JP2021073925A - Management and checking method on growth of field crop - Google Patents

Management and checking method on growth of field crop Download PDF

Info

Publication number
JP2021073925A
JP2021073925A JP2019203969A JP2019203969A JP2021073925A JP 2021073925 A JP2021073925 A JP 2021073925A JP 2019203969 A JP2019203969 A JP 2019203969A JP 2019203969 A JP2019203969 A JP 2019203969A JP 2021073925 A JP2021073925 A JP 2021073925A
Authority
JP
Japan
Prior art keywords
management
crops
image
crop
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019203969A
Other languages
Japanese (ja)
Inventor
直政 鈴木
Naomasa Suzuki
直政 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019203969A priority Critical patent/JP2021073925A/en
Publication of JP2021073925A publication Critical patent/JP2021073925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

To provide a management and checking method on appropriate growth of a field crop which is particularly Yamato yam (Japanese yam).SOLUTION: Each process of: (1) an analysis process of moving a mobile body above a farm field of field crop, and analyzing an image captured by a visible light camera or an infrared camera mounted on the mobile body and (or) a multispectral image which has recorded electromagnetic waves of a plurality of wavelength ranges; (2) a nitrate ion concentration measuring process of squeezed juice squeezed from field crop; and (3) a process of applying management and checking necessary for the growth of field crop such as necessity of additional fertilization to field crop and the presence of pests based on an analysis result to an image obtained in the process (1) and a nitrate ion concentration measurement result obtained in the process (2) is executed.SELECTED DRAWING: None

Description

本発明は、農作物の育成上の管理・点検方法に関し、特に、大和芋(やまといもの)の無人小型飛行体(別称ドロ−ン)による空撮の画像解析と大和芋からの搾汁液の硝酸イオン濃度測定とを併行して行い、それらの結果に応じて大和芋の適切な育成上の管理・点検を実施して、健全な大和芋の育成を実施しようとするものである。 The present invention relates to a management / inspection method for growing agricultural products, and in particular, aerial image analysis by an unmanned small flying object (also known as a drone) of Yamatoimono and nitrate of juice squeezed from Yamatoimo. The purpose is to carry out the proper cultivation of Yamato potatoes according to the results of the ion concentration measurement, and to carry out the proper cultivation of Yamato potatoes.

近時、無人小型飛行体(別称ドロ−ン)が、大型建造物の検査解析などに用いられるようになってきて、当該ドロ−ンに可視光線カメラや赤外線カメラ(両者が一体となったカメラも含む。)を搭載して、当該可視光線カメラや赤外線カメラにより撮影(天撮)された画像に基づき検査解析が行われるようになってきている。又、当該検査解析は、複数の波長帯の電磁波を記録したマルチスペクトル画像の解析によっても行われるようになってきている。
一方、農作物の栽培の分野でも、農作物への追肥の必要性及び病害虫の有無等農作物の育成に必要な管理及び点検を行い、適切な追肥を施したり、農薬を散布したり等の処置が必要で、それを人力で行うこともできるが、効率的ではないし、不十分となり易く、人力の検査に頼らないで、上記のようなドロ−ンによる赤外線等検査解析が有効となるが、農作物の栽培分野では、作物の健全な育成を推進し、作物への施肥が適当に行われ、その施肥時期に遅れたりすることがないようにする必要があり、こうしたドロ−ンによる赤外線等検査解析だけでは不十分である。
こうした作物への適切な肥培管理は、作物等の観察(肉眼観察法)でも可能ではあるが、経験や勘に頼ったりすることになり、的確な判断が難しい。
又、土壌溶液診断という方法もあり、土壌溶液を採取して土壌中の窒素不足を知るという方法もあるが、土壌中の窒素不足を知り、その後に追肥したりするので、作物への効果とのギャップが生じ易い。
一方、作物栄養診断という方法もあり、当該診断は、作物そのものから、汁液を採取して診断するので、リアルタイムに追肥の有無を決定できるが、汁液の採取方法に二通りあり、磨砕法で作物の葉柄(葉体)を切断後に汁液を採取するか、搾汁液法で作物の葉柄(葉体)を切断後に、擂鉢で磨砕後に、汁液を採取するのであるが、作物により葉柄(葉体)の硬度等が異なったりして、作物の種類に合った採取方法の選択が必要であり、又、当該磨砕法や搾汁液法による作物栄養診断だけでは、農作物の確かなる育成はなし得ない。
Recently, unmanned small air vehicles (also known as drones) have come to be used for inspection and analysis of large buildings, and visible light cameras and infrared cameras (cameras in which both are integrated) have come to be used in the drones. Including), inspection analysis is being performed based on images taken (heavenly) by the visible light camera or infrared camera. Further, the inspection analysis is also performed by analyzing a multispectral image in which electromagnetic waves of a plurality of wavelength bands are recorded.
On the other hand, in the field of crop cultivation as well, it is necessary to carry out management and inspection necessary for growing crops, such as the need for top dressing of crops and the presence or absence of pests, and to apply appropriate top dressing and spray pesticides. So, it is possible to do it manually, but it is not efficient and tends to be insufficient, and the above inspection analysis such as infrared rays by the drone is effective without relying on the inspection by human power, but for agricultural products In the field of cultivation, it is necessary to promote the sound growth of crops, fertilize the crops appropriately, and prevent delays in the fertilizer application time. Is not enough.
Appropriate fertilization management for such crops is possible by observing the crops (naked eye observation method), but it depends on experience and intuition, and it is difficult to make an accurate judgment.
There is also a method called soil solution diagnosis, and there is also a method of collecting the soil solution to know the nitrogen deficiency in the soil, but since the nitrogen deficiency in the soil is known and then fertilizer is added, it is effective for crops. Gap is likely to occur.
On the other hand, there is also a method called crop nutrition diagnosis, and since the diagnosis is made by collecting the juice from the crop itself, it is possible to determine the presence or absence of topdressing in real time. The juice is collected after cutting the leaf stalk (leaf body), or the juice is collected after cutting the leaf stalk (leaf body) of the crop by the juice method and grinding it in a mortar. Depending on the crop, the leaf stalk (leaf body) is collected. ), Etc., it is necessary to select a collection method suitable for the type of crop, and it is not possible to surely grow crops only by crop nutrition diagnosis by the grinding method or the juice squeezing method.

WO2005/111583WO2005 / 111583

本発明は、上記の従来技術の有する欠点を解消し、特に、農作物の育成上の管理・点検に優れた方法を提供することを目的としたものである。
本発明の他の目的および新規な特徴は以下の明細書及び図面の記載からも明らかになるであろう。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide an excellent method for managing and inspecting the cultivation of agricultural products.
Other objects and novel features of the present invention will also be apparent from the description in the following specifications and drawings.

本発明の特許請求の範囲は、次の通りである。
(請求項1)
(1)農作物の圃場の上空において移動体を移動させ、当該移動体に搭載された可視光線カメラ或いは赤外線カメラにより撮影された画像及び(又は)複数の波長帯の電磁波を記録したマルチスペクトル画像の解析工程
(2)農作物から搾汁した搾汁液の硝酸イオン濃度測定工程
(3)前記(1)の工程から得られた画像に対する解析結果及び前記(2)工程から得られた硝酸イオン濃度測定結果に基づき農作物への追肥の必要性及び病害虫の有無等農作物の育成に必要な管理及び点検を施す工程
の各工程を実施して農作物の育成上の管理及び点検を実施することを特徴とする農作物の育成上の管理・点検方法。
(請求項2)
移動体が無人小型飛行体であることを特徴とする、請求項1に記載の農作物の育成上の管理・点検方法。
(請求項3)
搾汁液が、農作物の葉柄及び(又は)葉から搾汁した搾汁液であることを特徴とする、請求項1又は請求項2に記載の農作物の育成上の管理・点検方法。
(請求項4)
農作物が、やまといもであることを特徴とする、請求項1、請求項2又は請求項3に記載の農作物の育成上の管理・点検方法。
The scope of claims of the present invention is as follows.
(Claim 1)
(1) An image taken by a visible ray camera or an infrared camera mounted on the moving object by moving the moving object over a field of agricultural products, and / or a multispectral image in which electromagnetic waves of a plurality of wavelength bands are recorded. Analysis step (2) Nitrate ion concentration measurement step of the juice squeezed from agricultural products (3) Analysis result for the image obtained from the above step (1) and nitrate ion concentration measurement result obtained from the above step (2) Based on the above, the necessity of topdressing the crops and the presence or absence of pests, etc. The crops are characterized in that the crops are managed and inspected by carrying out each step of the process of performing the management and inspection necessary for the cultivation of the crops. Management and inspection method for training.
(Claim 2)
The management / inspection method for growing agricultural products according to claim 1, wherein the moving body is an unmanned small flying object.
(Claim 3)
The management / inspection method for growing crops according to claim 1 or 2, wherein the juice is a juice squeezed from the petioles and / or leaves of the crop.
(Claim 4)
The management / inspection method for growing crops according to claim 1, claim 2 or claim 3, wherein the crop is Yamatoimo.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。 A brief description of the effects obtained by representative of the inventions disclosed in the present application is as follows.

本発明では、請求項1に示すように、次の3つの行程を併行して実施して農作物の育成上の管理及び点検を行うことにより、農作物への追肥の必要性及び病害虫の有無等農作物の育成に必要な管理及び点検を優れて施すことができ、農作物の確かなる育成をなし得、施肥時期に遅れたりすることがなく、リアルタイムに施肥管理をすることができ、又、病害虫の被害を未然にリアルタイムに防止することができる。更に、無駄な施肥をしないので、COを削減し、地球温暖化の防止にも寄与できる
(1)農作物の圃場の上空において移動体を移動させ、当該移動体に搭載された可視光線カメラ或いは赤外線カメラにより撮影された画像及び(又は)複数の波長帯の電磁波を記録したマルチスペクトル画像の解析工程
(2)農作物から搾汁した搾汁液の硝酸イオン濃度測定工程
(3)前記(1)の工程から得られた画像に対する解析結果及び前記(2)工程から得られた硝酸イオン濃度測定結果に基づき農作物への追肥の必要性及び病害虫の有無等農作物の育成に必要な管理及び点検を施す工程
In the present invention, as shown in claim 1, by carrying out the following three steps in parallel to manage and inspect the cultivation of the crop, the necessity of topdressing the crop and the presence or absence of pests, etc. It is possible to perform excellent management and inspection necessary for the cultivation of crops, to achieve reliable cultivation of crops, to manage fertilizer application in real time without delaying the fertilizer application time, and to damage pests. Can be prevented in real time. Furthermore, since no unnecessary fertilizer is applied, CO 2 can be reduced and it can contribute to the prevention of global warming. (1) A visible light camera mounted on the moving body by moving the moving body over the field of agricultural products or Analysis step of the image taken by the infrared camera and / or the multispectral image recording the electromagnetic waves of multiple wavelength bands (2) Nitrate ion concentration measurement step of the juice squeezed from the agricultural product (3) The above (1) Based on the analysis results for the images obtained from the process and the nitrate ion concentration measurement results obtained from step (2) above, the process of performing management and inspection necessary for growing crops, such as the necessity of topdressing crops and the presence or absence of pests.

本発明では、請求項2に示すように、移動体として無人小型飛行体別称ドロ−ンを使用することにより、より一層効率的農作物の育成上の管理及び点検を行うことができる。 In the present invention, as shown in claim 2, by using an unmanned small flying object, also known as a drone, as a moving body, it is possible to perform management and inspection for growing agricultural products more efficiently.

本発明では、請求項3に示すように、搾汁液として、農作物の葉柄及び(又は)葉から搾汁した搾汁液であることが好ましく、適切な硝酸イオン濃度測定をなし得る。当該硝酸イオン濃度測定と前記(1)工程との組み合わせにより、より一層効率的農作物の育成上の管理及び点検を行うことができる。 In the present invention, as shown in claim 3, the juice is preferably a juice squeezed from the petioles and / or leaves of agricultural products, and an appropriate nitrate ion concentration measurement can be performed. By combining the nitrate ion concentration measurement with the step (1), more efficient management and inspection of crop cultivation can be performed.

本発明では、請求項4に示すように、特に、大和芋(やまといもの)の無人小型飛行体(別称ドロ−ン)による空撮の画像解析と大和芋からの搾汁液の硝酸イオン濃度測定とを併行して行い、それらの結果に応じて大和芋の適切な育成上の管理・点検を実施して、より一層健全な大和芋の育成を実施することができる。 In the present invention, as shown in claim 4, in particular, image analysis of aerial photography by an unmanned small flying object (also known as a drone) of Yamatoimono and measurement of nitrate ion concentration of the juice squeezed from Yamatoimo. In parallel with these, it is possible to carry out appropriate management and inspection of Yamato potatoes according to the results, and to carry out even more healthy Yamato potato cultivation.

本発明における農作物の好ましいものとしては、大和芋(やまといも)が挙げられるが、他に、例えば、次のものを例示できる。
園芸作物:野菜・果樹・花卉を包含する。
園芸作物はさらに細分化すると、野菜は、葉や茎を食べる葉菜類(キャベツ・アスパラガス等)・実を食べる果菜類(ナスやキュウリ等)・根や地下茎を食べる根菜類(大根・人参等):果樹は柑橘類を代表する常緑果樹と、桃や葡萄などの落葉果樹:花卉は、用途に応じて切り花・鉢花・苗物と分けられる。
普通作物(食用作物とも言う):水稲・陸稲・麦類・トウモロコシ・イモ類・豆類等。主に主食になる作物のこと。
緑肥作物:レンゲ・マリ−ゴ−ルド・ウマゴヤシなど栽培している植物を収穫せず、そのまま田畑にすきこみ植物と土を一緒にして耕し、後から栽培する作物の肥料にする植物のこと。
前記ヤマトイモは、とろろでおなじみの山芋で、長芋や大和芋、いちょういもといった「ヤマノイモ科」に属する芋類を総称して「山芋」「やまのいも」と呼んでいる。生のまま刻めばシャキシャキ、すりおろせば粘りのある食感を楽しめるほか、加熱すればホクホクに。さまざまな料理に使える野菜である。山芋は、生で食べられる世界でも珍しい芋。消化酵素のジアスタ−ゼ(アミラ−ゼ)を含んでおり、でんぷんの一部が分解されるので、胃にもたれないのが特徴である。ヤマトイモには、病気として例えばモザイク病があり、 葉に黄色のモザイク模様が現れ、原因はウイルスをアブラムシが媒介することにあるとされている。。 ヤマトイモの害虫には、幼虫が葉裏で葉を食害するヤマノイモコガがいる。
葉の表皮だけが残り、葉が透けたようになる。葉や茎に黒褐色の病斑ができ、その上に小黒点が多数生じる炭疽病も発生することがある。
Preferable crops in the present invention include Yamatoimo, and other examples include the following.
Horticultural crops: Includes vegetables, fruit trees and flowers.
When garden crops are further subdivided, vegetables include leafy vegetables that eat leaves and stems (cabbage, asparagus, etc.), fruit vegetables that eat fruits (egg, eggplant, cucumber, etc.), and root vegetables that eat roots and underground stems (radish, carrots, etc.). : Fruit trees are evergreen fruit trees that represent citrus fruits, and deciduous fruit trees such as peaches and vegetables: Flowers are divided into cut flowers, potted flowers, and seedlings according to their use.
Ordinary crops (also called edible crops): paddy rice, upland rice, wheat, corn, potatoes, beans, etc. A crop that is mainly a staple food.
Green manure crops: Plants that are not harvested, such as astragalus, mari-gold, and burr medic, but are cultivated together with the soil and the plants that are cultivated in the fields as they are, and are used as fertilizer for the crops that will be cultivated later.
The yam is a familiar yam, and the yams belonging to the "Yamanoimo family" such as Nagaimo, Yamatoimo, and Ichoimo are collectively called "Yamaimo" and "Yamanoimo". You can enjoy a crispy texture when chopped raw, and a sticky texture when grated, and when heated, it becomes fluffy. It is a vegetable that can be used in various dishes. Yam is a rare potato in the world that can be eaten raw. It contains the digestive enzyme diastase (amylase), and a part of starch is decomposed, so it is characterized by not leaning on the stomach. For example, mosaic disease is a disease of Yamatoimo, and a yellow mosaic pattern appears on the leaves, and the cause is said to be that the virus is transmitted by aphids. .. Among the pests of yam, there is yam, which is a larva that eats the leaves behind the leaves.
Only the epidermis of the leaf remains, and the leaf becomes transparent. Anthrax, which causes dark brown lesions on the leaves and stems and many small black spots on them, may also occur.

本発明における移動体としては、無人小型飛行体(別称ドロ−ン)が好ましい。有人ヘリコプタ−、飛行機などでもよい。、
本発明で用いられる移動体としてのドロ−ンの例を、図1、図2及び図3に示す。
図示のように、ドロ−ン1は、何対かの回転方向の異なるプロペラ2を有し、当該ドロ−ンを動かす例えばブラシレスモ−タのようなモ−タ3が使われている。ドロ−ン1は、脚(スキッド)4を備えていたり、備えていなかったりする。ドロ−ン1の本体部と当該脚(スキッド)4との間は、ア−ム5で連結されている。
ドロ−ン1には、赤外線カメラ6及び(又は)可視光線カメラ7が搭載されている。ドロ−ン1は、それ単体のみでは飛行不可能で、地上から操作を行う送信機(コントロ−ラ−)が必要となる。ドロ−ン1には、他に、障害物検知センサ− 、ジンバル(揺れや振動を少なくする装置)、LEDランプなどが装備される。
As the moving body in the present invention, an unmanned small flying body (also known as a drone) is preferable. It may be a manned helicopter, an airplane, or the like. ,
Examples of the drone as a moving body used in the present invention are shown in FIGS. 1, 2 and 3.
As shown in the figure, the drone 1 has several pairs of propellers 2 having different rotation directions, and a motor 3 such as a brushless motor that moves the drone is used. The drone 1 may or may not have a leg (skid) 4. The main body of the drone 1 and the leg (skid) 4 are connected by an arm 5.
An infrared camera 6 and / or a visible light camera 7 are mounted on the drone 1. The drone 1 cannot fly by itself, and requires a transmitter (controller) to operate from the ground. The drain 1 is also equipped with an obstacle detection sensor, a gimbal (a device that reduces shaking and vibration), an LED lamp, and the like.

本発明では、当該移動体特にドロ−ンを、農作物の圃場(試験区)の上空において移動させる。
当該農作物の圃場の上空において移動体を移動させ、当該移動体に搭載された可視光線カメラ或いは赤外線カメラにより、農作物を撮影し、当該撮影された画像を取得し、画像の解析を行う。
In the present invention, the moving body, particularly the drone, is moved over the field (test plot) of the crop.
A moving object is moved over the field of the agricultural product, the agricultural product is photographed by a visible light camera or an infrared camera mounted on the moving object, the photographed image is acquired, and the image is analyzed.

可視光線カメラによる画像は、可視画像である。太陽光の可視光線域の反射強度に応じて濃淡を付した画像で、反射の大きいところは明るく(白く)、小さいところは暗く(黒く)画像化される。一般の黒白写真とほぼ同じである。太陽高度によって見え方が異なるため,観測には注意が必要で、夜間は太陽が地球の裏側にあり,太陽光の反射がないため夜間の雲は可視画像には写らない。 The image taken by the visible light camera is a visible image. The image is shaded according to the reflection intensity of the visible light region of sunlight, and the image is bright (white) where the reflection is large and dark (black) where the reflection is small. It is almost the same as a general black-and-white photograph. Care must be taken when observing because the appearance differs depending on the solar altitude. At night, the sun is on the other side of the earth and there is no reflection of sunlight, so clouds at night are not visible in the visible image.

赤外線カメラ(近赤外線カメラ、遠赤外線カメラ)による画像は、赤外画像である。
赤外線は電磁波の一種で、人間がみることのできない光で、可視光より長い波長で、物体に最も吸収され易い。赤外線を含む光を圃場の上空から農作物に当てると、農作物の違いにより、光の反射や吸収する特徴の違いが画像として撮影される。赤外線カメラは温度を感知するので,夜など光源がなくても、撮影可能である。前記可視光線カメラと赤外線カメラとは、同時にドロ−ンに搭載されることがある。
The image taken by the infrared camera (near infrared camera, far infrared camera) is an infrared image.
Infrared rays are a type of electromagnetic waves that humans cannot see, and have wavelengths longer than visible light and are most easily absorbed by objects. When light containing infrared rays is applied to a crop from the sky above the field, the difference in the characteristics of light reflection and absorption is taken as an image due to the difference in the crop. Since the infrared camera senses the temperature, it is possible to take pictures even at night without a light source. The visible light camera and the infrared camera may be mounted on the drone at the same time.

本発明では、複数の波長帯の電磁波を記録したマルチスペクトル画像の解析も実施する。マルチスペクトル画像とは複数の波長帯の電磁波を記録した画像で、
当該マルチスペクトル画像には、人の目で見える可視光線の波長帯の電磁波だけでなく、紫外線や赤外線、遠赤外線などが該当するところの人の目で見えない不可視光線の波長帯の電磁波も記録される。
当該マルチスペクトル画像は、農作物のスペクトル反射特性を把握するために必要なデ−タで、当該マルチスペクトル画像単独で、又は、前記可視画像或いは(及び)赤外画像と組み合わせて解析を行うとよい。マルチスペクトル画像の活用には、例えば、正規化植生指数(NDVI)が用いられる。正規化植生指数(NDVI)は、農作物の植生の有無・活性度を表す標準化された指標を示し、農作物のスペクトル反射特性を生かすことができる。
The present invention also analyzes a multispectral image in which electromagnetic waves of a plurality of wavelength bands are recorded. A multispectral image is an image that records electromagnetic waves in multiple wavelength bands.
The multispectral image records not only electromagnetic waves in the wavelength band of visible light that can be seen by the human eye, but also electromagnetic waves in the wavelength band of invisible light that cannot be seen by the human eye, such as ultraviolet rays, infrared rays, and far infrared rays. Will be done.
The multispectral image is data necessary for grasping the spectral reflection characteristics of agricultural products, and it is preferable to analyze the multispectral image alone or in combination with the visible image or (and) infrared image. .. For the utilization of multispectral images, for example, the Normalized Difference Vegetation Index (NDVI) is used. The Normalized Difference Vegetation Index (NDVI) indicates a standardized index showing the presence / absence and activity of vegetation in a crop, and can make use of the spectral reflection characteristics of the crop.

本発明では、農作物の圃場の上空において移動体を移動させ、当該移動体に搭載された可視光線カメラ或いは赤外線カメラにより撮影された画像及び(又は)複数の波長帯の電磁波を記録したマルチスペクトル画像の解析に加えて、(2)の農作物から搾汁した搾汁液の硝酸イオン濃度測定を行う。
搾汁液としては、農作物から搾汁した搾汁液であればよいが、農作物の葉柄及び(又は)葉から搾汁した搾汁液であることが好ましく、磨砕法で作物の葉柄(葉体)を切断後に汁液を採取して硝酸イオン濃度測定を行う方法もあるが、搾汁液法で作物の葉柄(葉体)を切断後に、擂鉢で磨砕後に、汁液を採取する方法が、特に、大和芋(やまといもの)の栽培には適している。
当該硝酸イオン濃度測定には、硝酸イオン計を用いることができる。
葉柄及び(又は)葉の採取位置は、農作物の圃場の上空において移動する移動体の無人小型飛行体(ドロ−ン)からの太陽光の反射を測定するので、当該圃場において農作物が最大源に太陽光の光線を受ける部位を採取するのがよい。
その大きさは、縦、横が各々50〜80mmの部位がよく、又、成熟した葉色の部位を選定するのがよい。
In the present invention, a moving body is moved over a field of agricultural products, and an image taken by a visible light camera or an infrared camera mounted on the moving body and / or a multispectral image in which electromagnetic waves of a plurality of wavelength bands are recorded. In addition to the analysis of (2), the nitrate ion concentration of the juice squeezed from the agricultural product of (2) is measured.
The squeezed liquid may be a squeezed liquid squeezed from a crop, but is preferably a squeezed liquid squeezed from the petioles and / or leaves of the crop, and the petioles (leaf bodies) of the crop are cut by a grinding method. There is also a method of collecting the juice and measuring the nitrate ion concentration later, but the method of collecting the juice after cutting the petioles (leaf bodies) of the crop by the juice method and then grinding it in a mortar is especially Yamato potato (Yamato potato). It is suitable for cultivation of Yamatoimono).
A nitrate ion meter can be used for the nitrate ion concentration measurement.
The peduncle and / or leaf collection position measures the reflection of sunlight from a moving unmanned small flying object (drone) that moves over the field of the crop, so the crop is the largest source in the field. It is better to collect the part that receives the sunlight.
The size is preferably 50 to 80 mm in length and width, and it is preferable to select a mature leaf-colored part.

以下に実施例を挙げ本発明のより詳細な理解に供する。当然のことながら本発明は以下の実施例のみに限定されるものではない。 Examples are given below to provide a more detailed understanding of the present invention. As a matter of course, the present invention is not limited to the following examples.

赤外線カメラ及び可視光線カメラを搭載した無人小型飛行体(別称ドロ−ン)を、「ヤマノイモ科」に属する芋類に属するやまといもを栽培している圃場(試験区)「千葉県佐倉市萩山新田」上空を飛行(移動)させ、赤外画像を、4回取得し、解析を行った。
第1回目空撮の赤外画像を参考写真1に、第2回目空撮の赤外画像を参考写真2に、第3回目空撮の赤外画像を参考写真3に、又、第4回目空撮の赤外画像を参考写真4に各々示す。
赤外画像におけるパラメ−タは、それぞれ放射率0.94、反射温度−35℃である。赤外画像を取得した位置は、GPSによる。赤外画像は、AIによる画像解析がなされている。
又、上記と同様にして、可視光線カメラにより撮影された可視画像を得た。
可視画像を、8回取得し、解析を行った。
第1回目空撮の可視画像を参考写真5に、第2回目空撮の可視画像を参考写真6に、第3回目空撮の可視画像を参考写真7に、第4回目空撮の可視画像を参考写真8に、第5回目空撮の可視画像を参考写真9に、第6回目空撮の可視画像を参考写真10に、第7回目空撮の可視画像を参考写真11に、又第8回目空撮の可視画像を参考写真12に各々示す。
A field (test area) where Yamatoimo, which belongs to the potatoes belonging to the "Yamanoimo family", is cultivated on an unmanned small flying object (also known as a drone) equipped with an infrared camera and a visible light camera. We flew (moved) over "Ta", acquired infrared images four times, and analyzed them.
The infrared image of the 1st aerial photography is used as the reference photo 1, the infrared image of the 2nd aerial photography is used as the reference photo 2, the infrared image of the 3rd aerial photography is used as the reference photo 3, and the 4th time. Infrared images of aerial photography are shown in Reference Photo 4.
The parameters in the infrared image are emissivity 0.94 and reflection temperature −35 ° C., respectively. The position where the infrared image was acquired is determined by GPS. The infrared image is image-analyzed by AI.
Further, in the same manner as described above, a visible image taken by a visible light camera was obtained.
Visible images were acquired 8 times and analyzed.
The visible image of the 1st aerial photography is used as the reference photo 5, the visible image of the 2nd aerial photography is used as the reference photo 6, the visible image of the 3rd aerial photography is used as the reference photo 7, and the visible image of the 4th aerial photography is used as the reference photo 7. In Reference Photo 8, the visible image of the 5th aerial photography is in Reference Photo 9, the visible image of the 6th aerial photography is in Reference Photo 10, and the visible image of the 7th aerial photography is in Reference Photo 11. The visible images of the 8th aerial photography are shown in Reference Photo 12, respectively.

硝酸イオン濃度測定;
やまといもの葉を採取した。採取部位は、圃場(試験区)にて最大源に太陽光の光線を受ける部位であって、縦、横が各々50〜80mmの大きさの成熟した葉色を示す部位を採取した。やまといもの葉の下部の葉柄も同時に採取した。
上記採取したやまといもの葉及び葉柄を切断後に、擂鉢で磨砕後に、汁液を採取し、汁液を蒸留水で希釈した搾汁液について、農作物の残留硝酸イオンの測定用セット堀場製作所LAQUAtwin−NO−11C 作物体用セット 硝酸イオンメ−タHORIBAを使用して簡易測定値を算出した。
測定経数は、葉及び葉柄についてそれぞれ1回目から6回目まで実施した。
硝酸イオン濃度測定による簡易測定値が,基準値よりも高いと追肥を控え、基準値内では通常の施肥管理となし、又、基準値よりも低いとリアルタイムに追肥を実施するようにする。
表1に硝酸イオン濃度測定結果を示す。

Nitrate ion concentration measurement;
The leaves of Yamatoimono were collected. The collection site was a site that receives sunlight from the maximum source in the field (test plot), and a site showing a mature leaf color with a size of 50 to 80 mm in length and width was collected. The petioles at the bottom of the leaves of Yamatoimono were also collected at the same time.
After cutting the leaves and stalks of the collected Yamatoimono, after grinding in a mortar, the juice is collected, and the juice diluted with distilled water is used as a set for measuring residual nitrate ions of agricultural products. HORIBA, Ltd. LAQUAtwin-NO 3 -11C Crop body set Nitrate ion meter HORIBA was used to calculate simple measurements.
The number of measurements was carried out from the first to the sixth for the leaves and petioles, respectively.
If the simple measurement value by nitrate ion concentration measurement is higher than the standard value, top dressing should be refrained from, and if it is lower than the standard value, normal fertilizer application management should be performed, and if it is lower than the standard value, top dressing should be performed in real time.
Table 1 shows the nitrate ion concentration measurement results.

Figure 2021073925
Figure 2021073925















前記表1における葉の硝酸イオン濃度測定結果を折れ線グラフにて表示した。その硝酸イオン濃度測定結果の折れ線グラフを表2に示す。

























The results of measuring the nitrate ion concentration of the leaves in Table 1 are displayed as a line graph. Table 2 shows a line graph of the nitrate ion concentration measurement results.

























Figure 2021073925
Figure 2021073925















前記表1における葉柄の硝酸イオン濃度測定結果を折れ線グラフにて表示した。その硝酸イオン濃度測定結果の折れ線グラフを表3に示す。

























The nitrate ion concentration measurement results of the petioles in Table 1 are displayed as a line graph. Table 3 shows a line graph of the nitrate ion concentration measurement results.

























Figure 2021073925
Figure 2021073925














試験結果:
赤外画像解析からは、テストを実施した圃場(試験区)では、次第に葉の色に変化していくのが判り、順調に「ヤマノイモ科」に属する芋類が生育していくのが判る。病原虫による病害はなかった。
可視画像解析からは、テストを実施した圃場(試験区)では、順調に「ヤマノイモ科」に属する芋類が生育していくのが判る。
一方、硝酸イオン濃度測定結果からは、テストを実施した圃場(試験区)に付いては、1回目、2回目に葉に蓄えられた養分が3回目、4回目、5回目及び6回目に掛けて順次地下の芋に移行して肥大させたことが判る。
これから見て、1回目位の時期に、追肥の量及び病虫害の有無の確認が重要であることが判る。
上記から、農作物の育成上の管理・点検に際し、特に、大和芋(やまといもの)の無人小型飛行体(別称ドロ−ン)による空撮の画像解析からは、追肥の量の確認の確実性が不十分となりやすく、大和芋からの搾汁液の硝酸イオン濃度測定とを併行して行い、それらの結果に応じて大和芋の適切な育成上の管理・点検を実施するのが好ましいことが判る。
Test results:
From infrared image analysis, it can be seen that the color of the leaves gradually changes in the field (test plot) where the test was conducted, and that the potatoes belonging to the "Yamanoimo family" grow steadily. There was no disease caused by pathogens.
From the visible image analysis, it can be seen that the potatoes belonging to the "Yamanidae" grow steadily in the field (test plot) where the test was conducted.
On the other hand, from the nitrate ion concentration measurement results, in the field (test plot) where the test was conducted, the nutrients stored in the leaves in the first and second times were applied to the third, fourth, fifth and sixth times. It can be seen that the potatoes were gradually moved to the underground and enlarged.
From this, it can be seen that it is important to confirm the amount of top dressing and the presence or absence of pests at the first time.
From the above, when managing and inspecting the cultivation of agricultural products, the certainty of confirming the amount of topdressing, especially from the image analysis of aerial photography by an unmanned small flying object (also known as drone) of Yamatoimono. It is found that it is preferable to measure the nitrate ion concentration of the juice squeezed from Yamato potatoes in parallel, and to carry out appropriate cultivation management and inspection of Yamato potatoes according to the results. ..

本発明は上記実施例に限定されず、適宜変更が可能である。 The present invention is not limited to the above examples, and can be appropriately modified.

本発明の農作物の育成上の管理・点検方法は、3D変換赤外線サ−モグラフィ−による処理画像にも適用できる。 The management / inspection method for growing agricultural products of the present invention can also be applied to processed images by 3D conversion infrared thermography.

本発明の実施例のドロ−ンの外観概略側面図である。It is a schematic side view of the appearance of the drone of the Example of this invention. 本発明の他の実施例を示すドロ−ンの外観概略側面図である。It is a schematic side view of the appearance of the drain which shows the other embodiment of this invention. 本発他の更に他の実施例を示すドロ−ンの外観概略側面図である。It is a schematic side view of the appearance of the drone which shows still another Example of this origin.

1…ドロ−ン
2…プロペラ
3…モ−タ−
4…脚(スキッド)
5…ア−ム
6…赤外線カメラ
7…可視光線カメラ
1 ... Drone 2 ... Propeller 3 ... Motor
4 ... Legs (skid)
5 ... Arm 6 ... Infrared camera 7 ... Visible light camera

Claims (4)

(1)農作物の圃場の上空において移動体を移動させ、当該移動体に搭載された可視光線カメラ或いは赤外線カメラにより撮影された画像及び(又は)複数の波長帯の電磁波を記録したマルチスペクトル画像の解析工程
(2)農作物から搾汁した搾汁液の硝酸イオン濃度測定工程
(3)前記(1)の工程から得られた画像に対する解析結果及び前記(2)工程から得られた硝酸イオン濃度測定結果に基づき農作物への追肥の必要性及び病害虫の有無等農作物の育成に必要な管理及び点検を施す工程
の各工程を実施して農作物の育成上の管理及び点検を実施することを特徴とする農作物の育成上の管理・点検方法。
(1) An image taken by a visible ray camera or an infrared camera mounted on the moving object by moving the moving object over a field of agricultural products, and / or a multispectral image in which electromagnetic waves of a plurality of wavelength bands are recorded. Analysis step (2) Nitrate ion concentration measurement step of the juice squeezed from agricultural products (3) Analysis result for the image obtained from the above step (1) and nitrate ion concentration measurement result obtained from the above step (2) Based on the above, the necessity of topdressing the crops and the presence or absence of pests, etc. The crops are characterized in that the crops are managed and inspected by carrying out each step of the process of performing the management and inspection necessary for the cultivation of the crops. Management and inspection method for training.
移動体が、無人小型飛行体であることを特徴とする、請求項1に記載の農作物の育成上の管理・点検方法。 The management / inspection method for growing agricultural products according to claim 1, wherein the moving body is an unmanned small flying body. 搾汁液が、農作物の葉柄及び(又は)葉から搾汁した搾汁液であることを特徴とする、請求項1又は請求項2に記載の農作物の育成上の管理・点検方法。 The management / inspection method for growing crops according to claim 1 or 2, wherein the juice is a juice squeezed from the petioles and / or leaves of the crop. 農作物が、やまといもであることを特徴とする、請求項1、請求項2又は請求項3に記載の農作物の育成上の管理・点検方法。 The management / inspection method for growing crops according to claim 1, claim 2 or claim 3, wherein the crop is Yamatoimo.
JP2019203969A 2019-11-11 2019-11-11 Management and checking method on growth of field crop Pending JP2021073925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203969A JP2021073925A (en) 2019-11-11 2019-11-11 Management and checking method on growth of field crop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203969A JP2021073925A (en) 2019-11-11 2019-11-11 Management and checking method on growth of field crop

Publications (1)

Publication Number Publication Date
JP2021073925A true JP2021073925A (en) 2021-05-20

Family

ID=75897628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203969A Pending JP2021073925A (en) 2019-11-11 2019-11-11 Management and checking method on growth of field crop

Country Status (1)

Country Link
JP (1) JP2021073925A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233188A (en) * 2003-01-30 2004-08-19 Agriculture Forestry & Fisheries Technical Information Society Method for extracting and measuring component in plant and member used in the method
JP4621874B1 (en) * 2010-03-23 2011-01-26 広島県 Method and apparatus for avoiding plant photooxidation damage
JP2011027600A (en) * 2009-07-27 2011-02-10 Satake Corp Method for creating calibration curve in remote sensing
JP5394080B2 (en) * 2009-01-23 2014-01-22 正典 榊原 Fertilizer management controller using soil EC sensor in conjunction with irrigation controller.
JP2017003526A (en) * 2015-06-15 2017-01-05 マクタアメニティ株式会社 Crop assessment system
US20170032258A1 (en) * 2015-07-30 2017-02-02 Ecoation Innovative Solutions Inc. Systems and methods for crop health monitoring, assessment and prediction
JP2018169993A (en) * 2017-03-29 2018-11-01 西日本電信電話株式会社 Result prediction device, result prediction method, and program
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233188A (en) * 2003-01-30 2004-08-19 Agriculture Forestry & Fisheries Technical Information Society Method for extracting and measuring component in plant and member used in the method
JP5394080B2 (en) * 2009-01-23 2014-01-22 正典 榊原 Fertilizer management controller using soil EC sensor in conjunction with irrigation controller.
JP2011027600A (en) * 2009-07-27 2011-02-10 Satake Corp Method for creating calibration curve in remote sensing
JP4621874B1 (en) * 2010-03-23 2011-01-26 広島県 Method and apparatus for avoiding plant photooxidation damage
JP2017003526A (en) * 2015-06-15 2017-01-05 マクタアメニティ株式会社 Crop assessment system
US20170032258A1 (en) * 2015-07-30 2017-02-02 Ecoation Innovative Solutions Inc. Systems and methods for crop health monitoring, assessment and prediction
JP2018169993A (en) * 2017-03-29 2018-11-01 西日本電信電話株式会社 Result prediction device, result prediction method, and program
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device

Similar Documents

Publication Publication Date Title
Campillo et al. Solar radiation effect on crop production
Krüger et al. Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality
Usha et al. Potential applications of remote sensing in horticulture—A review
Tennakoon et al. Estimation of cropped area and grain yield of rice using remote sensing data
JP6953474B2 (en) Precision agriculture support system and precision agriculture support method
Faci et al. Fruit yield and quality response of a late season peach orchard to different irrigation regimes in a semi-arid environment
Basinger et al. Phenology affects differentiation of crop and weed species using hyperspectral remote sensing
Jones et al. Remote sensing and other imaging technologies to monitor grapevine performance
Elshikha et al. Estimation of direct-seeded guayule cover, crop coefficient, and yield using UAS-based multispectral and RGB data
Pinto et al. Correlations between spectral and biophysical data obtained in canola canopy cultivated in the subtropical region of Brazil
Goodwin et al. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear
TEZCAN et al. Effects of Shade Nets on the Microclimate and Growth of the Tomato
JP2021073925A (en) Management and checking method on growth of field crop
CN109452072A (en) A kind of implantation methods of organic green-tea
Shah First report on Buckwheat (Fagopyrum esculentum) from high altitude temperate zone of north western Himalayan region
Diel et al. Yield and quality performance of Italian and American strawberry genotypes in Brazil
Basinger et al. Detection of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) with in situ hyperspectral remote sensing. I. Effects of weed density and soybean presence
Ghazali et al. Spectral analysis for phenological studies of leaves and fruits development in coffee plantation in Gunung Puntang: a preliminary result
Rahman et al. Phenology and Yield of Strawberry as Influenced by Planting Time and Genotypes in a Sub Tropical Region: Phenology and Yield of Strawberry
Mihaylov et al. Study of the specifics of the spectral reflections of different varieties of cereals harvest 2021, obtained from the visible and near infrared (NIR) frequency range
Santin et al. Chlorophyll content in plants and fruit yield of strawberry plants grown on mulching.
Hellwig et al. Hedge and central pruning in a high-density pecan orchard in southern Brazil.
Enciso et al. Evaluating the Use of True Color Unmanned Aerial System images for Irrigation Scheduling in Citrus
Verga et al. Fig Rust in Hawai ‘i
Dingilian Multispectral Imaging For Weed Discrimination: A Case Study From Riverside, California

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240305