JP2021077343A - 画像のノイズ除去のための、適応型変形可能カーネル予測ネットワーク - Google Patents
画像のノイズ除去のための、適応型変形可能カーネル予測ネットワーク Download PDFInfo
- Publication number
- JP2021077343A JP2021077343A JP2020150178A JP2020150178A JP2021077343A JP 2021077343 A JP2021077343 A JP 2021077343A JP 2020150178 A JP2020150178 A JP 2020150178A JP 2020150178 A JP2020150178 A JP 2020150178A JP 2021077343 A JP2021077343 A JP 2021077343A
- Authority
- JP
- Japan
- Prior art keywords
- graphics
- memory
- pixel
- processor
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3802—Instruction prefetching
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3802—Instruction prefetching
- G06F9/3804—Instruction prefetching for branches, e.g. hedging, branch folding
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3887—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Neurology (AREA)
- Image Processing (AREA)
- Image Generation (AREA)
- Facsimile Image Signal Circuits (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911081492.0A CN112785486A (zh) | 2019-11-07 | 2019-11-07 | 用于图像去噪声的自适应可变形核预测网络 |
| CN201911081492.0 | 2019-11-07 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2021077343A true JP2021077343A (ja) | 2021-05-20 |
| JP2021077343A5 JP2021077343A5 (enExample) | 2024-11-05 |
Family
ID=75584071
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020150178A Pending JP2021077343A (ja) | 2019-11-07 | 2020-09-07 | 画像のノイズ除去のための、適応型変形可能カーネル予測ネットワーク |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US11869171B2 (enExample) |
| JP (1) | JP2021077343A (enExample) |
| KR (1) | KR20210055583A (enExample) |
| CN (1) | CN112785486A (enExample) |
| DE (1) | DE102020129251A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11869171B2 (en) | 2019-11-07 | 2024-01-09 | Intel Corporation | Adaptive deformable kernel prediction network for image de-noising |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021093958A1 (en) * | 2019-11-14 | 2021-05-20 | Huawei Technologies Co., Ltd. | Spatially adaptive image filtering |
| US11296995B2 (en) | 2020-08-31 | 2022-04-05 | Micron Technology, Inc. | Reduced sized encoding of packet length field |
| US11360920B2 (en) | 2020-08-31 | 2022-06-14 | Micron Technology, Inc. | Mapping high-speed, point-to-point interface channels to packet virtual channels |
| US11412075B2 (en) | 2020-08-31 | 2022-08-09 | Micron Technology, Inc. | Multiple protocol header processing |
| US11539623B2 (en) | 2020-08-31 | 2022-12-27 | Micron Technology, Inc. | Single field for encoding multiple elements |
| US11418455B2 (en) | 2020-08-31 | 2022-08-16 | Micron Technology, Inc. | Transparent packet splitting and recombining |
| US11871145B2 (en) * | 2021-04-06 | 2024-01-09 | Adobe Inc. | Optimization of adaptive convolutions for video frame interpolation |
| US12283028B2 (en) * | 2021-06-02 | 2025-04-22 | Nvidia Corporation | Spatio-temporal noise masks for image processing |
| CN113516235B (zh) * | 2021-07-13 | 2024-10-18 | 南京大学 | 一种可变形卷积加速器和可变形卷积加速方法 |
| CN113744156B (zh) * | 2021-09-06 | 2022-08-19 | 中南大学 | 一种基于可变形卷积神经网络的图像去噪方法 |
| KR102785795B1 (ko) * | 2021-09-13 | 2025-03-26 | 삼성전자주식회사 | 대조도 조절 방법 및 이를 이용하는 장치 |
| CN117561537A (zh) | 2021-10-07 | 2024-02-13 | 三星电子株式会社 | 显示设备及其操作方法 |
| CN113963009B (zh) * | 2021-12-22 | 2022-03-18 | 中科视语(北京)科技有限公司 | 基于可形变划块的局部自注意力的图像处理方法和系统 |
| US12462337B2 (en) * | 2022-02-25 | 2025-11-04 | Arm Limited | System, devices and/or processes for processing image pixel values |
| CN114998964B (zh) * | 2022-06-02 | 2023-04-18 | 天津道简智创信息科技有限公司 | 一种新型证照质量检测方法 |
| GB2620920B (en) * | 2022-07-21 | 2024-09-25 | Advanced Risc Mach Ltd | System, devices and/or processes for application of kernel coefficients |
| US12008728B2 (en) | 2022-08-31 | 2024-06-11 | Qualcomm Incorporated | Apparatuses and methods for processing single instruction for image transformation from non-integral locations |
| CN115661784B (zh) * | 2022-10-12 | 2023-08-22 | 北京惠朗时代科技有限公司 | 一种面向智慧交通的交通标志图像大数据识别方法与系统 |
| CN116363480A (zh) * | 2023-03-20 | 2023-06-30 | 南京大学 | 一种用于图像像素处理网络的计算装置和方法 |
| CN119313587B (zh) * | 2024-12-18 | 2025-03-28 | 浙江大华技术股份有限公司 | 基于块匹配的图像降噪方法、设备及存储介质 |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7873812B1 (en) | 2004-04-05 | 2011-01-18 | Tibet MIMAR | Method and system for efficient matrix multiplication in a SIMD processor architecture |
| US7747070B2 (en) * | 2005-08-31 | 2010-06-29 | Microsoft Corporation | Training convolutional neural networks on graphics processing units |
| US10223333B2 (en) | 2014-08-29 | 2019-03-05 | Nvidia Corporation | Performing multi-convolution operations in a parallel processing system |
| US10402700B2 (en) * | 2016-01-25 | 2019-09-03 | Deepmind Technologies Limited | Generating images using neural networks |
| US10997496B2 (en) | 2016-08-11 | 2021-05-04 | Nvidia Corporation | Sparse convolutional neural network accelerator |
| US10891538B2 (en) | 2016-08-11 | 2021-01-12 | Nvidia Corporation | Sparse convolutional neural network accelerator |
| US11531852B2 (en) * | 2016-11-28 | 2022-12-20 | D-Wave Systems Inc. | Machine learning systems and methods for training with noisy labels |
| US10475165B2 (en) * | 2017-04-06 | 2019-11-12 | Disney Enterprises, Inc. | Kernel-predicting convolutional neural networks for denoising |
| US10572979B2 (en) * | 2017-04-06 | 2020-02-25 | Pixar | Denoising Monte Carlo renderings using machine learning with importance sampling |
| US10296578B1 (en) * | 2018-02-20 | 2019-05-21 | Paycor, Inc. | Intelligent extraction and organization of data from unstructured documents |
| CN112785486A (zh) | 2019-11-07 | 2021-05-11 | 英特尔公司 | 用于图像去噪声的自适应可变形核预测网络 |
| CN113767417B (zh) * | 2020-01-23 | 2025-01-03 | 百度时代网络技术(北京)有限公司 | 用于滤色器阵列图像去噪的深度残差网络 |
| EP4016446B1 (en) * | 2020-12-21 | 2025-06-25 | Dassault Systèmes | Intelligent denoising |
| CN114693850A (zh) * | 2020-12-25 | 2022-07-01 | 英特尔公司 | 用于图像和视频处理的条件核预测网络和自适应深度预测 |
-
2019
- 2019-11-07 CN CN201911081492.0A patent/CN112785486A/zh active Pending
-
2020
- 2020-09-07 JP JP2020150178A patent/JP2021077343A/ja active Pending
- 2020-09-24 KR KR1020200124306A patent/KR20210055583A/ko active Pending
- 2020-11-05 US US17/090,170 patent/US11869171B2/en active Active
- 2020-11-06 DE DE102020129251.1A patent/DE102020129251A1/de active Pending
-
2023
- 2023-11-20 US US18/514,252 patent/US20240127408A1/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11869171B2 (en) | 2019-11-07 | 2024-01-09 | Intel Corporation | Adaptive deformable kernel prediction network for image de-noising |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112785486A (zh) | 2021-05-11 |
| KR20210055583A (ko) | 2021-05-17 |
| US20210142448A1 (en) | 2021-05-13 |
| US11869171B2 (en) | 2024-01-09 |
| DE102020129251A1 (de) | 2021-05-12 |
| US20240127408A1 (en) | 2024-04-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7717863B2 (ja) | 行列アクセラレータアーキテクチャのためのスパース最適化 | |
| US11869171B2 (en) | Adaptive deformable kernel prediction network for image de-noising | |
| EP3938893B1 (en) | Systems and methods for cache optimization | |
| US11709714B2 (en) | Thread group scheduling for graphics processing | |
| JP2024041826A (ja) | ハイブリッド浮動小数点フォーマットのドット積累算命令を有するグラフィックスプロセッサ及びグラフィックス処理ユニット | |
| US11455770B2 (en) | Method and apparatus for encoding based on shading rates | |
| WO2020190371A1 (en) | Local memory sharing between kernels | |
| US12066946B2 (en) | Methods and apparatuses for dynamically changing data priority in a cache | |
| US12117962B2 (en) | Scalar core integration | |
| US20220207656A1 (en) | Conditional kernel prediction network and adaptive depth prediction for image and video processing | |
| US11036545B2 (en) | Graphics systems and methods for accelerating synchronization using fine grain dependency check and scheduling optimizations based on available shared memory space | |
| JP7574523B2 (ja) | メモリ効率を改善するための起動及びカーネルの動的な分割 | |
| WO2020190432A1 (en) | Multi-tile graphics processor rendering | |
| US20220207293A1 (en) | Method and apparatus of spatially sparse convolution module for visual rendering and synthesis | |
| EP3938892A2 (en) | Systems and methods for synchronization of multi-thread lanes | |
| EP3938906A1 (en) | Systems and methods for exploiting queues and transitional storage for improved low-latency high-bandwidth on-die data retrieval | |
| EP4020377A1 (en) | Conditional kernel prediction network and adaptive depth prediction for image and video processing | |
| EP4109386B1 (en) | 64-bit two-dimensional block load with transpose | |
| EP4020384A1 (en) | Method and apparatus of spatially sparse convolution module for visual rendering and synthesis | |
| EP4131002A1 (en) | Techniques for multi-source to multi-destination weighted round robin arbitration | |
| EP4155900A1 (en) | Emulation of floating point calculation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230904 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240711 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240730 |
|
| A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20241024 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20250204 |