JP2021081433A - Mechanical performance measuring device on which plate-shaped material is loaded repeatedly - Google Patents

Mechanical performance measuring device on which plate-shaped material is loaded repeatedly Download PDF

Info

Publication number
JP2021081433A
JP2021081433A JP2020192794A JP2020192794A JP2021081433A JP 2021081433 A JP2021081433 A JP 2021081433A JP 2020192794 A JP2020192794 A JP 2020192794A JP 2020192794 A JP2020192794 A JP 2020192794A JP 2021081433 A JP2021081433 A JP 2021081433A
Authority
JP
Japan
Prior art keywords
male
engaging tool
slider
contact surface
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020192794A
Other languages
Japanese (ja)
Other versions
JP6893671B2 (en
Inventor
永川 段
Yongchuan Duan
永川 段
芳芳 張
Fangfang Zhang
芳芳 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Publication of JP2021081433A publication Critical patent/JP2021081433A/en
Application granted granted Critical
Publication of JP6893671B2 publication Critical patent/JP6893671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

To provide a mechanical performance measuring device that has a simple structure, is easy to use, can feed back data in real time, and has high application value.SOLUTION: The present invention provides a mechanical performance measuring device for cyclically loading a plate-shaped material, which comprises a male module, a female module, and a sensor module. The male module comprises a male mold, rolling tube suspension means, a male rolling tube, and a male magnet. The male magnet is located inside the male rolling tube. The male rolling tube is connected to a circular hole at a first end of the rolling pipe suspension means via a hexagon socket head cap screw, and a circular hole at a second end of the rolling pipe suspension means is connected to a screw hole on both sides of the tip of the male mold via a hexagon socket head cap screw. The female module comprises a female rolling tube, a slider, a female rolling tube hexagon socket head cap screw, an engaging tool, and a guide rail.SELECTED DRAWING: Figure 1

Description

本発明は、金属製の板状素材を検測する分野に関し、特に、板状素材が循環的に負荷されるための力学的性能検測装置に関する。 The present invention relates to a field for inspecting a metal plate-shaped material, and more particularly to a mechanical performance inspection device for cyclically loading a plate-shaped material.

板状素材は、多くのプレス成形のプロセスにおいて、例えば、小さい曲率の曲げや深絞りする際において、円角の雌型への板状材料の流入と流出、複雑な延伸金型のエッジに設計された深絞りのリブなどを経て、順方向・逆方向に繰り返し負荷される経路を経る。異なる銘柄の板状素材は、ミクロ構造が異なり、それらを表現する循環的な負荷行為も異なる。これらのプロセスに存在している非線形リバウンド、反り変形などの欠陥を予測するためには、ある銘柄における板状素材の循環的な負荷行為を正確に測定することが極めて重要となっている。従来の引張試験機により、板状材料への引張行為を測定することは非常に容易であったが、板状材料の厚さ方向の寸法は一般的に、他の二つの方向の寸法よりも遥か小さいことから、一方向に圧縮されると、しわ現象が極めて発生しやすい。特定の金型のキャビティに入れて圧縮変形させると、摩擦などの外乱要因が導入され易く、材料の試験精度が大幅に低下する。 Plate materials are designed for the inflow and outflow of plate materials into inscribed female molds and the edges of complex drawing dies in many press forming processes, for example when bending or deep drawing with a small curvature. It goes through a route that is repeatedly loaded in the forward and reverse directions through the ribs of the deep drawing. Plate-like materials of different brands have different microstructures and different cyclical loading actions that express them. In order to predict defects such as non-linear rebound and warpage deformation existing in these processes, it is extremely important to accurately measure the cyclic load behavior of the plate-like material in a certain brand. Although it has been very easy to measure the tensile action on a plate-like material with a conventional tensile tester, the thickness-wise dimensions of the plate-like material are generally higher than the dimensions in the other two directions. Since it is much smaller, wrinkling is extremely likely to occur when compressed in one direction. When it is put into the cavity of a specific mold and compressed and deformed, disturbance factors such as friction are likely to be introduced, and the test accuracy of the material is significantly lowered.

そして、本発明は、曲げ変形に基づいて循環的に繰り返し負荷して測定する方法を提供しており、その手法が簡単であり、操作が便宜である。曲げ変形という形態に基づいて測定する循環負荷パラメータは、その循環行為に対する予測をより正確に向上させながら、この方法をパイプライン式の生産に組み合わせると、複雑な生産ラインを自動化させたり、知能化させたりすることに有力な検測手段を提供している。 Then, the present invention provides a method of cyclically and repeatedly loading and measuring based on bending deformation, the method of which is simple, and the operation is convenient. Circulating load parameters, which are measured based on the form of bending deformation, can be combined with pipelined production to automate or intelligentize complex production lines, while improving the prediction of their circulating behavior more accurately. It provides a powerful means of inspection to make it happen.

本発明は、従来の試験により検測を行う技術に存在している課題に対して、検測用の煩雑なプロセスを削減し、試験時間を短縮し、作業効率を向上させ、検索結果をより現実的なものに接近させることができる、板状素材が循環的に負荷されるための力学的性能検測装置を提供することを主な目的とする。 The present invention solves the problems existing in the technique of performing inspection by a conventional test by reducing the complicated process for inspection, shortening the test time, improving the work efficiency, and improving the search result. The main purpose is to provide a mechanical performance inspection device for cyclically loading a plate-like material that can be brought close to a realistic object.

本発明は、雄型モジュール、雌型モジュール、及び、センサーモジュールを含む板状素材が循環的に負荷されるための力学的性能検測装置を提供する。前記雄型モジュールは、雄型、六角穴ボルト、転がり管吊り手段、雄型転がり管、及び、雄型磁石を含む。前記雄型は、その外形が略T字形で構成され、先端に凹溝が設けられ、両側にねじ穴が設けられる。前記雄型転がり管は、その断面が円環状に構成される。前記雄型磁石は、前記雄型転がり管の内部に位置し、前記転がり管吊り手段の中部に開口が設けられ、前記開口の直径と前記六角穴ボルトの直径とが等しい。前記雄型転がり管は、その両端が、それぞれ、六角穴ボルトを介して、前記転がり管吊り手段の第一端の円孔に接続される。前記転がり管吊り手段の第二端の円孔は、六角穴ボルトを介して、前記雄型の先端の両側のねじ穴に固定して接続される。前記雌型モジュールは、雌型転がり管、スライダー、スライダーナット、雌型転がり管六角穴ボルト、係合具ナット、係合具、四角ナット、及び、ガイドレールを含む。前記雌型転がり管は、その断面が円環状に構成され、前記係合具の上下の両端の側面にそれぞれねじ穴が設置され、前記ガイドレールの下面にねじ穴が設けられる。前記雌型転がり管は、その両端がそれぞれ、雌型転がり管六角穴ボルトを介して、前記係合具の上端の側面に固定して接続される。前記係合具の下端の側面が係合具ナットを介して前記スライダーに固定して接続され、前記スライダーが、それぞれ、スライダーナットと四角ナットとを介して、前記ガイドレールのガイドレール接触面に固定して接続され、前記センサーモジュールが前記ガイドレールのねじ穴に固定して接続される。 The present invention provides a mechanical performance inspection device for cyclically loading a plate-shaped material including a male module, a female module, and a sensor module. The male module includes a male, a hexagon socket head cap screw, a rolling tube suspension means, a male rolling tube, and a male magnet. The male mold has a substantially T-shaped outer shape, is provided with a concave groove at the tip, and is provided with screw holes on both sides. The male rolling tube has an annular cross section. The male magnet is located inside the male rolling tube, and an opening is provided in the middle of the rolling tube suspending means, and the diameter of the opening is equal to the diameter of the hexagonal hole bolt. Both ends of the male rolling pipe are connected to the circular hole at the first end of the rolling pipe suspension means via hexagon socket head bolts, respectively. The circular hole at the second end of the rolling pipe suspension means is fixedly connected to the screw holes on both sides of the tip of the male mold via a hexagon socket head bolt. The female module includes a female rolling tube, a slider, a slider nut, a female rolling tube hexagon socket head bolt, an engaging tool nut, an engaging tool, a square nut, and a guide rail. The female rolling pipe has an annular cross section, screw holes are provided on the upper and lower side surfaces of the engaging tool, and screw holes are provided on the lower surface of the guide rail. Both ends of the female rolling pipe are fixedly connected to the side surface of the upper end of the engaging tool via female rolling pipe hexagon socket head bolts. The side surface of the lower end of the engaging tool is fixedly connected to the slider via the engaging tool nut, and the slider is connected to the guide rail contact surface of the guide rail via the slider nut and the square nut, respectively. It is fixedly connected, and the sensor module is fixedly connected to the screw hole of the guide rail.

前記係合具は、係合具第一接触面、係合具第二接触面、係合具第三接触面及び係合具第四接触面を含む。前記スライダーは、その外形がT字形で構成され、スライダー第一接触面、スライダー第二接触面、スライダー第三接触面及びT型スライドヘッドを含む。前記ガイドレールは、ガイドレール接触面とT型滑り溝とを含み、前記スライダーのT型スライドヘッドが前記ガイドレールのT型滑り溝に接続され、前記係合具第一接触面と前記ガイドレールの底面とが面一であり、前記係合具第四接触面が前記スライダー第三接触面に固定して接続され、前記係合具第二接触面が前記スライダー第二接触面に固定して接続され、前記係合具第三接触面が係合具ナットを介して前記スライダー第一接触面に固定して接続される。方向キーは、前記係合具ナットのせん断を防ぎ、装置全体の安定性を向上させるように、前記係合具第三接触面と前記スライダー第一接触面とで構成された隙間に位置し、しかも、一つ前記係合具ナットおきに一つ設置される。 The engaging tool includes a first contact surface of the engaging tool, a second contact surface of the engaging tool, a third contact surface of the engaging tool, and a fourth contact surface of the engaging tool. The slider has a T-shaped outer shape, and includes a slider first contact surface, a slider second contact surface, a slider third contact surface, and a T-shaped slide head. The guide rail includes a guide rail contact surface and a T-shaped sliding groove, and the T-shaped slide head of the slider is connected to the T-shaped sliding groove of the guide rail, and the engaging tool first contact surface and the guide rail are connected. The bottom surface of the engaging tool is flush with each other, the fourth contact surface of the engaging tool is fixedly connected to the third contact surface of the slider, and the second contact surface of the engaging tool is fixed to the second contact surface of the slider. It is connected, and the third contact surface of the engagement tool is fixedly connected to the first contact surface of the slider via the engagement tool nut. The directional keys are located in the gap formed by the third contact surface of the engagement tool and the first contact surface of the slider so as to prevent the engagement tool nut from shearing and improve the stability of the entire device. Moreover, one is installed every other engaging tool nut.

本発明は、従来技術に比べると、以下の利点を有している。
1、本発明は、その構成が簡単であり、係合具における雌型転がり管における六角穴ボルトの位置を調節し、係合具ナットの位置を切り替えることにより、限られた構成の下で支間への調節が実現され、三点による曲げ構成が簡単になり、構成の寸法が小さくなる。
2、本発明は、適応的にセンタリングすることができ、雄型転がり管における磁石により、逆V形状板を左右対称に垂下させて雄型に吸着させ、板状素材の位置を適応的にセンタリングすることができる。
The present invention has the following advantages as compared with the prior art.
1. The present invention has a simple configuration, and by adjusting the position of the hexagon socket head cap screw in the female rolling pipe in the engaging tool and switching the position of the engaging tool nut, the span is under a limited configuration. Adjustment to is realized, the bending configuration by three points is simplified, and the dimensions of the configuration are reduced.
2. The present invention can be adaptively centered, and the inverted V-shaped plate is hung symmetrically and attracted to the male mold by a magnet in the male rolling tube, and the position of the plate-shaped material is adaptively centered. can do.

本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置が正方向に負荷する模式図である。It is a schematic diagram in which the mechanical performance inspection apparatus for cyclically loading the plate-shaped material according to the present invention is loaded in the positive direction. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置が反対方向に負荷する模式図である。It is a schematic diagram in which the mechanical performance inspection apparatus for cyclically loading the plate-shaped material according to the present invention loads in the opposite direction. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置の雄型モジュールの構成の模式図である。It is a schematic diagram of the structure of the male module of the mechanical performance inspection apparatus for cyclically loading the plate-like material which concerns on this invention. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置の雄型モジュールの一部の構成の模式図である。It is a schematic diagram of the configuration of a part of the male module of the mechanical performance inspection device for cyclically loading the plate-shaped material according to the present invention. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置の雌型モジュールの構成の模式図である。It is a schematic diagram of the structure of the female module of the mechanical performance inspection apparatus for cyclically loading the plate-like material which concerns on this invention. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置の係合具の構成の模式図である。It is a schematic diagram of the structure of the engaging tool of the mechanical performance inspection device for cyclically loading the plate-shaped material which concerns on this invention. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置のスライダーの構成の模式図である。It is a schematic diagram of the structure of the slider of the mechanical performance inspection apparatus for cyclically loading a plate-like material which concerns on this invention. 本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置のガイドレールの構成の模式図である。It is a schematic diagram of the structure of the guide rail of the mechanical performance inspection apparatus for cyclically loading a plate-like material which concerns on this invention.

本発明に係る技術的内容、構成による特徴、達成しようとする目的及びその効果を詳しく説明するように、以下に明細書の図面に基づいて詳しく説明していく。 In order to explain in detail the technical contents, the features of the structure, the purpose to be achieved, and the effects thereof according to the present invention, the following will be described in detail based on the drawings of the specification.

板状素材が循環的に負荷されるための力学的性能検測装置は、図1に示されるように、雄型モジュール、雌型モジュール、及び、センサーモジュール8を含む。雄型モジュールは、図3に示されるように、雄型1、六角穴ボルト9、転がり管吊り手段10、雄型転がり管11及び雄型磁石12を含む。 The mechanical performance inspection device for cyclically loading the plate-shaped material includes a male module, a female module, and a sensor module 8 as shown in FIG. As shown in FIG. 3, the male module includes a male 1, a hexagon socket head bolt 9, a rolling tube suspension means 10, a male rolling tube 11, and a male magnet 12.

雄型1は、その外形が略T字形で構成され、雄型1は、その先端に凹溝が設けられ、両側にねじ穴が設けられる。図4に示されるように、雄型転がり管11は、その断面が円環状に構成され、雄型磁石12が雄型転がり管11の内部に位置し、転がり管吊り手段10の中部に開口が設けられる。開口の直径と六角穴ボルト9の直径とが等しい。開口は、第一端の円孔と第二端の円孔とを含むようにすることができる。雄型転がり管11は、その両端が、それぞれ、六角穴ボルト9を介して、転がり管吊り手段10の第一端の円孔に接続され、転がり管吊り手段10の第二端の円孔は、六角穴ボルト9を介して、雄型1の先端の両側のねじ穴に固定して接続される。 The male mold 1 has a substantially T-shaped outer shape, and the male mold 1 has a concave groove at its tip and screw holes on both sides. As shown in FIG. 4, the male rolling tube 11 has an annular cross section, the male magnet 12 is located inside the male rolling tube 11, and an opening is provided in the middle of the rolling tube suspending means 10. Provided. The diameter of the opening is equal to the diameter of the hexagon socket head cap screw 9. The opening may include a circular hole at the first end and a circular hole at the second end. Both ends of the male rolling pipe 11 are connected to the circular hole at the first end of the rolling pipe suspending means 10 via a hexagon socket head bolt 9, and the circular hole at the second end of the rolling pipe suspending means 10 is formed. , Fixed and connected to the screw holes on both sides of the tip of the male mold 1 via the hexagon socket head cap screw 9.

雌型モジュールは、図5に示されるように、雌型転がり管3、スライダー4、スライダーナット5、雌型転がり管六角穴ボルト6、係合具ナット7、係合具13、四角ナット14、及び、ガイドレール15を含む。雌型転がり管3は、その断面が円環状に構成され、係合具13の上下の両端の側面にそれぞれねじ穴が設置され、ガイドレール15の下面にねじ穴が設けられ、雌型転がり管3の両端が、それぞれ、雌型転がり管六角穴ボルト6を介して、係合具13の上端の側面に固定して接続され、係合具13の下端の側面が、係合具ナット7を介して、スライダー4に固定して接続され、スライダー4が、それぞれ、スライダーナット5と四角ナット14を介して、ガイドレール15のガイドレール接触面24に固定して接続され、センサーモジュール8がガイドレール15のねじ穴に固定して接続される。 As shown in FIG. 5, the female module includes a female rolling pipe 3, a slider 4, a slider nut 5, a female rolling pipe hexagon socket head bolt 6, an engaging tool nut 7, an engaging tool 13, and a square nut 14. And, the guide rail 15 is included. The female rolling tube 3 has an annular cross section, screw holes are provided on the upper and lower side surfaces of the engaging tool 13, and screw holes are provided on the lower surface of the guide rail 15. The female rolling tube 3 is provided with screw holes. Both ends of 3 are fixedly connected to the side surface of the upper end of the engaging tool 13 via the female rolling pipe hexagon socket head bolt 6, and the side surface of the lower end of the engaging tool 13 attaches the engaging tool nut 7. The slider 4 is fixedly connected to the slider 4 via the slider nut 5, and the slider 4 is fixedly connected to the guide rail contact surface 24 of the guide rail 15 via the slider nut 5 and the square nut 14, respectively, and the sensor module 8 is guided. It is fixedly connected to the screw hole of the rail 15.

係合具13は、図6に示されるように、係合具第一接触面16、係合具第二接触面17、係合具第三接触面18、及び、係合具第四接触面19を含む。スライダー4は、その外形がT字形で構成され、図7に示されるように、スライダー第一接触面20、スライダー第二接触面21、スライダー第三接触面22及びT型スライドヘッド23を含む。ガイドレール15は、図8に示されるように、ガイドレール接触面24及びT型滑り溝25を含む。図2に示されるように、スライダー4のT型スライドヘッド23がガイドレール15のT型滑り溝25に滑り可能に接続され、係合具第一接触面16とガイドレール15の底面とが面一であり、係合具第四接触面19がスライダー第三接触面22に固定して接続され、係合具第二接触面17がスライダー第二接触面21に固定して接続され、係合具第三接触面18が、係合具ナット7を介してスライダー第一接触面20に固定して接続される。方向キーは、その外形の寸法が5×5×10とされ、係合具ナット7のせん断を防ぎ、装置全体の安定性を向上させるように、係合具第三接触面18とスライダー第一接触面20とで構成された隙間に位置し、しかも、係合具ナット7の間隔毎にそれぞれ設置される。 As shown in FIG. 6, the engaging tool 13 includes an engaging tool first contact surface 16, an engaging tool second contact surface 17, an engaging tool third contact surface 18, and an engaging tool fourth contact surface. Includes 19. The slider 4 has a T-shaped outer shape, and includes a slider first contact surface 20, a slider second contact surface 21, a slider third contact surface 22, and a T-shaped slide head 23, as shown in FIG. As shown in FIG. 8, the guide rail 15 includes a guide rail contact surface 24 and a T-shaped sliding groove 25. As shown in FIG. 2, the T-shaped slide head 23 of the slider 4 is slidably connected to the T-shaped sliding groove 25 of the guide rail 15, and the first contact surface 16 of the engaging tool and the bottom surface of the guide rail 15 are surfaced. The fourth contact surface 19 of the engaging tool is fixedly connected to the third contact surface 22 of the slider, and the second contact surface 17 of the engaging tool is fixedly connected to the second contact surface 21 of the slider and engaged. The third contact surface 18 of the tool is fixedly connected to the first contact surface 20 of the slider via the engaging tool nut 7. The outer dimensions of the directional keys are 5 × 5 × 10, and the engagement tool third contact surface 18 and the slider first are used to prevent shearing of the engagement tool nut 7 and improve the stability of the entire device. It is located in the gap formed by the contact surface 20, and is installed at intervals of the engaging nuts 7.

図4に示されるように、転がり管吊り手段10は、雄型1の先端の両側に対称に設置され、図2に示されるように、係合具13は、スライダー4の両側に対称に設置され、スライダーナット5と四角ナット14とがスライダー4の両端に対称に設置され、六角穴ボルト9、雄型転がり管11及び雄型磁石12は、それらの軸線が同軸であり、雌型転がり管六角穴ボルト6、雌型転がり管3及び係合具13の上端の円孔は、それらの軸線が同軸であり、係合具13の下端の一側面のねじ穴とスライダー4の両側のねじ穴とは、それらの軸線が軸心である。 As shown in FIG. 4, the rolling pipe suspending means 10 is installed symmetrically on both sides of the tip of the male mold 1, and as shown in FIG. 2, the engaging tool 13 is installed symmetrically on both sides of the slider 4. The slider nut 5 and the square nut 14 are symmetrically installed at both ends of the slider 4, and the hexagon socket head bolt 9, the male rolling tube 11, and the male magnet 12 have coaxial axes, and the female rolling tube. The hexagon socket head bolts 6, the female rolling pipe 3, and the circular holes at the upper ends of the engaging tool 13 have coaxial axes, and the screw holes on one side of the lower end of the engaging tool 13 and the screw holes on both sides of the slider 4. Is that their axis is the axis.

図4に示されるように、雄型磁石12の長さが雄型転がり管11の長さよりも小さく、雄型磁石12の外径と雄型転がり管11の内径とが等しい。図5に示されるように、係合具第一接触面16と係合具第四接触面19との間の距離がスライダー4の高さと等しく、T型スライドヘッド23の幅とT型滑り溝25の幅とが等しく、T型滑り溝25の長さとガイドレール15の長さとが等しく、T型スライドヘッド23の長さとスライダー4の長さとが等しく、スライダー4の長さがガイドレール15の長さよりも小さい。 As shown in FIG. 4, the length of the male magnet 12 is smaller than the length of the male rolling tube 11, and the outer diameter of the male magnet 12 and the inner diameter of the male rolling tube 11 are equal. As shown in FIG. 5, the distance between the engaging tool first contact surface 16 and the engaging tool fourth contact surface 19 is equal to the height of the slider 4, and the width of the T-shaped slide head 23 and the T-shaped sliding groove. The width of 25 is equal, the length of the T-slide groove 25 is equal to the length of the guide rail 15, the length of the T-slide head 23 is equal to the length of the slider 4, and the length of the slider 4 is equal to that of the guide rail 15. Less than the length.

図6に示されるように、係合具13の上端の両側におけるねじ穴の数が雌型転がり管六角穴ボルト6の数よりも多く、係合具13の下端の両側におけるねじ穴の数が係合具ナット7の数よりも多く、係合具13の下端の両側におけるねじ穴の数がスライダー4の両側のねじ穴の数よりも多い。 As shown in FIG. 6, the number of screw holes on both sides of the upper end of the engaging tool 13 is larger than the number of female rolling tube hexagon socket head bolts 6, and the number of screw holes on both sides of the lower end of the engaging tool 13 is large. The number of screw holes on both sides of the lower end of the engagement tool 13 is larger than the number of screw holes on both sides of the slider 4.

転がり管吊り手段10と係合具13とが、対として存在しており、転がり管吊り手段10の数が二つであり、係合具13の数が雌型転がり管3の数の二倍であり、係合具13の数が四つであり、方向キーの数が十二であり、雌型転がり管3の数が二つである。 The rolling pipe suspending means 10 and the engaging tool 13 exist as a pair, the number of the rolling pipe suspending means 10 is two, and the number of the engaging tools 13 is twice the number of the female rolling pipe 3. The number of engaging tools 13 is four, the number of direction keys is twelve, and the number of female rolling tubes 3 is two.

以下には、実施例に基づいて、本発明に係る板状素材が循環的に負荷されるための力学的性能検測装置を詳しく説明する。 Hereinafter, the mechanical performance inspection device for cyclically loading the plate-shaped material according to the present invention will be described in detail based on Examples.

まず、雄型磁石12を雄型転がり管11に挿入し、雄型転がり管11の両端を、それぞれ六角穴ボルト9を介して転がり管吊り手段10の第一端の円孔に接続し、転がり管吊り手段10の第二端の円孔を、六角穴ボルト9を介して雄型1の先端両側のねじ穴に固定して接続する。 First, the male magnet 12 is inserted into the male rolling tube 11, and both ends of the male rolling tube 11 are connected to the circular hole at the first end of the rolling tube suspension means 10 via hexagon socket head bolts 9, respectively, and rolling. The circular hole at the second end of the pipe suspension means 10 is fixed and connected to the screw holes on both sides of the tip of the male mold 1 via the hexagon socket head bolt 9.

そして、四つの同じ係合具13の係合具第四接触面19をスライダー4のスライダー第三接触面22に近接させ、四つの同じ係合具13の係合具第二接触面17をスライダー4のスライダー第二接触面21に近接させ、係合具ナット7を介してスライダー4と係合具13の下端の側面とを固定して接続する。次に、組み合わせられたスライダー4のT型スライドヘッド23をガイドレール15のT型滑り溝25に挿入し、組み合わせられたスライダー4をスライダーナット5と四角ナット14とによりガイドレール15に固定し、そして、雌型転がり管3の両端を、それぞれ、雌型転がり管六角穴ボルト6を介して、係合具13の上端の側面に固定して接続する。最後に、センサーモジュール8をガイドレール15のねじ穴に螺合接続する。 Then, the engaging tool fourth contact surface 19 of the four same engaging tools 13 is brought close to the slider third contact surface 22 of the slider 4, and the engaging tool second contact surface 17 of the four same engaging tools 13 is moved to the slider. The slider 4 and the side surface of the lower end of the engaging tool 13 are fixedly connected to each other via the engaging tool nut 7 so as to be close to the slider second contact surface 21 of 4. Next, the T-shaped slide head 23 of the combined slider 4 is inserted into the T-shaped sliding groove 25 of the guide rail 15, and the combined slider 4 is fixed to the guide rail 15 by the slider nut 5 and the square nut 14. Then, both ends of the female rolling pipe 3 are fixedly connected to the side surface of the upper end of the engaging tool 13 via the female rolling pipe hexagonal hole bolts 6, respectively. Finally, the sensor module 8 is screwed into the screw hole of the guide rail 15.

当該装置を用いて板状素材が循環的に負荷されるための力学的性能を検測する主な試験のプロセスは、以下の通りである。 The main test process for measuring the mechanical performance of the plate-like material to be cyclically loaded using the device is as follows.

まず、V形状板2を二つ雌型転がり管3に置いてから、図1に示されるように、雄型モジュールの雄型1を下押しすると、雄型モジュールが次第にV形状板2の上面に接触するにつれ、V形状板2に変形が生じる。センサーモジュール8の圧力センサーにより、リアルタイムで力のデータを記録し、板の成形結果は最終に図1に示されるものになる。そして、雄型モジュールを上に移動し、V形状板2を逆V形状に置くと、図2に示されるように、雄型転がり管11における雄型磁石12が均一に雌型の支間の中心の真上に分布し、しかも、雄型転がり管11が回転可能であることから、重力と雄型転がり管11の回転による作用により、逆V形状板2が左右対称に雄型転がり管11に吸着される。また、雄型モジュールが下に移動するにつれ、逆V形状板2が転がり可能な雌型転がり管3に接触し、押し手段が下に移動につれ、雄型転がり管11が上に移動して、雄型1の楔形の溝に嵌入することにより、雄型転がり管11の転がりがロックされる。V形状板2は、雄型モジュールがさらに下に移動するにつれ、成形結果が再度図1に示されるものになる。このように、循環的に繰り返し板状素材を負荷して循環負荷力学的性能を検測でき、装置において雌型転がり管3の転がりを可能とし、V形状板2の摩擦力を降下させながら、板の成形性能を向上させることができる。そして、循環的に負荷して、板状素材が有している力学的性能を検測することが可能である。 First, two V-shaped plates 2 are placed on the female rolling pipe 3, and then, as shown in FIG. 1, when the male type 1 of the male type module is pushed down, the male type module is gradually placed on the upper surface of the V-shaped plate 2. As they come into contact with each other, the V-shaped plate 2 is deformed. The pressure sensor of the sensor module 8 records the force data in real time, and the molding result of the plate is finally shown in FIG. Then, when the male module is moved upward and the V-shaped plate 2 is placed in the inverted V shape, as shown in FIG. 2, the male magnet 12 in the male rolling tube 11 is uniformly centered on the female support. Since the male rolling tube 11 is rotatable, the inverted V-shaped plate 2 is symmetrically formed into the male rolling tube 11 due to the action of gravity and the rotation of the male rolling tube 11. Be adsorbed. Further, as the male module moves downward, the inverted V-shaped plate 2 comes into contact with the rollable female rolling tube 3, and as the pushing means moves downward, the male rolling tube 11 moves upward. By fitting into the wedge-shaped groove of the male type 1, the rolling of the male type rolling pipe 11 is locked. As the male module moves further downward, the V-shaped plate 2 has a molding result shown in FIG. 1 again. In this way, the plate-shaped material can be cyclically and repeatedly loaded to measure the circulation load mechanical performance, the female rolling tube 3 can be rolled in the apparatus, and the frictional force of the V-shaped plate 2 is reduced while reducing the frictional force. The molding performance of the plate can be improved. Then, it is possible to apply a cyclic load to inspect the mechanical performance of the plate-shaped material.

以上に説明した実施例は、本発明の好ましい実施形態を説明するためのものに過ぎず、本発明の範囲を限定するものではない。本発明の趣旨を逸脱しない前提で、当業者が本発明の技術的手段に対して各種の変形や改善を行ってなされたものは、いずれも、本発明の請求の範囲に含まれている。 The examples described above are merely for explaining preferred embodiments of the present invention, and do not limit the scope of the present invention. Any modification or improvement made by a person skilled in the art to the technical means of the present invention on the premise that the gist of the present invention is not deviated is included in the claims of the present invention.

1 雄型
2 V形状板
3 雌型転がり管
4 スライダー
5 スライダーナット
6 雌型転がり管六角穴ボルト
7 係合具ナット
8 センサーモジュール
9 六角穴ボルト
10 転がり管吊り手段
11 雄型転がり管
12 雄型磁石
13 係合具
14 四角ナット
15 ガイドレール
16 係合具第一接触面
17 係合具第二接触面
18 係合具第三接触面
19 係合具第四接触面
20 スライダー第一接触面
21 スライダー第二接触面
22 スライダー第三接触面
23 T型スライドヘッド
24 ガイドレール接触面
25 T型滑り溝
1 Male type 2 V-shaped plate 3 Female type rolling pipe 4 Slider 5 Slider nut 6 Female type rolling pipe Hexagonal hole bolt 7 Engagement nut 8 Sensor module 9 Hexagonal hole bolt 10 Rolling pipe hanging means 11 Male type rolling pipe 12 Male type Magnet 13 Engagement tool 14 Square nut 15 Guide rail 16 Engagement tool 1st contact surface 17 Engagement tool 2nd contact surface 18 Engagement tool 3rd contact surface 19 Engagement tool 4th contact surface 20 Slider 1st contact surface 21 Slider 2nd contact surface 22 Slider 3rd contact surface 23 T-type slide head 24 Guide rail contact surface 25 T-type sliding groove

Claims (4)

雄型モジュール、雌型モジュール、及び、センサーモジュールを含む板状素材が循環的に負荷されるための力学的性能検測装置であって、
前記雄型モジュールは、雄型、転がり管吊り手段、雄型転がり管、及び、雄型磁石を含み、前記雄型は、その外形が略T字形で構成され、その先端に凹溝が設けられ、その両側にねじ穴が設けられ、前記雄型転がり管の断面が円環状に構成され、前記雄型磁石が前記雄型転がり管の内部に位置し、前記転がり管吊り手段の中部に開口が設けられ、前記開口の直径と六角穴ボルトの直径とが等しく、前記雄型転がり管の両端は、それぞれ、六角穴ボルトを介して前記転がり管吊り手段の第一端の円孔に接続され、前記転がり管吊り手段の第二端の円孔は六角穴ボルトを介して、前記雄型の先端の両側のねじ穴に固定して接続され、
前記雌型モジュールは、雌型転がり管、スライダー、スライダーナット、雌型転がり管六角穴ボルト、係合具ナット、係合具、四角ナット、及び、ガイドレールを含み、前記雌型転がり管の断面が円環状に構成され、前記係合具の上下の両端の側面にそれぞれねじ穴が設置され、前記ガイドレールの下面にねじ穴が設置され、前記雌型転がり管の両端が、それぞれ、雌型転がり管六角穴ボルトを介して前記係合具の上端の側面に固定して接続され、前記係合具の下端の側面が係合具ナットを介して前記スライダーに固定して接続され、前記スライダーが、それぞれ、スライダーナットと四角ナットとを介して前記ガイドレールのガイドレール接触面に固定して接続され、前記センサーモジュールが前記ガイドレールのねじ穴に固定して接続され、
前記係合具は、係合具第一接触面、係合具第二接触面、係合具第三接触面、及び、係合具第四接触面を含み、前記スライダーは、その外形がT字形で構成され、スライダー第一接触面、スライダー第二接触面、スライダー第三接触面、及び、T型スライドヘッドを含み、前記ガイドレールは、ガイドレール接触面及びT型滑り溝を含み、前記スライダーのT型スライドヘッドが前記ガイドレールのT型滑り溝に接続され、前記係合具第一接触面と前記ガイドレールの上面とが面一であり、前記係合具第四接触面が前記スライダー第三接触面に固定して接続され、前記係合具第二接触面が前記スライダー第二接触面に固定して接続され、前記係合具第三接触面が係合具ナットを介して前記スライダー第一接触面に固定して接続される、ことを特徴とする、板状素材が循環的に負荷されるための力学的性能検測装置。
A mechanical performance inspection device for cyclically loading plate-like materials including male modules, female modules, and sensor modules.
The male module includes a male, a rolling tube suspension means, a male rolling tube, and a male magnet. The male module has a substantially T-shaped outer shape and is provided with a concave groove at the tip thereof. , Screw holes are provided on both sides thereof, the cross section of the male rolling tube is formed in an annular shape, the male magnet is located inside the male rolling tube, and an opening is opened in the middle of the rolling tube suspending means. Provided, the diameter of the opening and the diameter of the hexagonal hole bolt are equal, and both ends of the male rolling pipe are connected to the circular hole at the first end of the rolling pipe suspension means via the hexagonal hole bolt, respectively. The circular hole at the second end of the rolling pipe suspension means is fixedly connected to the screw holes on both sides of the tip of the male mold via a hexagonal hole bolt.
The female module includes a female rolling tube, a slider, a slider nut, a female rolling tube hexagon socket head bolt, an engaging tool nut, an engaging tool, a square nut, and a guide rail, and a cross section of the female rolling tube. Is formed in an annular shape, screw holes are provided on the upper and lower end side surfaces of the engaging tool, screw holes are provided on the lower surface of the guide rail, and both ends of the female rolling pipe are female. The side surface of the lower end of the engaging tool is fixedly connected to the side surface of the upper end of the engaging tool via a rolling tube hexagon socket head bolt, and the side surface of the lower end of the engaging tool is fixedly connected to the slider via the engaging tool nut. Are fixedly connected to the guide rail contact surface of the guide rail via a slider nut and a square nut, respectively, and the sensor module is fixedly connected to the screw hole of the guide rail.
The engaging tool includes a first contact surface of the engaging tool, a second contact surface of the engaging tool, a third contact surface of the engaging tool, and a fourth contact surface of the engaging tool, and the slider has a T-shaped outer shape. It is formed in a shape and includes a slider first contact surface, a slider second contact surface, a slider third contact surface, and a T-shaped slide head, and the guide rail includes a guide rail contact surface and a T-shaped sliding groove. The T-shaped slide head of the slider is connected to the T-shaped sliding groove of the guide rail, the first contact surface of the engaging tool and the upper surface of the guide rail are flush with each other, and the fourth contact surface of the engaging tool is the said. The engaging tool second contact surface is fixedly connected to the slider second contact surface, and the engaging tool third contact surface is fixedly connected to the slider second contact surface via the engaging tool nut. A mechanical performance inspection device for cyclically loading a plate-shaped material, which is fixedly connected to the first contact surface of the slider.
前記転がり管吊り手段は、前記雄型の先端の両側に対称に設置され、前記係合具は、前記スライダーの両側に対称に設置され、前記スライダーナットと前記四角ナットとが前記スライダーの両端に対称に設置され、前記六角穴ボルト、前記雄型転がり管、及び、前記雄型磁石は、それらの軸線が同軸であり、前記雌型転がり管六角穴ボルト、前記雌型転がり管、及び、前記係合具の上端の円孔は、それらの軸線が同軸であり、前記係合具の下端の一側面のねじ穴、及び、前記スライダーの両側のねじ穴は、それらの軸線が同軸である、ことを特徴とする、請求項1に記載の板状素材が循環的に負荷されるための力学的性能検測装置。 The rolling pipe suspending means is installed symmetrically on both sides of the tip of the male mold, the engaging tool is installed symmetrically on both sides of the slider, and the slider nut and the square nut are placed on both ends of the slider. The hexagon socket head bolt, the male rolling tube, and the male magnet have their axes coaxial with each other, and the female rolling tube hexagon socket head bolt, the female rolling tube, and the male magnet are installed symmetrically. The circular holes at the upper end of the engaging tool have their axes coaxial with each other, and the screw holes on one side surface of the lower end of the engaging tool and the screw holes on both sides of the slider have their axes coaxial with each other. The mechanical performance inspection device for cyclically loading the plate-shaped material according to claim 1, wherein the plate-like material is loaded. 前記係合具の上端の両側のねじ穴の数が前記雌型転がり管六角穴ボルトの数よりも多く、前記係合具の下端の両側のねじ穴の数が前記係合具ナットの数よりも多く、前記係合具の下端の両側のねじ穴の数が前記スライダーの両側のねじ穴の数よりも多い、ことを特徴とする、請求項1に記載の板状素材が循環的に負荷されるための力学的性能検測装置。 The number of screw holes on both sides of the upper end of the engaging tool is larger than the number of hexagon socket head bolts of the female rolling pipe, and the number of screw holes on both sides of the lower end of the engaging tool is larger than the number of the engaging nuts. The plate-like material according to claim 1, wherein the number of screw holes on both sides of the lower end of the engaging tool is larger than the number of screw holes on both sides of the slider, is cyclically loaded. Mechanical performance inspection device to be used. 前記転がり管吊り手段と前記係合具とが、対として存在しており、前記転がり管吊り手段の数が二つであり、前記係合具の数が前記雌型転がり管の数の二倍であり、前記係合具の数が四つであり、前記雌型転がり管の数が二つである、ことを特徴とする、請求項3に記載の板状素材が循環的に負荷されるための力学的性能検測装置。 The rolling pipe suspending means and the engaging tool exist as a pair, the number of the rolling pipe suspending means is two, and the number of the engaging tools is twice the number of the female rolling pipe. The plate-like material according to claim 3, wherein the number of the engaging tools is four and the number of the female rolling tubes is two, is cyclically loaded. Mechanical performance inspection device for.
JP2020192794A 2019-11-22 2020-11-19 Mechanical performance measuring device on which a plate-shaped material is repeatedly loaded Active JP6893671B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911155590.4 2019-11-22
CN201911155590.4A CN110823728B (en) 2019-11-22 2019-11-22 Mechanical property detection device for cyclic loading of plates

Publications (2)

Publication Number Publication Date
JP2021081433A true JP2021081433A (en) 2021-05-27
JP6893671B2 JP6893671B2 (en) 2021-06-23

Family

ID=69558299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020192794A Active JP6893671B2 (en) 2019-11-22 2020-11-19 Mechanical performance measuring device on which a plate-shaped material is repeatedly loaded

Country Status (2)

Country Link
JP (1) JP6893671B2 (en)
CN (1) CN110823728B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295527B (en) * 2021-05-24 2022-12-09 燕山大学 Device for measuring stress relaxation of fiber reinforced composite bar and measuring method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625716U (en) * 1992-08-27 1994-04-08 川崎製鉄株式会社 Bending test displacement measuring device
JPH0755673A (en) * 1993-08-09 1995-03-03 Tomoe Giken:Kk Bending testing device
JP2002181678A (en) * 2000-12-19 2002-06-26 Japan Science & Technology Corp Shape freezability evaluation method for plastic working
CN203011787U (en) * 2012-11-14 2013-06-19 中国建筑第八工程局有限公司 Tablet testing machine
CN204165829U (en) * 2014-10-30 2015-02-18 四川大学 For determining the bearing in SCB test specimen orientation
CN104655491A (en) * 2015-02-13 2015-05-27 郑州大学 Three-directional mechanical test platform
CN104749046A (en) * 2015-04-14 2015-07-01 重庆大学 Axial full-floating micro ultra-high-temperature mechanics experiment device
US20160216184A1 (en) * 2015-01-28 2016-07-28 International Business Machines Corporation Determination of young's modulus of porous thin films using ultra-low load nano-indentation
CN109443946A (en) * 2018-12-25 2019-03-08 长沙矿山研究院有限责任公司 A kind of Point Load Strength Instrument and Point Load Tests method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275741A (en) * 2005-03-29 2006-10-12 Renesas Technology Corp Fatigue testing device and method for semiconductor device
CN201212871Y (en) * 2008-04-30 2009-03-25 中国科学院金属研究所 Test system for dynamic bending fatigue performance of thin-film material
CN103267672B (en) * 2013-05-13 2015-01-14 北方工业大学 Bending prevention system and method for tension compression circulation and loading experiment of double-shaft sheet
CN206311479U (en) * 2016-11-30 2017-07-07 武汉钢铁股份有限公司 Thin plate sample adds bending apparatus in a kind of salt spray test chamber
JP6741700B2 (en) * 2017-01-16 2020-08-19 株式会社三五 Thermal fatigue test apparatus and thermal fatigue test method using the same
CN106950112B (en) * 2017-03-13 2019-05-14 南京航空航天大学 A kind of miniature plate compression test device and working method
CN107941605B (en) * 2017-11-30 2024-03-15 上汽通用五菱汽车股份有限公司 Clamping device for preventing metal plate from being unstable under tension-compression cyclic loading
CN208621411U (en) * 2018-07-11 2019-03-19 中国航发北京航空材料研究院 A kind of two-way repeated bending fatigue test device of band
CN208547547U (en) * 2018-07-17 2019-02-26 东北大学 The device of magnesium alloy plate and belt beaming limit and springback capacity is tested simultaneously
CN109637598B (en) * 2019-01-17 2023-04-14 燕山大学 Material mechanical property parameter determination method based on bending process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625716U (en) * 1992-08-27 1994-04-08 川崎製鉄株式会社 Bending test displacement measuring device
JPH0755673A (en) * 1993-08-09 1995-03-03 Tomoe Giken:Kk Bending testing device
JP2002181678A (en) * 2000-12-19 2002-06-26 Japan Science & Technology Corp Shape freezability evaluation method for plastic working
CN203011787U (en) * 2012-11-14 2013-06-19 中国建筑第八工程局有限公司 Tablet testing machine
CN204165829U (en) * 2014-10-30 2015-02-18 四川大学 For determining the bearing in SCB test specimen orientation
US20160216184A1 (en) * 2015-01-28 2016-07-28 International Business Machines Corporation Determination of young's modulus of porous thin films using ultra-low load nano-indentation
CN104655491A (en) * 2015-02-13 2015-05-27 郑州大学 Three-directional mechanical test platform
CN104749046A (en) * 2015-04-14 2015-07-01 重庆大学 Axial full-floating micro ultra-high-temperature mechanics experiment device
CN109443946A (en) * 2018-12-25 2019-03-08 长沙矿山研究院有限责任公司 A kind of Point Load Strength Instrument and Point Load Tests method

Also Published As

Publication number Publication date
CN110823728A (en) 2020-02-21
JP6893671B2 (en) 2021-06-23
CN110823728B (en) 2020-08-28

Similar Documents

Publication Publication Date Title
CN203275108U (en) A bridge model static force loading device
CN203965259U (en) An a kind of roll-type bend testing apparatus
CN106918417B (en) Steel plate membrane stress tests force application apparatus
CN105203394A (en) Device for measuring sheet metal stress-strain curve
JP6893671B2 (en) Mechanical performance measuring device on which a plate-shaped material is repeatedly loaded
CN203929504U (en) A kind of dismantled and assembled small sample cupping machine jig
CN104483184A (en) Pressing-drawing conversion device for monitoring sound emission of concrete test piece and construction method of pressing-drawing conversion device
CN102721342A (en) Inspection device for inspecting position of hole
CN103278445A (en) Positive extrusion test method for plastic forming friction coefficient and friction factor
CN110006935A (en) Ultrafast laser fine difference speckle preparation method based on DIC microcell dynamic strain measuring
CN104155182A (en) Instability preventing fixture for compression crack growth of metal sheet M(T) test sample
CN203216802U (en) Agravic universal tester
CN102788545A (en) Adjusting method of synchronizer ring gear depth measuring device
KR20100003994A (en) Testing system of forming limit diagram for steel plate
CN103736668B (en) A kind of bolt go-no go gauge that can use online
CN107505213B (en) Novel small punch test device and test method thereof
CN109975105B (en) Automatic measurement system for thickness-direction deformation resistance of plate
CN107976364A (en) Testing device for realizing three-dimensional loading state and stress-strain data acquisition
CN204556412U (en) A kind of device for composite plate shear test
CN104596695A (en) Loading device for accurately controlling rivet preload of riveting member
JP2015102448A (en) Reinforcement expansion simulation and load test device, and reinforcement expansion simulation and load test method
CN210833373U (en) Steel pipe shape detection tool
CN203178150U (en) Pressure-stress corrosion device
CN203929469U (en) Fiber for scanning microscopy environment is starched specimen molding mould only
CN205317593U (en) Panel beating sprayed part pliability detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6893671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150