JP2021074771A - Joint body manufacturing method by projection welding and joint body - Google Patents

Joint body manufacturing method by projection welding and joint body Download PDF

Info

Publication number
JP2021074771A
JP2021074771A JP2020049243A JP2020049243A JP2021074771A JP 2021074771 A JP2021074771 A JP 2021074771A JP 2020049243 A JP2020049243 A JP 2020049243A JP 2020049243 A JP2020049243 A JP 2020049243A JP 2021074771 A JP2021074771 A JP 2021074771A
Authority
JP
Japan
Prior art keywords
welding
plate
electrode
shaped member
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020049243A
Other languages
Japanese (ja)
Inventor
健太郎 渥美
Kentaro Atsumi
健太郎 渥美
陽介 大塚
Yosuke Otsuka
陽介 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Transport Engineering Co
Original Assignee
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Transport Engineering Co filed Critical Japan Transport Engineering Co
Publication of JP2021074771A publication Critical patent/JP2021074771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

To provide a manufacturing method which improves an appearance quality of a joint body by projection welding.SOLUTION: Since a weld position of welded parts 10, 11 of a side outer plate 8 and a long bed 9 and a welded part 4 of a side beam 3 is pressurized by a pressurization surface 26 of an electrode plate 24 which has an area larger than a cross-sectional area of an electrode tip 23, it is suppressed that the welded parts 10, 11 of the side outer plate 8 and the long base 9 and the welded part 4 of the side beam 3 curve (bend) into a concave shape by pressurization with a welding electrode 21. Thus, impression dents at a joint part are suppressed, waviness of an appearance surface 13 can be prevented in the whole of the side outer plate 8, and hence, an appearance quality of a vehicle can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、プロジェクション溶接による接合体の製造方法及び該製造方法により製造される接合体に関する。 The present invention relates to a method for manufacturing a bonded body by projection welding and a bonded body manufactured by the manufacturing method.

特許文献1には、ベース側の第1板材と表面側の第2板材とを重ね合わせた溶接対象部から離隔した第1板材部分に表面側から給電側電極(バック電極)を当接させ、溶接対象部の第2板材にガン側電極(溶接電極)を表面側から当接させ、ガン側電極により溶接対象部に対して加圧通電することにより溶接対象部を溶接する、インダイレクトスポット溶接方法が開示されている。このインダイレクトスポット溶接方法では、予め、溶接対象部の第1板材に第2板材側へ突出する突出部を形成し、該突出部が平坦になるようにガン側電極により溶接対象部に対して加圧通電する。 In Patent Document 1, a feeding side electrode (back electrode) is brought into contact with a first plate material portion separated from a welding target portion in which a first plate material on the base side and a second plate material on the surface side are overlapped from the surface side. Indirect spot welding, in which the gun-side electrode (welding electrode) is brought into contact with the second plate material of the welding target from the surface side, and the welding target is welded by applying pressure to the welding target with the gun-side electrode. The method is disclosed. In this indirect spot welding method, a projecting portion is formed in advance on the first plate material of the welding target portion so as to project toward the second plate material side, and the gun side electrode is used on the welding target portion so that the projecting portion becomes flat. Pressurize and energize.

ところで、インダイレクトスポット溶接やシリーズスポット溶接等の片側スポット溶接は、自動車の製造工程の他、鉄道車両の製造工程でも用いられる。例えば、図20に示されるように、片側スポット溶接を用いて、断面が溝形に形成された側梁3(母材)に側外板8及び長土台9(板状部材)を接合する場合、側外板8の表面(外観面13)の溶接位置に片側から溶接電極21の電極チップ23が押し当てられ、該電極チップ23と側梁3の下部側壁6に押し当てられたバック電極22との間を通電する。これにより、側外板8及び長土台9の被溶接部10,11と側梁3の被溶接部4との間にナゲット18が形成され、当該溶接位置に接合部2が形成される。 By the way, one-sided spot welding such as indirect spot welding and series spot welding is used not only in the automobile manufacturing process but also in the railway vehicle manufacturing process. For example, as shown in FIG. 20, when one side spot welding is used to join the side outer plate 8 and the long base 9 (plate-shaped member) to the side beam 3 (base material) having a groove-shaped cross section. The electrode tip 23 of the welding electrode 21 is pressed against the welding position on the surface (appearance surface 13) of the side outer plate 8 from one side, and the back electrode 22 is pressed against the electrode tip 23 and the lower side wall 6 of the side beam 3. Energize between and. As a result, the nugget 18 is formed between the welded portions 10 and 11 of the side outer plate 8 and the long base 9, and the welded portion 4 of the side beam 3, and the joint portion 2 is formed at the welded position.

前述した片側スポット溶接工程では、側外板8及び長土台9と側梁3との接合部18(溶接位置)は、車両長手方向に同一高さ且つ一定間隔(ピッチ)で形成され、車両長手方向の一側から他側へ向かって順次形成される。当該片側スポット溶接工程では、溶接位置を溶接電極21(電極チップ23)で加圧すると、側梁3の被溶接部4が車両内側(図20における「右側」)へ凹状に湾曲する(撓む)。この状態で通電されて溶接位置にナゲット18が形成されると、接合部2の圧痕が凹み、側外板8全体で表面(外観面13)が波打つ状態となり、車両(接合体1)の外観品質が低下する。 In the one-side spot welding step described above, the joint portion 18 (welding position) between the side outer plate 8 and the long base 9 and the side beam 3 is formed at the same height and at regular intervals (pitch) in the vehicle longitudinal direction, and is formed in the vehicle longitudinal direction. It is formed sequentially from one side of the direction to the other side. In the one-side spot welding step, when the welding position is pressed by the welding electrode 21 (electrode tip 23), the welded portion 4 of the side beam 3 is concavely curved (flexed) toward the inside of the vehicle (“right side” in FIG. 20). ). When the nugget 18 is formed at the welded position by being energized in this state, the indentation of the joint portion 2 is dented, the surface (appearance surface 13) of the entire side outer plate 8 becomes wavy, and the appearance of the vehicle (joint body 1) is formed. The quality deteriorates.

特許第5556241号公報Japanese Patent No. 5556241

本発明は、プロジェクション溶接により接合体の外観品質を向上させることを課題とする。 An object of the present invention is to improve the appearance quality of a joint by projection welding.

本発明は、母材の被溶接部と板状部材の被溶接部とを重ね合わせ、前記板状部材の表面に溶接電極を押し当てながら、該溶接電極と前記母材の所定位置に押し当てられた給電側電極との間を通電させることにより、前記母材と前記板状部材との接合体を製造する方法であって、前記溶接電極の先端部に、基端部の断面積よりも大きい面積を有する平坦な加圧面を形成するとともに、前記母材又は前記板状部材の溶接位置に凸部を形成する工程と、前記母材の被溶接部と前記板状部材の被溶接部とを重ね合わせる工程と、前記溶接電極の前記加圧面を前記板状部材の表面の溶接位置に押し当てる工程と、前記溶接電極と前記給電側電極との間を通電させて接合部を形成する工程と、を備えることを特徴とする。
また、本発明は、母材の被溶接部と板状部材の被溶接部との重ね合わせ部分に対し、前記板状部材の表面から押し当てられた溶接電極と、前記母材の所定位置に押し当てられた給電側電極との間の通電の結果形成された接合部を有する接合体であって、前記接合部は、前記母材又は前記板状部材の溶接位置に形成された肉盛り部が溶融して形成されたナゲットであることを特徴とする。
In the present invention, the welded portion of the base metal and the welded portion of the plate-shaped member are overlapped with each other, and the weld electrode is pressed against the surface of the plate-shaped member while being pressed against the weld electrode and the base metal at a predetermined position. It is a method of manufacturing a joint between the base material and the plate-shaped member by energizing between the power feeding side electrodes, and the tip of the weld electrode is more than the cross-sectional area of the base end. A step of forming a flat pressure surface having a large area and forming a convex portion at a welding position of the base material or the plate-shaped member, and a welded portion of the base material and a welded portion of the plate-shaped member. The step of superimposing the welding electrodes, the step of pressing the pressurized surface of the welding electrode against the welding position on the surface of the plate-shaped member, and the step of energizing between the welding electrode and the feeding side electrode to form a joint portion. It is characterized by having.
Further, in the present invention, the weld electrode pressed from the surface of the plate-shaped member and the predetermined position of the base material with respect to the overlapped portion between the welded portion of the base material and the welded portion of the plate-shaped member. It is a joint body having a joint portion formed as a result of energization between the pressed feeding side electrode, and the joint portion is a build-up portion formed at a welding position of the base material or the plate-shaped member. Is a nugget formed by melting.

本発明によれば、プロジェクション溶接により接合体の外観品質を向上させることができる。 According to the present invention, the appearance quality of the joint can be improved by projection welding.

第1実施形態に係る製造方法を説明するための概念図であって、溶接電極により加圧する前の状態を示す図である。It is a conceptual diagram for demonstrating the manufacturing method which concerns on 1st Embodiment, and is the figure which shows the state before pressurizing by a welding electrode. 第1実施形態に係る製造方法の説明図であって、側梁の被溶接部の溶接位置に形成された凸部を示す平面図である。It is explanatory drawing of the manufacturing method which concerns on 1st Embodiment, and is the top view which shows the convex part formed at the welding position of the welded part of the side beam. 第1実施形態に係る製造方法の説明図であって、母材の溶接位置に凸部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 1st Embodiment, and is a figure for demonstrating the process of forming a convex portion at the welding position of a base material. 第1実施形態に係る製造方法を説明するための概念図であって、溶接界面にナゲットが形成された状態を示す図である。It is a conceptual diagram for demonstrating the manufacturing method which concerns on 1st Embodiment, and is the figure which shows the state which the nugget was formed at the welding interface. 第1実施形態に係る製造方法により溶接界面に形成されたナゲットを示す断面図である。It is sectional drawing which shows the nugget formed at the welding interface by the manufacturing method which concerns on 1st Embodiment. 第2実施形態に係る製造方法の説明図であって、母材に接合された凸部を示す斜視図である。It is explanatory drawing of the manufacturing method which concerns on 2nd Embodiment, and is the perspective view which shows the convex part joined with the base material. 第2実施形態に係る製造方法の説明図であって、母材の溶接位置に凸部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 2nd Embodiment, and is the figure for demonstrating the process of forming a convex portion at the welding position of a base material. 第2実施形態に係る製造方法を説明するための概念図であって、溶接電極により加圧する前の状態を示す図である。It is a conceptual diagram for demonstrating the manufacturing method which concerns on 2nd Embodiment, and is the figure which shows the state before pressurizing by a welding electrode. 第3実施形態に係る製造方法の説明図であって、母材に接合された凸部を示す斜視図である。It is explanatory drawing of the manufacturing method which concerns on 3rd Embodiment, and is the perspective view which shows the convex part joined with the base material. 第3実施形態に係る製造方法の説明図であって、母材の溶接位置に凸部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 3rd Embodiment, and is the figure for demonstrating the process of forming a convex portion at the welding position of a base material. 第3実施形態に係る製造方法を説明するための概念図であって、溶接電極により加圧する前の状態を示す図である。It is a conceptual diagram for demonstrating the manufacturing method which concerns on 3rd Embodiment, and is the figure which shows the state before pressurizing by a welding electrode. 第4実施形態に係る製造方法の説明図であって、母材に接合された凸部を示す斜視図である。It is explanatory drawing of the manufacturing method which concerns on 4th Embodiment, and is the perspective view which shows the convex part joined with the base material. 第5実施形態に係る製造方法の説明図であって、母材に接合された凸部を示す斜視図である。It is explanatory drawing of the manufacturing method which concerns on 5th Embodiment, and is the perspective view which shows the convex part joined with the base material. 第6実施形態に係る製造方法の説明図であって、母材の溶接位置に凸部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 6th Embodiment, and is the figure for demonstrating the process of forming a convex portion at the welding position of a base material. 第6実施形態に係る製造方法の説明図であって、接合部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 6th Embodiment, and is the figure for demonstrating the process of forming a joint part. 第7実施形態に係る製造方法の説明図であって、母材の溶接位置に凸部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 7th Embodiment, and is the figure for demonstrating the process of forming a convex portion at the welding position of a base material. 第7実施形態に係る製造方法の説明図であって、接合部を形成する工程を説明するための図である。It is explanatory drawing of the manufacturing method which concerns on 7th Embodiment, and is the figure for demonstrating the process of forming a joint part. 第7実施形態に係る製造方法の説明図であって、側板を開口枠の側構体内側に重ねて接合した状態を示す図である。It is explanatory drawing of the manufacturing method which concerns on 7th Embodiment, and is the figure which shows the state which the side plate is overlapped and joined to the inside of the side structure of the opening frame. 第7実施形態に係る製造方法の説明図であって、側板を開口枠の側構体外側に重ねて接合した状態を示す図である。It is explanatory drawing of the manufacturing method which concerns on 7th Embodiment, and is the figure which shows the state which superposed and joined the side plate on the outside of the side structure of the opening frame. 従来の製造方法を説明するための概念図である。It is a conceptual diagram for demonstrating the conventional manufacturing method. 従来の製造方法により溶接界面に形成されたナゲットを示す断面図である。It is sectional drawing which shows the nugget formed in the welding interface by the conventional manufacturing method.

(第1実施形態)
本発明の第1実施形態を添付した図を参照して説明する。便宜上、図20に示される従来の片側スポット溶接による接合体の製造方法の説明と、同一又は相当する第1実施形態の構成については、同一の名称及び符号を付与する。
図1は、第1実施形態に係るプロジェクション溶接による接合体1の製造方法の説明図である。ここでは、鉄道車両の製造工程におけるプロジェクション溶接工程、具体的には、台枠を構成する側梁3(母材)と側構体を構成する側外板8及び長土台9(板状部材)とを、インダイレクトプロジェクション溶接により接合して接合体1を製造する工程を説明する。
(First Embodiment)
The first embodiment of the present invention will be described with reference to the attached figure. For convenience, the same names and reference numerals are given to the description of the conventional method for manufacturing a bonded body by one-sided spot welding shown in FIG. 20 and the same or corresponding configuration of the first embodiment.
FIG. 1 is an explanatory view of a method of manufacturing a joint body 1 by projection welding according to the first embodiment. Here, the projection welding process in the manufacturing process of a railroad vehicle, specifically, the side beam 3 (base material) constituting the underframe, the side outer plate 8 forming the side structure, and the long base 9 (plate-shaped member). The process of manufacturing the bonded body 1 by joining the joints by indirect projection welding will be described.

側梁3は、車両長手方向(図1における「視線方向」)へ延びる溝形の鋼材(第1実施形態では「SUS301L−HT」)からなる。側梁3は、被溶接部4が鉛直面に対して平行に配置される。また、側梁3の上側壁部5及び下側壁部6は、被溶接部4の上端及び下端から車両内側(図1における「右側」)へ向かって水平に延びる。車両外側の表面に外観面13が形成される側外板8は、板厚が1.5mmの鋼板(第1実施形態では「SUS301L−DLT」)からなる。また、車両内側の長土台9は、車両長手方向に延在するとともにクランク状断面を有し、板厚が1.5mmの側梁3と同一材料の鋼板からなる。なお、第1実施形態における側梁3の板厚は3.0mmである。 The side beam 3 is made of a groove-shaped steel material (“SUS301L-HT” in the first embodiment) extending in the vehicle longitudinal direction (“line-of-sight direction” in FIG. 1). The side beam 3 is arranged so that the welded portion 4 is parallel to the vertical plane. Further, the upper side wall portion 5 and the lower side wall portion 6 of the side beam 3 extend horizontally from the upper end and the lower end of the welded portion 4 toward the inside of the vehicle (“right side” in FIG. 1). The side outer plate 8 on which the outer surface 13 is formed on the outer surface of the vehicle is made of a steel plate having a thickness of 1.5 mm (“SUS301L-DLT” in the first embodiment). Further, the long base 9 inside the vehicle is made of a steel plate of the same material as the side beam 3 having a plate thickness of 1.5 mm and extending in the longitudinal direction of the vehicle and having a crank-shaped cross section. The plate thickness of the side beam 3 in the first embodiment is 3.0 mm.

図1、図2に示されるように、側梁3の被溶接部4の各溶接位置には、長土台9の被溶接部11側へ突出させた凸部15が形成される。凸部15(溶接位置)は、車両長手方向へ一定間隔(例えば「70mmピッチ」)で複数個が設けられる。図3に示されるように、凸部15は、MIG溶接(アーク溶接)により溶加材16(溶接棒)を溶融させて形成したドーム状の肉盛り部(ビード)からなる。なお、凸部15(肉盛り部)は、MAG溶接、TIG溶接等のアーク溶接により溶加材(溶接ワイヤ)を溶融させて形成してもよい。 As shown in FIGS. 1 and 2, convex portions 15 projecting toward the welded portion 11 of the long base 9 are formed at each weld position of the welded portion 4 of the side beam 3. A plurality of convex portions 15 (welding positions) are provided at regular intervals (for example, "70 mm pitch") in the longitudinal direction of the vehicle. As shown in FIG. 3, the convex portion 15 is composed of a dome-shaped build-up portion (bead) formed by melting the filler metal 16 (welding rod) by MIG welding (arc welding). The convex portion 15 (built-up portion) may be formed by melting the filler metal (welding wire) by arc welding such as MAG welding or TIG welding.

当該プロジェクション溶接工程では、溶接電源にインバータ式直流溶接電源20(図1参照)が用いられる。溶接電源20により供給された溶接電流は、側外板8の被溶接部10の溶接位置に押し当てられた溶接電極21から、側外板8、長土台9、及び側梁3を通じて側梁3の下側壁部6に押し当てられたバック電極22(給電側電極)へ至る通電パスを流れる。溶接電極21は、溶接機本体の電極ホルダ(図示省略)に取り付けられる電極チップ23を有する。電極チップ23は、標準型が用いられ、例えば、外径が16mmで先端径が75mmである。 In the projection welding process, an inverter type DC welding power source 20 (see FIG. 1) is used as the welding power source. The welding current supplied by the welding power source 20 is applied to the side beam 3 from the welding electrode 21 pressed against the welding position of the welded portion 10 of the side outer plate 8 through the side outer plate 8, the long base 9, and the side beam 3. It flows through an energizing path leading to the back electrode 22 (feeding side electrode) pressed against the lower side wall portion 6. The welding electrode 21 has an electrode tip 23 attached to an electrode holder (not shown) of the welding machine main body. A standard type electrode tip 23 is used, and for example, the outer diameter is 16 mm and the tip diameter is 75 mm.

図1に示されるように、溶接電極21は、電極チップ23(基端側の部分)と側外板8との間に介在させる電極プレート24を有する。換言すると、電極プレート24は、溶接電極21の先端部を形成する。電極プレート24は、電極チップ23と同一の電極材料からなる。電極プレート24の一側(図1における「左側」)には、電極チップ23を受ける受圧面25が形成され、電極プレート24の他側(図1における「左側」)には、側外板8の被溶接部10に押し当てられる加圧面26が形成される。電極プレート24の加圧面26は、平坦な円形に形成され、電極チップ23(基端部であってホルダ側部分)の断面積よりも大きい面積を有する。 As shown in FIG. 1, the welded electrode 21 has an electrode plate 24 interposed between the electrode tip 23 (the portion on the proximal end side) and the side outer plate 8. In other words, the electrode plate 24 forms the tip of the weld electrode 21. The electrode plate 24 is made of the same electrode material as the electrode tip 23. A pressure receiving surface 25 for receiving the electrode tip 23 is formed on one side of the electrode plate 24 (“left side” in FIG. 1), and a side outer plate 8 is formed on the other side (“left side” in FIG. 1) of the electrode plate 24. A pressure surface 26 is formed which is pressed against the welded portion 10. The pressure surface 26 of the electrode plate 24 is formed in a flat circular shape and has an area larger than the cross-sectional area of the electrode tip 23 (base end portion and holder side portion).

第1実施形態におけるプロジェクション溶接工程では、まず、側梁3(母材)の被溶接部4と側外板8及び長土台9(板状部材)の被溶接部10,11とが重ね合わされる。次に、溶接電極21を最初の溶接位置に位置決めさせる。溶接電極21が溶接位置に位置決めされた状態では、溶接電極21(電極チップ23)の軸線(加圧軸)上に、側梁3の被溶接部4に形成された対応する凸部15が位置する。また、電極チップ23と凸部15との間には、電極チップ23側から順に、電極プレート24、側外板8、長土台9が介在する。なお、電極チップ23は、電極プレート24の受圧面25の中央に当接(押圧)される。 In the projection welding step of the first embodiment, first, the welded portion 4 of the side beam 3 (base material), the side outer plate 8 and the welded portions 10 and 11 of the long base 9 (plate-shaped member) are overlapped with each other. .. Next, the welding electrode 21 is positioned at the first welding position. In the state where the welding electrode 21 is positioned at the welding position, the corresponding convex portion 15 formed on the welded portion 4 of the side beam 3 is positioned on the axis (pressurizing shaft) of the welding electrode 21 (electrode tip 23). To do. Further, the electrode plate 24, the side outer plate 8, and the long base 9 are interposed between the electrode tip 23 and the convex portion 15 in this order from the electrode tip 23 side. The electrode tip 23 is in contact (pressed) with the center of the pressure receiving surface 25 of the electrode plate 24.

この状態で、溶接機本体の加圧シリンダ(図示省略)による加圧により、電極チップ23で電極プレート24の受圧面25を加圧すると、電極プレート24の平坦な加圧面26が、車両外側の側外板8の溶接位置に押し当てられる。この状態では、車両内側の長土台9の被溶接部11は、凸部15を介して側梁3の被溶接部4に加圧接触される。当該溶接電極21による加圧接触状態で、溶接電極21からバック電極22に至る通電パスに通電すると、図4に示されるように、側外板8及び長土台9の被溶接部10,11と側梁3(母材)の被溶接部4との溶接位置界面にナゲット17が形成される。これにより、側梁3と側外板8及び長土台9とが、溶接位置に形成された接合部2により接合されて接合体1が形成される。 In this state, when the pressure receiving surface 25 of the electrode plate 24 is pressurized by the electrode tip 23 by the pressure applied by the pressure cylinder (not shown) of the welding machine main body, the flat pressure surface 26 of the electrode plate 24 becomes a flat pressure surface 26 on the outside of the vehicle. It is pressed against the welding position of the side skin 8. In this state, the welded portion 11 of the long base 9 inside the vehicle is pressure-contacted with the welded portion 4 of the side beam 3 via the convex portion 15. When the energizing path from the welding electrode 21 to the back electrode 22 is energized in the pressure contact state by the welding electrode 21, as shown in FIG. 4, the side outer plate 8 and the long base 9 with the welded portions 10 and 11 A nugget 17 is formed at the welding position interface of the side beam 3 (base metal) with the welded portion 4. As a result, the side beam 3, the side outer plate 8, and the long base 9 are joined by the joint portion 2 formed at the welded position to form the joint body 1.

第1実施形態では以下の作用効果を奏する。
図20を参照すると、従来の片側スポット溶接工程では、側外板8及び長土台9(板状部材)の被溶接部10,11と側梁3(母材)の被溶接部4とを重ね合わせ、電極チップ23の先端を車両外側の側外板8の溶接位置に直接押し当てていたので、電極チップ23の先端で加圧したとき、側外板8及び長土台9の被溶接部10,11と側梁3の被溶接部4とが車両内側へ凹状に湾曲する。この状態で、電極チップ23(溶接電極21)とバック電極22との間を通電すると、図21に示されるように、接合部2の圧痕(ナゲット18)が凹み、側外板8の外観面13が波打つ状態となり、車両の外観品質を低下させていた。
In the first embodiment, the following effects are exhibited.
Referring to FIG. 20, in the conventional one-sided spot welding process, the side outer plate 8 and the long base 9 (plate-shaped member) to be welded portions 10 and 11 and the side beam 3 (base metal) to be welded portion 4 are overlapped with each other. In addition, since the tip of the electrode tip 23 was directly pressed against the welded position of the side outer plate 8 on the outside of the vehicle, when pressure was applied by the tip of the electrode tip 23, the welded portion 10 of the side outer plate 8 and the long base 9 was pressed. , 11 and the welded portion 4 of the side beam 3 are concavely curved inward of the vehicle. When the electrode tip 23 (welding electrode 21) and the back electrode 22 are energized in this state, the indentation (nugget 18) of the joint portion 2 is dented as shown in FIG. 13 was in a wavy state, which deteriorated the appearance quality of the vehicle.

これに対し、第1実施形態では、溶接電極21を、電極チップ23と、該電極チップ23の断面積より大きい加圧面26を有する電極プレート24とにより構成し、電極チップ23と車両外側の側外板8の被溶接部10との間に電極プレート24を介在させた。そして、電極プレート24の加圧面26を側外板8の被溶接部10の外観面13に押し当て、この状態で、電極チップ23(溶接電極21)とバック電極22との間を通電することで、溶接位置に接合部2を形成するように構成した。 On the other hand, in the first embodiment, the welding electrode 21 is composed of an electrode tip 23 and an electrode plate 24 having a pressure surface 26 larger than the cross-sectional area of the electrode tip 23, and the electrode tip 23 and the vehicle outer side side. The electrode plate 24 was interposed between the outer plate 8 and the welded portion 10. Then, the pressurized surface 26 of the electrode plate 24 is pressed against the external surface 13 of the welded portion 10 of the side outer plate 8, and in this state, electricity is applied between the electrode tip 23 (welded electrode 21) and the back electrode 22. Therefore, the joint portion 2 is formed at the welded position.

このように、第1実施形態では、電極チップ23の断面積より大きい面積を有する電極プレート24の加圧面26により、側外板8及び長土台9の被溶接部10,11及び側梁3の被溶接部4の溶接位置を加圧するので、溶接電極21による加圧により、側外板8及び長土台9の被溶接部10,11及び側梁3の被溶接部4が凹状に湾曲する(歪む)ことが抑制される。これにより、接合部2の周囲の凹みが抑制され、側外板8全体では、外観面13の波打ちを防止することが可能であり、延いては車両の外観品質を向上させることができる。 As described above, in the first embodiment, the pressure surface 26 of the electrode plate 24 having an area larger than the cross-sectional area of the electrode tip 23 allows the side outer plate 8 and the long base 9 to be welded portions 10, 11 and the side beam 3 to be formed. Since the welding position of the welded portion 4 is pressurized, the welded portions 10 and 11 of the side outer plate 8 and the long base 9 and the welded portion 4 of the side beam 3 are curved in a concave shape by the pressurization by the welding electrode 21 ( Distortion) is suppressed. As a result, the dent around the joint portion 2 is suppressed, the waviness of the appearance surface 13 can be prevented in the entire side outer plate 8, and the appearance quality of the vehicle can be improved.

また、第1実施形態では、側梁3(母材)の被溶接部4の溶接位置に車両内側の長土台9側へ突出させた凸部15を形成し、該凸部15を介して、側外板8及び長土台9(板状部材)の被溶接部10,11を側梁3の被溶接部4に加圧接触させたので、凸部15に溶接電流を集中させることが可能であり、通電時における無効分流の発生を抑制することができる。これにより、側梁3の被溶接部4と側外板8及び長土台9の被溶接部10,11との溶接界面に高い品質のナゲット17を形成することが可能であり、接合部2の強度を確保することができる。 Further, in the first embodiment, a convex portion 15 is formed at the welded position of the welded portion 4 of the side beam 3 (base material) so as to project toward the long base 9 side inside the vehicle, and the convex portion 15 is formed through the convex portion 15. Since the welded portions 10 and 11 of the side outer plate 8 and the long base 9 (plate-shaped member) are brought into pressure contact with the welded portion 4 of the side beam 3, the welding current can be concentrated on the convex portion 15. Yes, it is possible to suppress the occurrence of invalid current splitting when energized. As a result, it is possible to form a high-quality nugget 17 at the welded interface between the welded portion 4 of the side beam 3 and the welded portions 10 and 11 of the side outer plate 8 and the long base 9, and the joint portion 2 can be formed. Strength can be ensured.

ここで、図5は、第1実施形態のプロジェクション溶接工程により得られた溶接界面のナゲット17の断面図である。電極プレート24を用いていない従来の片側スポット溶接工程により得られたナゲット18(図21参照)と比較すると、従来の片側スポット溶接工程により得られたナゲット18は、車両外側の側外板8の被溶接部10に電極チップ23が直接押し当てられるため、側外板8及び長土台9の被溶接部10,11及び側梁3の被溶接部4が凹状に湾曲した状態で形成される。このため、従来の片側スポット溶接工程により得られたナゲット18は、中央部分が溶接界面に対して側梁3(母材)の被溶接部4側へ偏って形成されている。
これに対し、第1実施形態のプロジェクション溶接工程により形成されたナゲット17は、平坦な溶接界面に沿うように形成される。これにより、接合部2の圧痕をより平坦に形成することができる。例示すると、従来の片側スポット溶接工程による溶接位置の圧痕の凹みの深さは0.30mm程度であったのに対し、第1実施形態のプロジェクション溶接工程による溶接位置の圧痕の凹みの深さは0.05mm程度であった。
また、従来の片側スポット溶接工程では、通電時に散りが発生することで溶融した材料が飛散し、材料が減少することで接合部2の圧痕が凹むが、第1実施形態のプロジェクション溶接工程では、アーク溶接で溶加材を溶融させて形成した肉盛り部により凸部15を形成したので、通電時に凸部15を溶融させることで、通電時の散りの発生による材料の減少を補填することができる。これにより、接合部2の圧痕を凸形状にすることも可能である。この場合、圧痕を仕上げ加工することで、より高い品質の外観面13を得ることができる。さらに、板厚が厚い理由等で塑性加工が困難な母材であっても、凸部15を容易に形成することができる。
Here, FIG. 5 is a cross-sectional view of the nugget 17 at the welding interface obtained by the projection welding step of the first embodiment. Compared with the nugget 18 obtained by the conventional one-sided spot welding process without using the electrode plate 24 (see FIG. 21), the nugget 18 obtained by the conventional one-sided spot welding process is the side outer plate 8 on the outside of the vehicle. Since the electrode tip 23 is directly pressed against the welded portion 10, the welded portions 10 and 11 of the side outer plate 8 and the long base 9 and the welded portion 4 of the side beam 3 are formed in a concavely curved state. Therefore, the nugget 18 obtained by the conventional spot welding process on one side is formed so that the central portion is biased toward the welded portion 4 side of the side beam 3 (base metal) with respect to the welding interface.
On the other hand, the nugget 17 formed by the projection welding step of the first embodiment is formed along a flat welding interface. As a result, the indentation of the joint portion 2 can be formed more flatly. For example, the depth of the indentation at the welding position by the conventional one-sided spot welding process is about 0.30 mm, whereas the depth of the indentation at the welding position by the projection welding process of the first embodiment is about 0.30 mm. It was about 0.05 mm.
Further, in the conventional one-sided spot welding process, the molten material scatters due to scattering when energized, and the indentation of the joint portion 2 is dented due to the decrease in the material. Since the convex portion 15 is formed by the build-up portion formed by melting the filler metal by arc welding, it is possible to compensate for the decrease in the material due to the occurrence of scattering during energization by melting the convex portion 15 during energization. it can. Thereby, the indentation of the joint portion 2 can be made into a convex shape. In this case, by finishing the indentation, a higher quality appearance surface 13 can be obtained. Further, the convex portion 15 can be easily formed even if the base material is difficult to be plastically worked due to a thick plate or the like.

(第2実施形態)
本発明の第2実施形態を添付した図を参照して説明する。便宜上、第1実施形態の構成と同一又は相当する第2実施形態の構成については、同一の名称及び符号を付与する。
第1実施形態では、凸部15は、側梁3(母材)にアーク溶接により形成したドーム状の肉盛り部(ビード)であった。これに対し、図6に示されるように、第2実施形態では、凸部35は、円形の薄板(以下「円柱体」と称する)からなり、側梁3(母材)の各溶接位置に接合される。
(Second Embodiment)
The second embodiment of the present invention will be described with reference to the attached figure. For convenience, the same names and symbols are given to the configurations of the second embodiment which are the same as or correspond to the configurations of the first embodiment.
In the first embodiment, the convex portion 15 is a dome-shaped built-up portion (bead) formed on the side beam 3 (base material) by arc welding. On the other hand, as shown in FIG. 6, in the second embodiment, the convex portion 35 is composed of a circular thin plate (hereinafter referred to as a “cylindrical body”) at each welding position of the side beam 3 (base material). Be joined.

凸部35(円柱体)は、例えば、外径が3.0mmで板厚が1.0mmの鋼板(第2実施形態では「SUS304」)からなる。換言すると、凸部35は、直径が3.0mmの2つの底面36,37を有する円柱状に形成される。すなわち、凸部35の2つの底辺36,37は、平行をなす。図7に示されるように、凸部35は、抵抗溶接(第2実施形態では「ダイレクトスポット溶接」)により電極38,40の端面39,41が加圧接触され、側梁3の被溶接部4の各溶接位置に接合される。 The convex portion 35 (cylindrical body) is made of, for example, a steel plate having an outer diameter of 3.0 mm and a plate thickness of 1.0 mm (“SUS304” in the second embodiment). In other words, the convex portion 35 is formed in a columnar shape having two bottom surfaces 36 and 37 having a diameter of 3.0 mm. That is, the two bases 36 and 37 of the convex portion 35 are parallel to each other. As shown in FIG. 7, in the convex portion 35, the end faces 39 and 41 of the electrodes 38 and 40 are pressure-welded by resistance welding (“direct spot welding” in the second embodiment), and the welded portion of the side beam 3 is formed. It is joined to each welding position of 4.

図8に示されるように、第2実施形態におけるプロジェクション溶接工程では、溶接機本体の加圧シリンダ(図示省略)による加圧により、電極チップ23で電極プレート24の受圧面25を加圧すると、電極プレート24の平坦な加圧面26が、車両外側の側外板8の溶接位置に押し当てられる。この状態では、車両内側の長土台9の被溶接部11は、凸部35を介して側梁3の被溶接部4に加圧接触される。当該溶接電極21による加圧接触状態で、溶接電極21からバック電極22に至る通電パスに通電すると、図4に示される例と同様に、側外板8及び長土台9(板状部材)の被溶接部10,11と側梁3(母材)の被溶接部4との溶接位置界面にナゲット17が形成される。これにより、図4に示されるように、側梁3と側外板8及び長土台9とが、溶接位置に形成された接合部2により接合されて接合体1が形成される。 As shown in FIG. 8, in the projection welding step of the second embodiment, when the pressure receiving surface 25 of the electrode plate 24 is pressurized by the electrode tip 23 by the pressure of the pressure cylinder (not shown) of the welding machine main body, The flat pressure surface 26 of the electrode plate 24 is pressed against the welded position of the side outer plate 8 on the outside of the vehicle. In this state, the welded portion 11 of the long base 9 inside the vehicle is pressure-contacted with the welded portion 4 of the side beam 3 via the convex portion 35. When the energization path from the welding electrode 21 to the back electrode 22 is energized in the pressure contact state by the welding electrode 21, the side outer plate 8 and the long base 9 (plate-shaped member) are subjected to the same manner as in the example shown in FIG. A nugget 17 is formed at the welding position interface between the welded portions 10 and 11 and the welded portion 4 of the side beam 3 (base metal). As a result, as shown in FIG. 4, the side beam 3, the side outer plate 8, and the long base 9 are joined by the joint portion 2 formed at the welded position to form the joint body 1.

第2実施形態によれば、前述した第1実施形態と同等の作用効果を奏する。
また、第2実施形態では、凸部35を円柱体(円形の薄板)により形成したので、溶接電極21による加圧時に、凸部35の底面36,37を側梁3(母材)と長土台9との双方に面接触させることができる。さらに、第2実施形態では、第1実施形態におけるアーク溶接により形成した凸部15(肉盛り部)と比較して、凸部35の形状(外形、高さ等)を任意に設定することができる。これにより、より平坦な圧痕を形成することが可能であり、より一層波打ちがない高い品質の外観面13を得ることができる。
また、第2実施形態では、第1実施形態のアーク溶接により形成された凸部15(肉盛り部)と比較して、凸部35の高さを低く、且つ均一化することが可能であり、接合後の側梁3と長土台9とのギャップ(以下「ギャップ」)を小さくことができる。例示すると、第1実施形態のプロジェクション溶接工程によるギャップは0.5mm程度であったのに対し、第2実施形態のプロジェクション溶接工程によるギャップは0から0.2mm程度であった。これにより、台枠(側梁3)と側構体(長土台9)との間の水密性を更に向上させることができる。
また、第1実施形態では、凸部15をアーク溶接により形成するため、溶接トーチの向きが下向きに限定、延いてはアーク溶接時におけるワーク(側梁3)の向きが限定されるが、第2実施形態では、凸部35を抵抗溶接によりワークに接合するため、接合時におけるワークの向きを任意に設定することが可能であり、工数の削減にも寄与することができる。
また、第2実施形態では、凸部35(円柱体)を抵抗溶接により接合したので、凸部15をアーク溶接により形成した第1実施形態と比較して、凸部35の形成時におけるスパッタの発生をより抑えることが可能であり、スパッタを除去する工数を削減することができる。
According to the second embodiment, it has the same effect as that of the first embodiment described above.
Further, in the second embodiment, since the convex portion 35 is formed of a cylindrical body (circular thin plate), the bottom surfaces 36 and 37 of the convex portion 35 are longer than the side beam 3 (base material) when pressurized by the welding electrode 21. Both sides with the base 9 can be brought into surface contact. Further, in the second embodiment, the shape (outer shape, height, etc.) of the convex portion 35 can be arbitrarily set as compared with the convex portion 15 (built-up portion) formed by arc welding in the first embodiment. it can. As a result, it is possible to form flatter indentations, and it is possible to obtain a high-quality appearance surface 13 with no waviness.
Further, in the second embodiment, the height of the convex portion 35 can be made lower and uniform as compared with the convex portion 15 (built-up portion) formed by the arc welding of the first embodiment. , The gap between the side beam 3 and the long base 9 after joining (hereinafter referred to as "gap") can be reduced. For example, the gap due to the projection welding process of the first embodiment was about 0.5 mm, while the gap due to the projection welding process of the second embodiment was about 0 to 0.2 mm. Thereby, the watertightness between the underframe (side beam 3) and the side structure (long base 9) can be further improved.
Further, in the first embodiment, since the convex portion 15 is formed by arc welding, the direction of the welding torch is limited to downward, and the direction of the work (side beam 3) at the time of arc welding is limited. In the second embodiment, since the convex portion 35 is joined to the work by resistance welding, the orientation of the work at the time of joining can be arbitrarily set, which can contribute to the reduction of man-hours.
Further, in the second embodiment, since the convex portion 35 (cylindrical body) is joined by resistance welding, the spatter at the time of forming the convex portion 35 is compared with the first embodiment in which the convex portion 15 is formed by arc welding. It is possible to further suppress the generation, and it is possible to reduce the man-hours for removing spatter.

(第3実施形態)
本発明の第3実施形態を添付した図を参照して説明する。便宜上、第1又は第2実施形態の構成と同一又は相当する第3実施形態の構成については、同一の名称及び符号を付与する。
第2実施形態では、凸部35(図6参照)は、円柱体(円形の薄板)からなる。これに対し、第3実施形態では、図9に示されるように、凸部45は、球状に形成された鋼材(以下「球体」と称する)からなり、側梁3の各溶接位置に接合される。なお、凸部45は、例えばSUS304からなる。
(Third Embodiment)
The third embodiment of the present invention will be described with reference to the attached figure. For convenience, the same names and symbols are given to the configurations of the third embodiment which are the same as or correspond to the configurations of the first or second embodiment.
In the second embodiment, the convex portion 35 (see FIG. 6) is formed of a cylindrical body (circular thin plate). On the other hand, in the third embodiment, as shown in FIG. 9, the convex portion 45 is made of a spherical steel material (hereinafter referred to as “sphere”) and is joined to each welding position of the side beam 3. To. The convex portion 45 is made of, for example, SUS304.

図10に示されるように、凸部45(球体)は、抵抗溶接(第3実施形態では「ダイレクトスポット溶接」)により側梁3の被溶接部4の各溶接位置に接合される。図11に示されるように、第3実施形態におけるプロジェクション溶接工程では、溶接機本体の加圧シリンダ(図示省略)による加圧により、電極チップ23で電極プレート24の受圧面25を加圧すると、電極プレート24の平坦な加圧面26が、車両外側の側外板8の溶接位置に押し当てられる。この状態では、車両内側の長土台9の被溶接部11は、凸部45を介して側梁3の被溶接部4に加圧接触される。 As shown in FIG. 10, the convex portion 45 (sphere) is joined to each weld position of the welded portion 4 of the side beam 3 by resistance welding (“direct spot welding” in the third embodiment). As shown in FIG. 11, in the projection welding step of the third embodiment, when the pressure receiving surface 25 of the electrode plate 24 is pressurized by the electrode tip 23 by the pressure of the pressure cylinder (not shown) of the welding machine main body, The flat pressure surface 26 of the electrode plate 24 is pressed against the welded position of the side outer plate 8 on the outside of the vehicle. In this state, the welded portion 11 of the long base 9 inside the vehicle is pressure-contacted with the welded portion 4 of the side beam 3 via the convex portion 45.

溶接電極21による加圧接触状態で、溶接電極21からバック電極22に至る通電パスに通電すると、図4に示される例と同様に、側外板8及び長土台9(板状部材)の被溶接部10,11と側梁3(母材)の被溶接部4との溶接位置界面にナゲット17が形成される。これにより、図4に示されるように、側梁3と側外板8及び長土台9とが、溶接位置に形成された接合部2により接合されて接合体1が形成される。 When the energizing path from the welding electrode 21 to the back electrode 22 is energized in the pressure contact state by the welding electrode 21, the side outer plate 8 and the long base 9 (plate-shaped member) are covered in the same manner as in the example shown in FIG. A nugget 17 is formed at the welding position interface between the welded portions 10 and 11 and the welded portion 4 of the side beam 3 (base metal). As a result, as shown in FIG. 4, the side beam 3, the side outer plate 8, and the long base 9 are joined by the joint portion 2 formed at the welded position to form the joint body 1.

第3実施形態によれば、前述した第1及び第2実施形態と同等の作用効果を奏する。
ここで、前述の第2実施形態では、前述のプロジェクション溶接工程において、溶接電極21による加圧時に、凸部35の底面36又は底面37を側梁3(母材)又は長土台9に面接触させることができなかった場合、換言すれば、凸部35の底面36又は底面37が側梁3又は長土台9に片当たりした場合(円柱体の軸が傾いた場合)、平面(側梁3又は長土台9側)とエッジ(凸部35側)との接触になり、接合部2の圧痕(ナゲット17)が凹むおそれがある。このように、第2実施形態では、凸部35の配置方向(円柱体の軸線の向き)を定める必要がある。
これに対し、第3実施形態では、凸部45を球体により形成したので、プロジェクション溶接時には、側梁3及び長土台9と凸部45とが、平面(側梁3及び長土台9)と球面(凸部45)とで接触する。これにより、凸部45の、側梁3及び長土台9に対する配置方向が規定される、換言すれば、凸部45の配置方向を定める必要がないので、凸部45の配置不良による溶接不良を防止することが可能であり、その結果、車両の外観品質を向上させることができる。
According to the third embodiment, the same action and effect as those of the first and second embodiments described above are obtained.
Here, in the above-mentioned second embodiment, in the above-mentioned projection welding step, when the welding electrode 21 pressurizes the bottom surface 36 or the bottom surface 37, the bottom surface 36 or the bottom surface 37 comes into surface contact with the side beam 3 (base material) or the long base 9. If it cannot be made, in other words, if the bottom surface 36 or the bottom surface 37 of the convex portion 35 hits the side beam 3 or the long base 9 (when the axis of the cylinder is tilted), it is a flat surface (side beam 3). Alternatively, the long base 9 side) and the edge (convex portion 35 side) may come into contact with each other, and the indentation (nugget 17) of the joint portion 2 may be dented. As described above, in the second embodiment, it is necessary to determine the arrangement direction of the convex portion 35 (the direction of the axis of the cylindrical body).
On the other hand, in the third embodiment, since the convex portion 45 is formed of a sphere, the side beam 3, the long base 9, and the convex portion 45 are a flat surface (side beam 3 and long base 9) and a spherical surface at the time of projection welding. Contact with (convex portion 45). As a result, the arrangement direction of the convex portion 45 with respect to the side beam 3 and the long base 9 is defined. In other words, it is not necessary to determine the arrangement direction of the convex portion 45. It can be prevented, and as a result, the appearance quality of the vehicle can be improved.

(第4実施形態)
本発明の第4実施形態を添付した図を参照して説明する。便宜上、第1乃至第3実施形態の構成と同一又は相当する第4実施形態の構成については、同一の名称及び符号を付与し、重複する説明を省略する。
前述の第3実施形態では、凸部45(図9参照)は、球体からなる。これに対し、第4実施形態では、図12に示されるように、凸部47は、扁球状に形成された鋼材(以下「扁球体」と称する)からなり、側梁3の各溶接位置に接合される。なお、凸部47は、例えばSUS304からなる。
(Fourth Embodiment)
This will be described with reference to the figure attached with the fourth embodiment of the present invention. For convenience, the same name and reference numeral will be given to the configuration of the fourth embodiment which is the same as or equivalent to the configuration of the first to third embodiments, and duplicate description will be omitted.
In the third embodiment described above, the convex portion 45 (see FIG. 9) is made of a sphere. On the other hand, in the fourth embodiment, as shown in FIG. 12, the convex portion 47 is made of a steel material (hereinafter referred to as “spheroid”) formed in an oblate shape, and is located at each welding position of the side beam 3. Be joined. The convex portion 47 is made of, for example, SUS304.

第4実施形態によれば、前述した第1乃至第3実施形態と同等の作用効果を奏する。
また、第4実施形態では、凸部47を扁球体により形成したので、プロジェクション溶接時には、側梁3及び長土台9と凸部47とが、平面(側梁3及び長土台9側)と扁球面(凸部47側)とで接触する。これにより、第4実施形態では、第3実施形態同様、第2実施形態のような凸部35の配置不良による溶接不良を防止することが可能であり、その結果、車両の外観品質を向上させることができる。
また、前述の第3実施形態では、凸部45が球体であったため、抵抗溶接時(図10参照)には、側梁3(母材)上で凸部45(球体)が転動しないように位置固定する必要がある。これに対し、第4実施形態では、凸部47が扁球体であるため据わりが良く、抵抗溶接時において、凸部47の各溶接位置への位置決めが容易である。
According to the fourth embodiment, the same action and effect as those of the first to third embodiments described above are obtained.
Further, in the fourth embodiment, since the convex portion 47 is formed of a spheroid, the side beam 3, the long base 9, and the convex portion 47 are flat (side beam 3 and long base 9 side) and flat during projection welding. It comes into contact with the spherical surface (convex portion 47 side). As a result, in the fourth embodiment, as in the third embodiment, it is possible to prevent welding defects due to improper placement of the convex portions 35 as in the second embodiment, and as a result, the appearance quality of the vehicle is improved. be able to.
Further, in the third embodiment described above, since the convex portion 45 is a sphere, the convex portion 45 (sphere) does not roll on the side beam 3 (base material) during resistance welding (see FIG. 10). It is necessary to fix the position to. On the other hand, in the fourth embodiment, since the convex portion 47 is a spheroid, it is easy to set up, and it is easy to position the convex portion 47 at each welding position at the time of resistance welding.

(第5実施形態)
本発明の第5実施形態を添付した図を参照して説明する。便宜上、第1乃至第4実施形態の構成と同一又は相当する第5実施形態の構成については、同一の名称及び符号を付与し、重複する説明を省略する。
第4実施形態では、凸部47(図12参照)は、扁球体からなる。これに対し、第5実施形態では、図13に示されるように、凸部49は、長球状に形成された鋼材(以下「長球体」と称する)からなり、側梁3の各溶接位置に接合される。なお、凸部49は、例えばSUS304からなる。
(Fifth Embodiment)
This will be described with reference to the figure to which the fifth embodiment of the present invention is attached. For convenience, the same name and reference numeral will be given to the configuration of the fifth embodiment which is the same as or equivalent to the configuration of the first to fourth embodiments, and duplicate description will be omitted.
In the fourth embodiment, the convex portion 47 (see FIG. 12) is made of a spheroid. On the other hand, in the fifth embodiment, as shown in FIG. 13, the convex portion 49 is made of a steel material formed in a long sphere (hereinafter referred to as a “long sphere”), and is located at each welding position of the side beam 3. Be joined. The convex portion 49 is made of, for example, SUS304.

第5実施形態によれば、前述した第1乃至第4実施形態と同等の作用効果を奏する。
また、第5実施形態では、凸部49を長球体により形成したので、プロジェクション溶接時には、側梁3及び長土台9と凸部49とが、平面(側梁3及び長土台9側)と長球面(凸部49側)とで接触する。これにより、第5実施形態では、第3及び第4実施形態同様、第2実施形態のような凸部35の配置(円柱体の軸の傾き)による溶接不良を防止することが可能であり、その結果、車両の外観品質を向上させることができる。
According to the fifth embodiment, the same action and effect as those of the first to fourth embodiments described above are obtained.
Further, in the fifth embodiment, since the convex portion 49 is formed by a long sphere, the side beam 3, the long base 9, and the convex portion 49 are flat (side beam 3 and long base 9 side) and long during projection welding. It comes into contact with the spherical surface (convex 49 side). As a result, in the fifth embodiment, as in the third and fourth embodiments, it is possible to prevent welding defects due to the arrangement of the convex portions 35 (tilt of the axis of the cylindrical body) as in the second embodiment. As a result, the appearance quality of the vehicle can be improved.

(第6実施形態)
本発明の第6実施形態を添付した図を参照して説明する。便宜上、第1乃至第5実施形態の構成と同一又は相当する第6実施形態の構成については、同一の名称及び符号を付与し、重複する説明を省略する。
(Sixth Embodiment)
This will be described with reference to the figure attached with the sixth embodiment of the present invention. For convenience, the same name and reference numeral will be given to the configuration of the sixth embodiment which is the same as or equivalent to the configuration of the first to fifth embodiments, and duplicate description will be omitted.

前述した実施形態では、台枠を構成する側梁3(母材)に側構体を構成する側外板8及び長土台9(板状部材)をインダイレクトプロジェクション溶接により接合して接合体1(図4参照)を製造する工程を説明した。これに対し、第6実施形態では、側構体を構成する補強部材52(母材)に側外板8及び側柱51(板状部材)をプロジェクション溶接により接合して接合体1を製造する。第6実施形態では、第3実施形態と同様に、凸部45は球体(図9参照)により形成され、補強部材52の各溶接位置に接合される。 In the above-described embodiment, the side beam 3 (base material) constituting the underframe is joined to the side outer plate 8 forming the side structure and the long base 9 (plate-shaped member) by indirect projection welding to join the joint 1 ( The process of manufacturing (see FIG. 4) has been described. On the other hand, in the sixth embodiment, the side outer plate 8 and the side pillar 51 (plate-shaped member) are joined to the reinforcing member 52 (base material) constituting the side structure by projection welding to manufacture the joined body 1. In the sixth embodiment, as in the third embodiment, the convex portion 45 is formed of a sphere (see FIG. 9) and is joined to each welding position of the reinforcing member 52.

図14に示されるように、凸部45(球体)は、抵抗溶接(第6実施形態では「ダイレクトスポット溶接」)により補強部材52の各溶接位置に接合される。図15に示されるように、第6実施形態におけるプロジェクション溶接工程では、溶接機本体の加圧シリンダ(図示省略)による加圧により、一対の電極55,56間の側外板8及び側柱51(板状部材)と補強部材52(母材)との溶接位置を加圧する。なお、溶接電極55は、先端部の外径が基端側(ホルダ側)の外径よりも大きく形成され、当該先端部に加圧面26が形成される。 As shown in FIG. 14, the convex portion 45 (sphere) is joined to each welding position of the reinforcing member 52 by resistance welding (“direct spot welding” in the sixth embodiment). As shown in FIG. 15, in the projection welding step in the sixth embodiment, the side outer plate 8 and the side pillar 51 between the pair of electrodes 55 and 56 are pressed by the pressure cylinder (not shown) of the welding machine main body. The welding position between the (plate-shaped member) and the reinforcing member 52 (base material) is pressurized. The outer diameter of the tip of the welding electrode 55 is larger than the outer diameter of the base end side (holder side), and the pressure surface 26 is formed at the tip end portion.

加圧シリンダによる加圧接触状態で、溶接電極55から、側外板8、側柱51、凸部45、及び補強部材52を経て、給電側電極56に至る通電パスに通電すると、側外板8、側柱51、及び補強部材52の溶接位置界面に、ナゲット17(図4参照)が形成される。これにより、側外板8及び側柱51(板状部材)と補強部材52(母材)とが、溶接位置に形成された接合部2(図4参照)により接合されて接合体1(図4参照)が形成される。なお、凸部45は、球体(図9参照)の他、例えば、円板(図6参照)、扁球体(図12参照)、長球体(図13参照)により形成することができる。 When the welding electrode 55 is energized through the side outer plate 8, the side pillar 51, the convex portion 45, and the reinforcing member 52, and the energization path to the feeding side electrode 56 is energized in the pressure contact state by the pressure cylinder, the side outer plate is energized. 8. A nugget 17 (see FIG. 4) is formed at the welding position interface of the side column 51 and the reinforcing member 52. As a result, the side outer plate 8 and the side pillar 51 (plate-shaped member) and the reinforcing member 52 (base material) are joined by the joint portion 2 (see FIG. 4) formed at the welded position, and the joint body 1 (FIG. 4). 4) is formed. The convex portion 45 can be formed of, for example, a disk (see FIG. 6), a spheroid (see FIG. 12), or a long sphere (see FIG. 13) in addition to a sphere (see FIG. 9).

(第7実施形態)
本発明の第7実施形態を添付した図を参照して説明する。便宜上、第1乃至第6実施形態の構成と同一又は相当する第7実施形態の構成については、同一の名称及び符号を付与し、重複する説明を省略する。
(7th Embodiment)
This will be described with reference to the figure to which the seventh embodiment of the present invention is attached. For convenience, the same name and reference numeral will be given to the configuration of the seventh embodiment which is the same as or equivalent to the configuration of the first to sixth embodiments, and duplicate description will be omitted.

第6実施形態では、側構体を構成する補強部材52(母材)に側外板8及び側柱51(板状部材)をプロジェクション溶接により接合して接合体1(図4参照)を製造する工程を説明した。これに対し、第7実施形態では、側構体を構成する側扉又は側窓の開口枠63(母材)に側外板8(板状部材)をプロジェクション溶接により接合して接合体1を製造する。第6実施形態と同様に、凸部45は球体(図9参照)により形成され、補強部材52の各溶接位置に接合される。 In the sixth embodiment, the side outer plate 8 and the side pillar 51 (plate-shaped member) are joined to the reinforcing member 52 (base material) constituting the side structure by projection welding to manufacture the joined body 1 (see FIG. 4). The process was explained. On the other hand, in the seventh embodiment, the side outer plate 8 (plate-shaped member) is joined to the opening frame 63 (base material) of the side door or the side window constituting the side structure by projection welding to manufacture the joined body 1. To do. Similar to the sixth embodiment, the convex portion 45 is formed of a sphere (see FIG. 9) and is joined to each welding position of the reinforcing member 52.

図16に示されるように、凸部45(球体)は、抵抗溶接(第7実施形態では「ダイレクトスポット溶接」)により開口枠63の各溶接位置に接合される。図17に示されるように、第7実施形態におけるプロジェクション溶接工程では、溶接機本体の加圧シリンダ(図示省略)による加圧により、一対の電極55,56間の側外板8(板状部材)と開口枠63(母材)との溶接位置を加圧する。 As shown in FIG. 16, the convex portion 45 (sphere) is joined to each welding position of the opening frame 63 by resistance welding (“direct spot welding” in the seventh embodiment). As shown in FIG. 17, in the projection welding step in the seventh embodiment, the side outer plate 8 (plate-shaped member) between the pair of electrodes 55 and 56 is pressed by the pressure cylinder (not shown) of the welding machine main body. ) And the opening frame 63 (base metal) are pressurized.

加圧シリンダによる加圧接触状態で、溶接電極55から、側外板8、凸部45、及び開口枠63を経て、給電側電極56に至る通電パスに通電すると、側外板8と開口枠63との溶接位置界面に、ナゲット17(図4参照)が形成される。これにより、側外板8(板状部材)と開口枠63(母材)とが、溶接位置に形成された接合部2(図4参照)により接合されて接合体1(図4参照)が形成される。 When the welding electrode 55 is energized through the side outer plate 8, the convex portion 45, and the opening frame 63 to the power feeding side electrode 56 in the pressure contact state by the pressure cylinder, the side outer plate 8 and the opening frame are energized. A nugget 17 (see FIG. 4) is formed at the welding position interface with 63. As a result, the side outer plate 8 (plate-shaped member) and the opening frame 63 (base material) are joined by the joint portion 2 (see FIG. 4) formed at the welded position, and the joint body 1 (see FIG. 4) is formed. It is formed.

なお、凸部45は、球体(図9参照)の他、例えば、円板(図6参照)、扁球体(図12参照)、長球体(図13参照)により形成することができる。
また、第7実施形態では、側外板8を開口枠63の側構体内側に重ねた例を示したが(図18参照)、図19に示されるように、側外板8を開口枠63の側構体外側に重ねて溶接位置をプロジェクション溶接してもよい。
The convex portion 45 can be formed of, for example, a disk (see FIG. 6), a spheroid (see FIG. 12), or a long sphere (see FIG. 13) in addition to a sphere (see FIG. 9).
Further, in the seventh embodiment, an example in which the side outer plate 8 is stacked inside the side structure of the opening frame 63 is shown (see FIG. 18), but as shown in FIG. 19, the side outer plate 8 is placed on the opening frame 63. The welding position may be projected welded by overlapping the outside of the side structure.

なお、実施形態は、前述した形態に限定されるものではなく、例えば、次のように構成することができる。
前述の実施形態では、凸部15,35,45,47,49を、母材(第1乃至第5実施形態では「側梁3」、第6実施形態では「補強部材52」、第7実施形態では「開口枠63」)側の板状部材との対向面に形成したが、板状部材(第1乃至第5実施形態では「長土台9」、第6実施形態では「側柱51」、第7実施形態では「側外板8」)側の母材との対向面に形成してもよい。
前述の実施形態では、電極プレート24及び溶接電極55の加圧面26を平坦に形成したが、側外板8の被溶接部10の外観面13の接合部2の圧痕の品質が確保される範囲の半径で、加圧面26をR形状に形成してもよい。
また、第1乃至第5実施形態において、第6及び第7実施形態と同様に、電極プレート24を用いずに、電極チップ23の先端部の外径を基端側(ホルダ側)の外径よりも大きく形成し、当該先端部に加圧面26を形成してもよい。
The embodiment is not limited to the above-described embodiment, and can be configured as follows, for example.
In the above-described embodiment, the convex portions 15, 35, 45, 47, 49 are used as the base material (“side beam 3” in the first to fifth embodiments, “reinforcing member 52” in the sixth embodiment, and the seventh embodiment. In the embodiment, it is formed on the surface facing the plate-shaped member on the “opening frame 63”) side, but the plate-shaped member (“long base 9” in the first to fifth embodiments and “side pillar 51” in the sixth embodiment. , In the seventh embodiment, it may be formed on the surface facing the base material on the "side outer plate 8") side.
In the above-described embodiment, the pressure surface 26 of the electrode plate 24 and the weld electrode 55 is formed flat, but the quality of the indentation of the joint portion 2 of the appearance surface 13 of the welded portion 10 of the side outer plate 8 is ensured. The pressure surface 26 may be formed in an R shape with a radius of.
Further, in the first to fifth embodiments, as in the sixth and seventh embodiments, the outer diameter of the tip portion of the electrode tip 23 is set to the outer diameter of the base end side (holder side) without using the electrode plate 24. It may be formed larger than the above, and the pressure surface 26 may be formed at the tip portion.

1 接合体、2 接合部、3 側梁(母材)、4 被溶接部、8,9 板状部材、10,11 被溶接部、15 凸部、21 溶接電極、22 バック電極(給電側電極)、23 電極チップ、26 加圧面 1 Joint, 2 Joint, 3 Side beam (base material), 4 Welded part, 8,9 Plate-shaped member, 10,11 Welded part, 15 Convex part, 21 Welded electrode, 22 Back electrode (Feeding side electrode) ), 23 Electrode tip, 26 Pressurized surface

Claims (13)

母材の被溶接部と板状部材の被溶接部とを重ね合わせ、前記板状部材の表面に溶接電極を押し当てながら、該溶接電極と前記母材の所定位置に押し当てられた給電側電極との間を通電させることにより、前記母材と前記板状部材との接合体を製造する方法であって、
前記溶接電極の先端部に、基端部の断面積よりも大きい面積を有する平坦な加圧面を形成するとともに、
前記母材又は前記板状部材の溶接位置に凸部を形成する工程と、
前記母材の被溶接部と前記板状部材の被溶接部とを重ね合わせる工程と、
前記溶接電極の前記加圧面を前記板状部材の表面の溶接位置に押し当てる工程と、
前記溶接電極と前記給電側電極との間を通電させて接合部を形成する工程と、
を備えることを特徴とするプロジェクション溶接による接合体の製造方法。
The welded portion of the base metal and the welded portion of the plate-shaped member are overlapped with each other, and while the weld electrode is pressed against the surface of the plate-shaped member, the welding electrode and the feeding side pressed against the predetermined position of the base metal. It is a method of manufacturing a welded body of the base material and the plate-shaped member by energizing between the electrodes.
At the tip of the welding electrode, a flat pressure surface having an area larger than the cross-sectional area of the base end is formed, and at the same time, a flat pressure surface is formed.
A step of forming a convex portion at a welding position of the base material or the plate-shaped member, and
The step of superimposing the welded portion of the base metal and the welded portion of the plate-shaped member, and
A step of pressing the pressurized surface of the welding electrode against the welding position on the surface of the plate-shaped member, and
A step of forming a joint by energizing between the welding electrode and the feeding side electrode,
A method for manufacturing a joint by projection welding, which comprises.
前記凸部は、前記母材の被溶接部を前記板状部材の被溶接部側へ突出させることで形成されることを特徴とする請求項1に記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a bonded body by projection welding according to claim 1, wherein the convex portion is formed by projecting the welded portion of the base metal toward the welded portion side of the plate-shaped member. 前記凸部は、前記板状部材の被溶接部を前記母材の被溶接部側へ突出させることで形成されることを特徴とする請求項1に記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a bonded body by projection welding according to claim 1, wherein the convex portion is formed by projecting a welded portion of the plate-shaped member toward the welded portion side of the base metal. 前記凸部は、アーク溶接により肉盛りすることで形成されることを特徴とする請求項1乃至3のいずれかに記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a bonded body by projection welding according to any one of claims 1 to 3, wherein the convex portion is formed by overlaying by arc welding. 前記凸部は、円形の薄板を接合することで形成されることを特徴とする請求項1乃至3のいずれかに記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a joined body by projection welding according to any one of claims 1 to 3, wherein the convex portion is formed by joining circular thin plates. 前記凸部は、球体を接合することで形成されることを特徴とする請求項1乃至3のいずれかに記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a joined body by projection welding according to any one of claims 1 to 3, wherein the convex portion is formed by joining spheres. 前記凸部は、扁球体若しくは長球体を接合することで形成されることを特徴とする請求項1乃至3のいずれかに記載のプロジェクション溶接による接合体の製造方法。 The method for manufacturing a bonded body by projection welding according to any one of claims 1 to 3, wherein the convex portion is formed by joining a flat sphere or a long sphere. 前記溶接電極の加圧面は、電極チップと前記板状部材との間に介在させた電極材料からなるプレートに形成されることを特徴とする請求項1乃至7のいずれかに記載のプロジェクション溶接による接合体の製造方法。 The projection welding according to any one of claims 1 to 7, wherein the pressure surface of the welding electrode is formed on a plate made of an electrode material interposed between the electrode tip and the plate-shaped member. Method of manufacturing a joint. 母材の被溶接部と板状部材の被溶接部との重ね合わせ部分に対し、前記板状部材の表面から押し当てられた溶接電極と、前記母材の所定位置に押し当てられた給電側電極との間の通電の結果形成された接合部を有する接合体であって、
前記接合部は、前記母材の被溶接部又は前記板状部材の被溶接部の表面から突出する凸部を有することを特徴とする接合体。
The weld electrode pressed from the surface of the plate-shaped member and the feeding side pressed against a predetermined position of the base material against the overlapped portion between the welded portion of the base metal and the welded portion of the plate-shaped member. A joint body having a joint formed as a result of energization with an electrode.
The joint portion is a joint body having a convex portion protruding from the surface of the welded portion of the base material or the welded portion of the plate-shaped member.
前記接合部は、前記母材又は前記板状部材の溶接位置に形成された肉盛り部においてナゲットが形成されることを特徴とする請求項9に記載の接合体。 The joined body according to claim 9, wherein the joint portion is formed with a nugget at a built-up portion formed at a welding position of the base material or the plate-shaped member. 前記接合部は、前記母材又は前記板状部材の溶接位置に接合された円形の薄板においてナゲットが形成されることを特徴とする請求項9に記載の接合体。 The joined body according to claim 9, wherein the joint portion is formed by forming a nugget in a circular thin plate joined to the welding position of the base material or the plate-shaped member. 前記接合部は、前記母材又は前記板状部材の溶接位置に接合された球体においてナゲットが形成されることを特徴とする請求項9に記載の接合体。 The joined body according to claim 9, wherein the joint portion is a nugget formed in a sphere joined at a welding position of the base material or the plate-shaped member. 前記接合部は、前記母材又は前記板状部材の溶接位置に接合された扁球体若しくは長球体においてナゲットが形成されることを特徴とする請求項9に記載の接合体。 The joint according to claim 9, wherein the joint portion is formed of a nugget in a spheroid or a long sphere joined at a welding position of the base material or the plate-shaped member.
JP2020049243A 2019-03-29 2020-03-19 Joint body manufacturing method by projection welding and joint body Pending JP2021074771A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019067903 2019-03-29
JP2019067903 2019-03-29
JP2019203315 2019-11-08
JP2019203315 2019-11-08

Publications (1)

Publication Number Publication Date
JP2021074771A true JP2021074771A (en) 2021-05-20

Family

ID=75899871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049243A Pending JP2021074771A (en) 2019-03-29 2020-03-19 Joint body manufacturing method by projection welding and joint body

Country Status (1)

Country Link
JP (1) JP2021074771A (en)

Similar Documents

Publication Publication Date Title
US6037559A (en) Process for lap joining two kinds of metallic members having different melting points
US6530713B2 (en) Structural body
EP0814936B1 (en) Method of high energy density radiation beam lap welding
TWI599433B (en) Fillet welding method and fillet welded joint
KR20010039622A (en) A mending method of a friction stir joining portion
JP2000197969A (en) Blank for integrally forming and forming method thereof
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JP2012240118A (en) Automobile frame component
US6545244B1 (en) Conductive heat seam welding
JP4868226B2 (en) Dissimilar metal joining method
JP2008290129A (en) Method of welding metallic member
JP5196133B2 (en) Dissimilar metal plate joining method
JPH0985454A (en) Overlapping/joining method for two kind metal members having different melting point
JP2009226446A (en) Spot welding method of dissimilar plates
JP2021074771A (en) Joint body manufacturing method by projection welding and joint body
JP3113107B2 (en) How to join metal members
JP2009095881A (en) Method of manufacturing welded structural member
JP2007167924A (en) Method for welding and joining body structural member of railroad vehicle, and joint structure used therefor
JP4463183B2 (en) Aluminum structure and manufacturing method thereof
JPH0871755A (en) Butt one side welding method of aluminum alloy member
JP6773959B2 (en) Welding method of seat frame
JP6762445B1 (en) Spot welding method for aluminum material
JP2018158350A (en) Laser welding method and welded joint
JP3602346B2 (en) Manufacturing method of seat back frame
JP2024008814A (en) Spot welding method for aluminum or aluminum alloy material, and weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240410