JP2021072355A - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
JP2021072355A
JP2021072355A JP2019197774A JP2019197774A JP2021072355A JP 2021072355 A JP2021072355 A JP 2021072355A JP 2019197774 A JP2019197774 A JP 2019197774A JP 2019197774 A JP2019197774 A JP 2019197774A JP 2021072355 A JP2021072355 A JP 2021072355A
Authority
JP
Japan
Prior art keywords
light
solid
pixel region
region
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019197774A
Other languages
Japanese (ja)
Inventor
聡 熊木
Satoshi Kumaki
聡 熊木
和樹 大下内
Kazuki Oshitauchi
和樹 大下内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019197774A priority Critical patent/JP2021072355A/en
Publication of JP2021072355A publication Critical patent/JP2021072355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

To provide a solid-state imaging element capable of high-precision black level correction by reducing a difference in the amount of dark current between an effective pixel area and an OB pixel area without a significant increase in the number of processes.SOLUTION: The solid-state imaging element has an effective pixel area in which a plurality of effective pixels with a photoelectric conversion unit and a light-collecting member that collects incident light onto the photoelectric conversion unit provided on a semiconductor substrate are arranged and an optical black pixel area in which a plurality of light-blocking pixels with a light-blocking photoelectric conversion unit and the light-collecting member are arranged. The light-collecting member has a higher hydrogen concentration than an insulating layer around the light-collecting member. The volume of at least one light-collecting member in the optical black pixel area is larger than the volume of the light-collecting member in the effective pixel area.SELECTED DRAWING: Figure 2

Description

本発明は、固体撮像素子に関するものである。 The present invention relates to a solid-state image sensor.

固体撮像素子には、遮光層を有する遮光画素が配置されたオプティカルブラック画素領域(OB画素領域)が設けられており、このOB画素領域の出力信号を用いて有効画素領域における暗電流による黒レベルの変動を補正する黒レベル補正が一般的に行われている。 The solid-state image sensor is provided with an optical black pixel region (OB pixel region) in which light-shielding pixels having a light-shielding layer are arranged, and the black level due to dark current in the effective pixel region is used by using the output signal of the OB pixel region. Black level correction is generally performed to correct the fluctuation of.

しかしながら、製造プロセス内のシンター処理における、層間絶縁膜から基板への水素供給量が有効画素領域とOB画素領域で異なり、その結果、有効画素領域とOB画素領域で暗電流量が異なることがある。そのため、OB画素領域の出力信号を用いて有効画素領域の黒レベルを正しく補正できないことが想定される。 However, in the sinker processing in the manufacturing process, the amount of hydrogen supplied from the interlayer insulating film to the substrate may differ between the effective pixel region and the OB pixel region, and as a result, the amount of dark current may differ between the effective pixel region and the OB pixel region. .. Therefore, it is assumed that the black level in the effective pixel region cannot be correctly corrected by using the output signal in the OB pixel region.

このような問題の解決方法として、水素濃度の高い層間絶縁膜をOB画素領域にのみ形成することで、熱処理(シンター処理)を行う工程の前における層間絶縁膜の水素濃度が、有効画素領域に比べOB画素領域の方が高くなる構造が提案されている(特許文献1)。 As a solution to such a problem, by forming an interlayer insulating film having a high hydrogen concentration only in the OB pixel region, the hydrogen concentration of the interlayer insulating film before the step of performing heat treatment (sinter treatment) is in the effective pixel region. A structure has been proposed in which the OB pixel region is higher than the OB pixel region (Patent Document 1).

特開2016−18859号Japanese Unexamined Patent Publication No. 2016-18859

しかしながら、OB画素領域において水素濃度の高い層間絶縁膜を追加する、もしくは相関絶縁膜の厚さを変えるためには、層間絶縁膜の作製プロセスを有効画素領域とOB画素領域で異ならせる必要がある。そのため、マスクパターンの形成・エッチング・マスクパターン除去などのプロセス数の増加が必要になる。 However, in order to add an interlayer insulating film having a high hydrogen concentration in the OB pixel region or change the thickness of the correlated insulating film, it is necessary to make the manufacturing process of the interlayer insulating film different between the effective pixel region and the OB pixel region. .. Therefore, it is necessary to increase the number of processes such as mask pattern formation, etching, and mask pattern removal.

そこで、本発明は、プロセス数の大幅な増加なく、有効画素領域とOB画素領域の暗電流量の差を低減させ、精度の高い黒レベル補正が可能な固体撮像素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a solid-state image sensor capable of reducing the difference in the amount of dark current between the effective pixel region and the OB pixel region and capable of highly accurate black level correction without significantly increasing the number of processes. To do.

本発明は、上記課題を解決するためになされたものであり、各々が光電変換部と入射光を前記光電変換部に集光する集光部材とを有する有効画素が複数配置された有効画素領域と、各々が前記光電変換部および前記集光部材と遮光層とを有する遮光画素が複数配置された遮光画素領域とを備えた固体撮像素子において、前記有効画素の集光部材の体積よりも前記遮光画素の集光部材の体積の方が大きいことを特徴とする。 The present invention has been made to solve the above problems, and is an effective pixel region in which a plurality of effective pixels each having a photoelectric conversion unit and a condensing member for condensing incident light on the photoelectric conversion unit are arranged. In a solid-state image sensor having a light-shielding pixel region in which a plurality of light-shielding pixels each having the photoelectric conversion unit, the light-collecting member, and a light-shielding layer are arranged, the volume of the light-collecting member of the effective pixel is larger than that of the light-collecting member. It is characterized in that the volume of the light collecting member of the light-shielding pixel is larger.

本発明によれば、プロセス数の大幅な増加なく、有効画素領域とOB画素領域の暗電流量の差を低減させ、精度の高い黒レベル補正が可能になる。 According to the present invention, the difference in the amount of dark current between the effective pixel region and the OB pixel region can be reduced without a significant increase in the number of processes, and highly accurate black level correction becomes possible.

本発明の実施例1に係る固体撮像素子の平面図。The plan view of the solid-state image pickup device which concerns on Example 1 of this invention. 本発明の実施例2に係る固体撮像素子の断面図及び平面図。A cross-sectional view and a plan view of the solid-state image sensor according to the second embodiment of the present invention. 本発明の実施例2に係る固体撮像素子の断面図及び平面図。A cross-sectional view and a plan view of the solid-state image sensor according to the second embodiment of the present invention. 本発明の実施例3に係る固体撮像素子の断面図及び平面図。A cross-sectional view and a plan view of the solid-state image sensor according to the third embodiment of the present invention. 本発明の実施例4に係る固体撮像素子の平面図。The plan view of the solid-state image pickup device which concerns on Example 4 of this invention. 本発明の実施例4に係る固体撮像素子の断面図及び平面図。A cross-sectional view and a plan view of the solid-state image sensor according to the fourth embodiment of the present invention.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。しかしながら、以下の実施形態に記載されている構成はあくまで例示に過ぎず、本発明の範囲は実施形態に記載されている構成によって限定されることはない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the configurations described in the following embodiments are merely examples, and the scope of the present invention is not limited by the configurations described in the embodiments.

(実施例1)
図1及び図2を参照して、本発明の実施例1における固体撮像素子について説明する。本実施例は、有効画素領域、OB画素領域(遮光画素領域)、緩衝領域において、集光部材としての導波路の体積を異ならせることにより、有効画素領域とOB画素領域の暗電流量の差を低減させるものである。
(Example 1)
The solid-state image sensor according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, the difference in the amount of dark current between the effective pixel region and the OB pixel region is obtained by making the volume of the waveguide as the condensing member different in the effective pixel region, the OB pixel region (light-shielding pixel region), and the buffer region. Is to reduce.

図1は、本発明の実施例1に係る固体撮像素子の平面図である。図1に示すように、本実施例における固体撮像素子は、有効画素領域100と、その外周に配置されるOB画素領域101を有する。さらに、OB画素領域101の外周には、緩衝領域102と周辺回路領域103が配置される。 FIG. 1 is a plan view of the solid-state image sensor according to the first embodiment of the present invention. As shown in FIG. 1, the solid-state image sensor in this embodiment has an effective pixel region 100 and an OB pixel region 101 arranged on the outer periphery thereof. Further, a buffer region 102 and a peripheral circuit region 103 are arranged on the outer periphery of the OB pixel region 101.

有効画素領域100は、入射光の光電変換を行う複数の有効画素がマトリクス状に複数配置され、当該画素の出力信号は画像の生成に用いられる。OB画素領域101は、詳細は後述するが、前記有効画素に遮光層が追加された構造をした複数の遮光画素が複数配置されている。当該画素の出力信号は、図示しない補正ブロックによって有効画素信号の出力信号の黒レベル補正に用いられる。 In the effective pixel region 100, a plurality of effective pixels that perform photoelectric conversion of incident light are arranged in a matrix, and the output signal of the pixels is used for image generation. Although details will be described later, the OB pixel region 101 is provided with a plurality of light-shielding pixels having a structure in which a light-shielding layer is added to the effective pixels. The output signal of the pixel is used for black level correction of the output signal of the effective pixel signal by a correction block (not shown).

黒レベル補正では、有効画素の出力信号から遮光された遮光画素の出力信号を減算することにより、有効画素で発生する暗電流による入射光量に依存しない出力信号における黒レベルのズレを予め決められた基準レベルに合わせる処理が行われる。 In the black level correction, the black level shift in the output signal that does not depend on the amount of incident light due to the dark current generated in the effective pixel is predetermined by subtracting the output signal of the shaded pixel from the output signal of the effective pixel. Processing to match the reference level is performed.

緩衝領域102は、OB画素領域101の外側の領域である。緩衝領域102には、画素が配置されない周辺回路領域103との境界において構造が大幅に変化することによって前記遮光画素の製造精度が悪化することを緩和するために、ダミー画素が複数配置される。本実施例では、緩衝領域に周期的に配置される構成要素をダミー画素とする。当該構成要素については別図を参照して後述する。 The buffer region 102 is an region outside the OB pixel region 101. A plurality of dummy pixels are arranged in the buffer region 102 in order to alleviate the deterioration of the manufacturing accuracy of the light-shielding pixels due to a significant change in the structure at the boundary with the peripheral circuit region 103 in which the pixels are not arranged. In this embodiment, the components periodically arranged in the buffer region are dummy pixels. The components will be described later with reference to the attached figure.

周辺回路領域103は、有効画素や遮光画素を駆動する駆動信号の生成回路や、有効画素や遮光画素の出力をAD変換するAD変換回路、AD変換された信号を出力する出力回路が配置される。 In the peripheral circuit area 103, a drive signal generation circuit for driving effective pixels and light-shielding pixels, an AD conversion circuit for AD-converting the output of effective pixels and light-shielding pixels, and an output circuit for outputting AD-converted signals are arranged. ..

続いて図2を参照して実施例1に係る固体撮像素子の断面構造について説明する。図2は、本発明の実施例1に係る固体撮像素子の断面図及び平面図である。 Subsequently, the cross-sectional structure of the solid-state image sensor according to the first embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view and a plan view of the solid-state image sensor according to the first embodiment of the present invention.

図2(a)は、図1の破線A−A‘における断面構造を示しており、図2(b)は、各領域における光の入射方向から見た導波路の形状を示す平面図である。図2(a)では、有効画素領域100、OB画素領域101、緩衝領域102にそれぞれ配置される有効画素、遮光画素、ダミー画素を模式的に1画素ずつ抜粋して示している。なお、有効画素、遮光画素、ダミー画素はそれぞれ複数存在する。 FIG. 2A shows a cross-sectional structure in the broken line AA'of FIG. 1, and FIG. 2B is a plan view showing the shape of the waveguide as seen from the incident direction of light in each region. .. In FIG. 2A, effective pixels, light-shielding pixels, and dummy pixels arranged in the effective pixel area 100, the OB pixel area 101, and the buffer area 102 are shown schematically one by one. It should be noted that there are a plurality of effective pixels, light-shielding pixels, and dummy pixels.

図2に示すように、有効画素領域100、OB画素領域101、緩衝領域102では断面構造が異なる。有効画素領域100の有効画素は、半導体基板200に形成された光電変換部であるフォトダイオード201、配線202、絶縁層203、カラーフィルタ205、マイクロレンズ206、有効画素用導波路207を有する。また、OB画素領域101の遮光画素は、有効画素領域100の有効画素に対し、遮光層204が追加されている点と、導波路が遮光画素用導波路208に変更されている点が異なる。緩衝領域102のダミー画素は、フォトダイオード201及び配線202を有しない点と、導波路がダミー画素用導波路209に変更されている点が、遮光画素と異なる。 As shown in FIG. 2, the cross-sectional structures of the effective pixel region 100, the OB pixel region 101, and the buffer region 102 are different. The effective pixel of the effective pixel region 100 includes a photodiode 201, a wiring 202, an insulating layer 203, a color filter 205, a microlens 206, and a waveguide 207 for effective pixels, which are photoelectric conversion units formed on the semiconductor substrate 200. Further, the light-shielding pixels in the OB pixel area 101 are different in that the light-shielding layer 204 is added to the effective pixels in the effective pixel area 100 and that the waveguide is changed to the light-shielding pixel waveguide 208. The dummy pixel of the buffer region 102 is different from the light-shielding pixel in that it does not have the photodiode 201 and the wiring 202 and that the waveguide is changed to the dummy pixel waveguide 209.

フォトダイオード201は、入射光を光電変換する光電変換部である。フォトダイオード201で発生し蓄積された電荷は、不図示の転送トランジスタにより、不図示のフローティングディフュージョンに転送され、電圧信号として読み出される。配線202は、半導体基板200や、不図示のトランジスタとの電気的接続に用いられる。絶縁層203は、配線202や不図示のトランジスタの端子を絶縁する。絶縁層203には、例えばシリコン酸化膜が用いられる。 The photodiode 201 is a photoelectric conversion unit that photoelectrically converts incident light. The electric charge generated and accumulated in the photodiode 201 is transferred to a floating diffusion (not shown) by a transfer transistor (not shown) and read out as a voltage signal. The wiring 202 is used for electrical connection with the semiconductor substrate 200 and a transistor (not shown). The insulating layer 203 insulates the terminals of the wiring 202 and the transistor (not shown). For the insulating layer 203, for example, a silicon oxide film is used.

遮光層204は、OB画素領域101のフォトダイオード201に光が入射することを防ぐ。カラーフィルタ205は、有効画素領域100では例えばベイヤ配列に従い配置され、R,G,Bに対応する透過波長特性をもつ光学フィルタである。OB画素領域101及び緩衝領域102に配置されるカラーフィルタ205は、有効画素領域100への漏れ込みを防ぐために、例えば、半導体基板200内で吸収されやすいBに対応するフィルタや、広波長範囲で透過率の低いブラックのフィルタが用いられる。 The light-shielding layer 204 prevents light from entering the photodiode 201 in the OB pixel region 101. The color filter 205 is an optical filter that is arranged according to, for example, a Bayer array in the effective pixel region 100 and has transmission wavelength characteristics corresponding to R, G, and B. The color filter 205 arranged in the OB pixel region 101 and the buffer region 102 is, for example, a filter corresponding to B that is easily absorbed in the semiconductor substrate 200 or a wide wavelength range in order to prevent leakage to the effective pixel region 100. A black filter with low transmittance is used.

マイクロレンズ206は、入射光を有効画素用導波路207に集光することで、フォトダイオード201の受光感度を向上させる。有効画素用導波路207は、マイクロレンズ206により集光された光をフォトダイオード201に導く役割を持つ。全ての導波路(有効画素用導波路207、OB用導波路208、緩衝用導波路209)は同一の材質で形成され、例えば窒化シリコンが用いられる。導波路の周辺の絶縁層203には、前述のようにシリコン酸化膜が用いられており、窒化シリコンより屈折率が低い。そのため、導波路に入射した光は、導波路の側面では全反射をすることで、フォトダイオード201へと導かれる。 The microlens 206 improves the light receiving sensitivity of the photodiode 201 by condensing the incident light on the waveguide 207 for effective pixels. The effective pixel waveguide 207 has a role of guiding the light focused by the microlens 206 to the photodiode 201. All the waveguides (effective pixel waveguide 207, OB waveguide 208, buffer waveguide 209) are made of the same material, and for example, silicon nitride is used. As described above, a silicon oxide film is used for the insulating layer 203 around the waveguide, and the refractive index is lower than that of silicon nitride. Therefore, the light incident on the waveguide is totally reflected on the side surface of the waveguide and is guided to the photodiode 201.

図2(b)に示すように、遮光画素用導波路208は、有効画素用導波路207よりも光の入射方向から見た場合の面積が大きく、ダミー画素用導波路209は、遮光画素用導波路208よりも光の入射方向から見た場合の面積が大きい。そして、有効画素用導波路207は、光の入射方向から見て円形に構成される。一方、遮光画素用導波路208及びダミー画素用導波路209は角丸正方形に構成される。 As shown in FIG. 2B, the light-shielding pixel waveguide 208 has a larger area when viewed from the incident direction of light than the effective pixel waveguide 207, and the dummy pixel waveguide 209 is for light-shielding pixels. The area when viewed from the incident direction of light is larger than that of the waveguide 208. The effective pixel waveguide 207 is formed in a circular shape when viewed from the incident direction of light. On the other hand, the light-shielding pixel waveguide 208 and the dummy pixel waveguide 209 are configured to have rounded squares.

このような形状により、遮光画素用導波路208の体積は、有効画素用導波路207の体積よりも大きく、ダミー画素用導波路209の体積は、遮光画素用導波路208の体積よりも大きい。なお、導波路の形状を角丸正方形とすると光学特性が変わってしまうが、OB画素領域101及び緩衝領域102では、遮光層204により遮光されて光は入射しないので、特に問題はない。 Due to such a shape, the volume of the light-shielding pixel waveguide 208 is larger than the volume of the effective pixel waveguide 207, and the volume of the dummy pixel waveguide 209 is larger than the volume of the light-shielding pixel waveguide 208. If the shape of the waveguide is a square with rounded corners, the optical characteristics will change, but there is no particular problem in the OB pixel region 101 and the buffer region 102 because the light is blocked by the light-shielding layer 204 and no light is incident.

導波路を構成する窒化シリコンは、公知の半導体製造プロセスを用いて製造され、例えばCVD法によって堆積され、絶縁層203のシリコン酸化膜の形成時に比べ、低い温度で成膜される。これにより、形成された窒化シリコンに含まれる水素濃度は、シリコン酸化膜に比べて高くなる。そのため、導波路の体積を異ならせることで、有効画素領域100、OB画素領域101、緩衝領域102においてシンター処理における基板への水素供給量を調整することができる。 The silicon nitride constituting the waveguide is manufactured by using a known semiconductor manufacturing process, is deposited by, for example, a CVD method, and is formed at a lower temperature than when the silicon oxide film of the insulating layer 203 is formed. As a result, the hydrogen concentration contained in the formed silicon nitride is higher than that of the silicon oxide film. Therefore, by making the volume of the waveguide different, it is possible to adjust the amount of hydrogen supplied to the substrate in the sinker processing in the effective pixel region 100, the OB pixel region 101, and the buffer region 102.

なお、シンター処理における水素の供給は、導波路の直下のフォトダイオード201周辺に限らず、複数画素にまたがって広がるため、特に画素構造の連続性が途切れる周辺の端部において水素供給量が低下しやすい。そのため、緩衝領域102のダミー画素用導波路209の体積を増加させることで、OB画素領域101や有効画素領域100の周辺部のフォトダイオード201の暗電流発生量を均一化することができる。 The supply of hydrogen in the sinter treatment is not limited to the vicinity of the photodiode 201 directly under the waveguide, but spreads over a plurality of pixels, so that the amount of hydrogen supplied decreases especially at the peripheral end where the continuity of the pixel structure is interrupted. Cheap. Therefore, by increasing the volume of the dummy pixel waveguide 209 in the buffer region 102, the amount of dark current generated by the photodiode 201 in the peripheral portion of the OB pixel region 101 and the effective pixel region 100 can be made uniform.

加えて、本実施例では、導波路の形状変化を、厚み方向(半導体基板200と垂直方向)は変えず、平面方向のみ変えている。これにより、エッチングする際のマスクパターンによって導波路の体積を異ならせることができ、有効画素領域100、OB画素領域101、緩衝領域102において、同一プロセスにて窒化シリコンの堆積(導波路の形成)を行うことができる。そのため、暗電流発生量の調整のために新たなプロセスを増加させる必要がなく、例えば同一のOB画素領域内でも緩衝領域に近いほど導波路の体積を増加させる等、より細かく調整しても良い。 In addition, in this embodiment, the shape change of the waveguide is not changed in the thickness direction (perpendicular to the semiconductor substrate 200), but only in the plane direction. As a result, the volume of the waveguide can be made different depending on the mask pattern at the time of etching, and silicon nitride is deposited (formation of the waveguide) in the effective pixel region 100, the OB pixel region 101, and the buffer region 102 by the same process. It can be performed. Therefore, it is not necessary to increase a new process for adjusting the amount of dark current generated. For example, even within the same OB pixel region, the closer to the buffer region, the larger the volume of the waveguide may be, and finer adjustments may be made. ..

しかしながら、本実施例において、緩衝領域102にダミー画素用導波路209を配置し、体積を増加させる例を示したが、それに限らずダミー画素用導波路209の体積を増加させなくても良く、ダミー画素用導波路209を配置しない構成でも良い。つまり、遮光画素用導波路108の体積を増加させる方法のみでも暗電流発生量を均一化することが可能である。すなわち、有効画素領域とOB画素領域の暗電流量の差を低減させることができる。 However, in this embodiment, an example in which the dummy pixel waveguide 209 is arranged in the buffer region 102 to increase the volume is shown, but the volume of the dummy pixel waveguide 209 does not have to be increased. A configuration in which the waveguide 209 for dummy pixels is not arranged may be used. That is, it is possible to make the amount of dark current generated uniform only by increasing the volume of the light-shielding pixel waveguide 108. That is, it is possible to reduce the difference in the amount of dark current between the effective pixel region and the OB pixel region.

一方、OB画素領域の導波路の体積を増加させずに、緩衝領域のダミー画素に導波路を配置することでも、有効画素領域とOB画素領域の暗電流量の差を低減させることができる。また、ダミー画素には、他の構成要素(例えばフォトダイオード201や不図示のトランジスタなど)があっても良く、導波路以外の構成要素が無くても良い。すなわち、緩衝領域に水素供給源となる構成要素が配置されれば良い。 On the other hand, by arranging the waveguide in the dummy pixel of the buffer region without increasing the volume of the waveguide in the OB pixel region, the difference in the amount of dark current between the effective pixel region and the OB pixel region can be reduced. Further, the dummy pixel may have other components (for example, a photodiode 201 or a transistor (not shown)), and may have no components other than the waveguide. That is, a component serving as a hydrogen supply source may be arranged in the buffer region.

また、本実施形態では、OB画素領域101を有効画素領域100の周辺である四辺全てに配置する例としたが、これに限らず、例えば二辺に配置するように、有効画素領域100の周辺の内一部にOB画素領域101を配置する構成としても良い。 Further, in the present embodiment, the OB pixel area 101 is arranged on all four sides around the effective pixel area 100, but the present invention is not limited to this, and the periphery of the effective pixel area 100 is arranged, for example, on two sides. The OB pixel area 101 may be arranged in a part of the above.

(実施例2)
以下、図を参照して、本発明の実施例2による、固体撮像素子について説明する。実施例2は、集光部材としてのインナーレンズの体積を異ならせることにより、有効画素領域とOB画素領域の暗電流量の差を低減させるものである。以下、本実施形態が実施例1と異なる点について説明する。実施例2に係る固体撮像素子は、有効画素領域、OB画素領域、緩衝領域、周辺回路領域の配置は、実施例1の固体撮像素子と同じ構成である。
(Example 2)
Hereinafter, the solid-state image sensor according to the second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, the difference in the amount of dark current between the effective pixel region and the OB pixel region is reduced by making the volume of the inner lens as the condensing member different. Hereinafter, the differences between the present embodiment and the first embodiment will be described. The solid-state image sensor according to the second embodiment has the same configuration as the solid-state image sensor of the first embodiment in the arrangement of the effective pixel region, the OB pixel region, the buffer region, and the peripheral circuit region.

図3を参照して実施例2に係る固体撮像素子の断面構造について説明する。図3は、本発明の実施例2に係る固体撮像素子の断面図及び平面図である。 The cross-sectional structure of the solid-state image sensor according to the second embodiment will be described with reference to FIG. FIG. 3 is a cross-sectional view and a plan view of the solid-state image sensor according to the second embodiment of the present invention.

図3(a)は、図1の破線A−A‘における断面構造を示しており、図3(b)は、各領域における光の入射方向から見たインナーレンズの形状を示す平面図である。図3(a)に示すように本実施例の固体撮像素子は導波路を有していなく、有効画素用インナーレンズ307、遮光画素用インナーレンズ308、ダミー画素用インナーレンズ309を有する。加えて、遮光壁310を有しており、遮光層304は遮光壁310よりも上側に配置される。遮光壁310は、想定しない角度から入射した光が、隣接画素へと漏れることを防ぐために配置されている。 FIG. 3A shows a cross-sectional structure in the broken line AA'of FIG. 1, and FIG. 3B is a plan view showing the shape of the inner lens as seen from the incident direction of light in each region. .. As shown in FIG. 3A, the solid-state image sensor of this embodiment does not have a waveguide, and has an inner lens 307 for effective pixels, an inner lens 308 for light-shielding pixels, and an inner lens 309 for dummy pixels. In addition, it has a light-shielding wall 310, and the light-shielding layer 304 is arranged above the light-shielding wall 310. The light-shielding wall 310 is arranged to prevent light incident from an unexpected angle from leaking to adjacent pixels.

有効画素用インナーレンズ307は、マイクロレンズ306と合わせて入射光をフォトダイオード301に集光するよう構成される。全てのインナーレンズ(有効画素用インナーレンズ307、遮光画素用インナーレンズ308、ダミー画素用インナーレンズ309)は同一の材質で形成され、例えば窒化シリコンが用いられる。 The inner lens 307 for effective pixels is configured to collect the incident light on the photodiode 301 together with the microlens 306. All inner lenses (inner lens 307 for effective pixels, inner lens 308 for light-shielding pixels, inner lens 309 for dummy pixels) are made of the same material, and for example, silicon nitride is used.

図3(a)及び図3(b)に示すように、有効画素用インナーレンズが半球状の形状をとる。一方、遮光画素用インナーレンズ308及びダミー画素用インナーレンズ309は、断面が略台形状であり、光の入射方向から見た平面上で角丸正方形に構成される。このような形状により、遮光画素用インナーレンズ308の体積は、有効画素用インナーレンズ307の体積よりも大きく、ダミー画素用インナーレンズ309の体積は、遮光画素用インナーレンズ308の体積よりも大きい。なお、インナーレンズの形状を非半球状とすると光学特性が変わってしまうが、OB画素領域101及び緩衝領域102では、遮光層304により遮光されて光は入射しないので、特に問題はない。 As shown in FIGS. 3A and 3B, the inner lens for effective pixels has a hemispherical shape. On the other hand, the light-shielding pixel inner lens 308 and the dummy pixel inner lens 309 have a substantially trapezoidal cross section, and are configured to have rounded squares on a plane viewed from the incident direction of light. Due to such a shape, the volume of the light-shielding pixel inner lens 308 is larger than the volume of the effective pixel inner lens 307, and the volume of the dummy pixel inner lens 309 is larger than the volume of the light-shielding pixel inner lens 308. If the shape of the inner lens is non-hemispherical, the optical characteristics will change, but there is no particular problem in the OB pixel region 101 and the buffer region 102 because the light is blocked by the light-shielding layer 304 and no light is incident.

インナーレンズを構成する窒化シリコンは、公知の半導体製造プロセスを用いて製造され、例えばリフロー、エッチング、階調マスクを用いた露光処理によって形成される。このとき、形成された窒化シリコンに含まれる水素濃度は、シリコン酸化膜に比べて高くなる。そのため、インナーレンズの体積を異ならせることで、有効画素領域100、OB画素領域101、緩衝領域102においてシンター処理における基板への水素供給量を調整することができる。 The silicon nitride constituting the inner lens is manufactured by using a known semiconductor manufacturing process, and is formed by, for example, reflow, etching, or an exposure process using a gradation mask. At this time, the hydrogen concentration contained in the formed silicon nitride is higher than that of the silicon oxide film. Therefore, by making the volume of the inner lens different, it is possible to adjust the amount of hydrogen supplied to the substrate in the sinker processing in the effective pixel region 100, the OB pixel region 101, and the buffer region 102.

実施例2に係る固体撮像素子においても、OB画素領域101の遮光画素用インナーレンズ308や緩衝領域102のダミー画素用インナーレンズ309の体積を増加させる。そして、OB画素領域101や有効画素領域100の周辺部のフォトダイオード201の暗電流発生量を均一化することができる。すなわち、有効画素領域とOB画素領域の暗電流量の差を低減させることができる。 Also in the solid-state image sensor according to the second embodiment, the volumes of the light-shielding pixel inner lens 308 in the OB pixel region 101 and the dummy pixel inner lens 309 in the buffer region 102 are increased. Then, the amount of dark current generated by the photodiode 201 in the peripheral portion of the OB pixel region 101 and the effective pixel region 100 can be made uniform. That is, it is possible to reduce the difference in the amount of dark current between the effective pixel region and the OB pixel region.

加えて、本実施の形態では、階調マスクのパターンによってインナーレンズの体積を異ならせることができ、有効画素領域100、OB画素領域101、緩衝領域102において同一プロセスにてインナーレンズの形成を行うことができる。そのため、暗電流発生量の調整のために新たなプロセスを増加させる必要がない。 In addition, in the present embodiment, the volume of the inner lens can be made different depending on the pattern of the gradation mask, and the inner lens is formed in the effective pixel area 100, the OB pixel area 101, and the buffer area 102 by the same process. be able to. Therefore, it is not necessary to increase the number of new processes for adjusting the amount of dark current generated.

なお、本実施例では、遮光層304をインナーレンズとカラーフィルタ305の間に配置したがこれに限らず、例えばインナーレンズと配線302の間に配置しても良い。シンター処理における水素供給源であるインナーレンズとフォトダイオード301の間に遮光層304が配置される。これにより、水素供給量は低減するものの、インナーレンズの体積の増加による供給量増加によって有効画素領域とOB画素領域の暗電流量の差を低減させることができる。 In this embodiment, the light-shielding layer 304 is arranged between the inner lens and the color filter 305, but the present invention is not limited to this, and for example, the light-shielding layer 304 may be arranged between the inner lens and the wiring 302. A light-shielding layer 304 is arranged between the inner lens, which is a hydrogen supply source in the sinter treatment, and the photodiode 301. As a result, although the hydrogen supply amount is reduced, the difference in the dark current amount between the effective pixel region and the OB pixel region can be reduced by increasing the supply amount due to the increase in the volume of the inner lens.

(実施例3)
以下、図を参照して、本発明の実施例3による、固体撮像素子について説明する。実施例3は、有効画素領域内でインナーレンズの体積を異ならせることにより、有効画素領域内の暗電流量の差も低減させるものである。以下、実施例1及び実施例2と異なる点について説明する。
(Example 3)
Hereinafter, the solid-state image sensor according to the third embodiment of the present invention will be described with reference to the drawings. In the third embodiment, the difference in the amount of dark current in the effective pixel region is also reduced by making the volume of the inner lens different in the effective pixel region. Hereinafter, the differences from the first and second embodiments will be described.

実施例3に係る固体撮像素子は、有効画素領域、OB画素領域、緩衝領域、周辺回路領域の配置は、実施例1及び実施例2の固体撮像素子と同じ構成である。図4を参照して実施例3に係る固体撮像素子の断面構造について説明する。図4は、本発明の実施例3に係る固体撮像素子の断面図及び平面図である。 The solid-state image sensor according to the third embodiment has the same configuration as the solid-state image sensor of the first and second embodiments in the arrangement of the effective pixel region, the OB pixel region, the buffer region, and the peripheral circuit region. The cross-sectional structure of the solid-state image sensor according to the third embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view and a plan view of the solid-state image sensor according to the third embodiment of the present invention.

図4(a)は、図1の破線A−A‘における断面構造を示しており、図4(b)は、各領域における光の入射方向から見たインナーレンズの形状を示す平面図である。図4(a)に示すように本実施例の有効画素領域100内のインナーレンズ407,411,412は、中央から端部に近づくほど端部側の断面形状が膨らむように形状が異なっている。加えて、図4(b)に示すように平面形状は円形で変わらない。このような形状により、有効画素領域100内のインナーレンズにおいても、端部に近づくほどインナーレンズの体積が増加する。つまり、シンター処理における基板への水素供給量を有効画素領域100内において効果的に調整することができる。 FIG. 4A shows a cross-sectional structure in the broken line AA'of FIG. 1, and FIG. 4B is a plan view showing the shape of the inner lens as seen from the incident direction of light in each region. .. As shown in FIG. 4A, the inner lenses 407, 411, and 412 in the effective pixel region 100 of this embodiment are different in shape so that the cross-sectional shape on the end side swells from the center toward the end. .. In addition, as shown in FIG. 4B, the planar shape is circular and does not change. Due to such a shape, even in the inner lens in the effective pixel region 100, the volume of the inner lens increases as it approaches the end portion. That is, the amount of hydrogen supplied to the substrate in the sinker processing can be effectively adjusted within the effective pixel region 100.

また、OB画素領域101を含む有効画素領域100の周辺部では、マイクロレンズ406及びカラーフィルタ405と、インナーレンズ及び遮光壁410と、配線402及びフォトダイオード401は、それぞれ段階的にずれるように配置される。固体撮像素子の光学中心から離れるほどレンズの主光線が傾きをもつため、ずらして配置されることが望ましい。このように端部では主光線が傾くため、インナーレンズ411,412のように端部側が膨らむ形状となっても入射光はフォトダイオード401に集光されるので、インナーレンズの形状の変化が光学特性に影響を与えにくい。 Further, in the peripheral portion of the effective pixel region 100 including the OB pixel region 101, the microlens 406 and the color filter 405, the inner lens and the light-shielding wall 410, the wiring 402, and the photodiode 401 are arranged so as to be shifted stepwise. Will be done. Since the main ray of the lens is inclined as the distance from the optical center of the solid-state image sensor increases, it is desirable that the lenses are arranged in a staggered manner. Since the main light beam is tilted at the end in this way, the incident light is focused on the photodiode 401 even if the end side is bulging like the inner lenses 411 and 412, so that the change in the shape of the inner lens is optical. It does not easily affect the characteristics.

実施例3に係る固体撮像素子においては、実施例2と同様にOB画素領域101のフォトダイオード401の暗電流発生量の差を低減できるだけでなく、有効画素領域100内のフォトダイオード401の暗電流発生量をより精度良く均一化することが可能である。また、本実施例では、遮光画素用インナーレンズ408及びダミー画素用インナーレンズ409は、有効画素用インナーレンズ407,411,412よりも体積が大きくなる構造とした。これに限らず、例えば、端部の有効画素用インナーレンズ412と同じ形状としても良い。有効画素用インナーレンズ412によるシンター処理における基板への水素供給は、付近に配置されるOB画素領域のフォトダイオード401にも供給されるので、OB画素領域101のフォトダイオード401の暗電流発生量の差を低減することができる。 In the solid-state image sensor according to the third embodiment, not only can the difference in the amount of dark current generated by the photodiode 401 in the OB pixel region 101 be reduced as in the second embodiment, but also the dark current of the photodiode 401 in the effective pixel region 100 can be reduced. It is possible to make the generated amount more accurate and uniform. Further, in this embodiment, the inner lens 408 for light-shielding pixels and the inner lens 409 for dummy pixels have a structure in which the volume is larger than that of the inner lenses 407, 411, 412 for effective pixels. Not limited to this, for example, the shape may be the same as that of the inner lens 412 for effective pixels at the end. Since the hydrogen supply to the substrate in the sinter processing by the inner lens 412 for effective pixels is also supplied to the photodiode 401 in the OB pixel region arranged nearby, the amount of dark current generated by the photodiode 401 in the OB pixel region 101 The difference can be reduced.

(実施例4)
以下、図を参照して、本発明の実施例4による、固体撮像素子について説明する。実施例4は、スクライブライン領域にインナーレンズを配置することで、有効画素領域とOB画素領域の暗電流量の差を低減させるものである。以下、本実施形態が実施例1〜3と異なる点について説明する。
(Example 4)
Hereinafter, the solid-state image sensor according to the fourth embodiment of the present invention will be described with reference to the drawings. In the fourth embodiment, the difference in the amount of dark current between the effective pixel region and the OB pixel region is reduced by arranging the inner lens in the scribe line region. Hereinafter, the points that the present embodiment differs from the first to third embodiments will be described.

本実施例における固体撮像素子は、画素基板と信号処理基板が積層されて構成される積層型固体撮像素子である。積層型固体撮像素子の構成に関しては、公知であり、説明を省略する。図5は、本発明の実施例4に係る固体撮像素子の画素基板の平面図である。4つの固体撮像素子の画素基板が同一シリコン基板上に形成されている様子を模式的に表している。 The solid-state image sensor in this embodiment is a stacked solid-state image sensor configured by laminating a pixel substrate and a signal processing substrate. The configuration of the stacked solid-state image sensor is known, and description thereof will be omitted. FIG. 5 is a plan view of the pixel substrate of the solid-state image sensor according to the fourth embodiment of the present invention. It schematically shows how the pixel substrates of the four solid-state image sensors are formed on the same silicon substrate.

固体撮像素子の画素基板は、有効画素領域500と、その外周に配置されるOB画素領域501を有する。さらに、OB画素領域501の外周には緩衝領域502を有し、その外側にスクライブライン領域503を有する。本実施例の固体撮像素子は、前記スクライブライン領域503においてシリコン基板を切断し、単一の固体撮像素子を切り分けるダイシングが行われる。なお、ダイシングはシンター処理より後に行われる。実施例1〜3の周辺回路領域に相当する回路ブロック(駆動信号の生成回路や、AD変換回路、出力回路)は、積層される不図示の信号処理基板に配置される。 The pixel substrate of the solid-state image sensor has an effective pixel region 500 and an OB pixel region 501 arranged on the outer periphery thereof. Further, a buffer region 502 is provided on the outer periphery of the OB pixel region 501, and a scribe line region 503 is provided outside the buffer region 502. In the solid-state image sensor of this embodiment, a silicon substrate is cut in the scribe line region 503, and dicing is performed to cut a single solid-state image sensor. The dicing is performed after the sinter treatment. The circuit blocks (drive signal generation circuit, AD conversion circuit, output circuit) corresponding to the peripheral circuit regions of Examples 1 to 3 are arranged on a signal processing board (not shown) to be stacked.

続いて図6を参照して、実施例4に係る固体撮像素子の断面構造について説明する。図6は、本発明の実施例4に係る固体撮像素子の画素基板の断面図及び平面図である。 Subsequently, the cross-sectional structure of the solid-state image sensor according to the fourth embodiment will be described with reference to FIG. FIG. 6 is a cross-sectional view and a plan view of the pixel substrate of the solid-state image sensor according to the fourth embodiment of the present invention.

図6(a)は、図3の破線A−A‘における断面構造を示しており、図4(b)は各領域における光の入射方向から見たインナーレンズの形状を示す平面図である。本実施例の固体撮像素子の画素基板は、裏面照射型の構造になっており、不図示のトランジスタや配線602、絶縁層603は、半導体基板600に対し光の入射側とは反対側に構成される。また、配線602の図中の下側に配置される配線602は、積層される信号処理基板上の配線と電気的に接続される。一方、遮光層604、遮光壁610、マイクロセンズ606、カラーフィルタ605、マイクロレンズ606は、半導体基板600に対し光の入射側に構成される。 FIG. 6A shows a cross-sectional structure taken along the broken line AA'of FIG. 3, and FIG. 4B is a plan view showing the shape of the inner lens as seen from the incident direction of light in each region. The pixel substrate of the solid-state image sensor of this embodiment has a back-illuminated structure, and the transistors, wirings 602, and insulating layer 603 (not shown) are configured on the semiconductor substrate 600 on the side opposite to the light incident side. Will be done. Further, the wiring 602 arranged on the lower side in the drawing of the wiring 602 is electrically connected to the wiring on the signal processing board to be stacked. On the other hand, the light-shielding layer 604, the light-shielding wall 610, the microsens 606, the color filter 605, and the microlens 606 are configured on the incident side of light with respect to the semiconductor substrate 600.

スクライブライン領域503は、緩衝領域502に対し、マイクロレンズ606、遮光層604、配線602を有していなく、緩衝領域502との境界を除き遮光壁610も有していない。また、インナーレンズ607は、有効画素領域500、OB画素領域501、緩衝領域502と同じ間隔で配置されるとともに、領域に関わらず同じ形状をもつ。 The scribe line region 503 does not have the microlens 606, the light shielding layer 604, and the wiring 602 with respect to the buffer region 502, and does not have the light shielding wall 610 except for the boundary with the buffer region 502. Further, the inner lens 607 is arranged at the same intervals as the effective pixel area 500, the OB pixel area 501, and the buffer area 502, and has the same shape regardless of the area.

積層構造の固体撮像素子では、画素基板に周辺回路領域をとる必要がない、もしくは小さい規模で良いため、有効画素領域500やOB画素領域501とスクライブライン領域503が近接して配置される。そのため、シンター処理によりスクライブライン領域503に配置したインナーレンズ607からOB画素領域501に水素が供給される。つまり、インナーレンズ607による水素供給の不連続性が改善されるため、有効画素領域500のフォトダイオード601とOB画素領域のフォトダイオード601で発生する暗電流の差を低減することができる。 In a solid-state image sensor having a laminated structure, it is not necessary to have a peripheral circuit area on the pixel substrate, or a small scale is sufficient, so that the effective pixel area 500 or the OB pixel area 501 and the scribe line area 503 are arranged close to each other. Therefore, hydrogen is supplied to the OB pixel region 501 from the inner lens 607 arranged in the scribe line region 503 by the sinter treatment. That is, since the discontinuity of hydrogen supply by the inner lens 607 is improved, the difference in dark current generated between the photodiode 601 in the effective pixel region 500 and the photodiode 601 in the OB pixel region can be reduced.

本実施の形態では、スクライブライン領域503に配置するインナーレンズ607は、有効画素領域500、OB画素領域501、緩衝領域502と同形状および同間隔としたが、これに限らない。例えば、スクライブライン領域503に配置するインナーレンズ607の体積を増やしても良いし、配置する密度を上げても良い。 In the present embodiment, the inner lens 607 arranged in the scribe line region 503 has the same shape and the same spacing as the effective pixel region 500, the OB pixel region 501, and the buffer region 502, but is not limited to this. For example, the volume of the inner lens 607 arranged in the scribe line region 503 may be increased, or the arrangement density may be increased.

また、本実施の形態の固体撮像素子の画素基板に周辺回路領域を配置しない例を示したが、配置しても良く、周辺回路領域にインナーレンズを配置しても良い。インナーレンズによる水素供給の不連続性を改善するために、画素の周期配置の最外周である緩衝領域の外側にインナーレンズを配置すれば、暗電流の発生量の差を低減できるものである。さらに、本実施の形態では、スクライブライン領域にインナーレンズを配置したが、これに限らず、導波路を配置しても良い。 Further, although an example in which the peripheral circuit region is not arranged on the pixel substrate of the solid-state image sensor of the present embodiment is shown, the peripheral circuit region may be arranged, or the inner lens may be arranged in the peripheral circuit region. In order to improve the discontinuity of hydrogen supply by the inner lens, if the inner lens is arranged outside the buffer region which is the outermost circumference of the periodic arrangement of the pixels, the difference in the amount of dark current generated can be reduced. Further, in the present embodiment, the inner lens is arranged in the scribe line region, but the present invention is not limited to this, and a waveguide may be arranged.

102 緩衝領域
103 スクライブライン領域
201 フォトダイオード
206 マイクロレンズ
204 遮光層
207 有効画素用導波路
208 遮光画素用導波路
102 Buffer area 103 Scrivener area 201 photodiode 206 Microlens 204 Light-shielding layer 207 Effective pixel waveguide 208 Light-shielding pixel waveguide

Claims (7)

各々が光電変換部と入射光を前記光電変換部に集光する集光部材とを有する有効画素が複数配置された有効画素領域と、各々が前記光電変換部および前記集光部材と遮光層とを有する遮光画素が複数配置された遮光画素領域とを備えた固体撮像素子において、
前記有効画素の集光部材の体積よりも前記遮光画素の集光部材の体積の方が大きいことを特徴とする固体撮像素子。
An effective pixel region in which a plurality of effective pixels each having a photoelectric conversion unit and a condensing member for condensing incident light on the photoelectric conversion unit are arranged, and each of the photoelectric conversion unit, the condensing member, and a light-shielding layer. In a solid-state image sensor provided with a light-shielding pixel region in which a plurality of light-shielding pixels are arranged.
A solid-state imaging device characterized in that the volume of the light-shielding pixel light-collecting member is larger than the volume of the effective pixel light-collecting member.
前記遮光画素の前記光電変換部は前記遮光層により遮光され、前記集光部材は前記遮光層と前記光電変換部の間に設けられることを特徴とする請求項1に記載の固体撮像素子。 The solid-state image sensor according to claim 1, wherein the photoelectric conversion unit of the light-shielding pixel is shielded from light by the light-shielding layer, and the light-collecting member is provided between the light-shielding layer and the photoelectric conversion unit. 前記有効画素領域の中央に配置される前記有効画素の集光部材の体積よりも端部に配置される前記有効画素の集光部材の体積の方が大きいことを特徴とする請求項1または2に記載の固体撮像素子。 Claim 1 or 2 characterized in that the volume of the light collecting member of the effective pixel arranged at the end is larger than the volume of the light collecting member of the effective pixel arranged in the center of the effective pixel region. The solid-state image sensor according to the above. 前記有効画素領域と前記遮光画素領域の外側にダミー画素が複数配置された緩衝領域を備え、前記遮光画素の集光部材の体積よりも前記ダミー画素の集光部材の体積の方が大きいことを特徴とする請求項1乃至3のいずれか1項に記載の固体撮像素子。 A buffer region in which a plurality of dummy pixels are arranged outside the effective pixel region and the light-shielding pixel region is provided, and the volume of the light-collecting member of the dummy pixel is larger than the volume of the light-collecting member of the light-shielding pixel. The solid-state imaging device according to any one of claims 1 to 3, which is characterized. 前記有効画素領域と前記遮光画素領域の外側にスクライブライン領域を備え、前記スクライブライン領域に前記集光部材を配置したことを特徴とする請求項1乃至4のいずれか1項に記載の固体撮像素子。 The solid-state imaging according to any one of claims 1 to 4, wherein a scribe line region is provided outside the effective pixel region and the light-shielding pixel region, and the condensing member is arranged in the scribe line region. element. 前記集光部材は、導波路であることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 5, wherein the light collecting member is a waveguide. 前記集光部材は、インナーレンズであることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 5, wherein the condensing member is an inner lens.
JP2019197774A 2019-10-30 2019-10-30 Solid-state imaging element Pending JP2021072355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197774A JP2021072355A (en) 2019-10-30 2019-10-30 Solid-state imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197774A JP2021072355A (en) 2019-10-30 2019-10-30 Solid-state imaging element

Publications (1)

Publication Number Publication Date
JP2021072355A true JP2021072355A (en) 2021-05-06

Family

ID=75713463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197774A Pending JP2021072355A (en) 2019-10-30 2019-10-30 Solid-state imaging element

Country Status (1)

Country Link
JP (1) JP2021072355A (en)

Similar Documents

Publication Publication Date Title
US8102460B2 (en) Solid-state imaging device
KR101036290B1 (en) Sold state imaging device and production method therefor
US20170077164A1 (en) Solid-state image sensor and image pickup apparatus
US9261769B2 (en) Imaging apparatus and imaging system
US7605980B2 (en) Image sensor and fabricating method thereof
US8405178B2 (en) Solid-state image sensor device
US20090189055A1 (en) Image sensor and fabrication method thereof
US20070222885A1 (en) Solid-state image pickup device
JP2005167003A (en) Solid state image pickup device, manufacturing method therefor, and image pickup system provided therewith
US20140375852A1 (en) Solid-state imaging apparatus, method of manufacturing the same, camera, imaging device, and imaging apparatus
US20090250777A1 (en) Image sensor and image sensor manufacturing method
JP2011216896A (en) Optical system comprising solid-state image sensor with microlenses, and non-telecentric taking lens
JP2001160973A (en) Solid-state image pickup device and electronic camera
KR101038596B1 (en) Solid-state pickup device
TWI579598B (en) Image sensor device, cis structure, and method for forming the same
CN116404015A (en) Solid-state imaging element, imaging device, and electronic apparatus
KR20160098045A (en) Solid-state image sensor and image pickup apparatus including the same
US9147709B2 (en) Solid-state image sensor and camera
JP2023057136A (en) Imaging element and imaging device
JPWO2016103365A1 (en) Solid-state imaging device and imaging device
WO2021149349A1 (en) Imaging element and imaging device
JP2014022649A (en) Solid-state image sensor, imaging device, and electronic apparatus
KR101481268B1 (en) Method for manufacturing solid-state imaging device, and solid-state imaging device
KR100915758B1 (en) Method for Manufacturing An Image Sensor
JP2021072355A (en) Solid-state imaging element