JP2021077468A - Electrode catalyst material for fuel cell, catalyst ink, electrode catalyst layer and membrane electrode assembly - Google Patents

Electrode catalyst material for fuel cell, catalyst ink, electrode catalyst layer and membrane electrode assembly Download PDF

Info

Publication number
JP2021077468A
JP2021077468A JP2019201187A JP2019201187A JP2021077468A JP 2021077468 A JP2021077468 A JP 2021077468A JP 2019201187 A JP2019201187 A JP 2019201187A JP 2019201187 A JP2019201187 A JP 2019201187A JP 2021077468 A JP2021077468 A JP 2021077468A
Authority
JP
Japan
Prior art keywords
electrode catalyst
electrode
catalyst material
conductive material
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019201187A
Other languages
Japanese (ja)
Other versions
JP7340418B2 (en
Inventor
秀和 都築
Hidekazu Tsuzuki
秀和 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019201187A priority Critical patent/JP7340418B2/en
Publication of JP2021077468A publication Critical patent/JP2021077468A/en
Application granted granted Critical
Publication of JP7340418B2 publication Critical patent/JP7340418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide: a novel electrode catalyst material for fuel cells, having high catalytic activity in an oxygen reduction reaction without using platinum as a catalyst component; and a catalyst ink, an electrode catalyst layer and a membrane electrode assembly, in which the electrode catalyst material for fuel cells is used.SOLUTION: An electrode catalyst material for fuel cells according to the present invention includes a metal oxide and a conductive material. The metal oxide is a linked aggregate in which flaky nanocrystal pieces are linked to each other, the flaky nanocrystal pieces each having main surfaces where a specific crystal plane is exposed and an end surface. The plurality of the nanocrystal pieces has a gap arranged while opening to an outside of the linked aggregate, between the main surfaces. The conductive material is in contact with at least a part of the nanocrystal pieces.SELECTED DRAWING: Figure 1

Description

本発明は、電極触媒材料に関し、特に、燃料電池の空気触媒材料として高い触媒活性を有する電極触媒材料、並びにこれを用いた触媒インク、電極触媒層及び膜電極接合体に関するものである。 The present invention relates to an electrode catalyst material, and more particularly to an electrode catalyst material having high catalytic activity as an air catalyst material for a fuel cell, and a catalyst ink, an electrode catalyst layer, and a membrane electrode assembly using the same.

近年、省エネルギー化の観点から、発電装置や電池性能の改善要求がさらに高まっている。また、発電装置や電池に搭載する電極について、環境負荷や生産コストの低減の観点から、従来の性能を維持、向上しつつ、新たな材料を開発することが要求されている。また、排ガスや温室効果ガスの削減の観点から、燃料電池等の発電装置を用いて自動車等の輸送機器を駆動させることも提案されている。 In recent years, from the viewpoint of energy saving, there is an increasing demand for improvement of power generation equipment and battery performance. Further, from the viewpoint of reducing environmental load and production cost, it is required to develop new materials for electrodes mounted on power generation devices and batteries while maintaining and improving the conventional performance. From the viewpoint of reducing exhaust gas and greenhouse gases, it has also been proposed to drive transportation equipment such as automobiles by using a power generation device such as a fuel cell.

燃料電池に用いられる空気極触媒材料として、従来、炭素粒子表面に白金(Pt)の微粒子を担持させた触媒材料が使用されている。白金は酸素還元反応(以下、「ORR」ということがある。)の触媒として優れ、炭素粒子は導電性に優れていることから、炭素粒子表面に白金微粒子を担持させた触媒材料が、燃料電池の空気極触媒材料として、一般的に使用されている。しかし、白金は、埋蔵量の少ない希少金属であり、高価でもあることから、炭素粒子表面に白金微粒子を担持させた触媒材料に代わる、新たな触媒材料が必要である。 As an air electrode catalyst material used in a fuel cell, a catalyst material in which fine particles of platinum (Pt) are supported on the surface of carbon particles has been conventionally used. Platinum is excellent as a catalyst for oxygen reduction reaction (hereinafter sometimes referred to as "ORR"), and carbon particles are excellent in conductivity. Therefore, a catalyst material in which platinum fine particles are supported on the surface of carbon particles is a fuel cell. It is generally used as an air electrode catalyst material of. However, since platinum is a rare metal having a small reserve and is also expensive, a new catalyst material is required in place of the catalyst material in which platinum fine particles are supported on the surface of carbon particles.

特許文献1には、シルク材料を焼成及び賦活処理して得られた、シルク材料由来の窒素を含有する粉状炭化物に白金等の触媒金属を担持した触媒は、酸素還元反応能を有し、燃料電池のカソード層の触媒として有用であることが開示されている。しかしながら、触媒金属として、従来と同様に白金が使用されているため、白金を用いた触媒材料に代わる、新たな触媒材料は提案されていない。 According to Patent Document 1, a catalyst obtained by calcining and activating a silk material and supporting a catalyst metal such as platinum on a nitrogen-containing powdery charcoal derived from the silk material has an oxygen reduction reaction ability. It is disclosed that it is useful as a catalyst for the cathode layer of a fuel cell. However, since platinum is used as the catalyst metal as in the conventional case, no new catalyst material has been proposed to replace the catalyst material using platinum.

特開2010−063952号公報Japanese Unexamined Patent Publication No. 2010-063952

本発明は、触媒成分として白金を用いずに、酸素還元反応において高い触媒活性を有する新たな燃料電池用の電極触媒材料、並びにこれを用いた触媒インク、電極触媒層及び膜電極接合体の提供を目的とする。 The present invention provides a new electrode catalyst material for a fuel cell having high catalytic activity in an oxygen reduction reaction without using platinum as a catalyst component, and a catalyst ink, an electrode catalyst layer and a membrane electrode assembly using the same. With the goal.

本発明者は、上記問題に対して鋭意検討を行った結果、触媒成分として、特定の結晶面が表出している主表面および端面をもつ薄片状のナノ結晶片が相互に連結された連結集合体である触媒活性を有する金属酸化物と、導電性付与成分としての導電性材料と、を備え、前記ナノ結晶片の少なくとも一部と前記導電性材料とが接触している触媒材料を、燃料電池用の電極触媒材料として使用することによって、高価な白金を用いなくとも、酸素還元反応において高い触媒活性が得られることを見出した。 As a result of diligent studies on the above problems, the present inventor has made a connected set in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal face is exposed are connected to each other as a catalyst component. A catalyst material comprising a body, a metal oxide having catalytic activity, and a conductive material as a conductivity-imparting component, in which at least a part of the nanocrystal pieces is in contact with the conductive material, is used as a fuel. It has been found that by using it as an electrode catalyst material for a battery, high catalytic activity can be obtained in an oxygen reduction reaction without using expensive platinum.

すなわち、本発明の要旨構成は、以下のとおりである。
[1] 金属酸化物と、導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触している電極触媒材料。
[2] 前記ナノ結晶片の平均厚さが、10nm未満である[1]に記載の電極触媒材料。
[3] 前記金属酸化物が、酸化銅である[1]または[2]に記載の電極触媒材料。
[4] 前記特定の結晶面が、(001)結晶面である[3]に記載の電極触媒材料。
[5] 前記導電性材料が、導電性物質が連なった連続構造体を有する炭素材料である[1]乃至[4]のいずれか1つに記載の電極触媒材料。
[6] 前記導電性物質が、繊維状炭素及び炭素粒子から選択される少なくとも1種である[5]に記載の電極触媒材料。
[7] 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して0.5%以上である[1]乃至[6]のいずれか1つに記載の電極触媒材料。
[8] [1]乃至[7]のいずれか1つに記載の電極触媒材料と、高分子電解質と、溶媒とを含む、燃料電池用の電極触媒層を形成するための触媒インク。
[9] [8]に記載の触媒インクを用いて形成された燃料電池用の電極触媒層。
[10] 正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、前記正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を備え、
前記正極用電極触媒層及び前記負極用電極触媒層の少なくとも一方の電極触媒層が、[1]乃至[7]のいずれか1つに記載の電極触媒材料を含む、燃料電池用膜電極接合体。
That is, the gist structure of the present invention is as follows.
[1] An electrode catalyst material for a fuel cell having a metal oxide and a conductive material.
The metal oxide is a linked aggregate in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal face is exposed are connected to each other.
The plurality of nanocrystal pieces have a gap between the main surfaces, which is arranged so as to be open to the outside of the connecting assembly.
An electrode catalyst material in which the conductive material is in contact with at least a part of the nanocrystal pieces.
[2] The electrode catalyst material according to [1], wherein the average thickness of the nanocrystal pieces is less than 10 nm.
[3] The electrode catalyst material according to [1] or [2], wherein the metal oxide is copper oxide.
[4] The electrode catalyst material according to [3], wherein the specific crystal plane is a (001) crystal plane.
[5] The electrode catalyst material according to any one of [1] to [4], wherein the conductive material is a carbon material having a continuous structure in which conductive substances are connected.
[6] The electrode catalyst material according to [5], wherein the conductive substance is at least one selected from fibrous carbon and carbon particles.
[7] The electrical conductivity of the electrode catalyst material formed on the electrode is 0.5% or more with respect to the electrical conductivity of the layer formed on the electrode by the conductive material [1] to [6]. ]. The electrode catalyst material according to any one of.
[8] A catalyst ink for forming an electrode catalyst layer for a fuel cell, which comprises the electrode catalyst material according to any one of [1] to [7], a polymer electrolyte, and a solvent.
[9] An electrode catalyst layer for a fuel cell formed by using the catalyst ink according to [8].
[10] A positive electrode having a positive electrode catalyst layer, a negative electrode having a negative electrode catalyst layer, a solid polymer electrolyte layer arranged between the positive electrode catalyst layer and the negative electrode catalyst layer, and a solid polymer electrolyte layer. With
A membrane electrode assembly for a fuel cell, wherein at least one of the positive electrode catalyst layer and the negative electrode catalyst layer contains the electrode catalyst material according to any one of [1] to [7]. ..

本発明の態様によれば、電極触媒材料が、触媒活性を有する金属酸化物の、特定の結晶面が表出している主表面をもつナノ結晶片の少なくとも一部と、導電性を付与する導電性材料とが接触している複合材料であることにより、触媒材料に高価な白金を用いなくとも、酸素還元反応において高い触媒活性を示す新たな燃料電池用の電極触媒材、並びにこれを用いた触媒インク、電極触媒層及び膜電極接合体を提供できる。 According to the aspect of the present invention, the electrode catalyst material imparts conductivity to at least a part of nanocrystal pieces having a main surface of a metal oxide having catalytic activity and a specific crystal surface is exposed. Since it is a composite material in contact with a sex material, a new electrode catalyst material for a fuel cell that exhibits high catalytic activity in an oxygen reduction reaction without using expensive platinum as a catalyst material, and an electrode catalyst material for which this is used were used. A catalyst ink, an electrode catalyst layer, and a film electrode joint can be provided.

本発明の態様によれば、金属酸化物が酸化銅、特定の結晶面が(001)結晶面である触媒材料により、酸素還元反応において高い触媒活性をより確実に得ることができる。 According to the aspect of the present invention, a catalytic material in which the metal oxide is copper oxide and the specific crystal plane is the (001) crystal plane can more reliably obtain high catalytic activity in the oxygen reduction reaction.

本発明の態様によれば、導電性材料が、導電性物質が連続して繋がった連続構造を有する炭素材料であることにより、連続構造による効率の良い電子の移動が可能であるため、金属酸化物と導電性材料との間の電子授受が円滑化され、触媒活性をより高めることができる。 According to the aspect of the present invention, since the conductive material is a carbon material having a continuous structure in which conductive substances are continuously connected, efficient electron transfer by the continuous structure is possible, and thus metal oxidation The transfer of electrons between the object and the conductive material is facilitated, and the catalytic activity can be further enhanced.

図1は、本発明に従う電極触媒材料の実施態様を説明する概略図である。FIG. 1 is a schematic view illustrating an embodiment of an electrode catalyst material according to the present invention. 図2は、実施例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像である。FIG. 2 is an SEM image of the electrode catalyst material produced in Example 1 when observed at a magnification of 30,000. 図3は、図2に示されるSEM画像の同視野における反射電子像を示す。FIG. 3 shows a reflected electron image in the same field of view of the SEM image shown in FIG. 図4は、実施例3で作製された電極触媒材料を、倍率50,000倍で観察した際のSEM画像である。FIG. 4 is an SEM image of the electrode catalyst material produced in Example 3 when observed at a magnification of 50,000 times. 図5は、比較例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像である。FIG. 5 is an SEM image of the electrode catalyst material produced in Comparative Example 1 when observed at a magnification of 30,000. 図6は、図5に示されるSEM画像の同視野における反射電子像を示す。FIG. 6 shows a reflected electron image in the same field of view of the SEM image shown in FIG. 図7は、触媒活性の測定における電位と電流密度の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the potential and the current density in the measurement of catalytic activity.

以下、図面を用いながら、本発明の実施形態である電極触媒材料、触媒インク、電極触媒層及び膜電極接合体について説明する。図1は、本発明の電極触媒材料の実施態様を説明する概略図である。 Hereinafter, the electrode catalyst material, the catalyst ink, the electrode catalyst layer, and the membrane electrode assembly, which are the embodiments of the present invention, will be described with reference to the drawings. FIG. 1 is a schematic view illustrating an embodiment of the electrode catalyst material of the present invention.

<電極触媒材料>
図1に示すように、本発明の実施形態の電極触媒材料1は、触媒活性を有する金属酸化物と、導電性を付与する導電性材料30とを有し、金属酸化物は、特定の結晶面が表出している主表面22および端面23をもつ薄片状であるナノ結晶片21が相互に連結された連結集合体20である。連結集合体20は、特定の結晶面が表出している主表面22をもつ薄片状のナノ結晶片21から構成されていることで、優れた触媒活性を発揮する。また、連結集合体20は、複数のナノ結晶片21の主表面22間に、連結集合体20の外側に開口して配置された間隙Gを有している。
<Electrode catalyst material>
As shown in FIG. 1, the electrode catalyst material 1 of the embodiment of the present invention has a metal oxide having catalytic activity and a conductive material 30 that imparts conductivity, and the metal oxide is a specific crystal. It is a connected assembly 20 in which flaky nanocrystal pieces 21 having a main surface 22 and an end surface 23 whose surfaces are exposed are connected to each other. The linked aggregate 20 exhibits excellent catalytic activity because it is composed of flaky nanocrystal pieces 21 having a main surface 22 on which a specific crystal plane is exposed. Further, the connected aggregate 20 has a gap G arranged between the main surfaces 22 of the plurality of nanocrystal pieces 21 so as to be open to the outside of the connected aggregate 20.

導電性材料30は、ナノ結晶片21、好ましくは主表面22の少なくとも一部と接触している。例えば、電極触媒材料1が燃料電池の正極に搭載されると、燃料電池の負極触媒材料におけるH→2H+2eの水素酸化反応において生成した電子が、ナノ結晶片21に接触している導電性材料30を通して輸送される。導電性材料30は、ナノ結晶片21の少なくとも一部と接触しているため、金属酸化物である連結集合体20と導電性材料30との間の電子授受が達成される。一方、導電性材料30がナノ結晶片21の全面、特に主表面22の全面を覆うと、触媒活性面である主表面22が露出されず、正極での反応物質を触媒活性面に供給できなくなり、酸素還元反応が阻害される。ナノ結晶片21の少なくとも一部、特に主表面22の少なくとも一部と導電性材料30とが接触している電極触媒材料1では、導電性材料30との良好な接触と触媒活性の向上が実現される。また、導電性材料30は、ナノ結晶片21の主表面22の少なくとも一部と電気的に接触していることが好ましい。これにより、連結集合体20と導電性材料30との間の電子授受が円滑化され、触媒活性がより向上する。導電性材料30と、ナノ結晶片21の主表面22の少なくとも一部とが良好に電気的に接触している場合、電極上に形成した電極触媒材料1の電気伝導度は、該電極上に導電性材料30により形成した層の電気伝導度に対して0.5%以上であることが好ましい。 The conductive material 30 is in contact with the nanocrystal pieces 21, preferably at least a portion of the main surface 22. For example, when the electrode catalyst material 1 is mounted on the positive electrode of the fuel cell, the electrons generated in the hydrogen oxidation reaction of H 2 → 2H + + 2e − in the negative electrode catalyst material of the fuel cell are in contact with the nanocrystal pieces 21. It is transported through the conductive material 30. Since the conductive material 30 is in contact with at least a part of the nanocrystal pieces 21, electron transfer between the connecting aggregate 20 which is a metal oxide and the conductive material 30 is achieved. On the other hand, when the conductive material 30 covers the entire surface of the nanocrystal piece 21, particularly the entire surface of the main surface 22, the main surface 22 which is the catalytically active surface is not exposed, and the reactant at the positive electrode cannot be supplied to the catalytically active surface. , The oxygen reduction reaction is inhibited. In the electrode catalyst material 1 in which at least a part of the nanocrystal piece 21, particularly at least a part of the main surface 22, and the conductive material 30 are in contact with each other, good contact with the conductive material 30 and improvement of catalytic activity are realized. Will be done. Further, it is preferable that the conductive material 30 is in electrical contact with at least a part of the main surface 22 of the nanocrystal piece 21. As a result, electron transfer between the connecting aggregate 20 and the conductive material 30 is facilitated, and the catalytic activity is further improved. When the conductive material 30 and at least a part of the main surface 22 of the nanocrystal piece 21 are in good electrical contact, the electrical conductivity of the electrode catalyst material 1 formed on the electrode is on the electrode. It is preferably 0.5% or more with respect to the electrical conductivity of the layer formed by the conductive material 30.

導電性材料30は、導電性材料30を構成する導電性物質が互いに数珠のように連続して繋がった連続構造体31を有していてもよい。この場合、導電性材料30が有する連続構造体31が、ナノ結晶片21の少なくとも一部、例えば主表面22の少なくとも一部と接触していればよい。導電性材料30が連続構造体31を有することで、ナノ結晶片21の一部が、導電性材料30が有する連続構造体31と接触できる面積が増大する。これにより、連結集合体20と導電性材料30との間の電子授受がより円滑化され、触媒活性をより高めることができる。また、導電性材料30が有する連続構造体31が、ナノ結晶片21の主表面22の少なくとも一部と接触していることにより、導電性材料30が表出している主表面22に担持される。そのため、例えば、外部等から衝撃があっても、導電性材料30とナノ結晶片21との接触を良好に維持することができる。一方、導電性材料30が有する連続構造体31が、ナノ結晶片21の端面23の少なくとも一部で電気的に接触している場合、触媒活性面を阻害せずに導電性能を向上できる。そのため、電極触媒材料1では、連結集合体20を担体として導電性材料30を保持する形態、導電性材料30が有する連続構造体31を担体としてナノ結晶片21を保持する形態の両方が可能である。 The conductive material 30 may have a continuous structure 31 in which the conductive substances constituting the conductive material 30 are continuously connected to each other like beads. In this case, the continuous structure 31 of the conductive material 30 may be in contact with at least a part of the nanocrystal piece 21, for example, at least a part of the main surface 22. When the conductive material 30 has the continuous structure 31, the area where a part of the nanocrystal pieces 21 can come into contact with the continuous structure 31 of the conductive material 30 increases. As a result, the transfer of electrons between the connecting aggregate 20 and the conductive material 30 is smoother, and the catalytic activity can be further enhanced. Further, the continuous structure 31 of the conductive material 30 is supported on the exposed main surface 22 of the nanocrystal piece 21 by being in contact with at least a part of the main surface 22 of the nanocrystal piece 21. .. Therefore, for example, even if there is an impact from the outside or the like, good contact between the conductive material 30 and the nanocrystal piece 21 can be maintained. On the other hand, when the continuous structure 31 of the conductive material 30 is in electrical contact with at least a part of the end face 23 of the nanocrystal piece 21, the conductive performance can be improved without inhibiting the catalytically active surface. Therefore, in the electrode catalyst material 1, both a form of holding the conductive material 30 using the connecting aggregate 20 as a carrier and a form of holding the nanocrystal piece 21 using the continuous structure 31 of the conductive material 30 as a carrier are possible. is there.

<金属酸化物>
図1に示すように、金属酸化物は、主表面22と端面23をもつ複数のナノ結晶片21が相互に連結された連結集合体20であり、花のような形状を示す。複数のナノ結晶片21の連結状態は、特に限定されず、複数のナノ結晶片21が連結して集合体を形成していればよい。
<Metal oxide>
As shown in FIG. 1, the metal oxide is a connected aggregate 20 in which a plurality of nanocrystal pieces 21 having a main surface 22 and an end surface 23 are connected to each other, and exhibits a flower-like shape. The connection state of the plurality of nanocrystal pieces 21 is not particularly limited, and it is sufficient that the plurality of nanocrystal pieces 21 are connected to form an aggregate.

ナノ結晶片21の形状は、主表面22の大きさに対し、端面23の厚さが薄い薄片状である。連結集合体20の外面において、隣接する複数のナノ結晶片21の主表面22の間には間隙Gが形成されており、この間隙Gは、連結集合体20の外側に開口して配置されている。連結集合体20が間隙Gを有することにより、後述する電解質が間隙Gに充填され、酸素還元反応における反応物質が効果的に触媒活性面である主表面に到達できる。そのため、反応生成物である水(水分)の効果的な移動が促進される。 The shape of the nanocrystal piece 21 is a flaky shape in which the thickness of the end face 23 is thin with respect to the size of the main surface 22. On the outer surface of the articulated aggregate 20, a gap G is formed between the main surfaces 22 of the plurality of adjacent nanocrystal pieces 21, and the gap G is arranged so as to open to the outside of the articulated aggregate 20. There is. When the linkage assembly 20 has the gap G, the electrolyte described later is filled in the gap G, and the reactant in the oxygen reduction reaction can effectively reach the main surface which is the catalytically active surface. Therefore, the effective movement of water (moisture), which is a reaction product, is promoted.

ナノ結晶片21の主表面22とは、薄片状のナノ結晶片21を構成する外面のうち、表面積が広い面のことであって、表面積が狭い端面23の上下端縁を区画形成する両表面を意味する。酸素還元反応に使用される電極触媒材料1では、主表面22に特定の結晶面が表出している。特定の結晶面が表出している主表面22が、高い触媒活性を示す触媒活性面となるため、主表面22の表面積が大きいほど、酸素還元反応をより効率的に行うことができる。 The main surface 22 of the nanocrystal piece 21 is a surface having a large surface area among the outer surfaces constituting the flaky nanocrystal piece 21, and both surfaces forming the upper and lower end edges of the end surface 23 having a small surface area. Means. In the electrode catalyst material 1 used for the oxygen reduction reaction, a specific crystal plane is exposed on the main surface 22. Since the main surface 22 on which the specific crystal plane is exposed becomes the catalytically active surface exhibiting high catalytic activity, the larger the surface area of the main surface 22, the more efficiently the oxygen reduction reaction can be carried out.

ナノ結晶片21の主表面22の最小寸法は、特に限定はされないが、10nm以上1.0μm未満であることが好ましい。また、ナノ結晶片21の平均厚さtは、特に限定はされないが、主表面22の最小寸法の1/10以下であることが好ましい。これにより、ナノ結晶片21の主表面22の面積が端面23の面積に比べて約10倍以上広くなり、連結集合体20の単位量当たりの触媒活性が、ナノ粒子の単位量当たりの触媒活性と比べて向上する。ナノ結晶片の平均厚さは10nm未満であることが好ましい。主表面22の最小寸法が1.0μm以上であると、ナノ結晶片21を高密度で連結させることが困難となる傾向にあり、最小寸法が10nm未満であると、隣接する複数のナノ結晶片21の主表面22の間で十分な間隙Gを形成することができなく傾向にある。また、ナノ結晶片21の厚さ方向の剛性の低下を抑制するため、ナノ結晶片21の平均厚さtは1.0nm以上であることが好ましい。なお、ナノ結晶片21の主表面22の寸法は、ナノ結晶片21の形状を損なわないように連結集合体20から分離したナノ結晶片21を、個別のナノ結晶片として測定することにより求めることができる。測定法の具体例としては、ナノ結晶片21の主表面22に対し、外接する最小面積の長方形を描き、長方形の短辺および長辺を、ナノ結晶片21の最小寸法および最大寸法として、それぞれ測定する。 The minimum size of the main surface 22 of the nanocrystal piece 21 is not particularly limited, but is preferably 10 nm or more and less than 1.0 μm. The average thickness t of the nanocrystal pieces 21 is not particularly limited, but is preferably 1/10 or less of the minimum dimension of the main surface 22. As a result, the area of the main surface 22 of the nanocrystal piece 21 becomes about 10 times or more larger than the area of the end face 23, and the catalytic activity per unit amount of the linked aggregate 20 becomes the catalytic activity per unit amount of the nanoparticles. Improves compared to. The average thickness of the nanocrystal pieces is preferably less than 10 nm. When the minimum size of the main surface 22 is 1.0 μm or more, it tends to be difficult to connect the nanocrystal pieces 21 at high density, and when the minimum size is less than 10 nm, a plurality of adjacent nanocrystal pieces tend to be connected. It tends to be impossible to form a sufficient gap G between the main surfaces 22 of 21. Further, in order to suppress a decrease in rigidity of the nanocrystal piece 21 in the thickness direction, the average thickness t of the nanocrystal piece 21 is preferably 1.0 nm or more. The dimensions of the main surface 22 of the nanocrystal pieces 21 are determined by measuring the nanocrystal pieces 21 separated from the connecting aggregate 20 as individual nanocrystal pieces so as not to impair the shape of the nanocrystal pieces 21. Can be done. As a specific example of the measurement method, a rectangle having the minimum area circumscribing is drawn with respect to the main surface 22 of the nanocrystal piece 21, and the short and long sides of the rectangle are set as the minimum and maximum dimensions of the nanocrystal piece 21, respectively. Measure.

連結集合体20を構成するナノ結晶片21は、金属酸化物で構成されている。金属酸化物としては、例えば、貴金属(白金を除く)の酸化物、遷移金属の酸化物、それらの合金の酸化物、複合酸化物等が挙げられる。貴金属及びその合金としては、例えば、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、銀(Ag)及び金(Au)の群から選択される1種の成分からなる金属、又はこれらの群から選択される1種以上の成分を含む合金が挙げられる。また、遷移金属及びその合金としては、例えば、銅(Cu)、ニッケル(Ni)、コバルト(Co)及び亜鉛(Zn)の群から選択される1種の成分からなる金属、又はこれらの群から選択される1種以上の成分を含む合金が挙げられる。 The nanocrystal pieces 21 constituting the linked aggregate 20 are made of a metal oxide. Examples of the metal oxide include oxides of noble metals (excluding platinum), oxides of transition metals, oxides of their alloys, composite oxides, and the like. The noble metal and its alloy include, for example, a metal composed of one component selected from the group of palladium (Pd), rhodium (Rh), ruthenium (Ru), silver (Ag) and gold (Au), or a metal thereof. Alloys containing one or more components selected from the group can be mentioned. The transition metal and its alloy include, for example, a metal composed of one component selected from the group of copper (Cu), nickel (Ni), cobalt (Co) and zinc (Zn), or a metal thereof. Alloys containing one or more selected components can be mentioned.

これらの金属酸化物のうち、遷移金属の群から選択される1種または2種以上の金属を含む金属酸化物が好ましい。遷移金属の金属酸化物は、金属資源として地球上に豊富に存在しており、貴金属に比べて安価であるため、生産コストを低減することができる。遷移金属のうち、Cu、Ni、Co及びZnの群から選択される1種または2種以上の金属を含む金属酸化物であることがより好ましく、このような金属酸化物は少なくとも銅を含むことがさらに好ましい。また、銅を含む金属酸化物としては、例えば、酸化銅、Ni−Cu酸化物、Cu−Pd酸化物等が挙げられ、酸化銅(CuO)が特に好ましい。 Among these metal oxides, metal oxides containing one or more metals selected from the group of transition metals are preferable. Metal oxides of transition metals are abundant on the earth as metal resources and are cheaper than precious metals, so that production costs can be reduced. Among the transition metals, it is more preferable that the metal oxide contains one or more metals selected from the group of Cu, Ni, Co and Zn, and such a metal oxide contains at least copper. Is even more preferable. Examples of the metal oxide containing copper include copper oxide, Ni-Cu oxide, Cu-Pd oxide and the like, and copper oxide (CuO) is particularly preferable.

<主表面の結晶方位>
本発明の電極触媒材料1が燃料電池用の電極に搭載される場合、ナノ結晶片21において特定の結晶面が表出している主表面22が触媒活性面となるために、主表面22が特定の結晶方位を有するように構成される。
<Crystal orientation of main surface>
When the electrode catalyst material 1 of the present invention is mounted on an electrode for a fuel cell, the main surface 22 is specified because the main surface 22 on which the specific crystal plane is exposed in the nanocrystal piece 21 is the catalytically active surface. It is configured to have the crystal orientation of.

ナノ結晶片21の主表面22が還元性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する金属原子の面を、主表面22に位置するように配向させて、主表面22を金属原子面で構成すればよい。具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子の個数割合を80%以上とすることが好ましい。 In order to configure the main surface 22 of the nanocrystal piece 21 to be a reducing catalytically active surface, the surface of the metal atom exhibiting catalytic activity in the metal oxide constituting the nanocrystal piece 21 is formed on the main surface 22. The main surface 22 may be composed of a metal atomic surface by orienting the surface so as to be located at. Specifically, it is preferable that the number ratio of the number of metal atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 is 80% or more.

一方、ナノ結晶片21の主表面22が酸化性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する酸素原子の面を、主表面22に位置するように配向させて、主表面22を酸素原子面で構成すればよい。具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める酸素原子の個数割合を80%以上とすることが好ましい。 On the other hand, in order to configure the main surface 22 of the nanocrystal piece 21 to be an oxidizing catalytically active surface, the surface of the oxygen atom exhibiting catalytic activity in the metal oxide constituting the nanocrystal piece 21 is mainly used. The main surface 22 may be composed of oxygen atom planes by orienting the surface 22 so as to be located on the surface 22. Specifically, it is preferable that the number ratio of oxygen atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 is 80% or more.

触媒活性面の役割に応じて、ナノ結晶片21の主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子又は酸素原子の個数割合を調整することにより、主表面22の触媒活性機能を高めることができる。このようなナノ結晶片21を有する電極触媒材料1は、十分な触媒活性を発揮できる。 By adjusting the number ratio of metal atoms or oxygen atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 of the nanocrystal piece 21, depending on the role of the catalytically active surface, the main surface The catalytically active function of 22 can be enhanced. The electrode catalyst material 1 having such nanocrystal pieces 21 can exhibit sufficient catalytic activity.

また、ナノ結晶片21の主表面22が特定の結晶方位を有するとしたのは、ナノ結晶片21を構成する金属酸化物の種類に応じて、主表面22に多く存在する結晶方位が異なるためである。そのため、主表面22の結晶方位は具体的には記載はしないが、例えば、金属酸化物が酸化銅(CuO)の場合には、主表面22を構成する単結晶の主な結晶方位、すなわち、触媒活性面としての特定の結晶面は、(001)結晶面であることが好ましい。 Further, the reason why the main surface 22 of the nanocrystal piece 21 has a specific crystal orientation is that the crystal orientations abundantly present on the main surface 22 differ depending on the type of metal oxide constituting the nanocrystal piece 21. Is. Therefore, the crystal orientation of the main surface 22 is not specifically described, but for example, when the metal oxide is copper oxide (CuO), the main crystal orientation of the single crystal constituting the main surface 22, that is, that is, The specific crystal plane as the catalytically active plane is preferably the (001) crystal plane.

主表面22を金属原子面とする構成としては、金属原子面と酸素原子面が規則的に交互に積層され、原子の並び方に規則性を有する規則構造として、主表面22に金属原子面が位置するように、金属酸化物の結晶構造を構成することが好ましい。具体的には、主表面22が、同じ配向をもつ単結晶の集合体で構成された構造の場合だけではなく、異なる結晶構造や異なる配向をもつ単結晶の集合体、結晶粒界や多結晶を含んだ集合体で構成された構造であっても、主表面22に金属原子面が存在する場合が含まれる。 As a configuration in which the main surface 22 is a metal atomic surface, the metal atomic surface and the oxygen atomic surface are regularly and alternately laminated, and the metal atomic surface is located on the main surface 22 as a regular structure having regular arrangement of atoms. As such, it is preferable to construct a crystal structure of the metal oxide. Specifically, not only when the main surface 22 is composed of aggregates of single crystals having the same orientation, but also aggregates of single crystals having different crystal structures and different orientations, grain boundaries and polycrystals. Even if the structure is composed of an aggregate containing the above, the case where the metal atomic surface is present on the main surface 22 is included.

<導電性材料>
図1に示すように、本発明の実施形態の電極触媒材料1は、金属酸化物である連結集合体20と、導電性材料30とを有している。また、導電性材料30は、導電性材料30を構成する導電性物質が互いに数珠のように連続して繋がった連続構造体31を有し、連続構造体31がナノ結晶片21の主表面22の少なくとも一部に担持されていてもよい。導電性材料30の連続構造体31は、ナノ結晶片21の主表面22の少なくとも一部だけでなく、主表面22及び端面23の両方の少なくとも一部で接触していてもよい。連続構造体31を有する導電性材料30が、ナノ結晶片21の主表面22の一部が露出した状態で担持されることにより、触媒活性面の露出を維持しつつ、ナノ結晶片21と接触し得る範囲を増大させることができる。
<Conductive material>
As shown in FIG. 1, the electrode catalyst material 1 of the embodiment of the present invention has a connecting aggregate 20 which is a metal oxide and a conductive material 30. Further, the conductive material 30 has a continuous structure 31 in which the conductive substances constituting the conductive material 30 are continuously connected to each other like beads, and the continuous structure 31 is the main surface 22 of the nanocrystal piece 21. It may be supported on at least a part of the above. The continuous structure 31 of the conductive material 30 may be in contact with at least a part of the main surface 22 of the nanocrystal piece 21 as well as at least a part of both the main surface 22 and the end face 23. The conductive material 30 having the continuous structure 31 is supported in a state where a part of the main surface 22 of the nanocrystal piece 21 is exposed, so that the conductive material 30 comes into contact with the nanocrystal piece 21 while maintaining the exposure of the catalytically active surface. The possible range can be increased.

導電性材料30が連続構造体31を有する場合、連続構造体31の長さの平均寸法は、導電性材料30がナノ結晶片21の少なくとも一部と接触可能であり、かつナノ結晶片21の厚さ方向の剛性の低下を抑制できる程度であればよい。また、連続構造体31がナノ結晶片21の主表面22の一部と接触する場合、その接触面積は、金属酸化物である連結集合体20の触媒活性が阻害されるのを防止する点から、ナノ結晶片21の主表面22の面積よりも小さければよく、ナノ結晶片21の主表面22の面積の50%以下であることが好ましい。これにより、触媒活性面である特定の結晶面が表出しているナノ結晶片21の主表面22が、導電性材料30の連続構造体31で完全に被覆されることが防止され、その結果、主表面22が優れた触媒機能を発揮できる。尚、接触面積とは、連続構造体31がナノ結晶片21の主表面22の一部と接触する際、連続構造体31がその主表面22の一部と接触している総面積を表し、連続構造体31が主表面22の一部を覆っている被覆面積とは異なる。 When the conductive material 30 has a continuous structure 31, the average length of the continuous structure 31 is such that the conductive material 30 is in contact with at least a part of the nanocrystal pieces 21 and the nanocrystal pieces 21 It suffices as long as it can suppress the decrease in rigidity in the thickness direction. Further, when the continuous structure 31 comes into contact with a part of the main surface 22 of the nanocrystal piece 21, the contact area is from the viewpoint of preventing the catalytic activity of the linked aggregate 20 which is a metal oxide from being hindered. The area of the main surface 22 of the nanocrystal piece 21 may be smaller than the area of the main surface 22 of the nanocrystal piece 21, and it is preferably 50% or less of the area of the main surface 22 of the nanocrystal piece 21. This prevents the main surface 22 of the nanocrystal piece 21 from which the specific crystal plane, which is the catalytically active surface, is exposed, from being completely covered with the continuous structure 31 of the conductive material 30, and as a result, The main surface 22 can exhibit an excellent catalytic function. The contact area represents the total area in which the continuous structure 31 is in contact with a part of the main surface 22 when the continuous structure 31 is in contact with a part of the main surface 22 of the nanocrystal piece 21. It is different from the covering area where the continuous structure 31 covers a part of the main surface 22.

導電性材料30が連続構造体31を有することにより、金属酸化物である連結集合体20と導電性材料30との間の電子授受がより円滑化される。このような導電性材料30は、導電性物質が連なった1次元以上の連続構造体を有することが好ましく、例えば、鎖状構造を有する炭素材料であることが好ましい。炭素材料以外に連続構造体を構成し得る導電性物質には、銅細線鎖状ニッケル微粒子、鱗片状ニッケル微粒子等が挙げられる。炭素材料として連続構造体を構成し得る導電性物質は、繊維状炭素(カーボンファイバー)及び炭素粒子から選択される少なくとも1種であることが好ましい。 Since the conductive material 30 has the continuous structure 31, electron transfer between the connecting aggregate 20 which is a metal oxide and the conductive material 30 is further facilitated. Such a conductive material 30 preferably has a one-dimensional or higher continuous structure in which conductive substances are connected, and is preferably a carbon material having a chain structure, for example. Examples of the conductive substance that can form a continuous structure other than the carbon material include copper fine wire chain nickel fine particles and scaly nickel fine particles. The conductive substance that can form a continuous structure as the carbon material is preferably at least one selected from fibrous carbon (carbon fiber) and carbon particles.

炭素材料の中でも、繊維状炭素及び炭素粒子は、高い導電性を有し、また凝集により鎖状構造を形成しやすい。このような導電性物質は、ナノメートルオーダーであることが好ましく、これにより、より多くの鎖状構造を形成できる。導電性材料30が有する連続構造体31は、ナノ結晶片21の主表面22と電極まで電子を効率よく輸送するために、各ナノ結晶片21から電極まで連続的に接続する広域連続構造体であることが好ましい。連続構造体31が広域連続構造体であることにより、各導電性材料30の間に、後述する高分子電解質が存在しない構造体が形成される。高分子電解質は導電性能を有するため、導電性材料30と同様に電子の輸送は可能であるものの、導電性材料30と比較すると電気抵抗が高い。そのため、各導電性材料30の間に高分子電解質が存在しない態様である広域連続構造体は、電子の輸送経路をより広域に確保できる。また、導電性物質として炭素粒子を用いる場合、各導電性材料30の間の接触抵抗を低減するため、炭素粒子の粒径は大きい方が望ましい。しかしながら、炭素粒子の粒径が大き過ぎると、各ナノ結晶片21と導電性材料30との接触、各導電性材料30同士の鎖状構造の形成が困難となり、ナノ結晶片21の触媒活性面の全面を被覆し反応効率が下がるおそれがある。そのため、炭素粒子の平均粒径は、20nm以上200nm以下であることが好ましい。また、導電性物質が繊維状炭素(カーボンファイバー)である場合も同様に、繊維状炭素の平均直径は100nm以下であることが好ましく、平均長さは0.5μm以上100μm以下であることが好ましい。 Among carbon materials, fibrous carbon and carbon particles have high conductivity and easily form a chain structure by aggregation. Such conductive materials are preferably on the order of nanometers, which allows more chain structures to be formed. The continuous structure 31 of the conductive material 30 is a wide-area continuous structure that continuously connects each nanocrystal piece 21 to the electrode in order to efficiently transport electrons to the main surface 22 of the nanocrystal piece 21 and the electrode. It is preferable to have. Since the continuous structure 31 is a wide-area continuous structure, a structure in which the polymer electrolyte described later does not exist is formed between the conductive materials 30. Since the polymer electrolyte has conductive performance, it can transport electrons like the conductive material 30, but has a higher electrical resistance than the conductive material 30. Therefore, the wide-area continuous structure in which the polymer electrolyte does not exist between the conductive materials 30 can secure the electron transport path in a wider area. When carbon particles are used as the conductive substance, it is desirable that the particle size of the carbon particles is large in order to reduce the contact resistance between the conductive materials 30. However, if the particle size of the carbon particles is too large, it becomes difficult for each nanocrystal piece 21 to come into contact with the conductive material 30 and to form a chain structure between the conductive materials 30, and the catalytically active surface of the nanocrystal piece 21. There is a risk that the entire surface of the crystal will be covered and the reaction efficiency will decrease. Therefore, the average particle size of the carbon particles is preferably 20 nm or more and 200 nm or less. Similarly, when the conductive substance is fibrous carbon (carbon fiber), the average diameter of the fibrous carbon is preferably 100 nm or less, and the average length is preferably 0.5 μm or more and 100 μm or less. ..

<電極触媒材料の用途>
本発明の実施形態である電極触媒材料1は、燃料電池用の空気極触媒材料として使用することができる。
<Use of electrode catalyst material>
The electrode catalyst material 1 according to the embodiment of the present invention can be used as an air electrode catalyst material for a fuel cell.

<電極触媒材料の製造方法>
次に、本発明の電極触媒材料の製造方法例について説明する。電極触媒材料の製造方法例としては、薄片状であるナノ結晶片が相互に連結された連結集合体である金属酸化物を調製する金属酸化物調製工程Saと、調製された金属酸化物に導電性材料を担持させる導電性材料担持工程Sbと、を有する。
<Manufacturing method of electrode catalyst material>
Next, an example of a method for producing the electrode catalyst material of the present invention will be described. Examples of a method for producing an electrode catalyst material include a metal oxide preparation step Sa for preparing a metal oxide which is a connected aggregate in which flaky nanocrystal pieces are interconnected, and conductivity to the prepared metal oxide. It has a conductive material supporting step Sb for supporting a sex material.

金属酸化物調製工程Saは、混合工程Sa1と、温度と圧力を印加する水熱合成工程Sa2と、を有する。 The metal oxide preparation step Sa includes a mixing step Sa1 and a hydrothermal synthesis step Sa2 for applying temperature and pressure.

(混合工程Sa1)
混合工程は、金属酸化物の原料となる、貴金属、遷移金属またはそれらの合金を含む化合物の水和物、特に金属ハロゲン化物の水和物と、金属酸化物の前駆体である金属錯体の配位子を構成する炭酸ジアミド骨格を有する有機化合物とを、エチレングリコール、1,4−ブタンジオール、ポリエチレングリコール等の有機溶媒、水、又はその両方を含む溶媒に溶かす工程である。金属ハロゲン化物の水和物として、例えば、塩化銅(II)二水和物、炭酸ジアミド骨格を有する有機化合物として、例えば、尿素が挙げられる。
(Mixing step Sa1)
In the mixing step, a hydrate of a compound containing a noble metal, a transition metal or an alloy thereof, which is a raw material of a metal oxide, particularly a hydrate of a metal halide, and a metal complex which is a precursor of the metal oxide are arranged. This is a step of dissolving an organic compound having a carbonate diamide skeleton constituting a position in an organic solvent such as ethylene glycol, 1,4-butanediol, or polyethylene glycol, water, or a solvent containing both of them. Examples of the hydrate of the metal halide include copper (II) chloride dihydrate, and examples of the organic compound having a carbonic acid diamide skeleton include urea.

(水熱合成工程Sa2)
水熱合成工程は、混合工程Sa1で得られた混合溶液に所定の熱、圧力を加えて、所定時間、放置する工程である。混合溶液は、100℃以上300℃以下で加熱することが好ましい。加熱温度が100℃未満では、金属酸化物が生成せず、300℃超では、耐熱容器を構成する気密保持のためのパッキンの耐熱温度を超え、気密が維持できず外部に揮発気体が漏れるので好ましくない。加熱時間は10時間以上であることが好ましい。加熱時間が10時間未満では、未反応の材料が残留する場合がある。所定の圧力は、100℃における水の蒸気圧(1気圧)以上の圧力であることが好ましい。所定の熱・圧力を加えるため、例えば、耐圧容器、密閉容器を用いて加熱、加圧する方法が挙げられる。混合溶液を加熱、加圧した後、室温に冷却して一定時間保持した後、生成した沈殿物を回収する。回収した沈殿物を、メタノール、純水等で洗浄し、所定時間乾燥させる。これにより、所望とする金属酸化物が得られる。
(Hydrothermal synthesis step Sa2)
The hydrothermal synthesis step is a step of applying predetermined heat and pressure to the mixed solution obtained in the mixing step Sa1 and leaving it to stand for a predetermined time. The mixed solution is preferably heated at 100 ° C. or higher and 300 ° C. or lower. If the heating temperature is less than 100 ° C, metal oxides are not generated, and if it exceeds 300 ° C, the heat-resistant temperature of the packing for maintaining airtightness that constitutes the heat-resistant container is exceeded, airtightness cannot be maintained, and volatile gas leaks to the outside. Not preferable. The heating time is preferably 10 hours or more. If the heating time is less than 10 hours, unreacted material may remain. The predetermined pressure is preferably a pressure equal to or higher than the vapor pressure of water (1 atm) at 100 ° C. In order to apply a predetermined heat and pressure, for example, a method of heating and pressurizing using a pressure-resistant container and a closed container can be mentioned. After heating and pressurizing the mixed solution, it is cooled to room temperature and held for a certain period of time, and then the produced precipitate is recovered. The recovered precipitate is washed with methanol, pure water, etc. and dried for a predetermined time. As a result, the desired metal oxide can be obtained.

金属酸化物調製工程Saの後に、導電性材料混合工程Sbを実施する。導電性材料混合工程Sbは、(A)調製した金属酸化物の分散液を作製する金属酸化物分散工程Sb1、導電性材料の分散液を作製する導電性材料分散工程Sb2、又はその両方の分散液を作製する工程と、(B)金属酸化物の分散液に導電性材料を添加して混合するか、導電性材料の分散液に調製した金属酸化物を添加して混合するか、又は金属酸化物の分散液と導電性材料の分散液とを混合する分散処理工程Sb3と、を有する。 After the metal oxide preparation step Sa, the conductive material mixing step Sb is carried out. The conductive material mixing step Sb includes (A) a metal oxide dispersion step Sb1 for preparing a prepared metal oxide dispersion, a conductive material dispersion step Sb2 for preparing a conductive material dispersion, or both. The step of preparing the liquid and (B) adding the conductive material to the dispersion liquid of the metal oxide and mixing, adding the prepared metal oxide to the dispersion liquid of the conductive material and mixing, or metal It has a dispersion treatment step Sb3 in which a dispersion liquid of an oxide and a dispersion liquid of a conductive material are mixed.

(金属酸化物分散工程Sb1)
金属酸化物分散工程は、分散媒(例えば、水)に有機溶媒を添加した混合液に、金属酸化物調製工程Saで調製した金属酸化物を添加後、超音波分散機等で分散処理をして金属酸化物の分散液を作製する工程である。有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール等のモノアルコールが挙げられる。金属酸化物の分散液に含まれる金属酸化物の含有量は、金属酸化物の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、金属酸化物の分散液に燃料電池に使用する電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Metal oxide dispersion step Sb1)
In the metal oxide dispersion step, the metal oxide prepared in the metal oxide preparation step Sa is added to a mixed solution in which an organic solvent is added to a dispersion medium (for example, water), and then dispersion treatment is performed with an ultrasonic disperser or the like. This is a step of preparing a dispersion liquid of a metal oxide. Examples of the organic solvent include monoalcohols such as methanol, ethanol, n-propanol and isopropanol. The content of the metal oxide contained in the dispersion liquid of the metal oxide is preferably 0.05% by mass or more and 5.0% by mass or less from the viewpoint of the balance between the dispersibility of the metal oxide and the production efficiency, and is 0.1. Particularly preferably, it is mass% or more and 1.0 mass% or less. If necessary, the electrolyte used for the fuel cell may be further added and dispersed in the metal oxide dispersion liquid. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(導電性材料分散工程Sb2)
導電性材料分散工程は、分散媒(例えば、水)に有機溶媒を添加、混合した混合液に、導電性材料を添加後、超音波分散機等で分散処理をして導電性材料の分散液を作製する工程である。有機溶媒としては、例えば、エタノール、イソプロピルアルコール等のアルコールが挙げられる。導電性材料の分散液に含まれる導電性材料の含有量は、導電性材料の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、導電性材料の分散液に燃料電池に使用する電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Conductive material dispersion step Sb2)
In the conductive material dispersion step, an organic solvent is added to a dispersion medium (for example, water), the conductive material is added to the mixed solution, and then the dispersion treatment is performed with an ultrasonic disperser or the like to disperse the conductive material. Is the process of producing. Examples of the organic solvent include alcohols such as ethanol and isopropyl alcohol. The content of the conductive material contained in the dispersion liquid of the conductive material is preferably 0.05% by mass or more and 5.0% by mass or less from the viewpoint of the balance between the dispersibility of the conductive material and the production efficiency, and is 0.1. Particularly preferably, it is mass% or more and 1.0 mass% or less. If necessary, the electrolyte used for the fuel cell may be further added and dispersed in the dispersion liquid of the conductive material. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(分散処理工程Sb3)
分散処理工程は、金属酸化物分散工程Sb1で作製した金属酸化物の分散液に導電性材料を添加するか、導電性材料分散工程Sb2で作製した導電性材料の分散液に金属酸化物調製工程Saで調製した金属酸化物を添加するか、又は金属酸化物分散工程Sb1で作製した金属酸化物の分散液と導電性材料分散工程Sb2で作製した導電性材料の分散液とを混合して、超音波分散機等で分散処理を行う工程である。分散処理工程では、電極触媒材料の導電性と触媒活性のバランスの点から、電極触媒材料の構成において金属酸化物の触媒活性面を導電性材料が被覆する面積が50%以下であることが好ましいため、金属酸化物と導電性材料の含有量を調整する。金属酸化物として酸化銅のナノ結晶片、導電性材料として炭素の球状粉体の場合、金属酸化物と導電性材料とを等質量で含有することにより、好ましい被覆面積が得られる。このような工程を経て、電極触媒材料1が作製される。
(Dispersion processing step Sb3)
In the dispersion treatment step, a conductive material is added to the dispersion liquid of the metal oxide prepared in the metal oxide dispersion step Sb1, or a metal oxide preparation step is added to the dispersion liquid of the conductive material prepared in the conductive material dispersion step Sb2. The metal oxide prepared in Sa is added, or the dispersion liquid of the metal oxide prepared in the metal oxide dispersion step Sb1 and the dispersion liquid of the conductive material prepared in the conductive material dispersion step Sb2 are mixed. This is a step of performing dispersion processing with an ultrasonic disperser or the like. In the dispersion treatment step, from the viewpoint of the balance between the conductivity and the catalytic activity of the electrode catalyst material, it is preferable that the area of the conductive material covering the catalytically active surface of the metal oxide in the composition of the electrode catalyst material is 50% or less. Therefore, the contents of the metal oxide and the conductive material are adjusted. In the case of nanocrystal pieces of copper oxide as the metal oxide and spherical powder of carbon as the conductive material, a preferable coating area can be obtained by containing the metal oxide and the conductive material in equal masses. Through such a step, the electrode catalyst material 1 is produced.

<触媒インク>
本発明の実施形態である触媒インクは、上述した電極触媒材料1と、高分子電解質と、溶媒とを含み、燃料電池用の電極触媒層を形成するために使用される。このような触媒インクは、これらの材料が混合した溶液を、ホモミキサー、ディスパー、超音波分散機、ホモジナイザー、マイルダーなどの分散機を用いた分散処理を施すことにより作製される。分散機として、超音波分散機が好ましい。触媒インク中の電極触媒材料1の含有量は、触媒インクに対して、0.1質量%以上10質量%以下が好ましく、0.2質量%以上2質量%以下がより好ましい。また、触媒インク中の高分子電解質の含有量は、触媒インクに対して、0.01質量%以上0.2質量%が好ましく、0.01質量%以上0.1質量%以下がより好ましい。
<Catalyst ink>
The catalyst ink according to the embodiment of the present invention contains the above-mentioned electrode catalyst material 1, the polymer electrolyte, and a solvent, and is used to form an electrode catalyst layer for a fuel cell. Such a catalyst ink is produced by subjecting a solution in which these materials are mixed to a dispersion treatment using a disperser such as a homomixer, a disper, an ultrasonic disperser, a homogenizer, or a milder. As the disperser, an ultrasonic disperser is preferable. The content of the electrode catalyst material 1 in the catalyst ink is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.2% by mass or more and 2% by mass or less with respect to the catalyst ink. The content of the polymer electrolyte in the catalyst ink is preferably 0.01% by mass or more and 0.2% by mass, and more preferably 0.01% by mass or more and 0.1% by mass or less with respect to the catalyst ink.

高分子電解質としては、例えば、パーフルオロカーボン材料等の固体高分子電解質が挙げられ、実績、導電率の点でNafion(登録商標)が好ましい。尚、高分子とは、質量平均分子量(Mw)が10000以上であることを意味する。また、溶媒としては、例えば、水;メタノール、エタノール、n−プロパノール、イソプロパノールなどのモノアルコール;n−ペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサンなどの飽和炭化水素系溶媒;トルエン、キシレンなどの芳香族系溶媒;クロロホルム、ジクロロメタンなどのハロゲン系溶媒;アセトン、ジエチルエーテル、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミドなどのヘテロ元素含有溶媒などが挙げられる。これらの中でも、乾燥が容易な点で水、メタノール、エタノール、n−プロパノール、イソプロパノール等のモノアルコールが好ましい。溶媒は、これらのいずれか1種であっても、2種以上を含む混合物であってもよい。 Examples of the polymer electrolyte include solid polymer electrolytes such as perfluorocarbon materials, and Nafion (registered trademark) is preferable in terms of actual results and conductivity. The polymer means that the mass average molecular weight (Mw) is 10,000 or more. Examples of the solvent include water; monoalcohols such as methanol, ethanol, n-propanol and isopropanol; saturated hydrocarbon solvents such as n-pentane, n-hexane, cyclohexane and methylcyclohexane; aromatics such as toluene and xylene. Group solvents; halogen-based solvents such as chloroform and dichloromethane; heteroelement-containing solvents such as acetone, diethyl ether, acetonitrile, tetrahydrofuran, N, N-dimethylformamide and the like can be mentioned. Among these, monoalcohols such as water, methanol, ethanol, n-propanol, and isopropanol are preferable because they are easy to dry. The solvent may be any one of these or a mixture containing two or more of them.

触媒インクの粘度は、電極触媒層を形成する際、電極への塗工性を良好にする観点から、粘度計による粘度として、25℃で0.5mPa・s以上40mPa・s以下であることが好ましい。 The viscosity of the catalyst ink is 0.5 mPa · s or more and 40 mPa · s or less at 25 ° C. as the viscosity by the viscometer from the viewpoint of improving the coatability on the electrode when forming the electrode catalyst layer. preferable.

<電極触媒層>
本発明の実施形態である電極触媒層は、上述した電極触媒材料1と、高分子電解質と、溶媒とを含む触媒インクを用いて形成され、燃料電池用の電極触媒層として有効である。このような電極触媒層は、上記のように作製した触媒インクを電極上に塗布し、次いで乾燥して形成する。触媒インクの塗布方法、乾燥方法等は適宜選択できる。例えば、塗布方法としては、スプレー法、インクジェット法、ドロップキャスト法、ダイコート法などが挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥などが挙げられる。減圧乾燥、加熱乾燥における具体的な条件は、特に制限はなく、適宜設定できる。また、電極触媒層の膜厚は、特に限定されないが、1μm以上20μm以下であってもよい。電極触媒層は、電極触媒材料1と高分子電解質とが適度に混ざり合ったマトリクスであり、電極触媒材料1と高分子電解質の界面で電極反応が行われる。
<Electrode catalyst layer>
The electrode catalyst layer according to the embodiment of the present invention is formed by using the above-mentioned electrode catalyst material 1, a polymer electrolyte, and a catalyst ink containing a solvent, and is effective as an electrode catalyst layer for a fuel cell. Such an electrode catalyst layer is formed by applying the catalyst ink prepared as described above onto the electrodes and then drying. The method of applying the catalyst ink, the method of drying, and the like can be appropriately selected. For example, examples of the coating method include a spray method, an inkjet method, a drop casting method, and a die coating method. Moreover, as a drying method, for example, vacuum drying, heat drying, vacuum heat drying and the like can be mentioned. Specific conditions for vacuum drying and heat drying are not particularly limited and can be set as appropriate. The film thickness of the electrode catalyst layer is not particularly limited, but may be 1 μm or more and 20 μm or less. The electrode catalyst layer is a matrix in which the electrode catalyst material 1 and the polymer electrolyte are appropriately mixed, and the electrode reaction is performed at the interface between the electrode catalyst material 1 and the polymer electrolyte.

電極触媒層は、酸素還元反応が必要となる燃料電池の正極(空気極)上に形成され、正極用電極触媒層とする。 The electrode catalyst layer is formed on the positive electrode (air electrode) of the fuel cell that requires an oxygen reduction reaction, and serves as the electrode catalyst layer for the positive electrode.

<膜電極接合体>
本発明の実施形態である膜電極接合体は、正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を備える。また、正極用電極触媒層及び負極用電極触媒層の少なくとも一方の電極触媒層が、上述の電極触媒材料1を含み、このような膜電極接合体は、燃料電池用の膜電極接合体として有効である。
<Membrane electrode assembly>
The film electrode joint according to the embodiment of the present invention is arranged between a positive electrode having a positive electrode catalyst layer, a negative electrode having a negative electrode catalyst layer, and a positive electrode catalyst layer and the negative electrode catalyst layer. The solid polymer electrolyte layer is provided. Further, at least one of the electrode catalyst layer for the positive electrode and the electrode catalyst layer for the negative electrode contains the above-mentioned electrode catalyst material 1, and such a membrane electrode assembly is effective as a membrane electrode assembly for a fuel cell. Is.

正極用電極触媒層が、上述の電極触媒材料1を含む電極触媒層である場合、負極用電極触媒層は、他の触媒材料を含む別の電極触媒層であってもよい。別の触媒層としては、例えば、従来のPt(白金)/C(カーボン)等を含む電極触媒層が挙げられる。 When the positive electrode catalyst layer is an electrode catalyst layer containing the above-mentioned electrode catalyst material 1, the negative electrode catalyst layer may be another electrode catalyst layer containing another catalyst material. As another catalyst layer, for example, a conventional electrode catalyst layer containing Pt (platinum) / C (carbon) or the like can be mentioned.

固体高分子電解質層は、電解質樹脂を含む少なくとも1種の電解質膜を有する。電解質膜は、例えば、AGC社製のFlemion(登録商標)、デュポン社製のNafion(登録商標)等のフッ素系高分子電解質を含むフッ素系高分子電解質膜、芳香族系ブロック共重合体高分子が挙げられる。正極及び負極の構造、材料は、特に限定されず、公知の形態の正極及び負極を使用することができる。 The solid polymer electrolyte layer has at least one electrolyte membrane containing an electrolyte resin. Examples of the electrolyte membrane include a fluorine-based polymer electrolyte membrane containing a fluorine-based polymer electrolyte such as Flemion (registered trademark) manufactured by AGC and Nafion (registered trademark) manufactured by DuPont, and an aromatic block copolymer polymer. Can be mentioned. The structure and material of the positive electrode and the negative electrode are not particularly limited, and known forms of the positive electrode and the negative electrode can be used.

正極用電極触媒層は、ガス拡散層が積層された多層構造を有していてもよい。ガス拡散層は、正極用電極触媒層に含まれる電極触媒材料1への電子授受を行うとともにガスを供給する役割を有しており、導電性のある多孔質材料が用いられる。また、負極用電極触媒層も、必要に応じて、ガス拡散層が積層された多層構造を有していてもよい。このようなガス拡散層としては、酸素還元反応、水素酸化反応における触媒性能を良好に維持する観点から、カーボンペーパー、カーボンクロスなどの炭素材料から構成されるシートが好ましい。正極用電極触媒層とガス拡散層とを積層する場合、ガス拡散層の表面、特に正極電極触媒層側の表面は、必要に応じて、炭素材が緻密化した撥水層になっていてもよい。 The electrode catalyst layer for the positive electrode may have a multilayer structure in which a gas diffusion layer is laminated. The gas diffusion layer has a role of transferring electrons to the electrode catalyst material 1 contained in the electrode catalyst layer for the positive electrode and supplying gas, and a conductive porous material is used. Further, the electrode catalyst layer for the negative electrode may also have a multilayer structure in which gas diffusion layers are laminated, if necessary. As such a gas diffusion layer, a sheet made of a carbon material such as carbon paper or carbon cloth is preferable from the viewpoint of maintaining good catalytic performance in the oxygen reduction reaction and the hydrogen oxidation reaction. When the positive electrode catalyst layer and the gas diffusion layer are laminated, the surface of the gas diffusion layer, particularly the surface on the positive electrode catalyst layer side, may be a water-repellent layer in which the carbon material is densified, if necessary. Good.

負極用電極触媒層もまた、ガス拡散層が積層された多層構造を有していてもよい。ガス拡散層としては、水素還元反応における触媒性能を良好に維持する観点から、カーボンペーパー、カーボンクロスなどの炭素材料から構成されるシートが好ましい。正極用電極触媒層とガス拡散層とを積層する場合、ガス拡散層の表面、特に正極電極触媒層側の表面は、必要に応じて、炭素材が緻密化した撥水層になっていてもよい。 The electrode catalyst layer for the negative electrode may also have a multilayer structure in which a gas diffusion layer is laminated. As the gas diffusion layer, a sheet made of a carbon material such as carbon paper or carbon cloth is preferable from the viewpoint of maintaining good catalytic performance in the hydrogen reduction reaction. When the positive electrode catalyst layer and the gas diffusion layer are laminated, the surface of the gas diffusion layer, particularly the surface on the positive electrode catalyst layer side, may be a water-repellent layer in which the carbon material is densified, if necessary. Good.

正極用電極触媒層を有する正極、特に、正極用電極触媒層とガス拡散層とが積層された多層構造を有する正極と、負極用電極触媒層を有する負極、特に正極用電極触媒層とガス拡散層とが積層された多層構造を有する負極と、正極用電極触媒層と負極用電極触媒層との間に配置された固体高分子電解質層とを、適宜、重ね併せて熱圧着等し、互いに接合することで、膜電極接合体を形成することができる。さらに、各電極の両外側にセパレーターを配置することによって燃料電池を作製できる。 A positive electrode having a positive electrode catalyst layer, particularly a positive electrode having a multilayer structure in which a positive electrode catalyst layer and a gas diffusion layer are laminated, and a negative electrode having a negative electrode catalyst layer, particularly a positive electrode catalyst layer and gas diffusion. The negative electrode having a multilayer structure in which the layers are laminated and the solid polymer electrolyte layer arranged between the positive electrode catalyst layer for the positive electrode and the electrode catalyst layer for the negative electrode are appropriately overlapped and heat-bonded to each other. By joining, a film electrode joint can be formed. Further, a fuel cell can be manufactured by arranging separators on both outer sides of each electrode.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変できる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and claims, and varies within the scope of the present invention. Can be modified to.

次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
<金属酸化物の作製>
金属酸化物として、酸化銅の(001)結晶面が表出している主表面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体を作製した。具体的には、2.0gの塩化銅(II)二水和物(純正化学株式会社製)と、1.6gの尿素(純正化学株式会社製)とを混合した後、180mlのエチレングリコール(純正化学株式会社製)と120mlの水を添加してさらに混合した。得られた塩化銅と尿素の混合溶液を、内容積500mlの耐圧硝子容器に注入し、該容器内の密閉雰囲気下で180℃、24時間の熱処理を行った。その後、混合溶液を、室温に冷却して1日保持した後、密閉した容器から生成した薄膜形状の沈殿物を回収した。次いで、この沈殿物を、メタノールおよび純水で洗浄して、真空下、70℃で10時間真空乾燥させ、酸化銅のナノ結晶片が相互に連結された連結集合体を得た。
(Example 1)
<Making metal oxides>
As a metal oxide, a linked aggregate was prepared in which flaky nanocrystal pieces having a main surface in which the (001) crystal plane of copper oxide was exposed were connected to each other. Specifically, after mixing 2.0 g of copper (II) chloride dihydrate (manufactured by Junsei Chemical Co., Ltd.) and 1.6 g of urea (manufactured by Junsei Chemical Co., Ltd.), 180 ml of ethylene glycol (manufactured by Junsei Chemical Co., Ltd.) (Manufactured by Junsei Chemical Co., Ltd.) and 120 ml of water were added and further mixed. The obtained mixed solution of copper chloride and urea was injected into a pressure-resistant glass container having an internal volume of 500 ml, and heat treatment was performed at 180 ° C. for 24 hours in a closed atmosphere inside the container. Then, the mixed solution was cooled to room temperature and held for 1 day, and then the thin-film-shaped precipitate formed from the closed container was recovered. Next, the precipitate was washed with methanol and pure water and vacuum dried at 70 ° C. for 10 hours under vacuum to obtain a linked aggregate in which nanocrystal pieces of copper oxide were interconnected.

<金属酸化物の分散液の作製>
上記のようにして得られた酸化銅の連結集合体4mgを精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
<Preparation of metal oxide dispersion>
4 mg of the copper oxide linked aggregate obtained as described above was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropanol, and 15 μL of a 5% by mass solution of Nafion® as a polymer electrolyte was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a connected aggregate of copper oxide.

<電極触媒材料及び触媒インクの作製>
上記のようにして得られた酸化銅の連結集合体の分散液に、キャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC−72(登録商標)4mgを添加して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<Preparation of electrode catalyst material and catalyst ink>
4 mg of VULCAN XC-72 (registered trademark), which is a conductive carbon black manufactured by Cabot Corporation, was added to the dispersion liquid of the connected aggregate of copper oxide obtained as described above, and 20 by an ultrasonic disperser. A dispersion treatment was carried out at ~ 40 ° C. for 10 minutes to prepare a catalyst ink containing an electrode catalyst material in which carbon particles were supported on a connected aggregate of copper oxide.

(実施例2)
<導電性材料の分散液の作製>
実施例1で使用したキャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC−72(登録商標)4mgを、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、導電性材料の分散液を作製した。
(Example 2)
<Preparation of dispersion liquid of conductive material>
4 mg of VULCAN XC-72 (registered trademark), which is a conductive carbon black manufactured by Cabot Corporation used in Example 1, was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropanol, and Nafion (registered trademark) was added as a polymer electrolyte. ) 15 μL of a 5 mass% solution was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a conductive material.

<電極触媒材料及び触媒インクの作製>
上記のようにして得られた導電性材料の分散液に、実施例1で得られた酸化銅の連結集合体4mgを添加して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<Preparation of electrode catalyst material and catalyst ink>
To the dispersion liquid of the conductive material obtained as described above, 4 mg of the linked aggregate of copper oxide obtained in Example 1 was added, and the mixture was dispersed at 20 to 40 ° C. for 10 minutes with an ultrasonic disperser. The treatment was carried out to prepare a catalyst ink containing an electrode catalyst material in which carbon particles were supported on a connected aggregate of copper oxide.

(実施例3)
<導電性材料の分散液の作製>
実施例1で使用したキャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC−72(登録商標)4mgを、精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を8μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、導電性材料の分散液を作製した。
(Example 3)
<Preparation of dispersion liquid of conductive material>
4 mg of VULCAN XC-72 (registered trademark), which is a conductive carbon black manufactured by Cabot Corporation used in Example 1, was added to a mixed solution of 850 μL of purified water and 400 μL of isopropanol, and Nafion (registered trademark) was added as a polymer electrolyte. ) 8 μL of a 5 mass% solution was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a conductive material.

<金属酸化物の分散液の作製>
実施例1で得られた酸化銅の連結集合体4mgを精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を7μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
<Preparation of metal oxide dispersion>
4 mg of the copper oxide linked aggregate obtained in Example 1 was added to a mixed solution of 850 μL of purified water and 400 μL of isopropanol, and 7 μL of a 5% by mass solution of Nafion® as a polymer electrolyte was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a connected aggregate of copper oxide.

<電極触媒材料及び触媒インクの作製>
上記のようにして得られた導電性材料の分散液と酸化銅の連結集合体の分散液を混合して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<Preparation of electrode catalyst material and catalyst ink>
The dispersion liquid of the conductive material obtained as described above and the dispersion liquid of the connected aggregate of copper oxide are mixed and subjected to a dispersion treatment at 20 to 40 ° C. for 10 minutes with an ultrasonic disperser to obtain copper oxide. A catalyst ink containing an electrode catalyst material in which carbon particles were supported on the connected aggregate of the above was prepared.

(実施例4)
<電極触媒材料及び触媒インクの作製>
実施例1で作製した酸化銅の連結集合体4mgと、キャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC−72(登録商標)4mgを秤量した粉末を乳鉢で混合し、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間の分散処理を行い、電極触媒材料を含む触媒インクを作製した。
(Example 4)
<Preparation of electrode catalyst material and catalyst ink>
A powder prepared by weighing 4 mg of the copper oxide linked aggregate prepared in Example 1 and 4 mg of VULCAN XC-72 (registered trademark), which is a conductive carbon black manufactured by Cabot Corporation, was mixed in a dairy pot, and 1700 μL of purified water and isopropanol were mixed. It was added to 800 μL of the mixed solution, and 15 μL of Nafion® 5% by mass solution was further added as a polymer electrolyte. The obtained mixed solution was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a catalyst ink containing an electrode catalyst material.

(比較例1)
実施例1で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例1と同様にして電極触媒材料を含む触媒インクを作製した。
(Comparative Example 1)
Except for the fact that commercially available copper oxide nanoparticles (544868 Copper (II) oxide manufactured by Sigma Aldrich Japan GK) were prepared in place of the copper oxide linked aggregate prepared in Example 1 and used as an electrode catalyst material. Made a catalyst ink containing an electrode catalyst material in the same manner as in Example 1.

(比較例2)
実施例2で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例2と同様にして電極触媒材料を含む触媒インクを作製した。
(Comparative Example 2)
Except for the fact that commercially available copper oxide nanoparticles (544868 Copper (II) oxide manufactured by Sigma Aldrich Japan GK) were prepared in place of the copper oxide linked aggregate prepared in Example 2 and used as an electrode catalyst material. Made a catalyst ink containing an electrode catalyst material in the same manner as in Example 2.

(比較例3)
実施例3で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例3と同様にして電極触媒材料を含む触媒インクを作製した。
(Comparative Example 3)
Except for the fact that commercially available copper oxide nanoparticles (544868 Copper (II) oxide manufactured by Sigma Aldrich Japan GK) were prepared in place of the copper oxide linked aggregate prepared in Example 3 and used as an electrode catalyst material. Made a catalyst ink containing an electrode catalyst material in the same manner as in Example 3.

<電極の作製>
上記の実施例・比較例で得られた各電極触媒材料を含む触媒インク15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返した後、回転電極の表面を実体顕微鏡で観察し、グラッシーカーボン上に均質に電極触媒材料の触媒層(電極触媒層)が形成されているのを確認した。
<Preparation of electrodes>
15 μL of catalyst ink containing each electrode catalyst material obtained in the above Examples and Comparative Examples was collected with a micropipette, dropped onto 5 mmΦ glassy carbon of a rotating electrode, and heated in a constant temperature bath at 60 ° C. for 30 minutes. And dried. After repeating this dropping operation three times, the surface of the rotating electrode was observed with a stereomicroscope, and it was confirmed that the catalyst layer (electrode catalyst layer) of the electrode catalyst material was uniformly formed on the glassy carbon.

<酸化還元反応における触媒活性の評価>
その後、各電極触媒材料について酸素還元反応(ORR)活性評価を行った。具体的には、対流ボルタンメトリー法により、ORR活性評価を行った。PINE INSTRUMENT社製の回転リングディスク電極装置、ポテンショスタット(HSV−110)、電解液として0.1MのKOH水溶液を使用し、サイクリックボルタンメトリー(CV)測定で安定性を確認した。その後、リニアスイープボルタンメトリ―(LSV)で触媒活性を評価した。作用電極(WE)として5mmφのグラッシーカーボン電極、対電極(CE)としてコイル状白金電極、参照電極(RE)として銀・塩化銀比較電極を用いた。測定条件は以下の通りである。
<Evaluation of catalytic activity in redox reaction>
Then, the oxygen reduction reaction (ORR) activity was evaluated for each electrode catalyst material. Specifically, the ORR activity was evaluated by the convection voltammetry method. Stability was confirmed by cyclic voltammetry (CV) measurement using a rotating ring disk electrode device manufactured by PINE INSTRUMENT, a potentiostat (HSV-110), and a 0.1 M KOH aqueous solution as an electrolytic solution. Then, the catalytic activity was evaluated by linear sweep voltammetry (LSV). A glassy carbon electrode having a diameter of 5 mm was used as the working electrode (WE), a coiled platinum electrode was used as the counter electrode (CE), and a silver / silver chloride comparison electrode was used as the reference electrode (RE). The measurement conditions are as follows.

(1)Arバブリング(30分)
(2)Oバブリング(30分)
(3)CV測定(O中)
+0.2V〜−1.0V、掃引速度:10mV/s、3サイクル
(4)LSV測定(O中)
0.0V〜−0.8V、掃引速度:1mV/s、3サイクル、回転数:2000rpm
(1) Ar bubbling (30 minutes)
(2) O 2 bubbling (30 minutes)
(3) CV measurement (in O 2 )
+ 0.2V~-1.0V, sweep rate: 10mV / s, 3 cycles (4) LSV measurement (in O 2)
0.0V to -0.8V, sweep speed: 1mV / s, 3 cycles, rotation speed: 2000rpm

以上のようにして得られたデータから、電位と電流密度の関係を図7に示すように図示し、触媒活性を評価した。触媒活性は、以下の2種類の基準にて評価した。 From the data obtained as described above, the relationship between the potential and the current density was illustrated as shown in FIG. 7, and the catalytic activity was evaluated. The catalytic activity was evaluated according to the following two criteria.

(1)ORRの開始電位の評価
−5.0×10−5Aでの電位の絶対値で、燃料電池での理論起電力(1.23V)に対しての損失量15%に相当する0.185V以下を合格、0.185V超を不合格と評価した。
(1) Evaluation of the starting potential of ORR The absolute value of the potential at -5.0 x 10-5 A, which corresponds to 15% of the loss amount with respect to the theoretical electromotive force (1.23 V) in the fuel cell. .185V or less was evaluated as acceptable, and more than 0.185V was evaluated as unacceptable.

(2)Pt−C触媒の電流値との比較
−0.7Vでの電流の絶対値で、同じ条件で測定したAlfa Aesar社製Pt−C触媒(20質量%のPt)の電流値1.52mAに対して80%以上の電流値1.216mA以上を合格、1.216mA未満を不合格と評価した。
(2) Comparison with the current value of the Pt-C catalyst The current value of the Alfa Aesar Pt-C catalyst (20% by mass Pt) measured under the same conditions as the absolute value of the current at -0.7V. A current value of 1.216 mA or more of 80% or more with respect to 52 mA was evaluated as acceptable, and a current value of less than 1.216 mA was evaluated as rejected.

上述の(1)及び(2)の評価がいずれも合格であれば、ORRにおいて高い触媒活性を示すと評価できる。実施例1〜4、比較例1〜3の評価結果を下記表1に示す。 If both of the above evaluations (1) and (2) are acceptable, it can be evaluated that the ORR exhibits high catalytic activity. The evaluation results of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1 below.

<電気伝導度の評価>
グラッシーカーボン上に形成された電極触媒材料の電気伝導度をHIOKI社製抵抗計RM3545の4探針プローブで測定した。なお、電極触媒材料の電気伝導度は次のように作成した基準電極の電気伝導度(100%とする)に対する割合で評価した。
<Evaluation of electrical conductivity>
The electrical conductivity of the electrode catalyst material formed on the glassy carbon was measured with a 4-probe probe of a resistance meter RM3545 manufactured by HIOKI. The electrical conductivity of the electrode catalyst material was evaluated as a ratio to the electrical conductivity (assumed to be 100%) of the reference electrode prepared as follows.

実施例3で作成した導電性材料の分散液15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返し、電気伝導度に対する基準電極とした。 15 μL of the dispersion liquid of the conductive material prepared in Example 3 was collected with a micropipette, dropped onto 5 mmΦ glassy carbon of a rotating electrode, heated in a constant temperature bath at 60 ° C. for 30 minutes, and dried. This dropping operation was repeated three times to serve as a reference electrode for electrical conductivity.

Figure 2021077468
Figure 2021077468

表1から、酸化銅の連結集合体と導電性材料として炭素粒子を有する実施例1〜4では、ORRの開始電位、Pt−C触媒の電流値との比較のいずれも合格基準であり、ORRにおいて高い触媒活性を発揮した。一方で、酸化銅の連結集合体に代えて酸化銅ナノ粒子を使用した比較例1〜3では、ORRの開始電位、Pt−C触媒の電流値との比較の両方で不合格基準であり、ORRにおいて高い触媒活性を得ることができなかった。また、実施例1〜4での中でも実施例1〜3の電極触媒材料は、基準電極(実施例3で作製した導電性材料を含む分散液をグラッシーカーボン上に作製した薄膜)の電気伝導度に対して、1.0%以上の電気伝導度を示し、電気的接触に優れた電極触媒材料であった。 From Table 1, in Examples 1 to 4 having the connected aggregate of copper oxide and carbon particles as the conductive material, both the starting potential of ORR and the comparison with the current value of the Pt—C catalyst are acceptance criteria, and the ORR Demonstrated high catalytic activity in. On the other hand, in Comparative Examples 1 to 3 in which copper oxide nanoparticles were used instead of the linked aggregate of copper oxide, both the starting potential of ORR and the current value of the Pt—C catalyst were rejected criteria. High catalytic activity could not be obtained in ORR. Further, among the examples 1 to 4, the electrode catalyst materials of Examples 1 to 3 are the electrical conductivity of the reference electrode (a thin film prepared by preparing a dispersion liquid containing the conductive material produced in Example 3 on glassy carbon). On the other hand, it was an electrode catalyst material that exhibited an electrical conductivity of 1.0% or more and was excellent in electrical contact.

また、電極触媒材料の結晶組織について、走査型電子顕微鏡(SEM、日本電子社製SU8020)を用いて観察した。図2は、代表して実施例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像であり、図3は、図2に示されるSEM画像の同視野における反射電子像であり、白色部が酸化銅を示す。図2及び図3より、実施例1で作製された電極触媒材料では、酸化銅が分散して配置されており、酸化銅の連結集合体が凝集せずにORRにおいて触媒活性を示す結晶面が確保できていることが確認できた。さらに、炭素粒子は酸化銅の連結集合体に担持されており、当該炭素粒子は、酸化銅の連結集合体が有するナノ結晶薄片の主表面に接触しつつ、炭素粒子が互いに連なった連続構造体を有していた。これにより、電子を効率的に結晶面に移動できるため、得られた電極触媒材料は、ORRにおいて高い触媒活性を示した。 Moreover, the crystal structure of the electrode catalyst material was observed using a scanning electron microscope (SEM, SU8020 manufactured by JEOL Ltd.). FIG. 2 is an SEM image when the electrode catalyst material produced in Example 1 is observed at a magnification of 30,000 times, and FIG. 3 is a reflection of the SEM image shown in FIG. 2 in the same field of view. It is an electron image, and the white part indicates copper oxide. From FIGS. 2 and 3, in the electrode catalyst material produced in Example 1, copper oxide is dispersed and arranged, and a crystal plane exhibiting catalytic activity in ORR without agglomeration of the connected aggregate of copper oxide is formed. It was confirmed that it was secured. Further, the carbon particles are supported on the connected aggregate of copper oxide, and the carbon particles are in contact with the main surface of the nanocrystal shards of the connected aggregate of copper oxide, and the carbon particles are connected to each other in a continuous structure. Had. As a result, electrons can be efficiently transferred to the crystal plane, so that the obtained electrode catalyst material showed high catalytic activity in ORR.

図4は、代表して実施例3で作製された電極触媒材料を、倍率50,000倍で観察した際のSEM画像である。図4に示されるように、酸化銅の連結集合体の外側に向かう端面に炭素粒子が互いに連なった連続構造体が形成されていた。これにより、電子は酸化銅の結晶面に効率的に移動できるため、得られた電極触媒材料は、ORRにおいて高い触媒活性を示した。 FIG. 4 is an SEM image of the electrode catalyst material produced in Example 3 as a representative, when observed at a magnification of 50,000 times. As shown in FIG. 4, a continuous structure in which carbon particles were connected to each other was formed on the outward end face of the copper oxide connected aggregate. As a result, electrons can efficiently move to the crystal plane of copper oxide, so that the obtained electrode catalyst material showed high catalytic activity in ORR.

比較例1についても、実施例1と同様、電極触媒材料の結晶構造について、走査型電子顕微鏡(SEM、日本電子社製SU8020)を用いて観察した。図5は、比較例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像であり、図6は、図5に示されるSEM画像の同視野における反射電子像であり、白色部が酸化銅を示す。図5及び図6より、比較例1で作製された電極触媒材料では、酸化銅ナノ粒子が凝集し、酸化銅の反応面と炭素粒子との距離が遠いため、電子の授受がしにくい組織であることが確認された。 In Comparative Example 1, the crystal structure of the electrode catalyst material was observed using a scanning electron microscope (SEM, SU8020 manufactured by JEOL Ltd.) as in Example 1. FIG. 5 is an SEM image when the electrode catalyst material produced in Comparative Example 1 is observed at a magnification of 30,000 times, and FIG. 6 is a reflected electron image in the same field of view of the SEM image shown in FIG. Yes, the white part indicates copper oxide. From FIGS. 5 and 6, in the electrode catalyst material produced in Comparative Example 1, copper oxide nanoparticles are aggregated and the distance between the reaction surface of copper oxide and the carbon particles is long, so that the structure is difficult to transfer electrons. It was confirmed that there was.

1 電極触媒材料
20 連結集合体
21 ナノ結晶片
22 主表面
23 端面
30 導電性材料
31 連続構造体
1 Electrode catalyst material 20 Connecting aggregate 21 Nanocrystal pieces 22 Main surface 23 End face 30 Conductive material 31 Continuous structure

Claims (10)

金属酸化物と、導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触している電極触媒材料。
An electrode catalyst material for a fuel cell having a metal oxide and a conductive material.
The metal oxide is a linked aggregate in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal face is exposed are connected to each other.
The plurality of nanocrystal pieces have a gap between the main surfaces, which is arranged so as to be open to the outside of the connecting assembly.
An electrode catalyst material in which the conductive material is in contact with at least a part of the nanocrystal pieces.
前記ナノ結晶片の平均厚さが、10nm未満である請求項1に記載の電極触媒材料。 The electrode catalyst material according to claim 1, wherein the average thickness of the nanocrystal pieces is less than 10 nm. 前記金属酸化物が、酸化銅である請求項1または2に記載の電極触媒材料。 The electrode catalyst material according to claim 1 or 2, wherein the metal oxide is copper oxide. 前記特定の結晶面が、(001)結晶面である請求項3に記載の電極触媒材料。 The electrode catalyst material according to claim 3, wherein the specific crystal plane is a (001) crystal plane. 前記導電性材料が、導電性物質が連なった連続構造体を有する炭素材料である請求項1乃至4のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 4, wherein the conductive material is a carbon material having a continuous structure in which conductive substances are connected. 前記導電性物質が、繊維状炭素及び炭素粒子から選択される少なくとも1種である請求項5に記載の電極触媒材料。 The electrode catalyst material according to claim 5, wherein the conductive substance is at least one selected from fibrous carbon and carbon particles. 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して0.5%以上である請求項1乃至6のいずれか1項に記載の電極触媒材料。 Any one of claims 1 to 6 in which the electrical conductivity of the electrode catalyst material formed on the electrode is 0.5% or more with respect to the electrical conductivity of the layer formed on the electrode by the conductive material. The electrode catalyst material according to the section. 請求項1乃至7のいずれか1項に記載の電極触媒材料と、高分子電解質と、溶媒とを含む、燃料電池用の電極触媒層を形成するための触媒インク。 A catalyst ink for forming an electrode catalyst layer for a fuel cell, which comprises the electrode catalyst material according to any one of claims 1 to 7, a polymer electrolyte, and a solvent. 請求項8に記載の触媒インクを用いて形成された燃料電池用の電極触媒層。 An electrode catalyst layer for a fuel cell formed by using the catalyst ink according to claim 8. 正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、前記正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を有し、
前記正極用電極触媒層及び前記負極用電極触媒層の少なくとも一方の電極触媒層が、請求項1乃至7までのいずれか1項に記載の電極触媒材料を含む、燃料電池用の膜電極接合体。
It has a positive electrode having a positive electrode catalyst layer, a negative electrode having a negative electrode catalyst layer, and a solid polymer electrolyte layer arranged between the positive electrode catalyst layer and the negative electrode catalyst layer. ,
A membrane electrode assembly for a fuel cell, wherein at least one of the positive electrode catalyst layer and the negative electrode catalyst layer contains the electrode catalyst material according to any one of claims 1 to 7. ..
JP2019201187A 2019-11-06 2019-11-06 Electrocatalyst materials, catalyst inks, electrocatalyst layers and membrane electrode assemblies for fuel cells Active JP7340418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201187A JP7340418B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials, catalyst inks, electrocatalyst layers and membrane electrode assemblies for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201187A JP7340418B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials, catalyst inks, electrocatalyst layers and membrane electrode assemblies for fuel cells

Publications (2)

Publication Number Publication Date
JP2021077468A true JP2021077468A (en) 2021-05-20
JP7340418B2 JP7340418B2 (en) 2023-09-07

Family

ID=75898348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201187A Active JP7340418B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials, catalyst inks, electrocatalyst layers and membrane electrode assemblies for fuel cells

Country Status (1)

Country Link
JP (1) JP7340418B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058429A (en) * 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
JP2016066612A (en) * 2014-09-17 2016-04-28 国立研究開発法人理化学研究所 Metal-air battery, and air positive electrode for metal-air battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058429A (en) * 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
JP2016066612A (en) * 2014-09-17 2016-04-28 国立研究開発法人理化学研究所 Metal-air battery, and air positive electrode for metal-air battery

Also Published As

Publication number Publication date
JP7340418B2 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
Yaqoob et al. Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell
Lu et al. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—A review
Wang et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications
Talluri et al. High entropy spinel metal oxide (CoCrFeMnNi) 3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions
JP4575268B2 (en) Catalyst, electrode for fuel cell fuel electrode, and fuel cell
EP3734728A1 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
JP2009510705A (en) Electrocatalyst comprising a gold monoatomic layer on a platinum nanoparticle core and use thereof
JP2010501345A (en) Core / shell type catalyst particles containing metal or ceramic core material and method for producing the same
WO2017126137A1 (en) Core-shell structure type nanosheet
Daryakenari et al. Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions
JP2011134477A (en) Method of manufacturing electrode catalyst for fuel cell
JP5477463B2 (en) Fuel cell
Ganesan et al. Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells
Ehsani et al. Electrocatalytic oxidation of ethanol on the surface of graphene based nanocomposites: an introduction and review to it in recent studies
Majumdar et al. Recent Developments of Methanol Electrooxidation Using Nickel‐based Nanocatalysts
RU2561711C2 (en) Method of catalytic electrode manufacturing based on heteropoly compounds for hydrogen and methanol fuel elements
Ulas et al. Novel Ti3C2X2 MXene supported BaMnO3 nanoparticles as hydrazine electrooxidation catalysts
Ejikeme et al. Effects of catalyst-support materials on the performance of fuel cells
Jiang et al. Enhanced catalytic activity of ternary Pd-Ni-Ir nanoparticles supported on carbon toward formic acid electro-oxidation
JP5150141B2 (en) Fuel cell catalyst material, membrane electrode assembly using fuel cell catalyst material, and fuel cell using membrane electrode assembly
Hossain et al. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell‐II‐Platinum‐Based Catalysts
JP7359384B2 (en) Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells
JP2018188701A (en) WATER ELECTROLYSIS DEVICE, MEMBRANE ELECTRODE JUNCTION, Ru-BASED NANOPARTICLE COUPLING CATALYST AND PRODUCTION METHOD OF Ru-BASED NANOPARTICLE COUPLING CATALYST LAYER, FUEL CELL, AND CATALYST FOR HYDROGENATION OF METHANE
Wainright et al. Platinum and platinum-cobalt nanowires supported on carbon nanospheres as electrocatalysts for oxygen reduction reaction
KR102124789B1 (en) Preparation Method for Graphenedot-PtNi Hybrid with Sponge Structure and Graphenedot-PtNi Hybrid Catalyst Thereby

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R151 Written notification of patent or utility model registration

Ref document number: 7340418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151