JP2021081379A - Sample diluent for blood sample measurement by hplc method, and glycated hemoglobin measurement method - Google Patents

Sample diluent for blood sample measurement by hplc method, and glycated hemoglobin measurement method Download PDF

Info

Publication number
JP2021081379A
JP2021081379A JP2019211188A JP2019211188A JP2021081379A JP 2021081379 A JP2021081379 A JP 2021081379A JP 2019211188 A JP2019211188 A JP 2019211188A JP 2019211188 A JP2019211188 A JP 2019211188A JP 2021081379 A JP2021081379 A JP 2021081379A
Authority
JP
Japan
Prior art keywords
sample
sample diluent
measurement
acid
hplc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211188A
Other languages
Japanese (ja)
Other versions
JP7347156B2 (en
Inventor
奈津姫 濱田
Natsuki Hamada
奈津姫 濱田
秀平 丸田
Shuhei MARUTA
秀平 丸田
修弥 中島
Naoya Nakajima
修弥 中島
順也 加藤
Junya Kato
順也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019211188A priority Critical patent/JP7347156B2/en
Priority to CN202011227969.4A priority patent/CN112834632B/en
Publication of JP2021081379A publication Critical patent/JP2021081379A/en
Application granted granted Critical
Publication of JP7347156B2 publication Critical patent/JP7347156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0222Investigating a scatter or diffraction pattern from dynamic light scattering, e.g. photon correlation spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To solve problems such as a reduction in column separability and an increase in device pressure that tend to occur during repeated measurement when analyzing a blood sample by the HPLC method.SOLUTION: Provided is a sample diluent for blood sample measurement by the high-performance liquid chromatography (HPLC) method that uses column filled with a filler consisting of non-porous organic polymer particles having an ion-exchange group, the sample diluent having a pH in a range of 9.0-10.0. A method of measuring glycated hemoglobin by the HPLC method using the sample diluent is also provided.SELECTED DRAWING: None

Description

本発明は、高速液体クロマトグラフィー(HPLC)法により血液検体を測定する際に用いる検体希釈液、及びその検体希釈液を用いた糖化ヘモグロビンの測定方法に関する。 The present invention relates to a sample diluent used when measuring a blood sample by a high performance liquid chromatography (HPLC) method, and a method for measuring glycated hemoglobin using the sample diluent.

血液検体をHPLC法で測定する際には、血液検体を予め測定に適した状態に整えるための検体希釈液が用いられる。
例えば、特許第4094776号公報(特許文献1)には、糖尿病診断に用いられる糖化ヘモグロビン(HbA1c)を測定する際に、血液検体の希釈液としてカオトロピックイオンを含有する溶血試薬を使用することが記載されている。特許文献1には、溶血試薬とは赤血球より低張な水溶液であり、溶血とは赤血球が破れ血色素などの内容物(例えば、ヘモグロビン類)が赤血球外に出ることであること、カオトロピックイオンを使用することによりHbA1cの分離が改善されることが開示されている。HbA1cの測定を行うカラムとして、実施例ではカチオン交換基を有する充填剤からなるカラムが用いられている。
When a blood sample is measured by an HPLC method, a sample diluent for preparing the blood sample in a state suitable for measurement is used in advance.
For example, Japanese Patent No. 40947776 (Patent Document 1) describes that a hemolytic reagent containing a chaotropic ion is used as a diluent for a blood sample when measuring glycated hemoglobin (HbA1c) used for diagnosing diabetes. Has been done. In Patent Document 1, a hemolytic reagent is an aqueous solution hypotonic than erythrocytes, and hemolysis means that erythrocytes are torn and contents such as hemoglobin (for example, hemoglobins) go out of erythrocytes, and chaotropic ions are used. It is disclosed that this improves the separation of HbA1c. As a column for measuring HbA1c, a column made of a filler having a cation exchange group is used in the examples.

WO2019/004440号公報(特許文献2)には、(メタ)アクリル酸エステル由来のモノマー単位とジビニルベンゼン由来のモノマー単位を有する共重合体の粒子にスルホ基が結合した充填剤が開示されている。該充填剤は粒径を小さくすることが可能で、分離能が高くHbA1cの分析にも適した性質を有することが記載されている。 WO2019 / 004440 (Patent Document 2) discloses a filler in which a sulfo group is bonded to particles of a copolymer having a monomer unit derived from (meth) acrylic acid ester and a monomer unit derived from divinylbenzene. .. It is described that the filler can have a small particle size, has a high separability, and has properties suitable for analysis of HbA1c.

特許第4094776号公報Japanese Patent No. 40947776 WO2019/004440号公報WO2019 / 004440

血液検体をHPLC法により分析する場合、繰り返しの測定により、カラムの分離能が低下する、測定時の装置圧が上昇するなどの問題が発生することがあった。
近年、糖尿病診断のためのHPLC法による分析においては、より効率的なものが求められている。しかし、より高い分離能で、より効率的に血液検体を測定するため、特許文献2に記載されているような、粒径の小さな充填剤を充填したカラムを使用すると繰り返しの測定による上記の問題は、これまでのカラム以上に発生しやすくなる。
このように、効率的な血液検体の測定と、繰り返し測定において生じる問題とはトレードオフの関係にある。このため、繰り返し測定において生じる問題を低減できる手段が強く求められていた。
When a blood sample is analyzed by an HPLC method, problems such as a decrease in the separability of the column and an increase in the device pressure at the time of measurement may occur due to repeated measurements.
In recent years, more efficient analysis by HPLC method for diagnosing diabetes has been required. However, in order to measure blood samples more efficiently with higher resolution, if a column filled with a packing material having a small particle size as described in Patent Document 2 is used, the above-mentioned problem due to repeated measurement Is more likely to occur than in previous columns.
Thus, there is a trade-off between efficient blood sample measurement and the problems that arise in repeated measurements. Therefore, there has been a strong demand for a means capable of reducing problems that occur in repeated measurements.

本発明者らは、鋭意検討の結果、HPLC法による血液検体の測定の際に、検体希釈液として、pHが、9.0〜10.0である検体希釈液を使用することにより、前記の課題が解決できることを見出し、本発明を完成した。 As a result of diligent studies, the present inventors have described the above by using a sample diluent having a pH of 9.0 to 10.0 as the sample diluent when measuring a blood sample by the HPLC method. We have found that the problem can be solved and completed the present invention.

本発明は、以下の[1]〜[5]の検体希釈液、及び[6]〜[8]の糖化ヘモグロビンの測定方法に関する。
[1] イオン交換基を有する非多孔質有機高分子粒子からなる充填剤を充填したカラムを用いる高速液体クロマトグラフィー(HPLC)法による血液検体測定の検体希釈液であって、pHが9.0〜10.0であることを特徴とする検体希釈液。
[2] 検体希釈液が、N−シクロヘキシル−2−アミノエタンスルホン酸及びN−シクロヘキシル−3−アミノプロパンスルホン酸の少なくとも1種を含む緩衝剤を含有する前項1に記載の検体希釈液。
[3] 検体希釈液中の緩衝剤が、N−シクロヘキシル−2−アミノエタンスルホン酸である前項2に記載の検体希釈液。
[4] イオン交換基を有する非多孔質有機高分子粒子の体積平均粒子径が1.5μm〜3.5μmである前項1〜3のいずれかに記載の検体希釈液。
[5] 充填剤が、(メタ)アクリル酸エステル由来のモノマー単位とジビニルベンゼン由来のモノマー単位を有する共重合体粒子にスルホ基が結合した充填剤である前項1〜4のいずれかに記載の検体希釈液。
[6] 前項1〜5のいずれかに記載の検体希釈液を用いることを特徴とするHPLC法による糖化ヘモグロビンの測定方法。
[7] 検体希釈液中の緩衝剤がN−シクロヘキシル−2−アミノエタンスルホン酸であり、HPLC法で使用する溶離液の緩衝剤としてアミノ基とスルホ基を有する両性イオン化合物を用いる請求項6に記載の糖化ヘモグロビンの測定方法。
[8] アミノ基とスルホ基を有する両性イオン化合物が、2−モルホリノエタンスルホン酸及び3−モルホリノプロパンスルホン酸から選ばれる少なくとも1種である請求項7に記載の糖化ヘモグロビンの測定方法。
The present invention relates to the following sample diluents [1] to [5] and methods for measuring glycated hemoglobin according to [6] to [8].
[1] A sample diluent for measuring a blood sample by a high performance liquid chromatography (HPLC) method using a column packed with a packing material composed of non-porous organic polymer particles having an ion exchange group, and having a pH of 9.0. A sample diluent characterized by being ~ 10.0.
[2] The sample diluent according to item 1 above, wherein the sample diluent contains a buffer containing at least one of N-cyclohexyl-2-aminoethanesulfonic acid and N-cyclohexyl-3-aminopropanesulfonic acid.
[3] The sample diluent according to item 2 above, wherein the buffer in the sample diluent is N-cyclohexyl-2-aminoethanesulfonic acid.
[4] The sample diluent according to any one of Items 1 to 3 above, wherein the volume average particle diameter of the non-porous organic polymer particles having an ion exchange group is 1.5 μm to 3.5 μm.
[5] The filler according to any one of the above items 1 to 4, wherein the filler is a filler in which a sulfo group is bonded to copolymer particles having a monomer unit derived from (meth) acrylic acid ester and a monomer unit derived from divinylbenzene. Specimen diluent.
[6] A method for measuring glycated hemoglobin by an HPLC method, which comprises using the sample diluent according to any one of the above items 1 to 5.
[7] Claim 6 that the buffer in the sample diluent is N-cyclohexyl-2-aminoethanesulfonic acid, and a zwitterionic compound having an amino group and a sulfo group is used as a buffer for the eluent used in the HPLC method. The method for measuring saccharified hemoglobin according to.
[8] The method for measuring saccharified hemoglobin according to claim 7, wherein the zwitterionic compound having an amino group and a sulfo group is at least one selected from 2-morpholinoetan sulfonic acid and 3-morpholinopropane sulfonic acid.

本発明の検体希釈液を用いることにより、繰り返し測定において生じる問題が低減でき、効率的に血液検体を測定することができる。 By using the sample diluent of the present invention, problems that occur in repeated measurements can be reduced, and blood samples can be measured efficiently.

pH9.6の検体希釈液を使用した実施例1のHbA1cの繰り返し測定におけるカラム圧力の変化の様子を示す。The state of the change of the column pressure in the repeated measurement of HbA1c of Example 1 using the sample diluent of pH 9.6 is shown. pH9.6の検体希釈液を使用した実施例1のHbA1cの測定において得られたクロマトグラム。図中、1は不安定型HbA1c、2は安定型HbA1cのピークである。Chromatogram obtained in the measurement of HbA1c of Example 1 using a sample diluent having a pH of 9.6. In the figure, 1 is the peak of unstable HbA1c and 2 is the peak of stable HbA1c. pH9.6の検体希釈液を使用した実施例1のHbA1cの測定結果を示す。The measurement result of HbA1c of Example 1 using the sample diluent of pH 9.6 is shown. pH7.0の検体希釈液を使用した比較例1のHbA1cの繰り返し測定におけるカラム圧力の変化の様子を示す。The state of the change of the column pressure in the repeated measurement of HbA1c of Comparative Example 1 using the sample diluent of pH 7.0 is shown. pH10.5の検体希釈液を使用した比較例2のHbA1cの繰り返し測定において得られたクロマトグラム。図中、1は不安定型HbA1c、2は安定型HbA1cのピークである。Chromatogram obtained by repeated measurement of HbA1c of Comparative Example 2 using a sample diluent having a pH of 10.5. In the figure, 1 is the peak of unstable HbA1c and 2 is the peak of stable HbA1c. HPLC用測定試料を動的光散乱法にて測定した時の、pHとHPLC用測定試料中の粒子径サイズの関係を示すグラフ。The graph which shows the relationship between the pH and the particle size in the measurement sample for HPLC when the measurement sample for HPLC was measured by the dynamic light scattering method. CHESを添加せずに作製した検体希釈剤を用いた、HPLC用測定試料を動的光散乱法にて測定した時の、pHとHPLC用測定試料中の粒子径サイズの関係を示すグラフ。The graph which shows the relationship between the pH and the particle size in the measurement sample for HPLC when the measurement sample for HPLC using the sample diluent prepared without adding CHES was measured by the dynamic light scattering method.

以下に実施の形態を示して本発明を詳細に説明する。
本実施形態における血液検体は、哺乳動物、特にヒトの体内から取得された液体のことを言い、健康診断などでバイアルなどの容器中に採取されたものを言う。
The present invention will be described in detail below with reference to embodiments.
The blood sample in the present embodiment refers to a liquid obtained from the body of a mammal, particularly a human, and refers to a liquid collected in a container such as a vial for a medical examination or the like.

本明細書では、検体希釈液が加えられた血液検体をHPLC用測定試料と言う。検体希釈液は、血液検体に対し体積比で50〜200倍の割合で加えられる。好ましくは、80〜150倍の割合であり、より好ましくは、90〜110倍の割合である。血液検体は、採取と同時に検体希釈液で希釈してもよいし、何らかの操作後に検体希釈液を加えてもよい。 In the present specification, a blood sample to which a sample diluent is added is referred to as a measurement sample for HPLC. The sample diluent is added at a volume ratio of 50 to 200 times the blood sample. The ratio is preferably 80 to 150 times, more preferably 90 to 110 times. The blood sample may be diluted with the sample diluent at the same time as the collection, or the sample diluent may be added after some operation.

検体希釈液は、そのpHを安定に保つために緩衝剤を含んでもよい。緩衝剤としては、例えばリン酸、酢酸、ギ酸、炭酸、アミン化合物、及びこれらの塩、並びにこれらの組み合わせが挙げられる。リン酸系緩衝液は、緩衝作用を示すpHの範囲が広く、最もよく用いられる。アミン化合物を添加した緩衝液もしばしば好適に用いられる。アミン化合物の例としては、エタノールアミン、ジメチルアミノエタノール、トリエタノールアミン、ジエタノールアミン、ピペラジン、ピリジン、イミダゾール、トリス(ヒドロキシメチル)アミノメタン(Tris)などが挙げられる。また、グッドの緩衝液(Good buffers)と言われる、2−モルホリノエタンスルホン酸(MES)、3−モルホリノプロパンスルホン酸(MOPS)、ピペラジン−N,N’−ビス(2−エタンスルホン酸)(PIPES)、2−〔4−(2−ヒドロキシエチル)−1−ピペラジニル〕エタンスルホン酸(HEPES)、2−ヒドロキシ−3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸(HEPSO)、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸(EPPS)、N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸(BES)、N−(2−アセトアミド)−2−アミノエタンスルホン酸(ACES)、N−(2−アセトアミド)イミノ二酢酸(ADA)、N−〔トリス(ヒドロキシメチル)メチル〕−2−アミノエタンスルホン酸(TES)、N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸(TAPS)、N−シクロヘキシル−2−アミノエタンスルホン酸(CHES)、N−シクロヘキシル−3−アミノプロパンスルホン酸(CAPS)などの両性イオン化合物も好適に用いられる。これらの中でも、本発明の検体希釈液の要求するpH領域に緩衝能を有することから、CHES、CAPSがより好適に使用される。粒径の小さな充填剤を用いたカラムを使用するHPLC法による測定においても、繰り返し使用によるカラム圧の上昇を抑えられる点で、CHESが最も好ましい。 The sample diluent may contain a buffer to keep its pH stable. Examples of the buffer include phosphoric acid, acetic acid, formic acid, carbonic acid, amine compounds, salts thereof, and combinations thereof. Phosphate-based buffers are most often used because they have a wide pH range that exhibits a buffering action. A buffer solution to which an amine compound has been added is also often preferably used. Examples of amine compounds include ethanolamine, dimethylaminoethanol, triethanolamine, diethanolamine, piperazin, pyridine, imidazole, tris (hydroxymethyl) aminomethane (Tris) and the like. In addition, 2-morpholinoethanesulfonic acid (MES), 3-morpholinopropanesulfonic acid (MOPS), piperazin-N, N'-bis (2-ethanesulfonic acid), which are called Good buffers, (2-morpholinoethanesulfonic acid) ( PIPES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 2-hydroxy-3- [4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid ( HEPSO), 3- [4- (2-Hydroxyethyl) -1-piperazinyl] propanesulfonic acid (EPPS), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), N- (2-Acetamide) -2-aminoethanesulfonic acid (ACES), N- (2-acetamide) iminodiacetic acid (ADA), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES) , N-Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), etc. Ionic compounds are also preferably used. Among these, CHES and CAPS are more preferably used because they have a buffering capacity in the pH range required by the sample diluent of the present invention. Even in the measurement by the HPLC method using a column using a packing material having a small particle size, CHES is most preferable in that an increase in column pressure due to repeated use can be suppressed.

検体希釈液には、これら成分以外に、必要に応じて界面活性剤、水溶性の有機溶剤、防腐剤、抗凝固剤、及びその他の塩を含んでもよい。界面活性剤の例としては、Triton(登録商標)X−100、Tween(登録商標)20、Tween80、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。添加する界面活性剤としては、TritonX−100がより好ましい。水溶性の有機溶剤の例としては、アセトン、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アセトニトリル、N,N−ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)などが挙げられる。防腐剤としては、アジ化ナトリウム(NaN3)、パラベン、プロクリン300(Proclin300)などが挙げられる。抗凝固剤としてはエチレンジアミン四酢酸・二ナトリウム(EDTA・2Na)、エチレンジアミン四酢酸・二カリウム(EDTA・2K)、エチレンジアミン四酢酸・三カリウム(EDTA・3K)、フッ化ナトリウム、フッ化カリウムなどが挙げられる。その他の塩としては、添加される塩の種類としては、塩化ナトリウム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カリウム、臭化アンモニウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムなどが挙げられる。 In addition to these components, the sample diluent may contain a surfactant, a water-soluble organic solvent, a preservative, an anticoagulant, and other salts, if necessary. Examples of surfactants include Triton® X-100, Tween® 20, Tween80, sodium dodecylbenzenesulfonate and the like. As the surfactant to be added, Triton X-100 is more preferable. Examples of water-soluble organic solvents include acetone, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, Ethylene, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), dimethylsulfoxide (DMSO) and the like can be mentioned. Examples of the preservative include sodium azide (NaN 3 ), paraben, Proclin 300 and the like. Anticoagulants include ethylenediaminetetraacetic acid / disodium (EDTA / 2Na), ethylenediaminetetraacetic acid / dipotassium (EDTA / 2K), ethylenediaminetetraacetic acid / tripotassium (EDTA / 3K), sodium fluoride, potassium fluoride, etc. Can be mentioned. Examples of other salts to be added include sodium chloride, potassium chloride, ammonium chloride, sodium bromide, potassium bromide, ammonium bromide, sodium sulfate, potassium sulfate, ammonium sulfate and the like.

緩衝剤、塩の組み合わせ、濃度などは目的に応じて適宜調節される。HPLC法においては、注入するHPLC用測定試料の塩濃度が高すぎることは好ましくないので、通常0.1mmol/L〜500mmol/Lの濃度に調整される。緩衝液のpHは、公知の方法で調節される。例えば、必要な成分(緩衝剤やその他の化合物)が含まれた水溶液のpHを測定しながら、アルカリまたは酸を加えることにより調節する。 The buffer, salt combination, concentration, etc. are appropriately adjusted according to the purpose. In the HPLC method, it is not preferable that the salt concentration of the measurement sample for HPLC to be injected is too high, so the concentration is usually adjusted to 0.1 mmol / L to 500 mmol / L. The pH of the buffer is adjusted by a known method. For example, it is adjusted by adding alkali or acid while measuring the pH of an aqueous solution containing the necessary components (buffers and other compounds).

本実施形態における検体希釈液のpHは9.0〜10.0である。本発明の検体希釈液の効果は、繰り返し測定においてその効果が顕現する。例えば、血液検体から、本発明の検体希釈液を用いて作製したHPLC用測定試料を2000回〜3000回繰り返し測定しても、HbA1cの測定値は安定した値を示し、カラム圧も安定している。これに対し、検体希釈液のpHが9.0より小さい時は、繰り返し測定において、カラム圧の上昇が起こる。この結果、装置圧が上がり、送液が難しくなり測定ができなくなる。ここでの装置圧とは、装置に備えた圧力計により測定した流量1.5ml/minの時にポンプ出口にかかる圧力である。装置圧は、配管、フィルター、カラム、検出器などを、溶離液が流れる時に発生する圧力である。多くの場合、装置圧の上昇は、カラム圧の上昇がその原因である。カラム圧の上昇は、カラムにおける微粒子のつまり、充てん剤の汚染、充てん剤の変質などであると推測される。
pHが10.0より大きい時は、測定結果に好ましくない影響が顕れる。すなわち、HbA1cの測定値として、正しい値が得られなくなる。血液検体内のタンパク質を中心とする成分が変性するためと推測される。検体希釈液は、pH9.2〜9.8であることが好ましく、pH9.4〜9.7であることが、より好ましい。なお、pHは25℃で測定された場合の数値とする。
The pH of the sample diluent in this embodiment is 9.0 to 10.0. The effect of the sample diluent of the present invention is manifested in repeated measurements. For example, even if the measurement sample for HPLC prepared from the blood sample using the sample diluent of the present invention is repeatedly measured 2000 to 3000 times, the measured value of HbA1c shows a stable value and the column pressure is also stable. There is. On the other hand, when the pH of the sample diluent is less than 9.0, the column pressure increases in repeated measurements. As a result, the device pressure rises, making it difficult to feed the liquid and making measurement impossible. The device pressure here is the pressure applied to the pump outlet when the flow rate is 1.5 ml / min measured by a pressure gauge provided in the device. The device pressure is the pressure generated when the eluent flows through pipes, filters, columns, detectors, and the like. In many cases, the increase in device pressure is due to the increase in column pressure. It is presumed that the increase in column pressure is due to clogging of fine particles in the column, that is, contamination of the filler, alteration of the filler, and the like.
When the pH is higher than 10.0, an unfavorable effect appears on the measurement result. That is, a correct value cannot be obtained as the measured value of HbA1c. It is presumed that this is because the protein-based components in the blood sample are denatured. The sample diluent preferably has a pH of 9.2 to 9.8, more preferably 9.4 to 9.7. The pH is a value measured at 25 ° C.

本実施形態による検体希釈剤がHPLC法を用いる血液検体測定において効果を示す理由の詳細は不明である。血液検体に検体希釈液を加えて得られるカラム注入用検体について動的光散乱法による分析を行ったところ、検体希釈液のpHによって、何らかの含有する微細な粒子と想定されるものの平均径が変化することが判明した。pH9以上の時に、測定された粒子と想定されるものの平均径が小さくなる。こうした傾向は、希釈剤の緩衝剤として、CHESを用いた時や、リン酸を用いた時に共通して観測された。このようなHPLC用測定試料中の微細粒子の平均径の低下が、繰り返し測定する際に装置圧の上昇などの不都合を防ぐ要因となっている可能性が考えられる。 The details of the reason why the sample diluent according to this embodiment is effective in blood sample measurement using the HPLC method are unknown. When a sample for column injection obtained by adding a sample diluent to a blood sample was analyzed by a dynamic light scattering method, the average diameter of what was supposed to be some fine particles changed depending on the pH of the sample diluent. It turned out to be. When the pH is 9 or higher, the average diameter of the measured particles becomes smaller. This tendency was commonly observed when CHES was used as a buffer for the diluent and when phosphoric acid was used. It is considered that such a decrease in the average diameter of the fine particles in the measurement sample for HPLC is a factor for preventing inconveniences such as an increase in the device pressure during repeated measurement.

本実施形態の検体希釈液は、HPLC法による血液検体の測定において好適に使用できる。とりわけ、糖化ヘモグロビンの測定においてその効果が発揮される。糖化ヘモグロビン測定では、血液検体に含まれる赤血球中のヘモグロビン類を測定する。糖化ヘモグロビンの測定は、糖尿病などの診断の指標として、一般的に広く用いられる。このため、多数の血液検体を、迅速に測定する必要がある。多数の検体を迅速に測定するために、より多くの繰り返し測定が可能であることが望ましい。
このような事情により、本発明の検体希釈液は、糖化ヘモグロビンの測定において特に有用である。
The sample diluent of the present embodiment can be suitably used in the measurement of blood samples by the HPLC method. In particular, its effect is exhibited in the measurement of glycated hemoglobin. In glycated hemoglobin measurement, hemoglobins in erythrocytes contained in a blood sample are measured. Measurement of glycated hemoglobin is generally widely used as an index for diagnosis of diabetes and the like. Therefore, it is necessary to measure a large number of blood samples quickly. In order to measure a large number of samples quickly, it is desirable that more repeated measurements are possible.
Under these circumstances, the sample diluent of the present invention is particularly useful in the measurement of glycated hemoglobin.

検体希釈液による血液検体の希釈は、血液検体に検体希釈液の注入後暫時放置するか、またはバイアルを強制的に振り混ぜるかして行われる。得られたカラム注入用検体は、その適当量がカラムに注入される。
HPLC用測定試料を注入するカラムの充填剤としては、イオン交換基を有する非多孔質有機高分子粒子が用いられる。分析対象が、陽イオンとして存在する場合には、陽イオン交換基を有する充填剤が用いられ、陰イオンとして存在する場合には、陰イオン交換基を有する充填剤が用いられる。糖化ヘモグロビンの測定においては、一般に陽イオン交換基を有する充填剤が用いられる。非多孔質有機高分子粒子は、その表面に微細な細孔をほとんど有しない。具体的には、ガス吸着法によって測定される全細孔容積が粒子の質量に対して0.05cm/g以下であることが好ましく、0.02cm/g以下であることがさらに好ましい。微細な細孔がほとんどない粒子は、強度が向上する。また、この粒子を基材とした充填剤を用いてHPLC分析を行う場合、試料に含まれるたんぱく質などの化合物が、細孔内を拡散することがないので、迅速な分析が可能になる。
全細孔容積は、装置としてカンタクローム社製Autosorb(登録商標) iQを用いて測定することができる。
The blood sample is diluted with the sample diluent by leaving it for a while after injecting the sample diluent into the blood sample, or by forcibly shaking the vial. An appropriate amount of the obtained sample for column injection is injected into the column.
Non-porous organic polymer particles having an ion exchange group are used as the packing material for the column into which the measurement sample for HPLC is injected. When the analysis target exists as a cation, a filler having a cation exchange group is used, and when it exists as an anion, a filler having an anion exchange group is used. In the measurement of glycated hemoglobin, a filler having a cation exchange group is generally used. Non-porous organic polymer particles have few fine pores on their surface. Specifically, it is preferable that the total pore volume is 0.05 cm 3 / g or less with respect to the mass of the particles measured by a gas adsorption method, and more preferably less 0.02 cm 3 / g. Particles with few fine pores have improved strength. In addition, when HPLC analysis is performed using a filler using these particles as a base material, compounds such as proteins contained in the sample do not diffuse in the pores, so that rapid analysis becomes possible.
The total pore volume can be measured using Autosorb® iQ manufactured by Kantachrome Co., Ltd. as an apparatus.

本実施形態の検体希釈液の効果を十分に得るためには、充填剤であるイオン交換基を有する非多孔質有機高分子粒子の体積平均粒子径は、1.5μm〜3.5μmであることが好ましい。前記粒径範囲の充填剤を充填したカラムでは、測定対象の成分を、迅速、かつ効率よく分離することができる。こうした利点の反面、粒径が小さい充填剤を用いたカラムでは、装置圧の上昇などの不都合が生じることがある。しかし、本発明の検体希釈液を用いることにより、こうした不都合を回避することができる。分離の効率と装置圧の上昇のバランスの観点から、粒子の平均粒子径は2.5μm〜3.2μmがより好ましい。 In order to fully obtain the effect of the sample diluent of the present embodiment, the volume average particle size of the non-porous organic polymer particles having an ion exchange group as a filler shall be 1.5 μm to 3.5 μm. Is preferable. In the column filled with the filler in the particle size range, the components to be measured can be separated quickly and efficiently. On the other hand, in the column using the filler having a small particle size, inconveniences such as an increase in the device pressure may occur. However, such inconvenience can be avoided by using the sample diluent of the present invention. From the viewpoint of the balance between the efficiency of separation and the increase in device pressure, the average particle size of the particles is more preferably 2.5 μm to 3.2 μm.

体積平均粒子径は、以下の粒子径を意味する。すなわち、充填剤粒子を粒度分布測定装置で2000個以上になるように撮像し、得られた二次元の粒子像(静止画像が好ましい)から、各粒子の円相当径(粒子像の投影面積と同じ面積を持つ円の直径)を得る。その円相当径から各粒子の体積を算出して、算出された体積を基準に、平均化して得た粒子径である。このとき、各粒子は、上記の円相当径と同一の直径を有する球体とみなす。粒度分布測定装置としては、FPIA−3000(シスメックス(株)製)などが使用できる。 The volume average particle size means the following particle size. That is, the packing material particles are imaged with a particle size distribution measuring device so as to have 2000 or more particles, and from the obtained two-dimensional particle image (preferably a still image), the equivalent circle diameter of each particle (projected area of the particle image) Get the diameter of a circle with the same area). The volume of each particle is calculated from the equivalent circle diameter, and the particle diameter is averaged based on the calculated volume. At this time, each particle is regarded as a sphere having the same diameter as the above-mentioned circle-equivalent diameter. As the particle size distribution measuring device, FPIA-3000 (manufactured by Sysmex Corporation) or the like can be used.

糖化ヘモグロビン等の血液検体中の成分の測定においては、充填剤としては、特許文献2に記載のポリマー充填剤がより好ましい。具体的には、(メタ)アクリル酸エステル由来のモノマー単位とジビニルベンゼン由来のモノマー単位を有する共重合体の粒子にイオン交換基である、スルホ基が結合した充填剤を充填したカラムが好ましい。こうした充填剤は、粒子径が小さい場合にも、粒子自体が使用時のカラム圧によって変形するなどの不都合が生じることが少なく、より好適な糖化ヘモグロビンの分析結果を与える。なお、(メタ)アクリル酸エステルは、アクリル酸エステルまたはメタクリル酸エステルを指す。 In the measurement of components in blood samples such as glycated hemoglobin, the polymer filler described in Patent Document 2 is more preferable as the filler. Specifically, a column in which particles of a copolymer having a monomer unit derived from (meth) acrylic acid ester and a monomer unit derived from divinylbenzene are filled with a filler in which a sulfo group, which is an ion exchange group, is bonded is preferable. Such a filler is less likely to cause inconveniences such as deformation of the particles themselves due to the column pressure during use even when the particle size is small, and gives a more suitable analysis result of glycated hemoglobin. The (meth) acrylic acid ester refers to an acrylic acid ester or a methacrylic acid ester.

上記カラムについてより詳しく説明する。
上記共重合体粒子に用いられるジビニルベンゼンは、メタ及びパラ位の異性体混合物である。(メタ)アクリル酸エステルとしては、グリシジルメタアクリレートが好ましい。グリシジルメタクリレートを用いる場合、グリシジルメタクリレートの使用量は、モノマー合計に対する割合で、70質量%〜90質量%であることが好ましい。共重合体粒子は懸濁重合などにより製造することができる。懸濁重合では、多孔質有機高分子粒子を製造する際には、希釈剤を加えて重合する。非多孔性有機高分子を製造する場合には、希釈剤の添加を行わずに重合することにより、目的物を得ることができる。
The above column will be described in more detail.
Divinylbenzene used in the above-mentioned copolymer particles is a mixture of isomers at the meta and para positions. As the (meth) acrylic acid ester, glycidyl methacrylate is preferable. When glycidyl methacrylate is used, the amount of glycidyl methacrylate used is preferably 70% by mass to 90% by mass in proportion to the total amount of monomers. The copolymer particles can be produced by suspension polymerization or the like. In suspension polymerization, when producing porous organic polymer particles, a diluent is added for polymerization. In the case of producing a non-porous organic polymer, the desired product can be obtained by polymerizing without adding a diluent.

重合によって得られたジビニルベンゼンとグリシジルメタクリレート共重合体粒子にスルホ化剤を反応させることによりスルホ基を結合させる。スルホ化剤としては、2−ヒドロキシエタンスルホン酸ナトリウム、3−ヒドロキシプロパンスルホン酸ナトリウム、2−メルカプトエタンスルホン酸ナトリウム、3−メルカプトプロパンスルホン酸ナトリウム、2−ブロモプロパンスルホン酸ナトリウム、3−ブロモプロパンスルホン酸ナトリウム、1,3−プロパンスルトン、2,4−ブタンスルトン、1,3−ブタンスルトン、1,4−ブタンスルトン等が挙げられる。スルホ化剤は、重合によって得られた共重合体粒子の表面に存在するエポキシ基との反応を利用して基材表面に結合される。これらスルホ化剤の中でも、反応の容易さから3−メルカプトプロパンンスルホン酸ナトリウム、1,3−プロパンスルトンが好ましく、1,3−プロパンスルトンがより好ましい。上記共重合体粒子に結合するスルホ基の量は20μmol/g〜300μmol/gが好ましい。 A sulfo group is bonded by reacting the divinylbenzene obtained by the polymerization with the glycidyl methacrylate copolymer particles with a sulfolating agent. Examples of the sulphonating agent include sodium 2-hydroxyethanesulfonate, sodium 3-hydroxypropanesulfonate, sodium 2-mercaptoethanesulfonate, sodium 3-mercaptopropanesulfonate, sodium 2-bromopropanesulfonate, and 3-bromopropane. Examples thereof include sodium sulfonate, 1,3-propane sulton, 2,4-butane sulton, 1,3-butan sulton, and 1,4-butan sulton. The sulfonate is bonded to the surface of the substrate by utilizing the reaction with the epoxy group existing on the surface of the copolymer particles obtained by the polymerization. Among these sulfonates, sodium 3-mercaptopropanate sulfonate and 1,3-propane sultone are preferable, and 1,3-propane sultone is more preferable from the viewpoint of easiness of reaction. The amount of the sulfo group bonded to the copolymer particles is preferably 20 μmol / g to 300 μmol / g.

充填剤のスルホ基の量は以下の方法によって測定することができる。すなわち、真空乾燥させた粒子1gに0.5M塩酸10mLを加えて分散させ、濾過した後に水で洗浄する。これにより、スルホ基が酸型になり、洗浄された状態の粒子を得る。次に、前記粒子に0.5M水酸化ナトリウム10mLを加え、濾液を集めるための容器を設置した状態でそれを濾過し、次いで粒子を水10mLで洗浄する。濾液と洗浄液の混合液を0.1M塩酸で滴定する。このときに要した塩酸のモル数を求め、水酸化ナトリウムのモル数(上記の場合、5mM)から引いた値を、スルホ基の量とする。 The amount of sulfo groups in the filler can be measured by the following method. That is, 10 mL of 0.5 M hydrochloric acid is added to 1 g of vacuum-dried particles to disperse the particles, and the particles are filtered and then washed with water. As a result, the sulfo group becomes an acid type, and the particles in a washed state are obtained. Next, 10 mL of 0.5 M sodium hydroxide is added to the particles, and the particles are filtered with a container for collecting the filtrate installed, and then the particles are washed with 10 mL of water. The mixture of the filtrate and the washing solution is titrated with 0.1 M hydrochloric acid. The number of moles of hydrochloric acid required at this time is determined, and the value obtained by subtracting the number of moles of sodium hydroxide (5 mM in the above case) is taken as the amount of sulfo groups.

本実施形態によるHPLC用測定試料を用いた糖化ヘモグロビンのHPLC測定においては、迅速な測定のためにステップグラジエント法が好適に用いられる。典型的なグラジエント条件としては、溶離液の第1液目をpH4.0〜6.0の弱酸性に調整し、溶離液の第2液をpH8.0〜11.0に調整することが挙げられる。この条件により短時間でのHbA1c測定が達成できる。
それぞれのグラジエント測定の後は、カラムの洗浄と次の測定への準備を兼ねて、溶離液の第3液を流すことも広く行われる。
In the HPLC measurement of saccharified hemoglobin using the measurement sample for HPLC according to the present embodiment, the step gradient method is preferably used for rapid measurement. Typical gradient conditions include adjusting the first solution of the eluent to a weak acidity of pH 4.0 to 6.0 and adjusting the second solution of the eluate to a pH of 8.0 to 11.0. Be done. Under this condition, HbA1c measurement can be achieved in a short time.
After each gradient measurement, it is also widely practiced to flush a third eluent to clean the column and prepare for the next measurement.

ステップグラジエント法に使用する溶離液の第1液、第2液、及び第3液としては、適宜、目的にかなったものが使用される。例えば、第1液、第2液、及び第3液は、そのpHを安定に保つため緩衝剤を含んでもよい。緩衝剤としては、例えばリン酸、酢酸、ギ酸、炭酸、アミン化合物、及びこれらの塩、並びにこれらの組み合わせが挙げられる。リン酸系緩衝液は、緩衝作用を示すpHの範囲が広く、最もよく用いられるアミン化合物を添加した緩衝液もしばしば好適に用いられる。アミン化合物の例としては、エタノールアミン、ジメチルアミノエタノール、トリエタノールアミン、ジエタノールアミン、ピペラジン、ピリジン、イミダゾール、トリス(ヒドロキシメチル)アミノメタン(Tris)などが挙げられる。また、グッドの緩衝液(Good buffers)といわれる、2−モルホリノエタンスルホン酸(MES)、3−モルホリノプロパンスルホン酸(MOPS)、ピペラジン−N,N’−ビス(2−エタンスルホン酸)(PIPES)、2−〔4−(2−ヒドロキシエチル)−1−ピペラジニル〕エタンスルホン酸(HEPES)、2−ヒドロキシ−3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸(HEPSO)、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸(EPPS)、N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸(BES)、N−(2−アセトアミド)−2−アミノエタンスルホン酸(ACES)、N−(2−アセトアミド)イミノ二酢酸(ADA)、N−〔トリス(ヒドロキシメチル)メチル〕−2−アミノエタンスルホン酸(TES)、N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸(TAPS)、N−シクロヘキシル−2−アミノエタンスルホン酸(CHES)、N−シクロヘキシル−3−アミノプロパンスルホン酸(CAPS)などの両性イオン化合物も好適に用いられる。 As the first liquid, the second liquid, and the third liquid of the eluent used in the step gradient method, those suitable for the purpose are appropriately used. For example, the first liquid, the second liquid, and the third liquid may contain a buffer to keep the pH stable. Examples of the buffer include phosphoric acid, acetic acid, formic acid, carbonic acid, amine compounds, salts thereof, and combinations thereof. The phosphoric acid-based buffer has a wide pH range showing a buffering action, and a buffer solution to which the most commonly used amine compound is added is often preferably used. Examples of amine compounds include ethanolamine, dimethylaminoethanol, triethanolamine, diethanolamine, piperazin, pyridine, imidazole, tris (hydroxymethyl) aminomethane (Tris) and the like. In addition, 2-morpholinoethanesulfonic acid (MES), 3-morpholinopropanesulfonic acid (MOPS), piperazin-N, N'-bis (2-ethanesulfonic acid) (PIPES), which are called Good buffers. ), 2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 2-hydroxy-3- [4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid (HEPSO) ), 3- [4- (2-Hydroxyethyl) -1-piperazinyl] propanesulfonic acid (EPPS), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), N-( 2-acetamido) -2-aminoethanesulfonic acid (ACES), N- (2-acetamido) iminodiacetic acid (ADA), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), Amphoteric ions such as N-Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) Compounds are also preferably used.

溶離液には、これら成分以外に、必要に応じて界面活性剤、水溶性の有機溶剤、防腐剤、抗凝固剤、及びその他の塩を含んでもよい。界面活性剤の例としては、TritonX−100、Tween20、Tween80、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。水溶性の有機溶剤の例としては、アセトン、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アセトニトリル、N,N−ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)などが挙げられる。防腐剤としては、アジ化ナトリウム、パラベン、プロクリン300などが挙げられる。抗凝固剤としてはエチレンジアミン四酢酸・二ナトリウム(EDTA・2Na)、エチレンジアミン四酢酸・二カリウム(EDTA・2K)、フッ化ナトリウム、フッ化カリウムなどが挙げられる。その他の塩としては、添加される塩の種類としては、塩化ナトリウム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カリウム、臭化アンモニウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムなどが挙げられる。 In addition to these components, the eluent may contain a surfactant, a water-soluble organic solvent, a preservative, an anticoagulant, and other salts, if necessary. Examples of surfactants include Triton X-100, Tween 20, Tween 80, sodium dodecylbenzene sulfonate and the like. Examples of water-soluble organic solvents include acetone, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, Ethylene, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), dimethylsulfoxide (DMSO) and the like can be mentioned. Examples of the preservative include sodium azide, paraben, Proclin 300 and the like. Examples of the anticoagulant include ethylenediaminetetraacetic acid / disodium (EDTA / 2Na), ethylenediaminetetraacetic acid / dipotassium (EDTA / 2K), sodium fluoride, potassium fluoride and the like. Examples of other salts to be added include sodium chloride, potassium chloride, ammonium chloride, sodium bromide, potassium bromide, ammonium bromide, sodium sulfate, potassium sulfate, ammonium sulfate and the like.

緩衝剤、塩の組み合わせ、濃度などは目的に応じて適宜調節される。HPLC法においては、注入するHPLC用測定試料の塩濃度が高すぎることは好ましくないので、通常0.1mmol/L〜500mmol/Lの濃度に調整される。緩衝液のpHは、公知の方法で調節される。例えば、必要な成分(緩衝剤やその他の化合物)が含まれた水溶液のpHを測定しながら、アルカリまたは酸を加えることにより調節する。 The buffer, salt combination, concentration, etc. are appropriately adjusted according to the purpose. In the HPLC method, it is not preferable that the salt concentration of the measurement sample for HPLC to be injected is too high, so the concentration is usually adjusted to 0.1 mmol / L to 500 mmol / L. The pH of the buffer is adjusted by a known method. For example, it is adjusted by adding alkali or acid while measuring the pH of an aqueous solution containing the necessary components (buffers and other compounds).

HPLC用測定試料を用いたステップグラジエント法による糖化ヘモグロビンの測定においては、通常、第1液をpH4.0〜6.0の弱酸性に調整し、第2液をpH8.0〜11.0に調整する。 In the measurement of saccharified hemoglobin by the step gradient method using a measurement sample for HPLC, the first solution is usually adjusted to a weak acidity of pH 4.0 to 6.0, and the second solution is adjusted to pH 8.0 to 11.0. adjust.

粒径の小さな充填剤を充填してカラムを用いたHPLC法の繰り返し測定においては、使用する溶離液の組み合わせの化学的性質が、大きく異ならないことが、カラムへの影響を小さくできる点で好ましいと考えられる。こうした推察から、本発明による一態様である、糖化ヘモグロビンの測定方法では、CHESまたは、CAPSを検体希釈剤の緩衝剤に用いる場合に、CHES、CAPSと化学項構造の類似した、アミノ基とスルホ基を有する両性イオン化合物を、ステップグラジエントにおける溶離液の緩衝剤に用いることが好ましい。それぞれのpHにおいて緩衝能を有する組み合わせとして、第1液には、MESを、第2液には、MOPSをそれぞれ使用することがより好ましい。検体希釈液にCHES、第1液にMES、第2液にMOPSを用いることが、さらに好ましい。 In the repeated measurement of the HPLC method using a column filled with a filler having a small particle size, it is preferable that the chemical properties of the eluent combinations used do not differ significantly from the viewpoint that the influence on the column can be reduced. it is conceivable that. Based on these inferences, in the method for measuring glycated hemoglobin, which is one aspect of the present invention, when CHES or CAPS is used as a buffer for a sample diluent, amino groups and sulfos having similar chemical term structures to CHES and CAPS. Zwitterionic compounds with groups are preferably used as buffers for eluents in step gradients. It is more preferable to use MES as the first liquid and MOPS as the second liquid as a combination having a buffering ability at each pH. It is more preferable to use CHES as the sample diluent, MES as the first solution, and MOPS as the second solution.

本実施形態の、液体クロマトグラフィー用カラムは、前述の方法により得られるカチオン交換タイプの充填剤を、スラリー法等の公知の充填法によってカラムに充填することによって得られる。 The column for liquid chromatography of the present embodiment is obtained by filling the column with a cation exchange type filler obtained by the above method by a known packing method such as a slurry method.

本実施形態の液体クロマトグラフィー用カラムは、筐体の材質がPEEK(ポリエーテルエーテルケトン)製であることが好ましい。一般に液体クロマトグラフィー用カラムには、SUS製のカラムも用いられるが、本発明においてはヘモグロビン類など血中に含まれるタンパク質の筐体への吸着を抑制するため、PEEK製のカラムが好ましく用いられる。カラム内には充填剤粒子が流出しないためのフリットが設置されるが、そのフリットも吸着を抑制するためにPEEK製、あるいはPEEKとPTFE(ポリテトラフルオロエチレン)とを混合し焼結した材質のものを使用することが望ましい。 The liquid chromatography column of the present embodiment preferably has a housing made of PEEK (polyetheretherketone). Generally, a column made of SUS is also used as a column for liquid chromatography, but in the present invention, a column made of PEEK is preferably used in order to suppress adsorption of proteins contained in blood such as hemoglobin to the housing. .. A frit is installed in the column to prevent the filler particles from flowing out, but the frit is also made of PEEK to suppress adsorption, or made of a material obtained by mixing PEEK and PTFE (polytetrafluoroethylene) and sintering it. It is desirable to use one.

カラムサイズは特に制約はないが、短時間で測定を終えることが望まれることから、長さは短い方が好ましく、具体的には7mm以上50mm以下が好ましい。さらに好ましくは8mm以上20mm以下である。短すぎると十分な分離を達成することができない。一方、長すぎると分析に要する時間が長くなってしまう。また太さは、必要な流速を適用した場合にカラム圧が大きくなりすぎない太さの範囲が好ましい。一方、太すぎると消費する溶離液の量が多くなり経済的でなくなる。具体的には内径1mm以上10mm以下が好ましい。さらに好ましくは2mm以上6mm以下である。
必要な流量は、カラムの太さ、充填剤のスルホ基量、充填剤の平均粒子径等と関係する。例えば、カラムの太さが、内径4.6mmの場合、流量は0.2mL/分〜5.0mL/分が好ましく、1.0mL/分〜2.0mL/分がより好ましい。
The column size is not particularly limited, but it is desirable that the measurement be completed in a short time, so that the length is preferably short, and specifically, 7 mm or more and 50 mm or less is preferable. More preferably, it is 8 mm or more and 20 mm or less. If it is too short, sufficient separation cannot be achieved. On the other hand, if it is too long, the time required for analysis will be long. Further, the thickness is preferably in the range of the thickness in which the column pressure does not become too large when the required flow velocity is applied. On the other hand, if it is too thick, the amount of eluate consumed will increase, making it uneconomical. Specifically, the inner diameter is preferably 1 mm or more and 10 mm or less. More preferably, it is 2 mm or more and 6 mm or less.
The required flow rate is related to the thickness of the column, the amount of sulfo groups in the filler, the average particle size of the filler, and the like. For example, when the thickness of the column is 4.6 mm, the flow rate is preferably 0.2 mL / min to 5.0 mL / min, more preferably 1.0 mL / min to 2.0 mL / min.

本実施形態により製造された充てん剤を適用したカラムにより、血中のHbA1cなど糖化ヘモグロビン濃度を測定するに当たっては、複数種の溶離液を送液できるグラジエント機能を搭載した液体クロマトグラフィー装置を用いることが好ましい。このような装置の例としては、AgilentTechnology社のInfinity(登録商標)1260、(株)島津製作所社製Prominenseなどが挙げられる。
また、HbA1c測定専用に設計された装置において特に好適に使用される。HbA1c測定専用に設計された装置は、病院などに設置され糖尿病診断に広く用いられている。HbA1c測定専用装置ではできるだけ短時間で1回の測定が終えられるよう、カラムと溶離液の組み合わせ及びグラジエント条件の最適化がなされている。
In measuring the concentration of glycated hemoglobin such as HbA1c in blood by the column to which the filler produced in this embodiment is applied, a liquid chromatography apparatus equipped with a gradient function capable of sending a plurality of types of eluents should be used. Is preferable. Examples of such an apparatus include Infinity (registered trademark) 1260 manufactured by Agilent Technologies, Prominense manufactured by Shimadzu Corporation, and the like.
It is also particularly preferably used in devices designed specifically for HbA1c measurement. A device designed exclusively for HbA1c measurement is installed in hospitals and the like and is widely used for diabetes diagnosis. In the HbA1c measurement dedicated device, the combination of the column and the eluent and the gradient conditions are optimized so that one measurement can be completed in the shortest possible time.

実施例1:
[重合工程]
グリシジルメタクリレート(日油株式会社製)及びジビニルベンゼン(新日鉄住金化学株式会社製,純度99%)(グリシジルメタクリレート:ジビニルベンゼン=82:17(質量比))からなるモノマー混合物50gに、重合開始剤としての過酸化ラウロイル(ナカライテスク株式会社製)0.5g(前記単量体混合物の1質量%に相当する量)を添加し、混合物を得た。得られた混合物を、1%アルキルジフェニルエーテルスルホン酸ナトリウム水溶液500gを水相として、マイクロチャネル懸濁装置(株式会社イーピーテック製)により油滴とし、さらに重合反応を80℃15時間行い、共重合体粒子を得た。
得られた粒子の平均粒子径は2.7μmであった。
Example 1:
[Polymerization process]
50 g of a monomer mixture consisting of glycidyl methacrylate (manufactured by Nichiyu Co., Ltd.) and divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., purity 99%) (glycidyl methacrylate: divinylbenzene = 82: 17 (mass ratio)) as a polymerization initiator. 0.5 g (amount corresponding to 1% by mass of the monomer mixture) of lauroyl peroxide (manufactured by Nacalai Tesque Co., Ltd.) was added to obtain a mixture. The obtained mixture was prepared into oil droplets using a microchannel suspension device (manufactured by EP Tech Co., Ltd.) using 500 g of a 1% aqueous sodium alkyldiphenyl ether sulfonate solution as an aqueous phase, and the polymerization reaction was further carried out at 80 ° C. for 15 hours to carry out a copolymer Obtained particles.
The average particle size of the obtained particles was 2.7 μm.

[修飾工程]
上記共重合体粒子3gに2−プロパノール24g及び1,3−プロパンスルトン(東京化成工業株式会社製)3gを加え、50℃に加熱した。これに8M水酸化カリウム水溶液1.2gを加え、6時間撹拌した後に濾過し、0.5M塩酸、水、0.5M水酸化ナトリウム水溶液、水で順次洗浄することで陽イオン交換基を有する非多孔質有機高分子粒子(充填剤粒子1)を得た。得られた粒子の平均粒子径は2.8μmであった。
真空乾燥させた充填剤粒子1の1.0gを、0.5M塩酸10mLを加えて分散させ、濾過した後に水で洗浄し、スルホ基が酸型になった粒子を得た。前記粒子に0.5M水酸化ナトリウム10mLを加え、濾液を集めるための容器を設置した状態でそれを濾過し、次いで粒子を水10mLで洗浄した。設置した容器に採取された濾液と洗浄液の混合液を0.1M塩酸で滴定した。初めに使用した水酸化ナトリウムのモル数(5mM)と、滴定に要した塩酸のモル数の差から、スルホ基の量を求めた。その結果、粒子の質量に対するスルホ基量は200μmol/gであった。
ガス吸着による細孔測定(使用装置としてカンタクローム社製Autosorb(登録商標)iQを用いた。)の結果、細孔容積は0.01cm3/gと非常に小さい値であった。
充填剤粒子1をPEEK製の内径4.6mm、長さ10mmのカラムに充填して分析用カラムを得た。
[Modification process]
To 3 g of the above copolymer particles, 24 g of 2-propanol and 3 g of 1,3-propanesulton (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and heated to 50 ° C. 1.2 g of an 8 M potassium hydroxide aqueous solution is added thereto, and the mixture is stirred for 6 hours, filtered, and washed successively with 0.5 M hydrochloric acid, water, 0.5 M sodium hydroxide aqueous solution, and water to obtain a non-cation exchange group. Porous organic polymer particles (filler particles 1) were obtained. The average particle size of the obtained particles was 2.8 μm.
1.0 g of the vacuum-dried filler particles 1 was dispersed by adding 10 mL of 0.5 M hydrochloric acid, filtered, and then washed with water to obtain particles having an acid type sulfo group. 10 mL of 0.5 M sodium hydroxide was added to the particles, and the particles were filtered with a container for collecting the filtrate installed, and then the particles were washed with 10 mL of water. The mixed solution of the filtrate and the washing solution collected in the installed container was titrated with 0.1 M hydrochloric acid. The amount of sulfo group was determined from the difference between the number of moles of sodium hydroxide used at the beginning (5 mM) and the number of moles of hydrochloric acid required for titration. As a result, the amount of sulfo groups with respect to the mass of the particles was 200 μmol / g.
As a result of pore measurement by gas adsorption (using Autosorb (registered trademark) iQ manufactured by Kantachrome Co., Ltd.), the pore volume was a very small value of 0.01 cm 3 / g.
The filler particles 1 were packed in a PEEK column having an inner diameter of 4.6 mm and a length of 10 mm to obtain an analytical column.

[HbA1cの定量]
上記カラムを、HPLC装置、Infinity1260(Agilent Technology社)に接続した。検体希釈液及び溶離液は表1の濃度で各試薬を水に溶解して作製した。なお、25℃におけるpHを、0.1M水酸化カリウム水溶液を用いて表1に記載の数値に調整した。また、分析におけるグラジエント条件を表2に示す。溶離液の流量は、1.5mL/分、温度は37℃で行った。全血検体を検体希釈液によって、体積基準で100倍希釈したHPLC用測定試料を作製した。このHPLC用測定試料 5μLを注入することによる、繰り返し測定を行った。3000回の繰り返し測定においても、圧力の上昇は観測されなかった。また、HbA1cの測定値に大きな変化はなかった。カラム圧の変化の様子を図1に示す。2000回目のHbA1cの測定結果のクロマトグラムを図2に、糖化ヘモグロビンの測定結果の変化の様子を、図3に示す。安定して測定が可能であった。
[Quantification of HbA1c]
The column was connected to an HPLC apparatus, Infinity 1260 (Agilent Technologies). The sample diluent and eluate were prepared by dissolving each reagent in water at the concentrations shown in Table 1. The pH at 25 ° C. was adjusted to the values shown in Table 1 using a 0.1 M aqueous potassium hydroxide solution. Table 2 shows the gradient conditions in the analysis. The flow rate of the eluent was 1.5 mL / min and the temperature was 37 ° C. A measurement sample for HPLC was prepared by diluting a whole blood sample 100-fold with a sample diluent on a volume basis. Repeated measurement was performed by injecting 5 μL of this HPLC measurement sample. No increase in pressure was observed even after 3000 repeated measurements. In addition, there was no significant change in the measured value of HbA1c. The state of the change in the column pressure is shown in FIG. The chromatogram of the measurement result of the 2000th HbA1c is shown in FIG. 2, and the state of change in the measurement result of glycated hemoglobin is shown in FIG. Stable measurement was possible.

Figure 2021081379
CHES:N−シクロヘキシル−2−アミノエタンスルホン酸(緩衝剤)
MES:2−モルホリノエタンスルホン酸(緩衝剤)
MOPS:3−モルホリノプロパンスルホン酸(緩衝剤)
EDTA・3K:エチレンジアミン四酢酸・三カリウム(抗凝固剤)
NaN3:アジ化ナトリウム(防腐剤)
Triton(登録商標)X-100:(界面活性剤)
Proclin300:プロクリン300(防腐剤)
Tween(登録商標)20:(界面活性剤)
Figure 2021081379
CHES: N-cyclohexyl-2-aminoethanesulfonic acid (buffer)
MES: 2-morpholinoetan sulfonic acid (buffer)
MOPS: 3-morpholinopropanesulfonic acid (buffer)
EDTA ・ 3K: Ethylenediaminetetraacetic acid ・ Tripotassium (anticoagulant)
NaN 3 : Sodium azide (preservative)
Triton® X-100: (surfactant)
Proclin300: Proclin 300 (preservative)
Tween® 20: (surfactant)

Figure 2021081379
Figure 2021081379

比較例1:
検体希釈液のpHを7.0とした以外は実施例1と同様にしてHbA1cの繰り返し分析を行った。その時の圧力の変化を図4に示す。測定回数が1000回を超えると圧力が上昇した。このため、それ以上の測定が不可能になった。
Comparative Example 1:
Repeated analysis of HbA1c was performed in the same manner as in Example 1 except that the pH of the sample diluent was set to 7.0. The change in pressure at that time is shown in FIG. The pressure increased when the number of measurements exceeded 1000. This made further measurements impossible.

比較例2:
希釈液のpHを10.5とした以外は実施例1と同様にしてHbA1cの測定を行った繰り返し測定により、クロマトグラムが変化する現象が観測された。500回目のクロマトグラムを図5に示す。HbA1cの測定値が変化してしまい、正しい測定値が得られなくなった。pHが10.5になるとタンパク質の変性等が起こることが、一因ではないかと推測される。
Comparative Example 2:
A phenomenon in which the chromatogram changed was observed by repeated measurement in which HbA1c was measured in the same manner as in Example 1 except that the pH of the diluted solution was set to 10.5. The 500th chromatogram is shown in FIG. The measured value of HbA1c changed, and the correct measured value could not be obtained. It is speculated that protein denaturation and the like occur when the pH reaches 10.5, which may be one of the causes.

HPLC用測定試料中の分子サイズの測定
実施例1に用いた検体希釈液の組成を基にして、pHが異なる検体希釈液を作製した。この検体希釈液を血液検体に処理して得られた、HPLC用測定試料について、試料に含有するZ平均粒子径を動的光散乱法にて測定した。測定にはMalvern社製Zetasizer(登録商標) nano ZSPを使用した。測定結果を図6に示す。pHが9.0以上になると粒子径は平均約20nmでほぼ一定の小さな値を示すが、9.0より小さくなるとZ平均粒子径が増大することがわかった。
HPLC用測定試料中の粒子径は、何に由来するかはわからない。また、繰り返し測定におけるカラム圧の上昇とどのような関係にあるかは不明である。が、本発明の効果が発現する要因の一つではないかと推測される。
実施例1に用いた検体希釈液の組成から、CHESのみを除いた検体希釈液について、同様の実験を行った。含有する粒子サイズの様子を図7に示す。CHESを用いない場合には、HPLC用測定試料中に含まれる粒子径のサイズが大きくなることが分かった。
Measurement of Molecular Size in Measurement Sample for HPLC Based on the composition of the sample diluent used in Example 1, sample diluents having different pH were prepared. With respect to the measurement sample for HPLC obtained by treating this sample diluent into a blood sample, the Z average particle size contained in the sample was measured by a dynamic light scattering method. A Zetasizer (registered trademark) nano ZSP manufactured by Malvern was used for the measurement. The measurement results are shown in FIG. It was found that when the pH was 9.0 or higher, the particle size averaged about 20 nm and showed a small value that was almost constant, but when the pH was lower than 9.0, the Z average particle size increased.
It is unknown what the particle size in the measurement sample for HPLC is derived from. Moreover, it is unclear what kind of relationship it has with the increase in column pressure in repeated measurements. However, it is presumed that this is one of the factors that cause the effects of the present invention to be exhibited.
A similar experiment was performed on the sample diluent obtained by removing only CHES from the composition of the sample diluent used in Example 1. The state of the contained particle size is shown in FIG. It was found that when CHES was not used, the size of the particle size contained in the measurement sample for HPLC was large.

Claims (8)

イオン交換基を有する非多孔質有機高分子粒子からなる充填剤を充填したカラムを用いる高速液体クロマトグラフィー(HPLC)法による血液検体測定の検体希釈液であって、pHが9.0〜10.0であることを特徴とする検体希釈液。 It is a sample diluent for blood sample measurement by a high performance liquid chromatography (HPLC) method using a column packed with a packing material composed of non-porous organic polymer particles having an ion exchange group, and has a pH of 9.0 to 10. A sample diluent characterized by being 0. 検体希釈液が、N−シクロヘキシル−2−アミノエタンスルホン酸及びN−シクロヘキシル−3−アミノプロパンスルホン酸の少なくとも1種を含む緩衝剤を含有する請求項1に記載の検体希釈液。 The sample diluent according to claim 1, wherein the sample diluent contains a buffer containing at least one of N-cyclohexyl-2-aminoethanesulfonic acid and N-cyclohexyl-3-aminopropanesulfonic acid. 検体希釈液中の緩衝剤が、N−シクロヘキシル−2−アミノエタンスルホン酸である請求項2に記載の検体希釈液。 The sample diluent according to claim 2, wherein the buffer in the sample diluent is N-cyclohexyl-2-aminoethanesulfonic acid. イオン交換基を有する非多孔質有機高分子粒子の体積平均粒子径が1.5μm〜3.5μmである請求項1〜3のいずれかに記載の検体希釈液。 The sample diluent according to any one of claims 1 to 3, wherein the volume average particle diameter of the non-porous organic polymer particles having an ion exchange group is 1.5 μm to 3.5 μm. 充填剤が、(メタ)アクリル酸エステル由来のモノマー単位とジビニルベンゼン由来のモノマー単位を有する共重合体粒子にスルホ基が結合した充填剤である請求項1〜4のいずれかに記載の検体希釈液。 The sample dilution according to any one of claims 1 to 4, wherein the filler is a filler in which a sulfo group is bonded to copolymer particles having a monomer unit derived from (meth) acrylic acid ester and a monomer unit derived from divinylbenzene. liquid. 請求項1〜5のいずれかに記載の検体希釈液を用いることを特徴とするHPLC法による糖化ヘモグロビンの測定方法。 A method for measuring glycated hemoglobin by an HPLC method, which comprises using the sample diluent according to any one of claims 1 to 5. 検体希釈液中の緩衝剤がN−シクロヘキシル−2−アミノエタンスルホン酸であり、HPLC法で使用する溶離液の緩衝剤としてアミノ基とスルホ基を有する両性イオン化合物を用いる請求項6に記載の糖化ヘモグロビンの測定方法。 The sixth aspect of claim 6, wherein the buffer in the sample diluent is N-cyclohexyl-2-aminoethanesulfonic acid, and a zwitterionic compound having an amino group and a sulfo group is used as the buffer for the eluent used in the HPLC method. Method for measuring saccharified hemoglobin. アミノ基とスルホ基を有する両性イオン化合物が、2−モルホリノエタンスルホン酸及び3−モルホリノプロパンスルホン酸から選ばれる少なくとも1種である請求項7に記載の糖化ヘモグロビンの測定方法。 The method for measuring saccharified hemoglobin according to claim 7, wherein the zwitterionic compound having an amino group and a sulfo group is at least one selected from 2-morpholinoetan sulfonic acid and 3-morpholinopropane sulfonic acid.
JP2019211188A 2019-11-22 2019-11-22 Sample diluent for blood sample measurement by HPLC method and method for measuring glycated hemoglobin Active JP7347156B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019211188A JP7347156B2 (en) 2019-11-22 2019-11-22 Sample diluent for blood sample measurement by HPLC method and method for measuring glycated hemoglobin
CN202011227969.4A CN112834632B (en) 2019-11-22 2020-11-06 Sample diluent for blood sample measurement by HPLC method and method for measuring glycosylated hemoglobin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211188A JP7347156B2 (en) 2019-11-22 2019-11-22 Sample diluent for blood sample measurement by HPLC method and method for measuring glycated hemoglobin

Publications (2)

Publication Number Publication Date
JP2021081379A true JP2021081379A (en) 2021-05-27
JP7347156B2 JP7347156B2 (en) 2023-09-20

Family

ID=75923782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211188A Active JP7347156B2 (en) 2019-11-22 2019-11-22 Sample diluent for blood sample measurement by HPLC method and method for measuring glycated hemoglobin

Country Status (2)

Country Link
JP (1) JP7347156B2 (en)
CN (1) CN112834632B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629143A (en) * 2022-11-02 2023-01-20 上海奥普生物医药股份有限公司 Reagent for measuring percentage of glycosylated hemoglobin and detection method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114272903A (en) * 2021-12-23 2022-04-05 苏州知益微球科技有限公司 Preparation method and application of magnetic microspheres for extracting glycosylated hemoglobin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373848A (en) * 1989-05-23 1991-03-28 Sekisui Chem Co Ltd Packing material for liquid chromatography and production thereof
US5801053A (en) * 1996-05-06 1998-09-01 Primus Corporation Chromatographic method for the identification and characterization of hemoglobin variants in blood
JP2001021555A (en) * 1999-07-06 2001-01-26 Sekisui Chem Co Ltd Hemolysis reagent and method for measuring hemoglobins using the same
JP2003194799A (en) * 2001-12-19 2003-07-09 Nomura Kagaku Kk Aluminum measuring method
JP2004125560A (en) * 2002-10-01 2004-04-22 Sekisui Chem Co Ltd Hemoglobin standard sample preparation liquid, hemoglobin standard sample solution, and method for measuring hemoglobins
WO2008056480A1 (en) * 2006-11-06 2008-05-15 Yokohama City University Diagnosis method for fatty liver disease, diagnosis apparatus, diagnosis program, diagnostic agent, and method for screening for therapeutic agent for fatty liver disease
JP2018004606A (en) * 2016-07-08 2018-01-11 東ソー株式会社 Hemoglobin preparation and liquid chromatographic method for measuring hemoglobins
WO2019004440A1 (en) * 2017-06-30 2019-01-03 昭和電工株式会社 Filler for liquid chromatography and column for liquid chromatography

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087198B2 (en) * 1989-05-23 1996-01-29 積水化学工業株式会社 Quantitative method for glycated hemoglobin
JP2001183356A (en) * 1999-12-22 2001-07-06 Sekisui Chem Co Ltd Measuring method for hemoglobins
JP2003014714A (en) * 2001-06-29 2003-01-15 Sekisui Chem Co Ltd Measuring method for hemoglobin
JP2012032395A (en) * 2010-07-09 2012-02-16 Sekisui Medical Co Ltd Measuring method of hemoglobins
CN104897812B (en) * 2015-06-02 2017-09-22 苏州赛分科技有限公司 The detection method and its kit of a kind of glycosylated hemoglobin
US11168349B2 (en) * 2016-07-29 2021-11-09 Hitachi Chemical Diagnostics Systems Co., Ltd. Method for measuring glycated hemoglobin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373848A (en) * 1989-05-23 1991-03-28 Sekisui Chem Co Ltd Packing material for liquid chromatography and production thereof
US5801053A (en) * 1996-05-06 1998-09-01 Primus Corporation Chromatographic method for the identification and characterization of hemoglobin variants in blood
JP2001021555A (en) * 1999-07-06 2001-01-26 Sekisui Chem Co Ltd Hemolysis reagent and method for measuring hemoglobins using the same
JP2003194799A (en) * 2001-12-19 2003-07-09 Nomura Kagaku Kk Aluminum measuring method
US20040259262A1 (en) * 2001-12-19 2004-12-23 Daido Ishii Method for determination of aluminum
JP2004125560A (en) * 2002-10-01 2004-04-22 Sekisui Chem Co Ltd Hemoglobin standard sample preparation liquid, hemoglobin standard sample solution, and method for measuring hemoglobins
WO2008056480A1 (en) * 2006-11-06 2008-05-15 Yokohama City University Diagnosis method for fatty liver disease, diagnosis apparatus, diagnosis program, diagnostic agent, and method for screening for therapeutic agent for fatty liver disease
US20100068746A1 (en) * 2006-11-06 2010-03-18 Yokohama City University Diagnosis method for fatty liver disease, diagnosis apparatus, diagnosis program, diagnostic agent, and method for screening for therapeutic agent for fatty liver disease
JP2018004606A (en) * 2016-07-08 2018-01-11 東ソー株式会社 Hemoglobin preparation and liquid chromatographic method for measuring hemoglobins
EP3483603A1 (en) * 2016-07-08 2019-05-15 Tosoh Corporation Hemoglobin liquid preparation and liquid chromatography method for measuring hemoglobin component
WO2019004440A1 (en) * 2017-06-30 2019-01-03 昭和電工株式会社 Filler for liquid chromatography and column for liquid chromatography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
荻野慎士他: "東ソー自動グリコヘモグロビン分析計HLC‐723G9の開発", 東ソー研究・技術報告, vol. 第54巻, JPN6023023694, 31 December 2010 (2010-12-31), pages 51 - 55, ISSN: 0005081867 *
菱沼義寛他: "グリコヘモグロビン分析装置D‐100システムの性能評価", 日本臨床検査自動化学会会誌, vol. 第43巻第1号, JPN6023023695, 1 February 2018 (2018-02-01), pages 45 - 50, ISSN: 0005081868 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629143A (en) * 2022-11-02 2023-01-20 上海奥普生物医药股份有限公司 Reagent for measuring percentage of glycosylated hemoglobin and detection method thereof

Also Published As

Publication number Publication date
CN112834632A (en) 2021-05-25
CN112834632B (en) 2024-04-23
JP7347156B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
Gray et al. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS
Kuklenyik et al. Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extraction
JP7347156B2 (en) Sample diluent for blood sample measurement by HPLC method and method for measuring glycated hemoglobin
Luo et al. Stir rod sorptive extraction with monolithic polymer as coating and its application to the analysis of fluoroquinolones in honey sample
JP5449202B2 (en) Methods and kits for determining the presence and amount of vitamin D analogs in a sample
Yan et al. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection
WO2000008460A1 (en) Method for determining hemoglobins
EP3539659B1 (en) Ion exchange chromatography column, method, and system thereof
JP6702608B2 (en) Reagent for measuring hemoglobins and method for measuring hemoglobins
WO2009081822A1 (en) Method for analysis of low-molecular-weight organic compound having 20 or less carbon atoms in water- and oil-repellent composition
EP3646947B1 (en) Packing material for liquid chromatography and method of production thereof
JP2008309778A (en) Polypeptide detection or quantitative determination method and device
JP7258276B2 (en) METHOD FOR MANUFACTURING PACKING MATERIAL FOR GLYCATED HEMOGLOBIN ANALYSIS
Zare et al. Application of an ionic-liquid combined with ultrasonic-assisted dispersion ofgold nanoparticles for micro-solid phase extraction of unmetabolized pyridoxine and folic acid in biological fluids prior to high-performance liquid chromatography
Lopez-Grio et al. Effect of a variety of organic additives on retention and efficiency in micellar liquid chromatography
Moein et al. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol–gel method for the selective separation and screening of L-Tyrosine as a lung cancer biomarker
RU2686205C1 (en) Method for removing perfluorinated alkanoic acids
Oliveira et al. Universal approach for mesofluidic handling of bead suspensions in lab-on-valve format
JP6092784B2 (en) Method for reducing inorganic substances from anionic surfactant solution
Miyamoto et al. Simultaneous optimization of wet granulation process involving factor of drug content dependency on granule size
JP4473999B2 (en) Column cleaning solution
JP2003014714A (en) Measuring method for hemoglobin
JP2012073184A (en) Method for measuring hemoglobins
Opitz et al. The removal of Triton X-100 by dialysis is feasible!
KR101725948B1 (en) Analytical method and system for the separation of ionic surfactants

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7347156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350