 12. FIG. 13 is a perspective view of the fixed body connecting mechanism 12. As shown in FIGS. 3, 12, and 13, in the case 50 of the fixed body 6, the first inclined frame portion 55 and the second inclined frame portion 56 arranged at diagonal positions in the second axial direction are respectively. A notch portion 14 is provided.

図12に示すように、切欠き部14は、周方向の両側の縁部が階段状になっている。切欠き部14は、内側にスラスト受け部材16の一対の腕部94が嵌まる中間部141を備えており、中間部141の−Z方向(第1方向)に第1テーパ部142が形成され、中間
部141の+Z方向(第2方向)に第2テーパ部143が形成されている。第1テーパ部142および第2テーパ部143は、開口側とは反対側である−Z方向(第1方向)に向かうに従って周方向の幅が狭くなる形状である。第1テーパ部142の−Z方向(第1方向)には、中間部141より周方向の幅が狭い溝部144が形成されている。また、第2テーパ部143の+Z方向(第2方向)には、中間部141より周方向の幅が広い開口部145が形成されている。中間部141、溝部144、および開口部145は周方向の幅が一定である。
As shown in FIG. 12, the notch portion 14 has stepped edges on both sides in the circumferential direction. The notch portion 14 includes an intermediate portion 141 into which a pair of arm portions 94 of the thrust receiving member 16 are fitted, and a first tapered portion 142 is formed in the −Z direction (first direction) of the intermediate portion 141. , The second tapered portion 143 is formed in the + Z direction (second direction) of the intermediate portion 141. The first tapered portion 142 and the second tapered portion 143 have a shape in which the width in the circumferential direction becomes narrower toward the −Z direction (first direction) opposite to the opening side. In the −Z direction (first direction) of the first tapered portion 142, a groove portion 144 having a width narrower in the circumferential direction than the intermediate portion 141 is formed. Further, in the + Z direction (second direction) of the second tapered portion 143, an opening 145 having a width wider in the circumferential direction than the intermediate portion 141 is formed. The width of the intermediate portion 141, the groove portion 144, and the opening portion 145 in the circumferential direction is constant.

ここで、振れ補正機能付き光学ユニット1を組み立てる際には、固定体接続機構12のジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)は、図5(b)に示すように、第2ジンバルフレーム延設部72の支持部20の凹曲面19を球体15に接触させた状態とされ、+Z方向の側から切欠き部14に挿入される。このとき、スラスト受け部材16の板部91は切欠き部14の外周側に配置され、一対の腕部94および足部92が切欠き部14の内側へ挿入される。一対の腕部94は、切欠き部の中間部141に嵌まっており、足部92は、切欠き部14の溝部144に嵌まっている。足部突出板部分97は、周方向の幅が板部91よりも狭い足部通過部99を備えており、足部通過部99が溝部144に嵌まっている。 Here, when assembling the optical unit 1 with the runout correction function, the gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) of the fixed body connecting mechanism 12 is a second gimbal as shown in FIG. 5 (b). The concave curved surface 19 of the support portion 20 of the frame extension portion 72 is brought into contact with the sphere 15, and is inserted into the notch portion 14 from the + Z direction side. At this time, the plate portion 91 of the thrust receiving member 16 is arranged on the outer peripheral side of the notch portion 14, and the pair of arm portions 94 and the foot portion 92 are inserted into the notch portion 14. The pair of arm portions 94 are fitted in the intermediate portion 141 of the notch portion, and the foot portion 92 is fitted in the groove portion 144 of the notch portion 14. The foot protruding plate portion 97 includes a foot passing portion 99 whose width in the circumferential direction is narrower than that of the plate 91, and the foot passing portion 99 is fitted in the groove portion 144.

固定体接続機構12は、可動体接続機構11の場合と同様に、ケース50の第1軸方向の対角位置に設けられた2箇所の切欠き部14へ第2ジンバルフレーム延設部72およびジンバルフレーム受け部材17を挿入する際、第2ジンバルフレーム延設部72が内周側へ撓むように構成されており、ジンバルフレーム受け部材17(固定側ジンバルフレーム受け部材)には、第2ジンバルフレーム延設部72から外周側へ付勢する付勢力が作用する。従って、図11、図13に示すように、スラスト受け部材16の一対の腕部94および足部92の先端が、切欠き部14の縁に係止される。図13に示すように、各腕部94の延設板部分96が切欠き部14の中間部141の縁に板部91とは反対側から当接し、足部92の足部延設板部分98が溝部144の下端縁に板部91とは反対側から当接する。 Similar to the case of the movable body connecting mechanism 11, the fixed body connecting mechanism 12 has the second gimbal frame extending portion 72 and the second gimbal frame extending portion 72 into the two notches 14 provided at diagonal positions in the first axial direction of the case 50. When the gimbal frame receiving member 17 is inserted, the second gimbal frame extending portion 72 is configured to bend inward, and the second gimbal frame is inserted into the gimbal frame receiving member 17 (fixed side gimbal frame receiving member). An urging force that urges the extending portion 72 toward the outer periphery acts. Therefore, as shown in FIGS. 11 and 13, the tips of the pair of arm portions 94 and foot portion 92 of the thrust receiving member 16 are locked to the edge of the notch portion 14. As shown in FIG. 13, the extension plate portion 96 of each arm portion 94 abuts on the edge of the intermediate portion 141 of the notch portion 14 from the side opposite to the plate portion 91, and the foot extension plate portion of the foot portion 92. 98 abuts on the lower end edge of the groove 144 from the side opposite to the plate 91.

本形態では、ケース50は金属製であり、溶接によりスラスト受け部材16がケース50に固定される。図10に示すように、スラスト受け部材16は、一対の腕部94の突出板部分95が切欠き部14の中間部141の縁から板部91の側へ延びているので、中間部141の縁に突出板部分95が溶接されている。また、足部92の足部突出板部分97が溝部144の縁から板部91の側へ延びているので、溝部144の縁に足部突出板部分97が溶接される。そのため、図10に示す3箇所の溶接位置P2に溶接痕が形成されている。上記のように、スラスト受け部材16は、第2ジンバルフレーム延設部72から作用する付勢力によって一対の腕部94および足部92の先端が切欠き部14の縁に係止されて、切欠き部14に仮固定される。従って、スラスト受け部材16をケース50に溶接する際に仮固定用の治具を必要としない。 In this embodiment, the case 50 is made of metal, and the thrust receiving member 16 is fixed to the case 50 by welding. As shown in FIG. 10, in the thrust receiving member 16, since the protruding plate portion 95 of the pair of arm portions 94 extends from the edge of the intermediate portion 141 of the notch portion 14 toward the plate portion 91, the intermediate portion 141 The protruding plate portion 95 is welded to the edge. Further, since the foot protruding plate portion 97 of the foot portion 92 extends from the edge of the groove portion 144 toward the plate portion 91, the foot portion protruding plate portion 97 is welded to the edge of the groove portion 144. Therefore, welding marks are formed at the three welding positions P2 shown in FIG. As described above, the thrust receiving member 16 is cut by the urging force acting from the second gimbal frame extending portion 72 so that the tips of the pair of arm portions 94 and the foot portion 92 are locked to the edges of the notch portion 14. It is temporarily fixed to the notch 14. Therefore, when welding the thrust receiving member 16 to the case 50, a jig for temporary fixing is not required.

第2ジンバルフレーム延設部72における支持部20の凹曲面19と球体15とを接触させた状態では、第2ジンバルフレーム延設部第2延設部分86は、一対の腕部94の間を経由してZ軸方向に延びる。より具体的には、図10、図13に示すように、第2ジンバルフレーム延設部第2延設部分86の−Z方向の先端に設けられた支持部20(固定体側支持部)は、一対の腕部94の−Z方向に位置し、通過部84は、一対の腕部94の間に位置する。また、支持部20の−Z方向には、足部92が配置される。従って、支持部20(固定体側支持部)は、第2軸方向で板部91と切欠き部14との間に配置され、且つ、Z軸方向(光軸方向)で腕部94と足部92との間に配置される。 In a state where the concave curved surface 19 of the support portion 20 of the second gimbal frame extension portion 72 and the sphere 15 are in contact with each other, the second extension portion 86 of the second gimbal frame extension portion is between the pair of arm portions 94. It extends in the Z-axis direction via. More specifically, as shown in FIGS. 10 and 13, the support portion 20 (fixed body side support portion) provided at the tip of the second extension portion 86 of the second gimbal frame extension portion 86 in the −Z direction is The pair of arm portions 94 are located in the −Z direction, and the passing portion 84 is located between the pair of arm portions 94. Further, the foot portion 92 is arranged in the −Z direction of the support portion 20. Therefore, the support portion 20 (fixed body side support portion) is arranged between the plate portion 91 and the notch portion 14 in the second axial direction, and the arm portion 94 and the foot portion in the Z-axis direction (optical axis direction). It is placed between the 92 and 92.

ここで、図10に示すように、支持部20の周方向の幅H1は、通過部84の周方向の
幅H2よりも長く、かつ、一対の腕部94の周方向の間隔H3よりも長い。従って、Z軸方向(光軸方向)から見た場合に、一対の腕部94は、支持部20の周方向の両端部分と重なる。すなわち、図13に示すように、支持部20は、凹曲面19が設けられた凸部21が一対の腕部94の間に配置されるとともに、凸部21の周方向の両側へ延びる縁部22は、Z軸方向(光軸方向)から見た場合に、一対の腕部94と重なる。従って、支持部20は、一対の腕部94によって+Z方向へ抜けることが規制される。
Here, as shown in FIG. 10, the circumferential width H1 of the support portion 20 is longer than the circumferential width H2 of the passing portion 84 and longer than the circumferential distance H3 of the pair of arm portions 94. .. Therefore, when viewed from the Z-axis direction (optical axis direction), the pair of arm portions 94 overlap with both end portions of the support portion 20 in the circumferential direction. That is, as shown in FIG. 13, in the support portion 20, the convex portion 21 provided with the concave curved surface 19 is arranged between the pair of arm portions 94, and the edge portion of the convex portion 21 extends to both sides in the circumferential direction. The 22 overlaps with the pair of arm portions 94 when viewed from the Z-axis direction (optical axis direction). Therefore, the support portion 20 is restricted from coming out in the + Z direction by the pair of arm portions 94.

ケース50における切欠き部14の縁は、支持部20と第2軸方向で対向する対向壁部146として機能する。図13に示すように、対向壁部146は、中間部141の−Z方向に設けられた第1テーパ部142の縁および溝部144の縁である。第1テーパ部142および溝部144は、一対の腕部94が係止される中間部141よりも周方向の幅が狭く、支持部20は、周方向の幅H1が中間部141の幅よりも大きい。従って、図13に示すように、第2軸方向から見た場合に、支持部20(固定体側支持部)は第1テーパ部142および溝部144の縁に設けられた対向壁部146と重なっている。 The edge of the notch portion 14 in the case 50 functions as an opposing wall portion 146 facing the support portion 20 in the second axial direction. As shown in FIG. 13, the facing wall portion 146 is an edge of the first tapered portion 142 and an edge of the groove portion 144 provided in the −Z direction of the intermediate portion 141. The width of the first tapered portion 142 and the groove portion 144 in the circumferential direction is narrower than that of the intermediate portion 141 in which the pair of arm portions 94 are locked, and the width H1 in the circumferential direction of the support portion 20 is wider than the width of the intermediate portion 141. large. Therefore, as shown in FIG. 13, when viewed from the second axial direction, the support portion 20 (fixed body side support portion) overlaps with the facing wall portion 146 provided on the edge of the first tapered portion 142 and the groove portion 144. There is.

(本形態の主な作用効果)
以上のように、本形態の振れ補正機能付き光学ユニット1は、カメラモジュール3を備える可動体4と、可動体4をカメラモジュール3の光軸Lと交差する第1軸R1回りに揺動可能に支持すると共に、可動体4を光軸Lおよび第1軸R1と交差する第2軸回りに揺動可能に支持するジンバル機構5と、ジンバル機構5を介して可動体4を支持する固定体6と、を有する。ジンバル機構5は、ジンバルフレーム10と、ジンバルフレーム10および可動体4を第1軸R1回りに回転可能に接続する可動体接続機構11を備え、可動体接続機構11は、球体15および当該球体15が固定された金属製のスラスト受け部材16を備えるジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)と、ジンバルフレーム10において球体15と接触する凹曲面19を有する支持部20(可動体側支持部)と、を備え、可動体4は、カメラモジュール3の外周側を囲むホルダ31を備える。ホルダ31は、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)を、球体15の中心を第1軸R1が通過する位置に保持する保持部13を備える。光軸Lに沿った方向を光軸方向とし、第1軸R1に沿った方向を第1軸方向とした場合に、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)は、カメラモジュール3の側面41(外周面)に向けて延びる腕部94を備え、腕部94は、光軸方向から見て支持部20(可動体側支持部)と重なっている。また、腕部94の先端と側面41(外周面)との第1軸方向の離間距離Mは、支持部20(可動体側支持部)の第1軸方向の厚み寸法よりも狭い。
(Main action and effect of this form)
As described above, the optical unit 1 with the shake correction function of the present embodiment can swing around the movable body 4 including the camera module 3 and the first axis R1 at which the movable body 4 intersects the optical axis L of the camera module 3. A gimbal mechanism 5 that supports the movable body 4 so as to swing around a second axis that intersects the optical axis L and the first axis R1, and a fixed body that supports the movable body 4 via the gimbal mechanism 5. 6 and. The gimbal mechanism 5 includes a gimbal frame 10, a movable body connecting mechanism 11 that rotatably connects the gimbal frame 10 and the movable body 4 around the first axis R1, and the movable body connecting mechanism 11 includes a sphere 15 and the sphere 15. A support portion 20 (movable body side support portion) having a gimbal frame receiving member 17 (movable body side gimbal frame receiving member) having a metal thrust receiving member 16 fixed to the gimbal frame 10 and a concave curved surface 19 in contact with the sphere 15 in the gimbal frame 10. ), And the movable body 4 includes a holder 31 that surrounds the outer peripheral side of the camera module 3. The holder 31 includes a holding portion 13 that holds the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) at a position where the first axis R1 passes through the center of the sphere 15. When the direction along the optical axis L is the optical axis direction and the direction along the first axis R1 is the first axis direction, the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) is the camera module 3. An arm portion 94 extending toward the side surface 41 (outer peripheral surface) is provided, and the arm portion 94 overlaps with the support portion 20 (movable body side support portion) when viewed from the optical axis direction. Further, the distance M between the tip of the arm portion 94 and the side surface 41 (outer peripheral surface) in the first axial direction is narrower than the thickness dimension of the support portion 20 (support portion on the movable body side) in the first axial direction.

本形態によれば、可動体4とジンバルフレーム10とを第1軸R1回りに回転可能に接続する可動体接続機構11は、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)に設けられた球体15と、ジンバルフレーム10の支持部20(可動体側支持部)に設けられた凹曲面19とを備えている。従って、凹曲面19に球体15を点接触させることによって可動体4とジンバルフレーム10とを接続できる。ここで、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)は、カメラモジュール3を保持するホルダ31に保持されており、カメラモジュール3の側面41(外周面)に向けて延びる腕部94を備えている。腕部94は、光軸方向から見てジンバルフレーム10の支持部20(可動体側支持部)と重なっている。また、腕部94の先端とカメラモジュール3の側面41(外周面)との第1軸方向の離間距離Mは、支持部20(可動体側支持部)の第1軸方向の厚み寸法よりも狭い。従って、外部から衝撃を受けたときに、ジンバルフレーム10が撓んで可動体4支持部に設けられた凹曲面19が球体15から第1軸方向に離間した場合でも、支持部20(可動体側支持部)は、腕部94とカメラモジュール3との隙間を通過できない。従って、ジンバルフレーム10が可動体4から外れてしまうことを防止あるいは抑制できる。 According to this embodiment, the movable body connecting mechanism 11 for rotatably connecting the movable body 4 and the gimbal frame 10 around the first axis R1 is provided on the gimbal frame receiving member 17 (movable body side gimbal frame receiving member). It includes a sphere 15 and a concave curved surface 19 provided on a support portion 20 (support portion on the movable body side) of the gimbal frame 10. Therefore, the movable body 4 and the gimbal frame 10 can be connected by bringing the sphere 15 into point contact with the concave curved surface 19. Here, the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) is held by the holder 31 that holds the camera module 3, and the arm portion 94 extending toward the side surface 41 (outer peripheral surface) of the camera module 3 is held. I have. The arm portion 94 overlaps with the support portion 20 (movable body side support portion) of the gimbal frame 10 when viewed from the optical axis direction. Further, the distance M in the first axial direction between the tip of the arm portion 94 and the side surface 41 (outer peripheral surface) of the camera module 3 is narrower than the thickness dimension of the support portion 20 (support portion on the movable body side) in the first axial direction. .. Therefore, even when the gimbal frame 10 bends when an impact is received from the outside and the concave curved surface 19 provided on the movable body 4 support portion is separated from the sphere 15 in the first axial direction, the support portion 20 (movable body side support) The portion) cannot pass through the gap between the arm portion 94 and the camera module 3. Therefore, it is possible to prevent or suppress the gimbal frame 10 from coming off the movable body 4.

また、本形態によれば、カメラモジュール3の側面41(外周面)をジンバルフレーム10の抜け防止のための対向壁部として利用する。従って、ホルダ31にジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)と対向する抜け防止用の壁を形成する必要がないので、ホルダ31を単純な形状にすることができ、ホルダ31の薄型化を図ることができる。よって振れ補正機能付き光学ユニット1の小型化に有利である。 Further, according to this embodiment, the side surface 41 (outer peripheral surface) of the camera module 3 is used as an opposing wall portion for preventing the gimbal frame 10 from coming off. Therefore, since it is not necessary to form a wall for preventing the holder 31 from coming off facing the gimbal frame receiving member 17 (movable body side gimbal frame receiving member), the holder 31 can be made into a simple shape, and the holder 31 can be made thin. Can be achieved. Therefore, it is advantageous for miniaturization of the optical unit 1 with a runout correction function.

本形態では、ホルダ31は筒状であり、第1軸方向の対角位置に外周側に張り出す張り出し部39を備えているので、張り出し部39の内側に保持部13を容易に形成できる。また、ホルダ31の構造を単純化できる。 In the present embodiment, the holder 31 has a tubular shape and is provided with an overhanging portion 39 overhanging to the outer peripheral side at a diagonal position in the first axial direction, so that the holding portion 13 can be easily formed inside the overhanging portion 39. Moreover, the structure of the holder 31 can be simplified.

本形態では、張り出し部39は、第1軸方向でスラスト受け部材16に支持部20(可動体側支持部)とは反対側から接触する背壁部101と、背壁部101の周方向の両側で光軸方向に延びて当該周方向で対向する一対の側壁部102と、を備えている。一対の側壁部102が支持部20(可動体側支持部)を周方向に位置決めするので、スラスト受け部材16の周方向の位置精度を高めることができる。また、ジンバルフレーム受け部材17(可動体側ジンバルフレーム受け部材)を保持部13に挿入する際に、一対の側壁部102をガイド部として利用できる。従って、可動体接続機構11の組立が容易である。 In the present embodiment, the overhanging portion 39 is a back wall portion 101 that contacts the thrust receiving member 16 from the side opposite to the support portion 20 (movable body side support portion) in the first axial direction, and both sides of the back wall portion 101 in the circumferential direction. A pair of side wall portions 102 extending in the optical axis direction and facing each other in the circumferential direction are provided. Since the pair of side wall portions 102 position the support portion 20 (movable body side support portion) in the circumferential direction, the positional accuracy of the thrust receiving member 16 in the circumferential direction can be improved. Further, when the gimbal frame receiving member 17 (movable body side gimbal frame receiving member) is inserted into the holding portion 13, the pair of side wall portions 102 can be used as guide portions. Therefore, the movable body connecting mechanism 11 can be easily assembled.

なお、ホルダ31が、スラスト受け部材16を光軸方向に位置決めする位置決め部を備えていれば、スラスト受け部材16に固定される球体15の光軸方向の位置精度を高めることができる。例えば、ホルダ31の−Z方向の縁を切り欠いて内周側へ屈曲させた切り起こし部を位置決め部とすることができる。 If the holder 31 includes a positioning portion for positioning the thrust receiving member 16 in the optical axis direction, the positioning accuracy of the sphere 15 fixed to the thrust receiving member 16 in the optical axis direction can be improved. For example, a cut-up portion formed by cutting out the edge of the holder 31 in the −Z direction and bending it toward the inner peripheral side can be used as the positioning portion.

本形態では、ホルダ31は金属製であり、カメラモジュール3は、ホルダ31の内周側に嵌まっており、スラスト受け部材16は、ホルダ31に溶接されている。上記のように、本形態では、ホルダ31の形状を単純化できるので、金属製にすることができる。従って、ホルダ31を薄型化でき、振れ補正機能付き光学ユニット1の小型化を図ることができる。また、スラスト受け部材16を溶接で固定することにより、固定強度を高めることができ、組立時間を短縮できる。また、スラスト受け部材16は、張り出し部39の光軸方向の端部から突出しているので、スラスト受け部材16を溶接で固定しやすい。 In this embodiment, the holder 31 is made of metal, the camera module 3 is fitted on the inner peripheral side of the holder 31, and the thrust receiving member 16 is welded to the holder 31. As described above, in this embodiment, the shape of the holder 31 can be simplified, so that the holder 31 can be made of metal. Therefore, the holder 31 can be made thinner, and the optical unit 1 with a runout correction function can be made smaller. Further, by fixing the thrust receiving member 16 by welding, the fixing strength can be increased and the assembly time can be shortened. Further, since the thrust receiving member 16 projects from the end portion of the overhanging portion 39 in the optical axis direction, the thrust receiving member 16 can be easily fixed by welding.

本形態では、光軸方向の一方を−Z方向(第1方向)とし、光軸方向の他方を+Z方向(第2方向)とし、光軸L回りを周方向とした場合に、スラスト受け部材16は、球体15が固定された球体固定部90を備え当該球体15を介して支持部20(可動体側支持部)と第1軸方向で対向する板部91と、板部91の球体固定部90よりも+Z方向(第2方向)における周方向の両端から支持部が位置する側に突出する一対の腕部94と、を備える。一対の腕部94のそれぞれは、板部91の周方向の端から第1軸方向に屈曲する突出板部分95と、突出板部分95の板部91とは反対側の端から周方向を板部91とは反対側に屈曲する延設板部分96と、を備える。一対の腕部94のそれぞれは、延設板部分96がカメラモジュール3の側面41(外周面)と対向し、延設板部分96と側面41(外周面)との第1軸方向の離間距離Mが支持部20(可動体側支持部)の第1軸方向の厚み寸法Nよりも狭い。これにより、各腕部94とカメラモジュール3の側面41(カメラモジュール3の外周面)とが第1軸方向で対向する面積を大きくすることができる。従って、支持部20(可動体側支持部)が、腕部94とカメラモジュール3との隙間を通過することを防止しやすい。 In this embodiment, when one of the optical axis directions is the −Z direction (first direction), the other of the optical axis directions is the + Z direction (second direction), and the circumference of the optical axis L is the circumferential direction, the thrust receiving member Reference numeral 16 denotes a plate portion 91 having a sphere fixing portion 90 to which the sphere 15 is fixed and facing the support portion 20 (movable body side support portion) via the sphere 15 in the first axial direction, and a sphere fixing portion of the plate portion 91. A pair of arm portions 94 projecting from both ends in the circumferential direction in the + Z direction (second direction) with respect to 90 toward the side where the support portion is located is provided. Each of the pair of arm portions 94 has a protruding plate portion 95 that bends in the first axial direction from the circumferential end of the plate portion 91 and a plate in the circumferential direction from the end of the protruding plate portion 95 opposite to the plate portion 91. An extension plate portion 96 that bends to the side opposite to the portion 91 is provided. In each of the pair of arm portions 94, the extension plate portion 96 faces the side surface 41 (outer peripheral surface) of the camera module 3, and the distance between the extension plate portion 96 and the side surface 41 (outer peripheral surface) in the first axial direction. M is narrower than the thickness dimension N of the support portion 20 (support portion on the movable body side) in the first axial direction. As a result, the area where each arm portion 94 and the side surface 41 of the camera module 3 (the outer peripheral surface of the camera module 3) face each other in the first axis direction can be increased. Therefore, it is easy to prevent the support portion 20 (support portion on the movable body side) from passing through the gap between the arm portion 94 and the camera module 3.

より詳細には、支持部20(可動体側支持部)は、凹曲面19が形成された凸部21と、凸部21から周方向の両側へ延びる縁部22を備えている。一対の腕部94のそれぞれは、光軸方向から見て突出板部分95が縁部22と重なっており、延設板部分96と側面
41(外周面)との第1軸方向の離間距離Mは、支持部20(可動体側支持部)の第1軸方向の厚み寸法Nよりも狭い。ここで、支持部20(可動体側支持部)の第1軸方向の厚み寸法Nは、凸部21の第1軸方向の突出寸法N2および縁部22の第1軸方向の厚み寸法N1を含む支持部全体の厚み寸法である。従って、外部から衝撃を受けたときに、ジンバルフレーム10が撓んで凸部21の凸曲面18の先端がカメラモジュール3の側面41(外周面)に当たる位置まで移動したときでも、スラスト受け部材16の突出板部分95によって支持部20(可動体側支持部)が+Z方向(第2方向)に抜けてしまうことを防止できる。
More specifically, the support portion 20 (movable body side support portion) includes a convex portion 21 on which a concave curved surface 19 is formed, and edge portions 22 extending from the convex portion 21 to both sides in the circumferential direction. In each of the pair of arm portions 94, the protruding plate portion 95 overlaps with the edge portion 22 when viewed from the optical axis direction, and the distance M between the extending plate portion 96 and the side surface 41 (outer peripheral surface) in the first axial direction. Is narrower than the thickness dimension N of the support portion 20 (support portion on the movable body side) in the first axial direction. Here, the thickness dimension N of the support portion 20 (support portion on the movable body side) in the first axial direction includes the protrusion dimension N2 of the convex portion 21 in the first axial direction and the thickness dimension N1 of the edge portion 22 in the first axial direction. It is the thickness dimension of the entire support portion. Therefore, even when the gimbal frame 10 bends when an impact is received from the outside and the tip of the convex curved surface 18 of the convex portion 21 moves to a position where it hits the side surface 41 (outer peripheral surface) of the camera module 3, the thrust receiving member 16 The protruding plate portion 95 can prevent the support portion 20 (support portion on the movable body side) from coming off in the + Z direction (second direction).

本形態の支持部20は、凸部21の周方向の両側において、凸部21を中心として同心円状に縁部22が形成されている。従って、ジンバルフレーム10が第1軸R1回りに傾いて組み立てられたとしても、縁部22の周方向への突出寸法が変化しない。従って、ジンバルフレーム10が傾いたことによって支持部20(可動体側支持部)がスラスト受け部材16から抜けてしまうことを防止できる。 The support portion 20 of the present embodiment has edge portions 22 formed concentrically around the convex portion 21 on both sides of the convex portion 21 in the circumferential direction. Therefore, even if the gimbal frame 10 is assembled so as to be tilted around the first axis R1, the protruding dimension of the edge portion 22 in the circumferential direction does not change. Therefore, it is possible to prevent the support portion 20 (movable body side support portion) from coming off from the thrust receiving member 16 due to the tilting of the gimbal frame 10.

本形態のジンバルフレーム10は、一対の突出板部分95の間を経由して光軸方向に延びる第1ジンバルフレーム延設部71を備える。第1ジンバルフレーム延設部71は、−Z方向(第1方向)の先端に支持部20(可動体側支持部)を備えるとともに、支持部20(可動体側支持部)の+Z方向(第2方向)に一対の突出板部分95の間に位置する通過部84を備える。支持部20(可動体側支持部)の周方向の幅寸法H1は、通過部84の周方向の幅寸法H2よりも長く、かつ、一対の突出板部分95の間隔H3よりも長い。従って、一対の突出板部分95によって支持部20(可動体側支持部)が抜けることを規制できる。また、第1ジンバルフレーム延設部71が光軸方向に延びているので、第1ジンバルフレーム延設部71を撓ませて外周側へ付勢する付勢力を発生させ、当該付勢力によってスラスト受け部材16を保持部13に仮固定することができる。したがって、組立が容易である。 The gimbal frame 10 of the present embodiment includes a first gimbal frame extending portion 71 extending in the optical axis direction via between the pair of projecting plate portions 95. The first gimbal frame extension portion 71 is provided with a support portion 20 (movable body side support portion) at the tip in the −Z direction (first direction), and is provided with a support portion 20 (movable body side support portion) in the + Z direction (second direction). ) Is provided with a passing portion 84 located between the pair of protruding plate portions 95. The circumferential width dimension H1 of the support portion 20 (movable body side support portion) is longer than the circumferential width dimension H2 of the passing portion 84 and longer than the distance H3 of the pair of protruding plate portions 95. Therefore, it is possible to prevent the support portion 20 (movable body side support portion) from coming off by the pair of projecting plate portions 95. Further, since the first gimbal frame extension portion 71 extends in the optical axis direction, the first gimbal frame extension portion 71 is bent to generate an urging force to urge the outer peripheral side, and the thrust is received by the urging force. The member 16 can be temporarily fixed to the holding portion 13. Therefore, it is easy to assemble.

本形態のジンバル機構5は、ジンバルフレーム10および固定体6を第2軸方向回りに回転可能に接続する固定体接続機構12を備え、固定体接続機構12は、球体15および当該球体15が固定された金属製のスラスト受け部材16を備えるジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)と、ジンバルフレーム10において球体15と接触する凹曲面19を有する支持部20(固定体側支持部)と、を備える。固定体6は、可動体4の外周側を囲むケース50を備え、ケース50は、第2軸方向が通過する位置を光軸方向に切欠いた切欠き部14を備える。ジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)は、切欠き部14に配置されて球体15の中心を第2軸方向が通過する位置に保持される。従って、固定体接続機構12においても、可動体接続機構11で使用されるジンバルフレーム受け部材17と同一のジンバルフレーム受け部材17を使用することができるので、固定体接続機構12と可動体接続機構11で部品の共通化を図ることができる。 The gimbal mechanism 5 of the present embodiment includes a fixed body connecting mechanism 12 that rotatably connects the gimbal frame 10 and the fixed body 6 in the second axial direction, and the fixed body connecting mechanism 12 fixes the sphere 15 and the sphere 15. A gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) including the metal thrust receiving member 16 and a supporting portion 20 (fixed body side supporting portion) having a concave curved surface 19 in contact with the sphere 15 in the gimbal frame 10. , Equipped with. The fixed body 6 includes a case 50 that surrounds the outer peripheral side of the movable body 4, and the case 50 includes a notch portion 14 that cuts out a position through which the second axial direction passes in the optical axis direction. The gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) is arranged in the notch portion 14 and is held at a position where the center of the sphere 15 passes in the second axial direction. Therefore, also in the fixed body connecting mechanism 12, the same gimbal frame receiving member 17 as the gimbal frame receiving member 17 used in the movable body connecting mechanism 11 can be used, so that the fixed body connecting mechanism 12 and the movable body connecting mechanism 12 can be used. It is possible to standardize the parts in 11.

本形態では、ケース50は金属製であり、ジンバルフレーム受け部材17(固定体側ジンバルフレーム受け部材)に設けられたスラスト受け部材16は、ケース50に溶接されている。従って、ケース50を薄型化でき、振れ補正機能付き光学ユニット1のさらなる小型化を図ることができる。また、固定体接続機構12においても、スラスト受け部材16を溶接で固定できる。従って、固定強度を高めることができ、組立時間を短縮できる。 In this embodiment, the case 50 is made of metal, and the thrust receiving member 16 provided on the gimbal frame receiving member 17 (fixed body side gimbal frame receiving member) is welded to the case 50. Therefore, the case 50 can be made thinner, and the optical unit 1 with a runout correction function can be further made smaller. Further, also in the fixed body connecting mechanism 12, the thrust receiving member 16 can be fixed by welding. Therefore, the fixing strength can be increased and the assembly time can be shortened.

1…振れ補正機能付き光学ユニット、2…レンズ、3…カメラモジュール、4…可動体、5…ジンバル機構、6…固定体、7…振れ補正用駆動機構、7X…第1磁気駆動機構、7Y…第2磁気駆動機構、8…第1カバー、9…第2カバー、10…ジンバルフレーム、1
1…可動体接続機構、12…固定体接続機構、13…保持部、14…切欠き部、15…球体、16…スラスト受け部材、17…ジンバルフレーム受け部材、18…凸曲面、19…凹曲面、20…支持部、21…凸部、22…縁部、25X、25Y…磁石、26X、26Y…コイル、30…突出部、31…ホルダ、32…本体部、33…鏡筒部、34…基板、35…第1側板部、36…第2側板部、37…第3側板部、38…第4側板部、39…張り出し部、40…位置決め凹部、41…側面、50…ケース、51…第1枠部、52…第2枠部、53…第3枠部、54…第4枠部、55…第1傾斜枠部、56…第2傾斜枠部、57…第3傾斜枠部、58…コイル配置穴、60…フレキシブルプリント基板、61…第1基板部分、62…第2基板部分、64…磁性板、65…磁気センサ、70…ジンバルフレーム本体部、71…第1ジンバルフレーム延設部、72…第2ジンバルフレーム延設部、73…中央穴、75…中央板部分、76…角板部分、81…第1ジンバルフレーム延設部第1延設部分、82…第1ジンバルフレーム延設部第2延設部分、84…通過部、85…第2ジンバルフレーム延設部第1延設部分、86…第2ジンバルフレーム延設部第2延設部分、90…球体固定部、91…板部、92…足部、94…腕部、95…突出板部分、96…延設板部分、97…足部突出板部分、98…足部延設板部分、99…足部通過部、101…背壁部、102…側壁部、141…中間部、142…第1テーパ部、143…第2テーパ部、144…溝部、145…開口部、146…対向壁部、H1…支持部の周方向の幅、H2…通過部の周方向の幅、H3…一対の腕部の周方向の間隔、L…光軸、M…一対の腕部の先端と側面(対向壁部)との間の離間距離、N…第1軸方向における支持部の厚み寸法、N1…縁部の第1軸方向の厚み寸法、N2…凸部の第1軸方向の突出寸法、P1、P2…溶接位置、R1…第1軸、R2…第2軸
1 ... Optical unit with runout correction function, 2 ... Lens, 3 ... Camera module, 4 ... Movable body, 5 ... Gimbal mechanism, 6 ... Fixed body, 7 ... Shake correction drive mechanism, 7X ... First magnetic drive mechanism, 7Y ... 2nd magnetic drive mechanism, 8 ... 1st cover, 9 ... 2nd cover, 10 ... gimbal frame, 1
1 ... Movable body connection mechanism, 12 ... Fixed body connection mechanism, 13 ... Holding part, 14 ... Notch part, 15 ... Sphere, 16 ... Thrust receiving member, 17 ... Gimbal frame receiving member, 18 ... Convex curved surface, 19 ... Concave Curved surface, 20 ... Support part, 21 ... Convex part, 22 ... Edge part, 25X, 25Y ... Magnet, 26X, 26Y ... Coil, 30 ... Protruding part, 31 ... Holder, 32 ... Main body part, 33 ... Gimbal part, 34 ... Substrate, 35 ... 1st side plate, 36 ... 2nd side plate, 37 ... 3rd side plate, 38 ... 4th side plate, 39 ... Overhang, 40 ... Positioning recess, 41 ... Side, 50 ... Case, 51 ... 1st frame portion, 52 ... 2nd frame portion, 53 ... 3rd frame portion, 54 ... 4th frame portion, 55 ... 1st inclined frame portion, 56 ... 2nd inclined frame portion, 57 ... 3rd inclined frame portion , 58 ... Coil arrangement hole, 60 ... Flexible printed board, 61 ... 1st board part, 62 ... 2nd board part, 64 ... Magnetic plate, 65 ... Magnetic sensor, 70 ... Gimbal frame main body, 71 ... 1st gimbal frame Extension part, 72 ... 2nd gimbal frame extension part, 73 ... center hole, 75 ... center plate part, 76 ... square plate part, 81 ... 1st gimbal frame extension part 1st extension part, 82 ... 1st Gimbal frame extension part 2nd extension part, 84 ... Passing part, 85 ... 2nd gimbal frame extension part 1st extension part, 86 ... 2nd gimbal frame extension part 2nd extension part, 90 ... Sphere fixing Part, 91 ... Plate part, 92 ... Foot part, 94 ... Arm part, 95 ... Protruding plate part, 96 ... Extension plate part, 97 ... Foot protrusion plate part, 98 ... Foot extension plate part, 99 ... Foot Passing part, 101 ... Back wall part, 102 ... Side wall part, 141 ... Intermediate part, 142 ... First tapered part, 143 ... Second tapered part, 144 ... Groove part, 145 ... Opening part, 146 ... Opposing wall part, H1 ... Circumferential width of the support portion, H2 ... Circumferential width of the passing portion, H3 ... Circumferential spacing of the pair of arms, L ... Optical axis, M ... Tip and side surface of the pair of arms (opposing wall portion) ), N ... thickness dimension of the support portion in the first axial direction, N1 ... thickness dimension of the edge portion in the first axial direction, N2 ... protrusion dimension of the convex portion in the first axial direction, P1, P2 ... Welding position, R1 ... 1st axis, R2 ... 2nd axis

Claims (12)

カメラモジュールを備える可動体と、
前記可動体を前記カメラモジュールの光軸と交差する第1軸回りに揺動可能に支持すると共に、前記可動体を前記光軸および前記第1軸と交差する第2軸回りに揺動可能に支持するジンバル機構と、
前記ジンバル機構を介して前記可動体を支持する固定体と、を有し、
前記ジンバル機構は、ジンバルフレームと、前記ジンバルフレームおよび前記可動体を前記第1軸回りに回転可能に接続する可動体接続機構を備え、
前記可動体接続機構は、球体および当該球体が固定された金属製のスラスト受け部材を備える可動体側ジンバルフレーム受け部材と、前記ジンバルフレームにおいて前記球体と接触する凹曲面を有する可動体側支持部と、を備え、
前記可動体は、前記カメラモジュールの外周側を囲むホルダを備え、
前記ホルダは、前記可動体側ジンバルフレーム受け部材を、前記球体の中心を前記第1軸が通過する位置に保持する保持部を備え、
前記光軸に沿った方向を光軸方向とし、前記第1軸に沿った方向を第1軸方向とした場合に、
前記可動体側ジンバルフレーム受け部材は、前記カメラモジュールの外周面に向けて延びる腕部を備え、前記腕部は、前記光軸方向から見て前記可動体側支持部と重なっており、
前記腕部の先端と前記外周面との前記第1軸方向の離間距離は、前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭いことを特徴とする振れ補正機能付き光学ユニット。
A movable body with a camera module and
The movable body is swingably supported around a first axis that intersects the optical axis of the camera module, and the movable body is swingable around a second axis that intersects the optical axis and the first axis. Supporting gimbal mechanism and
It has a fixed body that supports the movable body via the gimbal mechanism, and has.
The gimbal mechanism includes a gimbal frame and a movable body connecting mechanism that rotatably connects the gimbal frame and the movable body around the first axis.
The movable body connecting mechanism includes a movable body side gimbal frame receiving member including a sphere and a metal thrust receiving member to which the sphere is fixed, and a movable body side support portion having a concave curved surface in contact with the sphere in the gimbal frame. With
The movable body includes a holder that surrounds the outer peripheral side of the camera module.
The holder includes a holding portion that holds the movable body side gimbal frame receiving member at a position where the first axis passes through the center of the sphere.
When the direction along the optical axis is the optical axis direction and the direction along the first axis is the first axis direction,
The movable body side gimbal frame receiving member includes an arm portion extending toward the outer peripheral surface of the camera module, and the arm portion overlaps with the movable body side support portion when viewed from the optical axis direction.
An optical unit with a runout correction function, wherein the distance between the tip of the arm portion and the outer peripheral surface in the first axial direction is narrower than the thickness dimension of the movable body side support portion in the first axial direction.
前記ホルダは筒状であり、
前記ホルダは、前記第1軸方向の対角位置に外周側に張り出す張り出し部を備え、前記張り出し部の内側に前記保持部が形成されていることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。
The holder has a tubular shape
The runout according to claim 1, wherein the holder is provided with an overhanging portion that projects to the outer peripheral side at a diagonal position in the first axial direction, and the holding portion is formed inside the overhanging portion. Optical unit with correction function.
前記張り出し部は、前記第1軸方向で前記スラスト受け部材に前記可動体側支持部とは反対側から接触する背壁部と、前記背壁部の周方向の両側で前記光軸方向に延びて当該周方向で対向する一対の側壁部と、を備え、
前記一対の側壁部は、前記可動体側支持部を周方向に位置決めすることを特徴とする請求項2に記載の振れ補正機能付き光学ユニット。
The overhanging portion extends in the optical axis direction on both sides of the back wall portion that contacts the thrust receiving member in the first axial direction from the side opposite to the movable body side support portion and the circumferential direction of the back wall portion. A pair of side wall portions facing each other in the circumferential direction are provided.
The optical unit with a runout correction function according to claim 2, wherein the pair of side wall portions positions the movable body side support portion in the circumferential direction.
前記ホルダは、前記スラスト受け部材を前記光軸方向に位置決めする位置決め部を備えることを特徴とする請求項2または3に記載の振れ補正機能付き光学ユニット。 The optical unit with a runout correction function according to claim 2 or 3, wherein the holder includes a positioning portion for positioning the thrust receiving member in the optical axis direction. 前記ホルダは金属製であり、
前記カメラモジュールは、前記ホルダの内周側に嵌まっており、
前記スラスト受け部材は、前記ホルダに溶接されていることを特徴とする請求項1から4の何れか一項に記載の振れ補正機能付き光学ユニット。
The holder is made of metal
The camera module is fitted on the inner peripheral side of the holder.
The optical unit with a runout correction function according to any one of claims 1 to 4, wherein the thrust receiving member is welded to the holder.
前記スラスト受け部材は、前記張り出し部の前記光軸方向の端部から突出していることを特徴とする請求項5に記載の振れ補正機能付き光学ユニット。 The optical unit with a runout correction function according to claim 5, wherein the thrust receiving member projects from an end portion of the overhanging portion in the optical axis direction. 前記光軸方向の一方を第1方向とし、前記光軸方向の他方を第2方向とし、前記光軸回りを周方向とした場合に、
前記スラスト受け部材は、前記球体が固定された球体固定部を備え当該球体を介して前記支持部と前記第1軸方向で対向する板部と、前記板部の前記球体固定部よりも前記第2方向における前記周方向の両端から前記支持部が位置する側に突出する一対の前記腕部と
、を備え、
一対の前記腕部のそれぞれは、前記板部の前記周方向の端から前記第1軸方向に屈曲する突出板部分と、前記突出板部分の前記板部とは反対側の端から前記周方向を前記板部とは反対側に屈曲する延設板部分と、を備え、
一対の前記腕部のそれぞれは、前記延設板部分が前記外周面と対向し、前記延設板部分と前記外周面との前記第1軸方向の離間距離が前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭いことを特徴とする請求項1から6の何れか一項に記載の振れ補正機能付き光学ユニット。
When one of the optical axis directions is the first direction, the other of the optical axis directions is the second direction, and the circumference of the optical axis is the circumferential direction.
The thrust receiving member includes a sphere fixing portion to which the sphere is fixed, a plate portion facing the support portion in the first axial direction via the sphere, and the sphere fixing portion of the plate portion. A pair of the arm portions projecting from both ends in the circumferential direction in two directions to the side where the support portion is located are provided.
Each of the pair of the arm portions has a protruding plate portion that bends in the first axial direction from the circumferential end of the plate portion and the peripheral direction from the end of the protruding plate portion opposite to the plate portion. With an extended plate portion that bends to the opposite side of the plate portion,
In each of the pair of arms, the extension plate portion faces the outer peripheral surface, and the distance between the extension plate portion and the outer peripheral surface in the first axial direction is the first of the movable body side support portions. The optical unit with a runout correction function according to any one of claims 1 to 6, which is narrower than the thickness dimension in the uniaxial direction.
前記可動体側支持部は、前記凹曲面が形成された凸部と、前記凸部から前記周方向の両側へ延びる縁部を備え、
一対の前記腕部のそれぞれは、前記光軸方向から見て前記突出板部分が前記縁部と重なっており、
前記延設板部分と前記外周面との前記第1軸方向の離間距離は、前記可動体側支持部の前記第1軸方向の厚み寸法よりも狭く、
前記可動体側支持部の前記第1軸方向の厚み寸法は、前記凸部の前記第1軸方向の突出寸法および前記縁部の厚み寸法を含むことを特徴とする請求項7に記載の振れ補正機能付き光学ユニット。
The movable body side support portion includes a convex portion on which the concave curved surface is formed and an edge portion extending from the convex portion to both sides in the circumferential direction.
In each of the pair of arms, the protruding plate portion overlaps with the edge portion when viewed from the optical axis direction.
The distance between the extension plate portion and the outer peripheral surface in the first axial direction is narrower than the thickness dimension of the movable body side support portion in the first axial direction.
The runout correction according to claim 7, wherein the thickness dimension of the movable body side support portion in the first axial direction includes the protrusion dimension of the convex portion in the first axial direction and the thickness dimension of the edge portion. Optical unit with function.
前記縁部は、前記凸部を中心として同心円状に形成されていることを特徴とする請求項8に記載の振れ補正機能付き光学ユニット。 The optical unit with a runout correction function according to claim 8, wherein the edge portion is formed concentrically around the convex portion. 前記ジンバルフレームは、一対の前記突出板部分の間を経由して前記光軸方向に延びる第1ジンバルフレーム延設部を備え、
前記第1ジンバルフレーム延設部は、前記第1方向の先端に前記可動体側支持部を備えるとともに、前記可動体側支持部の前記第2方向に一対の前記突出板部分の間に位置する通過部を備え、
前記可動体側支持部の前記周方向の幅寸法は、前記通過部の前記周方向の幅寸法よりも長く、かつ、一対の前記突出板部分の間隔よりも長いことを特徴とする請求項7から9の何れか一項に記載の振れ補正機能付き光学ユニット。
The gimbal frame includes a first gimbal frame extension portion extending in the optical axis direction via between the pair of projecting plate portions.
The first gimbal frame extension portion includes the movable body side support portion at the tip in the first direction, and is a passing portion located between the pair of projecting plate portions in the second direction of the movable body side support portion. With
According to claim 7, the width dimension of the movable body side support portion in the circumferential direction is longer than the width dimension of the passing portion in the circumferential direction, and is longer than the distance between the pair of protruding plate portions. The optical unit with a runout correction function according to any one of 9.
前記ジンバル機構は、前記ジンバルフレームおよび前記固定体を前記第2軸回りに回転可能に接続する固定体接続機構を備え、
前記固定体接続機構は、前記球体および当該球体が固定された金属製の前記スラスト受け部材を備える固定体側ジンバルフレーム受け部材と、前記ジンバルフレームにおいて前記球体と接触する前記凹曲面を有する固定体側支持部と、を備え、
前記固定体は、前記可動体の外周側を囲むケースを備え、前記ケースは、前記第2軸が通過する位置を前記光軸方向に切欠いた切欠き部を備え、
前記固定体側ジンバルフレーム受け部材は、前記切欠き部に配置されて前記球体の中心を前記第2軸が通過する位置に保持されることを特徴とする請求項1から10の何れか一項に記載の振れ補正機能付き光学ユニット。
The gimbal mechanism includes a fixed body connecting mechanism that rotatably connects the gimbal frame and the fixed body around the second axis.
The fixed body connecting mechanism includes a fixed body side gimbal frame receiving member including the sphere and the metal thrust receiving member to which the sphere is fixed, and a fixed body side support having the concave curved surface in contact with the sphere in the gimbal frame. With a department,
The fixed body includes a case that surrounds the outer peripheral side of the movable body, and the case includes a notch portion that cuts out a position through which the second axis passes in the optical axis direction.
The fixed body side gimbal frame receiving member is arranged in the notch portion and is held at a position where the second axis passes through the center of the sphere, according to any one of claims 1 to 10. The described optical unit with runout correction function.
前記ケースは金属製であり、
前記固定体側ジンバルフレーム受け部材に設けられた前記スラスト受け部材は、前記ケースに溶接されていることを特徴とする請求項11に記載の振れ補正機能付き光学ユニット。
The case is made of metal
The optical unit with a runout correction function according to claim 11, wherein the thrust receiving member provided on the fixed body side gimbal frame receiving member is welded to the case.
JP2019216282A 2019-11-29 2019-11-29 Optical unit with shake correction function Active JP7360914B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019216282A JP7360914B2 (en) 2019-11-29 2019-11-29 Optical unit with shake correction function
CN202011377196.8A CN112882312B (en) 2019-11-29 2020-11-30 Optical unit with shake correction function
CN202011379258.9A CN112882314B (en) 2019-11-29 2020-11-30 Optical unit with shake correction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216282A JP7360914B2 (en) 2019-11-29 2019-11-29 Optical unit with shake correction function

Publications (2)

Publication Number Publication Date
JP2021086065A true JP2021086065A (en) 2021-06-03
JP7360914B2 JP7360914B2 (en) 2023-10-13

Family

ID=76043915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216282A Active JP7360914B2 (en) 2019-11-29 2019-11-29 Optical unit with shake correction function

Country Status (2)

Country Link
JP (1) JP7360914B2 (en)
CN (1) CN112882312B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304873A (en) * 1995-04-28 1996-11-22 Nisca Corp Light quantity control diaphragm device for camera
JP2016061957A (en) * 2014-09-18 2016-04-25 日本電産サンキョー株式会社 Optical unit with tremor correction function
JP2019015847A (en) * 2017-07-06 2019-01-31 日本電産サンキョー株式会社 Optical unit with shake correction function
JP2019020464A (en) * 2017-07-12 2019-02-07 日本電産サンキョー株式会社 Optical unit with shake correction function
WO2019087616A1 (en) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 Actuator and camera device
JP2019200270A (en) * 2018-05-15 2019-11-21 日本電産サンキョー株式会社 Optical unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006178B2 (en) * 2000-12-25 2007-11-14 キヤノン株式会社 Lens barrel, photographing device and observation device
JP6077938B2 (en) * 2012-05-31 2017-02-08 日本電産サンキョー株式会社 Optical unit with shake correction function
CN106324941B (en) * 2015-07-02 2019-08-27 日本电产三协株式会社 Band image shake correction function optical unit
JP2019113638A (en) * 2017-12-22 2019-07-11 シーエム・テクノロジー株式会社 Lens drive device
JP7046653B2 (en) * 2018-03-06 2022-04-04 日本電産サンキョー株式会社 Optical unit with runout correction function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304873A (en) * 1995-04-28 1996-11-22 Nisca Corp Light quantity control diaphragm device for camera
JP2016061957A (en) * 2014-09-18 2016-04-25 日本電産サンキョー株式会社 Optical unit with tremor correction function
JP2019015847A (en) * 2017-07-06 2019-01-31 日本電産サンキョー株式会社 Optical unit with shake correction function
JP2019020464A (en) * 2017-07-12 2019-02-07 日本電産サンキョー株式会社 Optical unit with shake correction function
WO2019087616A1 (en) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 Actuator and camera device
JP2019200270A (en) * 2018-05-15 2019-11-21 日本電産サンキョー株式会社 Optical unit

Also Published As

Publication number Publication date
CN112882312A (en) 2021-06-01
CN112882312B (en) 2022-06-07
JP7360914B2 (en) 2023-10-13

Similar Documents

Publication Publication Date Title
JP7449119B2 (en) Optical unit with shake correction function
US11640072B2 (en) Optical unit with shake-correction function
JP7431061B2 (en) Optical unit with shake correction function
JP7411450B2 (en) Optical unit with shake correction function
JP7411451B2 (en) Optical unit with shake correction function
JP7237685B2 (en) Optical unit with anti-shake function
JP7309494B2 (en) Optical unit with anti-shake function
CN112748623B (en) Optical unit with shake correction function
US11567340B2 (en) Optical unit with correction function
JP7344784B2 (en) Optical unit with shake correction function
JP7360914B2 (en) Optical unit with shake correction function
JP2021092655A (en) Optical unit with a shake correction function
JP7369605B2 (en) Optical unit with shake correction function
JP7346284B2 (en) Optical unit with shake correction function
JP7344785B2 (en) Optical unit with shake correction function
JP2022040524A (en) Optical unit with shake correction function
JP2022040523A (en) Optical unit with shake correction function
CN112882314A (en) Optical unit with shake correction function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7360914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150