JP2021080586A - Easily dyeable meta type all aromatic polyamide fiber, and manufacturing method thereof - Google Patents

Easily dyeable meta type all aromatic polyamide fiber, and manufacturing method thereof Download PDF

Info

Publication number
JP2021080586A
JP2021080586A JP2019207090A JP2019207090A JP2021080586A JP 2021080586 A JP2021080586 A JP 2021080586A JP 2019207090 A JP2019207090 A JP 2019207090A JP 2019207090 A JP2019207090 A JP 2019207090A JP 2021080586 A JP2021080586 A JP 2021080586A
Authority
JP
Japan
Prior art keywords
dyeing
aromatic polyamide
fiber
meta
total aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019207090A
Other languages
Japanese (ja)
Other versions
JP7372118B2 (en
Inventor
悠介 佐藤
Yusuke Sato
悠介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2019207090A priority Critical patent/JP7372118B2/en
Publication of JP2021080586A publication Critical patent/JP2021080586A/en
Application granted granted Critical
Publication of JP7372118B2 publication Critical patent/JP7372118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an easily dyeable meta type all aromatic polyamide fiber having excellent heat resistance, flame resistance, mechanical physical properties, etc., especially good dyeability while having high breaking strength.SOLUTION: An easily dyeable meta type all aromatic polyamide fiber comprises a meta type all aromatic polyamide having a weight-average molecular weight measured in accordance with JIS-K-7252 of 300,000-600,000, a breaking strength defined in JIS-L-1015 of 3.0 cN/dtex or over, a fiber crystallinity of 25% or over, and a dyeing rate of a dyed fiber of 90% or over.SELECTED DRAWING: Figure 1

Description

本発明は染色性メタ型全芳香族ポリアミド繊維及びその製造方法に関するものである。さらに詳しくは、繊維の破断強度が3.0cN/dtex以上、繊維の結晶化度が25%以上であり、染色繊維の染着率が90%以上である易染色性メタ型全芳香族ポリアミド繊維およびその製造方法に関するものである。 The present invention relates to a dyeable meta-type total aromatic polyamide fiber and a method for producing the same. More specifically, the break strength of the fiber is 3.0 cN / dtex or more, the crystallinity of the fiber is 25% or more, and the dyeing rate of the dyed fiber is 90% or more. And its manufacturing method.

従来より、芳香族ジアミンと芳香族ジカルボン酸ジハライドとから製造される全芳香族ポリアミドが耐熱性および難燃性に優れていることは周知であり、かかる全芳香族ポリアミドのうち、ポリメタフェニレンイソフタルアミドで代表されるメタ型全芳香族ポリアミド(以下メタアラミドと称する場合がある。)の繊維は、耐熱・難燃性繊維として特に有用なものである。これらの特性を発揮して、例えば防護衣等の防災安全衣料用途やフィルター、電子部品等の産業用途に用いられている。最近では、耐炎性と防炎性とを活かした寝具、衣料、インテリア等の分野への用途が急速に広がりつつあり、特に衣料分野においては耐炎性および防炎性に加えて、意匠性の観点から繊維色を自在に選択可能な染色性も重要な性能として求められている。しかしながら、メタ型全芳香族ポリアミド繊維は、その剛直なポリマー分子鎖に起因して、通常の方法では染色が困難であるという問題があった。 It has been well known that all aromatic polyamides produced from aromatic diamines and aromatic dicarboxylic acid dihalides have excellent heat resistance and flame retardancy, and among such total aromatic polyamides, polymetaphenylene isophthalic acid The fibers of meta-type total aromatic polyamides represented by amides (hereinafter sometimes referred to as meta-aramids) are particularly useful as heat-resistant and flame-retardant fibers. By demonstrating these characteristics, it is used, for example, for disaster prevention and safety clothing such as protective clothing, and for industrial applications such as filters and electronic parts. Recently, applications in fields such as bedding, clothing, and interiors that make use of flame resistance and flame resistance are rapidly expanding. Especially in the clothing field, in addition to flame resistance and flame resistance, from the viewpoint of designability. Dyeability that allows the fiber color to be freely selected is also required as an important performance. However, the meta-type total aromatic polyamide fiber has a problem that it is difficult to dye by a usual method due to its rigid polymer molecular chain.

そこで、染色性を向上させる方法として、アルキルベンゼンスルホン酸オニウム塩を紡糸液に添加することにより、カチオン染料に対して易染色性なメタ型芳香族ポリアミド繊維を得る方法が提案されている(特許文献1)。この方法によればカチオン染料に対しては、良好な染色性を有するメタ型芳香族ポリアミド繊維を得ることができる。しかしながら、当該オニウム塩が添加された繊維は、コストが高いものとなっていた。 Therefore, as a method for improving dyeability, a method has been proposed in which a meta-aromatic polyamide fiber that is easily dyed with a cationic dye is obtained by adding an onium salt of alkylbenzene sulfonic acid to the spinning solution (Patent Documents). 1). According to this method, a meta-aromatic polyamide fiber having good dyeability can be obtained for a cationic dye. However, the fiber to which the onium salt is added has a high cost.

別の報告として、細孔を有する非晶質の繊維を形成し、水で膨潤した当該繊維を蒸気加熱し、染料を繊維の当該細孔中に拡散させることにより、繊維構造全体にわたって染料が含有した繊維を得て、引き続き、当該繊維をガラス転移温度より高い温度にて十分な時間をかけて蒸気加熱を行って当該細孔を潰し、これにより染料を不可逆的に繊維内に閉じ込め、当該繊維を結晶化させる方法が提案されている(特許文献2)。 In another report, the dye is contained throughout the fiber structure by forming amorphous fibers with pores, steam heating the fibers swollen with water, and diffusing the dye into the pores of the fibers. The fibers were subsequently steam-heated at a temperature higher than the glass transition temperature for a sufficient period of time to crush the pores, thereby irreversibly confining the dye in the fibers and causing the fibers. Has been proposed (Patent Document 2).

この方法によれば、良好な染色性を有した繊維を得ることができるが、高温の蒸気を用いた加熱処理が必要となるだけでなく、処理前の繊維物性は実用に耐えられないほど低いものであり、上記処理後も繊維結晶化が不十分となる可能性があった。一般に、全芳香族ポリアミド繊維の結晶化度が低いと、強度低下や高温条件下または染色処理における収縮、寸法安定性の低下を招くことが知られている。 According to this method, fibers having good dyeability can be obtained, but not only heat treatment using high-temperature steam is required, but also the physical characteristics of the fibers before the treatment are too low to withstand practical use. Therefore, there is a possibility that fiber crystallization may be insufficient even after the above treatment. In general, it is known that a low crystallinity of all aromatic polyamide fibers causes a decrease in strength, shrinkage under high temperature conditions or dyeing treatment, and a decrease in dimensional stability.

一方、特許文献3号公報、特許文献4では、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を適宜調節し、特定倍率で可塑延伸し、洗浄工程を経た後、260〜330度で乾熱処理を行うことにより、高い染色性を有するメタ全芳香族ポリアミド繊維を得る方法が提案されている。この方法によれば、染色性に影響のない程度に5〜20%の範囲で結晶化させた繊維を染色処理することで結晶化を完了させ、繊維の物性を確保している。 On the other hand, in Japanese Patent Application Laid-Open No. 3 and Patent Document 4, the components or conditions of the coagulation bath are appropriately adjusted so as to form a coagulation form without a skin core, plastically stretched at a specific magnification, subjected to a washing step, and then 260 to 330 degrees. A method for obtaining a meta-total aromatic polyamide fiber having high dyeability has been proposed by performing a dry heat treatment in the above. According to this method, crystallization is completed by dyeing the fibers crystallized in the range of 5 to 20% so as not to affect the dyeability, and the physical properties of the fibers are secured.

しかしながら、上記結晶化度は染色処理前の原繊維を使用する事を仮定した場合、耐熱性や低熱収縮率を発揮するためには不十分である。つまり、原繊維を目的に合わせて加工し、繊維製品を製造することを仮定した場合、染色処理を前提とした取扱いが必要であり、繊維の使用用途範囲を狭めることになってしまう。 However, the above crystallinity is insufficient to exhibit heat resistance and low thermal shrinkage, assuming that the raw fiber before the dyeing treatment is used. That is, if it is assumed that the raw fiber is processed according to the purpose and the textile product is manufactured, it is necessary to handle it on the premise of dyeing treatment, which narrows the range of use of the fiber.

特開平08−081827号公報Japanese Unexamined Patent Publication No. 08-081827 特開昭62−184127号公報Japanese Unexamined Patent Publication No. 62-184127 特開2010−084237号公報Japanese Unexamined Patent Publication No. 2010-08423 特開2011−236543号公報Japanese Unexamined Patent Publication No. 2011-236543

本発明の目的は、かかる従来技術における問題点を解消し、耐熱性、難燃性、機械物性などの優れた性質を持ったメタ型全芳香族ポリアミド繊維において、特に破断強度が高いながらも、染色性が良好な易染色性メタ型全芳香族ポリアミド繊維を提供することにある。 An object of the present invention is to solve the problems in the prior art, and to use a meta-type total aromatic polyamide fiber having excellent properties such as heat resistance, flame retardancy, and mechanical properties, while having a particularly high breaking strength. It is an object of the present invention to provide an easily dyeable meta-type total aromatic polyamide fiber having good dyeability.

本発明者は、上記の課題を解決するために鋭意検討をおこなった結果、メタ型全芳香族ポリアミドの重量平均分子量を巧みに制御し、高濃度無機塩凝固液を使用した湿式紡糸手法を用いることで、繊維の結晶化度を高くしつつ、繊維の破断強度を良好とし、且つ染色性が良好なメタ型全芳香族ポリアミド繊維が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor skillfully controls the weight average molecular weight of the meta-type total aromatic polyamide and uses a wet spinning method using a high-concentration inorganic salt coagulation liquid. As a result, it has been found that a meta-type total aromatic polyamide fiber having good fiber breaking strength and good dyeability can be obtained while increasing the crystallinity of the fiber, and has completed the present invention.

すなわち本発明によれば、
1.JIS−K−7252に準じ測定される重量平均分子量が30〜60万のメタ型全芳香族ポリアミドからなり、JIS−L−1015に規定される破断強度が3.0cN/dtex以上であり、繊維の結晶化度が25%以上であり、染色繊維の染着率が90%以上である易染色性メタ型全芳香族ポリアミド繊維、
及び、
2.JIS−K−7252に準じ測定される重量平均分子量が30万〜60万のメタ型全芳香族ポリアミドの濃度が10〜30質量%、無機塩の濃度が0.1〜10質量%のアミド系極性溶媒溶液を湿式紡糸することにより全芳香族ポリアミド繊維を製造する方法であって、該アミド系極性溶媒溶液を、30質量%以上の無機塩および3質量%以上のアミド系溶剤を含む水性凝固浴中に紡出して凝固せしめ、300度以上の温度で熱セットする工程を含むことを特徴とする易染色性メタ型全芳香族ポリアミド繊維の製造方法、
が提供される。
That is, according to the present invention.
1. 1. It is made of meta-type total aromatic polyamide with a weight average molecular weight of 300,000 to 600,000 measured according to JIS-K-7252, has a breaking strength of 3.0 cN / dtex or more specified in JIS-L-1015, and is a fiber. Easy-dyeing meta-type total aromatic polyamide fiber, which has a crystallinity of 25% or more and a dyeing rate of dyed fiber of 90% or more.
as well as,
2. An amide system having a weight average molecular weight of 300,000 to 600,000, measured according to JIS-K-7252, having a concentration of 10 to 30% by mass of a meta-type total aromatic polyamide and an inorganic salt concentration of 0.1 to 10% by mass. A method for producing a total aromatic polyamide fiber by wet-spinning a polar solvent solution, wherein the amide-based polar solvent solution is aqueous-coagulated containing 30% by mass or more of an inorganic salt and 3% by mass or more of an amide-based solvent. A method for producing an easily dyeable meta-type total aromatic polyamide fiber, which comprises a step of spinning in a bath to solidify and heat-setting at a temperature of 300 ° C. or higher.
Is provided.

本発明によれば、繊維の結晶化度を高くしつつ、繊維の破断強度を良好とし、且つ染色性が良好なメタ型全芳香族ポリアミド繊維が得られるので、該繊維を衣料用途として用いる場合、染色処理により容易に目的の意匠性を持った繊維製品を得ることができる。また、染色処理前の原繊維においても結晶化度が高いことからメタ型全芳香族ポリアミド繊維としての機能を十分に発揮し、用途が限定される可能性が低くなる。 According to the present invention, a meta-type total aromatic polyamide fiber having high fiber crystallinity, good fiber breaking strength, and good dyeability can be obtained. Therefore, when the fiber is used for clothing. , A textile product having a desired design can be easily obtained by a dyeing treatment. In addition, since the raw fiber before the dyeing treatment also has a high degree of crystallinity, it fully exerts its function as a meta-type total aromatic polyamide fiber, and the possibility that its use is limited is reduced.

本発明の易染色性メタ型全芳香族ポリアミド繊維の1例を例示した断面図である。It is sectional drawing which illustrates an example of the easy-dyeing meta-type total aromatic polyamide fiber of this invention. 本発明の易染色性メタ型全芳香族ポリアミド繊維の1例を例示した断面図である。It is sectional drawing which illustrates an example of the easy-dyeing meta-type total aromatic polyamide fiber of this invention. 本発明の易染色性メタ型全芳香族ポリアミド繊維の1例を例示した断面図である。It is sectional drawing which illustrates an example of the easy-dyeing meta-type total aromatic polyamide fiber of this invention. 比較例のメタ型全芳香族ポリアミド繊維の1例を例示した断面図である。It is sectional drawing which illustrates one example of the meta-type total aromatic polyamide fiber of the comparative example.

以下、本発明について詳細を説明する。 Hereinafter, the present invention will be described in detail.

本発明のメタ型全芳香族ポリアミド繊維を構成するメタ型全芳香族ポリアミド(以下メタアラミドと称する場合がある。)は、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸成分とから構成されるものであり、本発明の目的を損なわない範囲内で、パラ型等の他の共重合成分が共重合されていてもよい。 The meta-type total aromatic polyamide (hereinafter sometimes referred to as meta-aramid) constituting the meta-type total aromatic polyamide fiber of the present invention is composed of a meta-type aromatic diamine component and a meta-type aromatic dicarboxylic acid component. Other copolymerization components such as para-type may be copolymerized as long as the object of the present invention is not impaired.

本発明において特に好ましく使用されるのは、力学特性、耐熱性、難燃性の観点から、メタフェニレンイソフタルアミド単位を主成分とするメタ型全芳香族ポリアミドである。メタフェニレンイソフタルアミド単位から構成されるメタ型全芳香族ポリアミドとしては、メタフェニレンイソフタルアミド単位が、全繰り返し単位の90モル%以上であることが好ましく、さらに好ましくは95モル%以上、特に好ましくは100モルである。 Particularly preferably used in the present invention is a meta-type total aromatic polyamide containing a metaphenylene isophthalamide unit as a main component from the viewpoint of mechanical properties, heat resistance, and flame retardancy. The meta-type total aromatic polyamide composed of metaphenylene isophthalamide units preferably contains 90 mol% or more of all repeating units, more preferably 95 mol% or more, and particularly preferably 95 mol% or more. It is 100 mol.

メタ型全芳香族ポリアミドの原料となるメタ型芳香族ジアミン成分としては、メタフェニレンジアミン、3,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルスルホン等、および、これらの芳香環にハロゲン、炭素数1〜3のアルキル基等の置換基を有する誘導体、例えば、2,4−トルイレンジアミン、2,6−トルイレンジアミン、2,4−ジアミノクロロベンゼン、2,6−ジアミノクロロベンゼン等を例示することができる。なかでも、メタフェニレンジアミンのみ、または、メタフェニレンジアミンを85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上含有する混合ジアミンであることが好ましい。 Examples of the meta-aromatic diamine component used as a raw material for the meta-type total aromatic polyamide include metaphenylenediamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone, and halogens on these aromatic rings. Derivatives having a substituent such as an alkyl group having 1 to 3 carbon atoms, for example, 2,4-toluylene diamine, 2,6-toluylene diamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene and the like are exemplified. can do. Among them, it is preferable that it is a mixed diamine containing only meta-phenylenediamine or 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more of meta-phenylenediamine.

メタ型全芳香族ポリアミドを構成するメタ型芳香族ジカルボン酸成分の原料としては、例えば、メタ型芳香族ジカルボン酸ハライドを挙げることができる。メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、および、これらの芳香環にハロゲン、炭素数1〜3のアルコキシ基等の置換基を有する誘導体、例えば3−クロロイソフタル酸クロライド等を例示することができる。なかでも、イソフタル酸クロライドそのもの、または、イソフタル酸クロライドを85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上含有する混合カルボン酸ハライドであることが好ましい。 Examples of the raw material of the meta-aromatic dicarboxylic acid component constituting the meta-type total aromatic polyamide include meta-aromatic dicarboxylic acid halide. Examples of the meta-aromatic dicarboxylic acid halide include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having a substituent such as a halogen or an alkoxy group having 1 to 3 carbon atoms in these aromatic rings, for example, 3. − Chlorisophthalic acid chloride and the like can be exemplified. Among them, isophthalic acid chloride itself or a mixed carboxylic acid halide containing isophthalic acid chloride in an amount of 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more is preferable.

上記メタアラミドの重合方法としてはメタフェニレンジアミンとイソフタル酸クロライドとを含む生成ポリアミドの良溶媒ではない有機溶媒系(例えばテトラヒドロフラン)と無機の酸受容剤ならびに可溶性中性塩を含む水溶液系とを接触させることによって、ポリメタフェニレンイソフタルアミド重合体の粉末を単離する方法(特公昭47−10863号公報)、またはアミド系溶媒で上記ジアミンと酸クロライドを溶液重合し次いで水酸化カルシウム、酸化カルシウム等で中和する方法(特開平8−074121号公報、特開平10−88421号公報)などに記載の方法が挙げられるが、これに限定されるものではない。 As a method for polymerizing the metaaramid, an organic solvent system (for example, tetrahydrofuran) containing metaphenylenediamine and isophthalic acid chloride, which is not a good solvent, is brought into contact with an aqueous solution system containing an inorganic acid acceptor and a soluble neutral salt. By this method, a method for isolating a powder of a polymetaphenylene isophthalamide polymer (Japanese Patent Publication No. 47-10863), or solution polymerization of the above diamine and acid chloride with an amide solvent and then using calcium hydroxide, calcium oxide, etc. Examples of the method for neutralizing (Japanese Patent Laid-Open No. 8-074121, Japanese Patent Application Laid-Open No. 10-88421) and the like can be mentioned, but the method is not limited thereto.

なお、本発明に用いられるメタアラミドの重量平均分子量は、結晶化度が高く、破断強度が良好で、且つ染色性が良好である繊維を形成し得る観点から、後述する分析方法に従い30万〜60万の範囲のポリマーであることが必要である。 The weight average molecular weight of the metaaramid used in the present invention is 300,000 to 60, according to the analysis method described later, from the viewpoint of being able to form fibers having high crystallinity, good breaking strength, and good dyeability. It needs to be a polymer in the range of 10,000.

つまり、本発明の易染色性メタ型全芳香族ポリアミド繊維は、破断強度が3.0cN/dtex以上、且つ染着率が90%以上の繊維を得るには、重量平均分子量40万〜60万の範囲のポリマーが必要である。 That is, the easily dyeable meta-type total aromatic polyamide fiber of the present invention has a weight average molecular weight of 400,000 to 600,000 in order to obtain a fiber having a breaking strength of 3.0 cN / dtex or more and a dyeing rate of 90% or more. A range of polymers is needed.

本発明で規定する分子量を持ったポリマーは、低分子量ポリマーと高分子量ポリマーの混合物も使用することができ、混合比の調整により全体分子量が目的の値であればよい。例えば、重量平均分子量が20万のポリマーと80万のポリマーを混合し、全体重量平均分子量が50万であった場合、本発明への利用は何ら問題ない。 As the polymer having the molecular weight specified in the present invention, a mixture of a low molecular weight polymer and a high molecular weight polymer can also be used, and the total molecular weight may be a desired value by adjusting the mixing ratio. For example, when a polymer having a weight average molecular weight of 200,000 and a polymer having a weight average molecular weight of 800,000 are mixed and the total weight average molecular weight is 500,000, there is no problem in using the polymer in the present invention.

一方で分子量30万未満の場合、強度を持った繊維を得ることができない。また、分子量が60万を越えると染着率が90%以上の繊維を得ることができない。 On the other hand, when the molecular weight is less than 300,000, a fiber having strength cannot be obtained. Further, if the molecular weight exceeds 600,000, fibers having a dyeing rate of 90% or more cannot be obtained.

本発明のメタ型全芳香族ポリアミド繊維は、上記の製造方法によって得られたメタアラミド重合体を用いて、例えば、以下に説明する紡糸液調製工程、紡糸・凝固工程、洗浄工程、沸水延伸工程、乾熱処理工程、熱延伸工程を経て製造される。 The meta-type total aromatic polyamide fiber of the present invention uses the meta-aramid polymer obtained by the above production method, for example, a spinning solution preparation step, a spinning / coagulation step, a washing step, a boiling water drawing step, which will be described below. Manufactured through a dry heat treatment process and a heat stretching process.

紡糸液調製工程においては、メタアラミド重合体を溶媒に溶解して、紡糸液(ドープ)を調製する。紡糸液の調製にあたっては、通常アミド系溶媒を用い、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を例示することができる。これらの中では溶解性と取扱い安全性の観点から、NMP、またはDMAcを用いることが好ましい。 In the spinning solution preparation step, the metaaramid polymer is dissolved in a solvent to prepare a spinning solution (dope). In the preparation of the spinning solution, an amide solvent is usually used, and N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) and the like can be exemplified. Among these, it is preferable to use NMP or DMAc from the viewpoint of solubility and handling safety.

溶液濃度としては、次工程である紡糸・凝固工程での凝固速度および重合体の溶解性の観点から、10〜30質量%の範囲とすることが好ましく、15〜25質量%の範囲とすることがより好ましい。 The solution concentration is preferably in the range of 10 to 30% by mass, preferably in the range of 15 to 25% by mass, from the viewpoint of the solidification rate in the next step of spinning and solidification and the solubility of the polymer. Is more preferable.

本発明ではドープ中に無機塩を導入する必要があり、染着率が90%以上の繊維を得るためにはドープに対して0.1〜20質量%の無機塩を含む必要があり、安定した紡糸性を得るためには0.1〜10質量%の無機塩がさらに好ましい。 In the present invention, it is necessary to introduce an inorganic salt into the dope, and in order to obtain a fiber having a dyeing rate of 90% or more, it is necessary to contain an inorganic salt of 0.1 to 20% by mass with respect to the dope, which is stable. In order to obtain the desired spinnability, 0.1 to 10% by mass of an inorganic salt is more preferable.

ここで、20質量%を超えた無機塩を含むと凝固速度が速くなりすぎてしまい、繊維中に多数のボイドを形成することから目的の物性を持った繊維を得ることができない。なお、無機塩としては塩化カルシウム、塩化マグネシウム、塩化リチウムなどの塩化物塩を使用することが好ましい。 Here, if an inorganic salt exceeding 20% by mass is contained, the solidification rate becomes too high, and a large number of voids are formed in the fiber, so that the fiber having the desired physical characteristics cannot be obtained. As the inorganic salt, it is preferable to use a chloride salt such as calcium chloride, magnesium chloride, or lithium chloride.

紡糸・凝固工程においては、上記で得られたドープを凝固液中に紡出して凝固させる。紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態は特に制限する必要はなく、例えば、孔数が10〜30000個、紡糸孔径が0.03〜0.2mmのステープルファイバー用の多ホール紡糸口金等を用いてもよい。また、紡糸口金から紡出する際のドープの温度は、20〜90℃の範囲が適当であるが、特に70〜90℃が好ましい。 In the spinning / coagulation step, the dope obtained above is spun into a coagulation liquid and coagulated. The spinning device is not particularly limited, and a conventionally known wet spinning device can be used. The number of spinning holes and the arrangement state of the spinneret do not need to be particularly limited as long as they can be stably wet-spun. For example, staples having 10 to 30,000 holes and a spinning hole diameter of 0.03 to 0.2 mm. A multi-hole spinneret for fibers or the like may be used. The dope temperature when spinning from the spinneret is preferably in the range of 20 to 90 ° C, but is particularly preferably 70 to 90 ° C.

本発明の繊維を得るために用いる凝固浴としては、塩化カルシウムまたは塩化マグネシウム等の無機塩を30質量%以上、好ましくは35〜45質量%含み、アミド系溶媒を1〜20質量%、好ましくは3〜15質量%含む水溶液を50〜90℃の範囲で用いる。 The coagulation bath used to obtain the fibers of the present invention contains 30% by mass or more, preferably 35 to 45% by mass of an inorganic salt such as calcium chloride or magnesium chloride, and 1 to 20% by mass, preferably an amide solvent. An aqueous solution containing 3 to 15% by mass is used in the range of 50 to 90 ° C.

かくして得られた凝固糸は水性洗浄浴にて十分水洗され、沸水延伸工程に送られる。沸水延伸浴中の延伸倍率は1.5〜5.0倍が適当であり、さらに好ましくは2.0〜4.0倍の範囲である。本発明においては、延伸を当該倍率の範囲で行い、分子鎖配向を上げることにより、最終的に得られる繊維の強度を確保することができる。 The coagulated yarn thus obtained is sufficiently washed with water in an aqueous washing bath and sent to a boiling water drawing step. The stretching ratio in the boiling water stretching bath is preferably 1.5 to 5.0 times, more preferably 2.0 to 4.0 times. In the present invention, the strength of the finally obtained fiber can be ensured by stretching within the range of the magnification and increasing the molecular chain orientation.

上記洗浄・延伸工程を経た繊維に対して、好ましくは、乾熱処理工程を実施する。乾熱処理工程においては、上記洗浄工程により洗浄が実施された繊維を、好ましくは100〜250℃、さらに好ましくは100〜200℃の範囲で、乾熱処理をする。ここで、乾熱処理は、特に限定されないが、定長下で行うのが好ましい。なお、上記の乾熱処理の温度は、熱板、加熱ローラーなどの繊維加熱手段の設定温度をいう。 A dry heat treatment step is preferably performed on the fibers that have undergone the washing / stretching step. In the dry heat treatment step, the fibers washed by the above washing step are subjected to dry heat treatment in a range of preferably 100 to 250 ° C., more preferably 100 to 200 ° C. Here, the dry heat treatment is not particularly limited, but is preferably performed under a fixed length. The temperature of the above-mentioned dry heat treatment refers to the set temperature of the fiber heating means such as a hot plate and a heating roller.

本発明においては、上記乾熱処理工程を経た繊維に対して、熱延伸工程を施す。熱延伸工程においては、300〜380℃で熱処理を加えながら、延伸を実施する。延伸倍率は1.2〜5.0倍が適当であり、さらに好ましくは1.5〜4.0倍の範囲である。続いて、十分な結晶化を行うために熱セット工程を施す。乾熱処理工程においては、上記熱延伸が実施された繊維を、好ましくは300以上℃、さらに好ましくは300〜400℃の範囲で、熱セット処理をする。ここで、熱セット処理は、特に限定されないが、定長下で行うのが好ましい。なお、上記の熱セット処理の温度は、熱板、加熱ローラーなどの繊維加熱手段の設定温度をいう。 In the present invention, the fiber that has undergone the dry heat treatment step is subjected to a heat drawing step. In the heat stretching step, stretching is performed while applying heat treatment at 300 to 380 ° C. The draw ratio is preferably 1.2 to 5.0 times, more preferably 1.5 to 4.0 times. Subsequently, a heat setting step is performed to perform sufficient crystallization. In the dry heat treatment step, the heat-stretched fibers are heat-set, preferably in the range of 300 or more ° C., more preferably 300 to 400 ° C. Here, the heat setting treatment is not particularly limited, but is preferably performed under a fixed length. The temperature of the above heat setting process refers to the set temperature of the fiber heating means such as a hot plate and a heating roller.

以上の方法により得られるメタ型全芳香族ポリアミド繊維の破断強度は3.0cN/dtex以上であり、結晶化度は25%以上である。破断強度に関しては3.0cN/dtex以上が必要であり、3.5cN/dtex以上が特に好ましい。結晶化度に関しては25%以上が必須であり、25〜40%の範囲であることが好ましい。破断強度または結晶化度が上記以下である場合、繊維の機械物性が劣ることから工程通過性に支障が出る、より高度な用途において製品の耐久性が低下する、等の問題が発生する。 The breaking strength of the meta-type total aromatic polyamide fiber obtained by the above method is 3.0 cN / dtex or more, and the crystallinity is 25% or more. The breaking strength is required to be 3.0 cN / dtex or more, and 3.5 cN / dtex or more is particularly preferable. The degree of crystallinity is indispensable to be 25% or more, preferably in the range of 25 to 40%. When the breaking strength or the crystallinity is less than the above, problems such as inferior mechanical properties of the fiber hindering the process passability and lowering the durability of the product in more advanced applications occur.

以上の方法により得られるメタ型全芳香族ポリアミド繊維の染色繊維の染着率は90%以上であり、好ましくは92%以上、より好ましくは95%である。染着率が90%以下であった場合、衣料分野において求められる審美性の点で好ましなく所望の色相に染色することができないことや、多くの染料や処理時間を要するなど染色加工において問題が発生する。 The dyeing rate of the dyed fiber of the meta-type total aromatic polyamide fiber obtained by the above method is 90% or more, preferably 92% or more, and more preferably 95%. If the dyeing rate is 90% or less, there are problems in the dyeing process, such as being unable to dye the desired hue unfavorably in terms of aesthetics required in the clothing field, and requiring a lot of dyes and processing time. Occurs.

なお、本発明の繊維の断面形状は図1〜3に示すように、C字型(コの字ともいう)であることが好ましい。繊維の断面形状がC字型(コの字ともいう)であると、表面積が大きくなることから、染着率が良好となる。また、衣料用途に用いる際に吸汗性などの機能性を発現することが期待される。 As shown in FIGS. 1 to 3, the cross-sectional shape of the fiber of the present invention is preferably C-shaped (also referred to as U-shaped). When the cross-sectional shape of the fiber is C-shaped (also referred to as U-shaped), the surface area is large and the dyeing rate is good. In addition, it is expected to exhibit functionality such as sweat absorption when used for clothing.

以下、実施例および比較例により、本発明を詳細に説明するが、本発明の範囲は、以下内容に制限されるものではない。尚、実施例および比較例における各物性値は、下記の方法で測定した。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following contents. Each physical property value in Examples and Comparative Examples was measured by the following method.

[重量平均分子量Mw]
JIS−K−7252に準じ、サイズ排除クロマトグラフィー用カラムを装着した高速液体クロマトグラフィー装置にて分析をおこない、展開溶媒にはジメチルホルムアミド(塩化リチウムを0.01モル%含有)を用いて測定した。なお、標準分子量サンプルとしてはシグマアルドリッチ製ポリスチレンセット(ピークトップ分子量Mp=400〜2000000)を用いた。
[Weight average molecular weight Mw]
Analysis was performed by a high performance liquid chromatography device equipped with a column for size exclusion chromatography according to JIS-K-7252, and measurement was performed using dimethylformamide (containing 0.01 mol% lithium chloride) as the developing solvent. .. As the standard molecular weight sample, a polystyrene set manufactured by Sigma-Aldrich (peak top molecular weight Mp = 400 to 2000000) was used.

[単繊維繊度]
JIS−L−1015に準じ、正量繊度のA法に準拠した測定を実施し、見掛け繊度にて表記した。
[Single fiber fineness]
The measurement was carried out in accordance with JIS-L-1015 and in accordance with the method A of positive fineness, and the apparent fineness was expressed.

[破断強度、破断伸度]
引張試験機(インストロン社製、型式:5565)を用いて、JIS−L−1015に基づき、以下の条件で測定した。
(測定条件)
つかみ間隔 :20mm
初荷重 :0.044cN(1/20g/dtex)
引張速度 :20mm/分
[Breaking strength, breaking elongation]
Measurement was performed under the following conditions based on JIS-L-1015 using a tensile tester (manufactured by Instron, model: 5565).
(Measurement condition)
Grab interval: 20 mm
Initial load: 0.044cN (1 / 20g / dtex)
Tensile rate: 20 mm / min

[染着率]
「染着率」を求めるための「染色」は、以下の染色方法による染色とする。
(染色方法)
カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL−ED(B−54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意する。
[Dyeing rate]
The "dyeing" for obtaining the "dyeing rate" is dyeing by the following dyeing method.
(Dyeing method)
Cationic dye (manufactured by Nippon Kayaku Co., Ltd., trade name: Kayacryl Blue GSL-ED (B-54)) 6% owf, acetic acid 0.3 mL / L, sodium nitrate 20 g / L, benzyl alcohol 70 g / L as a carrier agent, dispersion A dyeing solution containing 0.5 g / L of a dyeing aid (manufactured by Meisei Chemical Industry Co., Ltd., trade name: disper TL) is prepared as an agent.

引き続き、繊維と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施する。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色繊維を得る。 Subsequently, the dyeing treatment is carried out at 120 ° C. for 60 minutes with the bath ratio of the fiber to the dyeing solution being 1:40. After the dyeing treatment, a treatment liquid containing 2.0 g / L of hydrosulfite, 2.0 g / L of amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amylazine D), and 1.0 g / L of sodium hydroxide. The dyed fibers are obtained by performing reduction washing at a bath ratio of 1:20 at 80 ° C. for 20 minutes, washing with water, and then drying.

なお、本発明における「染着率」とは、以下の方法によって得られる値をいう。
原繊維を染色した染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出する。引き続き、抽出液について、波長670nm、540nm、530nmの吸光度をそれぞれ測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から抽出液の染料濃度をそれぞれ求め、上記3波長における濃度の平均値を抽出液の染料濃度(C)とする。染色前の染料濃度(Co)を用いて、以下の式にて得られる値を染着率(U)とする。
染着率(U)=[(Co−C)/Co]×100
The "dyeing rate" in the present invention means a value obtained by the following method.
Dichloromethane in the same volume as this dyeing residual liquid is added to the dyeing residual liquid obtained by dyeing the raw fibers, and the residual dye is extracted. Subsequently, the absorbances of the extracts at wavelengths of 670 nm, 540 nm, and 530 nm were measured, and the dye concentrations of the extracts were obtained from the calibration curves of the above three wavelengths prepared from a dichloromethane solution having a known dye concentration in advance. The average value of the concentrations is defined as the dye concentration (C) of the extract. Using the dye concentration (Co) before dyeing, the value obtained by the following formula is defined as the dyeing rate (U).
Dyeing rate (U) = [(Co-C) / Co] x 100

[結晶化度]
染色前繊維(原繊維)を約1mm径のバンドルに束ねて、X線回折測定装置(商品名:RIGAKU RINT TTRIII)により、下記の条件で測定して得られたプロファイルから換算した。
(測定条件)
X線原 :Cu−Kα線
繊維試料台 :50rpm回転
2θ走査 :5−50°
連続測定 :0.1°
幅計測 :1°/分走査
[Crystallinity]
The pre-dyed fibers (raw fibers) were bundled in a bundle having a diameter of about 1 mm, and converted from the profile obtained by measuring with an X-ray diffraction measuring device (trade name: RIGAKU RINT TTRIII) under the following conditions.
(Measurement condition)
X-ray source: Cu-Kα ray Fiber sample table: 50 rpm rotation 2θ scanning: 5-50 °
Continuous measurement: 0.1 °
Width measurement: 1 ° / min scanning

具体的には、実測回折プロファイルから空気散乱、非干渉性散乱を直線近似で補正して、全散乱強度プロファイルを得た。得られた全散乱強度に非晶質であるメタ型全芳香族ポリアミド繊維の未乾燥糸プロファイルを目測フィットし、差分を結晶散乱強度とした。結晶化度は、結晶散乱強度および全散乱強度の面積(積分値)を用いて、以下の式から求めた。
結晶化度(%)=(結晶散乱強度面積/全散乱強度面積)×100
Specifically, air scattering and non-coherent scattering were corrected by linear approximation from the measured diffraction profile to obtain a total scattering intensity profile. The undried yarn profile of the meta-type total aromatic polyamide fiber, which is amorphous, was visually fitted to the obtained total scattering intensity, and the difference was defined as the crystal scattering intensity. The crystallinity was calculated from the following formula using the area (integral value) of the crystal scattering intensity and the total scattering intensity.
Crystallinity (%) = (Crystal Scattering Intensity Area / Total Scattering Intensity Area) x 100

[実施例1]
溶液重合により合成し水洗精製した重量平均分子量47万のメタアラミド重合体粉末および塩化カルシウム粉末を、N−メチル−2−ピロリドン(NMP)に溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が20%、塩化カルシウムが2.5%になるよう調整した。
[Example 1]
A metaaramid polymer powder having a weight average molecular weight of 470,000 and calcium chloride powder synthesized by solution polymerization and washed with water and purified were dissolved in N-methyl-2-pyrrolidone (NMP) to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 20% and the calcium chloride content was adjusted to 2.5% with respect to the polymer solution.

このポリマー溶液を85℃に加温し紡糸原液として、孔径0.1mm、孔数2000の吐出孔が円形の紡糸口金から83℃の凝固浴中に吐出して紡糸した。この凝固浴の組成は、塩化カルシウムが38質量%、NMPが5質量%、残りの水が57質量%であり、浸漬長(有効凝固浴長)140cmにて糸速7.8m/分で通過させた後、いったん空気中に引き出した。 This polymer solution was heated to 85 ° C. and used as a spinning stock solution, which was discharged from a spinning spout having a hole diameter of 0.1 mm and a number of holes of 2000 into a coagulation bath at 83 ° C. for spinning. The composition of this coagulation bath is 38% by mass of calcium chloride, 5% by mass of NMP, 57% by mass of the remaining water, and passes through at a thread speed of 7.8 m / min at an immersion length (effective coagulation bath length) of 140 cm. After letting it, it was once pulled out into the air.

この凝固糸条を第1〜第3水洗浄浴にて水洗し、この際の総浸漬時間は360秒とした。なお、第1〜第3水性洗浄浴温度はそれぞれ20、30、50℃の水を用いた。次に、この洗浄糸条を90℃の沸水中にて3.0倍に延伸し、引続き90℃の温水中に50秒浸漬し、洗浄した。 The coagulated yarn was washed with water in the first to third water washing baths, and the total immersion time at this time was 360 seconds. The first to third aqueous washing bath temperatures were 20, 30, and 50 ° C., respectively. Next, the washing yarn was stretched 3.0 times in boiling water at 90 ° C., and subsequently immersed in warm water at 90 ° C. for 50 seconds for washing.

次に表面温度170℃のローラーに巻回して乾熱処理した後、表面温度340℃の熱板にて1.5倍に延伸した。最後に、表面温度320℃の熱板にて定長下で5秒間熱セットすることでメタ型全芳香族ポリアミド繊維を得た。 Next, it was wound around a roller having a surface temperature of 170 ° C. and subjected to dry heat treatment, and then stretched 1.5 times on a hot plate having a surface temperature of 340 ° C. Finally, a meta-type total aromatic polyamide fiber was obtained by heat-setting for 5 seconds under a constant length on a hot plate having a surface temperature of 320 ° C.

得られた繊維は繊度2.2dtex、強度3.1cN/dtex、伸度88%、結晶化度28%であった。また、繊維の断面形状はC字型(コの字ともいう)であった。得られた繊維断面の走査型電子顕微鏡画像を図1に示す。染色処理後の染着率は99%以上であった。 The obtained fibers had a fineness of 2.2 dtex, a strength of 3.1 cN / dtex, an elongation of 88%, and a crystallinity of 28%. The cross-sectional shape of the fiber was C-shaped (also referred to as U-shaped). A scanning electron microscope image of the obtained fiber cross section is shown in FIG. The dyeing rate after the dyeing treatment was 99% or more.

[実施例2]
溶液重合により合成し水洗精製した重量平均分子量52万のメタアラミド重合体粉末および塩化カルシウム粉末を、N−メチル−2−ピロリドン(NMP)に溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が20%、塩化カルシウムが0.2%になるよう調整した。
[Example 2]
A metaaramid polymer powder having a weight average molecular weight of 520,000 and calcium chloride powder synthesized by solution polymerization and washed with water and purified were dissolved in N-methyl-2-pyrrolidone (NMP) to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 20% and the calcium chloride content was adjusted to 0.2% with respect to the polymer solution.

このポリマー溶液を85℃に加温し紡糸原液として、孔径0.1mm、孔数2000の吐出孔が円形の紡糸口金から80℃の凝固浴中に吐出して紡糸した。この凝固浴の組成は、塩化カルシウムが38質量%、NMPが5質量%、残りの水が57質量%であり、浸漬長(有効凝固浴長)140cmにて糸速7.8m/分で通過させた後、いったん空気中に引き出した。 This polymer solution was heated to 85 ° C. and used as a spinning stock solution, which was discharged from a spinning spout having a hole diameter of 0.1 mm and a number of holes of 2000 into a coagulation bath at 80 ° C. for spinning. The composition of this coagulation bath is 38% by mass of calcium chloride, 5% by mass of NMP, 57% by mass of the remaining water, and passes through at a thread speed of 7.8 m / min at an immersion length (effective coagulation bath length) of 140 cm. After letting it, it was once pulled out into the air.

この凝固糸条を第1〜第3水洗浄浴にて水洗し、この際の総浸漬時間は360秒とした。なお、第1〜第3水性洗浄浴温度はそれぞれ20、30、50℃の水を用いた。次に、この洗浄糸条を90℃の沸水中にて3.0倍に延伸し、引続き90℃の温水中に50秒浸漬し、洗浄した。 The coagulated yarn was washed with water in the first to third water washing baths, and the total immersion time at this time was 360 seconds. The first to third aqueous washing bath temperatures were 20, 30, and 50 ° C., respectively. Next, the washing yarn was stretched 3.0 times in boiling water at 90 ° C., and subsequently immersed in warm water at 90 ° C. for 50 seconds for washing.

次に表面温度170℃のローラーに巻回して乾熱処理した後、表面温度320℃の熱板にて1.5倍に延伸した。最後に、表面温度310℃の熱板にて定長下で5秒間熱セットすることでメタ型全芳香族ポリアミド繊維を得た。 Next, it was wound around a roller having a surface temperature of 170 ° C. and subjected to dry heat treatment, and then stretched 1.5 times on a hot plate having a surface temperature of 320 ° C. Finally, a meta-type total aromatic polyamide fiber was obtained by heat-setting for 5 seconds under a constant length on a hot plate having a surface temperature of 310 ° C.

得られた繊維は繊度2.2dtex、強度3.2cN/dtex、伸度59%、結晶化度31%であった。また、繊維の断面形状はC字型(コの字ともいう)であった。得られた繊維断面の走査型電子顕微鏡画像を図2に示す。染色処理後の染着率は91%であった。 The obtained fibers had a fineness of 2.2 dtex, a strength of 3.2 cN / dtex, an elongation of 59%, and a crystallinity of 31%. The cross-sectional shape of the fiber was C-shaped (also referred to as U-shaped). A scanning electron microscope image of the obtained fiber cross section is shown in FIG. The dyeing rate after the dyeing treatment was 91%.

[実施例3]
界面重合により合成し水洗精製した重量平均分子量53万のメタアラミド重合体粉末および塩化カルシウム粉末を、NMPに溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が20%、塩化カルシウムが1.0%になるよう調整した。
[Example 3]
A metaaramid polymer powder having a weight average molecular weight of 530,000 and calcium chloride powder synthesized by interfacial polymerization and washed with water and purified were dissolved in NMP to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 20% and the calcium chloride content was adjusted to 1.0% with respect to the polymer solution.

このポリマー溶液を85℃に加温し紡糸原液として、孔径0.1mm、孔数2000の吐出孔が円形の紡糸口金から83℃の凝固浴中に吐出して紡糸した。この凝固浴の組成は、塩化カルシウムが38質量%、NMPが5質量%、残りの水が57質量%であり、浸漬長(有効凝固浴長)180cmにて糸速7.8m/分で通過させた後、いったん空気中に引き出した。 This polymer solution was heated to 85 ° C. and used as a spinning stock solution, which was discharged from a spinning spout having a hole diameter of 0.1 mm and a number of holes of 2000 into a coagulation bath at 83 ° C. for spinning. The composition of this coagulation bath is 38% by mass of calcium chloride, 5% by mass of NMP, 57% by mass of the remaining water, and passes at a thread speed of 7.8 m / min at an immersion length (effective coagulation bath length) of 180 cm. After letting it, it was once pulled out into the air.

この凝固糸条を第1〜第3水洗浄浴にて水洗し、この際の総浸漬時間は360秒とした。なお、第1〜第3水性洗浄浴温度はそれぞれ20、30、50℃の水を用いた。次に、この洗浄糸条を90℃の沸水中にて2.2倍に延伸し、引続き90℃の温水中に50秒浸漬し、洗浄した。 The coagulated yarn was washed with water in the first to third water washing baths, and the total immersion time at this time was 360 seconds. The first to third aqueous washing bath temperatures were 20, 30, and 50 ° C., respectively. Next, the washing yarn was stretched 2.2 times in boiling water at 90 ° C., and subsequently immersed in warm water at 90 ° C. for 50 seconds for washing.

次に表面温度170℃のローラーに巻回して乾熱処理した後、表面温度340℃の熱板にて2.0倍に延伸した。最後に、表面温度320℃の熱板にて定長下で5秒間熱セットすることでメタ型全芳香族ポリアミド繊維を得た。 Next, it was wound around a roller having a surface temperature of 170 ° C. and subjected to dry heat treatment, and then stretched 2.0 times on a hot plate having a surface temperature of 340 ° C. Finally, a meta-type total aromatic polyamide fiber was obtained by heat-setting for 5 seconds under a constant length on a hot plate having a surface temperature of 320 ° C.

得られた繊維は繊度2.0dtex、強度3.4cN/dtex、伸度76%、結晶化度28%であった。また、繊維の断面形状はC字型(コの字ともいう)であった。得られた繊維断面の走査型電子顕微鏡画像を図3に示す。染色処理後の染着率は99%以上であった。 The obtained fibers had a fineness of 2.0 dtex, a strength of 3.4 cN / dtex, an elongation of 76%, and a crystallinity of 28%. The cross-sectional shape of the fiber was C-shaped (also referred to as U-shaped). A scanning electron microscope image of the obtained fiber cross section is shown in FIG. The dyeing rate after the dyeing treatment was 99% or more.

[比較例1]
溶液重合により合成した重量平均分子量72万のメタアラミド重合体を、NMPに溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が22%になるよう調整した。
[Comparative Example 1]
A metaaramid polymer having a weight average molecular weight of 720,000 synthesized by solution polymerization was dissolved in NMP to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 22% with respect to the polymer solution.

該ポリマー溶液を実施例1と同様の方法で紡糸し、メタ型全芳香族ポリアミド繊維を得た。 The polymer solution was spun in the same manner as in Example 1 to obtain meta-type total aromatic polyamide fibers.

得られた繊維は繊度2.1dtex、強度4.6cN/dtex、伸度50%、結晶化度34%であった。また、繊維の断面形状はマユ型であった。得られた繊維断面の走査型電子顕微鏡画像を図4に示す。染色処理後の染着率は66%であった。 The obtained fibers had a fineness of 2.1 dtex, a strength of 4.6 cN / dtex, an elongation of 50%, and a crystallinity of 34%. The cross-sectional shape of the fiber was Mayu-shaped. A scanning electron microscope image of the obtained fiber cross section is shown in FIG. The dyeing rate after the dyeing treatment was 66%.

[比較例2]
溶液重合により合成した重量平均分子量72万のメタアラミド重合体粉末および塩化カルシウム粉末を、NMPに溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が22%、塩化カルシウムが2.5%になるよう調整した。
[Comparative Example 2]
A metaaramid polymer powder having a weight average molecular weight of 720,000 and calcium chloride powder synthesized by solution polymerization were dissolved in NMP to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 22% and the calcium chloride content was adjusted to 2.5% with respect to the polymer solution.

このポリマー溶液を実施例1と同様の方法で紡糸し、メタ型全芳香族ポリアミド繊維を得た。 This polymer solution was spun in the same manner as in Example 1 to obtain meta-type total aromatic polyamide fibers.

得られた繊維は繊度2.1dtex、強度4.6cN/dtex、伸度45%、結晶化度40%であった。また、繊維の断面形状はC字型(コの字ともいう)であった。染色処理後の染着率は70%であった。 The obtained fibers had a fineness of 2.1 dtex, a strength of 4.6 cN / dtex, an elongation of 45%, and a crystallinity of 40%. The cross-sectional shape of the fiber was C-shaped (also referred to as U-shaped). The dyeing rate after the dyeing treatment was 70%.

[比較例3]
界面重合により合成した重量平均分子量52万のメタアラミド重合体粉末を、NMPに溶解させ、透明なポリマー溶液を得た。この際、ポリマー溶液に対してメタアラミド重合体の質量濃度が22%になるよう調整した。
[Comparative Example 3]
A metaaramid polymer powder having a weight average molecular weight of 520,000 synthesized by interfacial polymerization was dissolved in NMP to obtain a transparent polymer solution. At this time, the mass concentration of the metaaramid polymer was adjusted to 22% with respect to the polymer solution.

このポリマー溶液を実施例2と同様の方法で紡糸し、メタ型全芳香族ポリアミド繊維を得た。 This polymer solution was spun in the same manner as in Example 2 to obtain meta-type total aromatic polyamide fibers.

得られた繊維は繊度2.2dtex、強度3.3cN/dtex、伸度55%、結晶化度30%であった。また、繊維の断面形状はマユ型であった。染色処理後の染着率は74%であった。 The obtained fibers had a fineness of 2.2 dtex, a strength of 3.3 cN / dtex, an elongation of 55%, and a crystallinity of 30%. The cross-sectional shape of the fiber was Mayu-shaped. The dyeing rate after the dyeing treatment was 74%.

実施例及び比較例で得られたメタ型全芳香族ポリアミド繊維の物性を表1に示す。 Table 1 shows the physical characteristics of the meta-type total aromatic polyamide fibers obtained in Examples and Comparative Examples.

Figure 2021080586
Figure 2021080586

本発明の易染色性メタ型全芳香族ポリアミド繊維を衣料用途として用いる場合、染色処理により容易に目的の意匠性を持った繊維製品を得ることができる。また、染色処理前の原繊維においても結晶化度が高いことからメタ型全芳香族ポリアミド繊維としての機能を十分に発揮し、用途が限定される可能性が低くなる。 When the easily dyeable meta-type total aromatic polyamide fiber of the present invention is used for clothing, a fiber product having a desired design can be easily obtained by a dyeing treatment. In addition, since the raw fiber before the dyeing treatment also has a high degree of crystallinity, it fully exerts its function as a meta-type total aromatic polyamide fiber, and the possibility that its use is limited is reduced.

さらに、本発明の製造方法は使用するポリマーの粘度が低いため操作性が向上する。加えて、厳密な紡糸条件の管理を行わなくても強度の高い凝固糸を与える手法であることから安定な生産を行うことができ、その工業的価値は極めて大きい。 Further, the production method of the present invention has a low viscosity of the polymer used, so that the operability is improved. In addition, stable production can be performed because it is a method of giving high-strength solidified yarn without strict control of spinning conditions, and its industrial value is extremely large.

Claims (4)

JIS−K−7252に準じ測定される重量平均分子量が30〜60万のメタ型全芳香族ポリアミドからなり、JIS−L−1015に規定される破断強度が3.0cN/dtex以上であり、繊維の結晶化度が25%以上であり、染色繊維の下記方法により測定した染着率が90%以上である易染色性メタ型全芳香族ポリアミド繊維。
(染色方法)
カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL−ED(B−54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意する。
引き続き、繊維と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施する。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色繊維を得る。
原繊維を染色した染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出する。引き続き、抽出液について、波長670nm、540nm、530nmの吸光度をそれぞれ測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から抽出液の染料濃度をそれぞれ求め、上記3波長における濃度の平均値を抽出液の染料濃度(C)とする。
染色前の染料濃度(Co)を用いて、以下の式にて得られる値を染着率(U)とする。
染着率(U)=[(Co−C)/Co]×100
It is made of meta-type total aromatic polyamide with a weight average molecular weight of 300,000 to 600,000 measured according to JIS-K-7252, has a breaking strength of 3.0 cN / dtex or more specified in JIS-L-1015, and is a fiber. An easily dyeable meta-type total aromatic polyamide fiber having a crystallinity of 25% or more and a dyeing rate of 90% or more measured by the following method of dyed fibers.
(Dyeing method)
Cationic dye (manufactured by Nippon Kayaku Co., Ltd., trade name: Kayacryl Blue GSL-ED (B-54)) 6% owf, acetic acid 0.3 mL / L, sodium nitrate 20 g / L, benzyl alcohol 70 g / L as a carrier agent, dispersion A dyeing solution containing 0.5 g / L of a dyeing aid (manufactured by Meisei Chemical Industry Co., Ltd., trade name: disper TL) is prepared as an agent.
Subsequently, the dyeing treatment is carried out at 120 ° C. for 60 minutes with the bath ratio of the fiber to the dyeing solution being 1:40. After the dyeing treatment, a treatment liquid containing 2.0 g / L of hydrosulfite, 2.0 g / L of amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amylazine D), and 1.0 g / L of sodium hydroxide. The dyed fibers are obtained by performing reduction washing at a bath ratio of 1:20 at 80 ° C. for 20 minutes, washing with water, and then drying.
Dichloromethane in the same volume as this dyeing residual liquid is added to the dyeing residual liquid obtained by dyeing the raw fibers, and the residual dye is extracted. Subsequently, the absorbances of the extracts at wavelengths of 670 nm, 540 nm, and 530 nm were measured, and the dye concentrations of the extracts were obtained from the calibration curves of the above three wavelengths prepared from a dichloromethane solution having a known dye concentration in advance. The average value of the concentrations is defined as the dye concentration (C) of the extract.
Using the dye concentration (Co) before dyeing, the value obtained by the following formula is defined as the dyeing rate (U).
Dyeing rate (U) = [(Co-C) / Co] x 100
繊維の結晶化度が25〜40%である請求項1に記載の易染色性メタ型全芳香族ポリアミド繊維。 The easily dyeable meta-type total aromatic polyamide fiber according to claim 1, wherein the fiber crystallinity is 25 to 40%. JIS−L−1015に規定される破断伸度が40〜90%である請求項1または2に記載の易染色性メタ型全芳香族ポリアミド繊維。 The easily dyeable meta-type total aromatic polyamide fiber according to claim 1 or 2, wherein the elongation at break specified in JIS-L-1015 is 40 to 90%. JIS−K−7252に準じ測定される重量平均分子量が30万〜60万のメタ型全芳香族ポリアミドの濃度が10〜30質量%、無機塩の濃度が0.1〜10質量%のアミド系極性溶媒溶液を湿式紡糸することにより全芳香族ポリアミド繊維を製造する方法であって、該アミド系極性溶媒溶液を、30質量%以上の無機塩および3質量%以上のアミド系溶剤を含む水性凝固浴中に紡出して凝固せしめ、300度以上の温度で熱セットする工程を含むことを特徴とする易染色性メタ型全芳香族ポリアミド繊維の製造方法。 An amide system having a weight average molecular weight of 300,000 to 600,000, measured according to JIS-K-7252, having a concentration of 10 to 30% by mass of a meta-type total aromatic polyamide and an inorganic salt concentration of 0.1 to 10% by mass. A method for producing a total aromatic polyamide fiber by wet-spinning a polar solvent solution, wherein the amide-based polar solvent solution is aqueous-coagulated containing 30% by mass or more of an inorganic salt and 3% by mass or more of an amide-based solvent. A method for producing an easily dyeable meta-type total aromatic polyamide fiber, which comprises a step of spinning in a bath to solidify and heat-setting at a temperature of 300 ° C. or higher.
JP2019207090A 2019-11-15 2019-11-15 Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same Active JP7372118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207090A JP7372118B2 (en) 2019-11-15 2019-11-15 Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207090A JP7372118B2 (en) 2019-11-15 2019-11-15 Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021080586A true JP2021080586A (en) 2021-05-27
JP7372118B2 JP7372118B2 (en) 2023-10-31

Family

ID=75964339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207090A Active JP7372118B2 (en) 2019-11-15 2019-11-15 Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP7372118B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4266678B2 (en) 2003-03-17 2009-05-20 帝人テクノプロダクツ株式会社 Process for producing readily dyeable meta-type wholly aromatic polyamide fiber
CN100398707C (en) 2005-06-17 2008-07-02 东华大学 Method for preparing meta aromatic polyamide fiber
JP2007254915A (en) 2006-03-23 2007-10-04 Teijin Techno Products Ltd Meta-type aromatic polyamide fiber having excellent flame retardancy
JP4647680B2 (en) 2008-09-29 2011-03-09 帝人テクノプロダクツ株式会社 Easy-dyeing meta-type wholly aromatic polyamide fiber
JP2011202326A (en) 2010-03-26 2011-10-13 Teijin Techno Products Ltd Fiber structure including easy-to-dye meta-wholly aromatic polyamide staple fiber
CN107814928B (en) 2017-11-07 2020-04-21 东华大学 Modified polyisophthaloyl metaphenylene diamine easy to dye by cationic dye and preparation method and application thereof

Also Published As

Publication number Publication date
JP7372118B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP4647680B2 (en) Easy-dyeing meta-type wholly aromatic polyamide fiber
JP5710593B2 (en) Meta-type wholly aromatic polyamide fiber
CA2796362A1 (en) Meta-type wholly aromatic polyamide fiber
TWI586855B (en) Dope dyed meta-type master aromatic polyamide fiber
JP2007262589A (en) Easily-dyeable meta aromatic amide fiber and method for producing the same
JP2009120976A (en) Easily dyeable meta-type wholly aromatic polyamide fiber
JP3937050B2 (en) Method for producing meta-type wholly aromatic polyamide fiber and fiber obtained thereby
JP4266678B2 (en) Process for producing readily dyeable meta-type wholly aromatic polyamide fiber
JP2011202327A (en) Fabric comprising easy-to-dye meta-wholly aromatic polyamide fiber
JP2011202326A (en) Fiber structure including easy-to-dye meta-wholly aromatic polyamide staple fiber
JP6873768B2 (en) I Ching meta-type total aromatic polyamide fiber with excellent flame retardancy and its manufacturing method
JP2021080586A (en) Easily dyeable meta type all aromatic polyamide fiber, and manufacturing method thereof
JP2013133569A (en) Spun yarn of spun-dyed meta-type wholly aromatic polyamide fiber
JP7315378B2 (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
JP2020117831A (en) Easily-dyeable meta-type wholly aromatic polyamide fiber, and method for producing the same
JP2015042790A (en) Stretch-broken spun yarn comprising spun-dyed meta-type wholly aromatic polyamide
JP2005042262A (en) Method for producing easily dyeable meta-type wholly aromatic polyamide fiber
JP6768465B2 (en) Meta-type total aromatic polyamide fiber and its manufacturing method
JP2018084000A (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
JP2003342832A (en) Method for producing meta-type wholly aromatic polyamide fiber having excellent shrinkage stability
JP5718654B2 (en) Meta-type wholly aromatic polyamide fiber
JP2007254928A (en) Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP2022128968A (en) Self-crimping wholly aromatic polyamide fiber and method for producing the same
JP2010261132A (en) Easily dyeable fabric including meta-type wholly aromatic polyamide fiber
JP6523026B2 (en) Black meta-type wholly aromatic polyamide fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150