JP2021071263A - Gas-gas heat exchanger - Google Patents

Gas-gas heat exchanger Download PDF

Info

Publication number
JP2021071263A
JP2021071263A JP2019199402A JP2019199402A JP2021071263A JP 2021071263 A JP2021071263 A JP 2021071263A JP 2019199402 A JP2019199402 A JP 2019199402A JP 2019199402 A JP2019199402 A JP 2019199402A JP 2021071263 A JP2021071263 A JP 2021071263A
Authority
JP
Japan
Prior art keywords
gas
bundle
heat
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199402A
Other languages
Japanese (ja)
Other versions
JP7334105B2 (en
Inventor
晴治 香川
Seiji Kagawa
晴治 香川
亮太 落合
Ryota Ochiai
亮太 落合
隆行 齋藤
Takayuki Saito
隆行 齋藤
石坂 浩
Hiroshi Ishizaka
浩 石坂
一朗 大森
Ichiro Omori
一朗 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019199402A priority Critical patent/JP7334105B2/en
Priority to KR1020227012589A priority patent/KR20220061236A/en
Priority to PCT/JP2020/040533 priority patent/WO2021085513A1/en
Priority to CN202080073904.0A priority patent/CN114599928A/en
Priority to TW109137797A priority patent/TWI757942B/en
Publication of JP2021071263A publication Critical patent/JP2021071263A/en
Application granted granted Critical
Publication of JP7334105B2 publication Critical patent/JP7334105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Abstract

To constitute a desired heat transfer pipe arrangement pattern on a gas circulation passage while suppressing increase of the number of rows of heat exchange bundles along a circulation direction of an exhaust gas.MEANS FOR SOLVING THE PROBLEM: A plurality of rows of heat exchange bundles 41 composed of heat transfer pipe groups in which a plurality of straight pipe portions 45 of heat transfer pipes 12 are arranged in a block shape while separating from each other, are disposed in series from an upstream side to a downstream side of an exhaust gas, and in each of the plurality of rows of the heat exchange bundles 41, the plurality of straight pipe portions 45 are disposed in a state of intersecting with an exhaust gas circulating direction. The plurality of heat exchange bundles 41 include a piping pattern hybrid bundle 41A in which a first arrangement pipe group 51 in which a piping pattern of the plurality of straight pipe portions 45 on a pipe orthogonal cross section substantially orthogonal to the straight pipe portions 45 has a first arrangement, and a second arrangement pipe group 52 which is disposed at a downstream side of the first arrangement pipe group 51 and in which a piping pattern of the plurality of straight pipe portions 45 has a second arrangement different from the first arrangement, are disposed in the same bundle and form the group of heat transfer pipes.SELECTED DRAWING: Figure 4

Description

本発明は、熱媒と排ガスとの熱交換を行うガスガス熱交換器に関する。 The present invention relates to a gas gas heat exchanger that exchanges heat between a heat medium and exhaust gas.

火力発電所等で使用されるボイラからの排ガス(排煙)を処理するために、排ガス流通経路に、空気予熱器、GGH熱回収器、集塵装置、湿式排煙脱硫装置、およびGGH再加熱器を設けた排ガス処理システムが公知である。GGH熱回収器では、排ガスからの熱回収が行われ、湿式排煙脱硫装置では、気液接触により排ガス中の硫黄酸化物および煤塵の一部が除去される。湿式排煙脱硫装置において飽和ガス温度まで冷却された排ガスは、GGH再加熱器において、GGH熱回収器で回収された熱を利用して昇温された後、煙突より排出される。 In order to treat exhaust gas (smoke exhaust) from boilers used in thermal power plants, etc., air preheaters, GGH heat recovery devices, dust collectors, wet flue gas desulfurization devices, and GGH reheating are installed in the exhaust gas flow path. Exhaust gas treatment systems equipped with vessels are known. In the GGH heat recovery device, heat is recovered from the exhaust gas, and in the wet flue gas desulfurization device, a part of sulfur oxides and soot dust in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet flue gas desulfurization apparatus is heated in the GGH reheater using the heat recovered by the GGH heat recovery device, and then discharged from the chimney.

特許文献1には、上記排ガス処理システムにおいて、GGH再加熱器のガス流通路を、上流側の上流域と、下流側の下流域と、上流域と下流域の間の中流域とに分け、上流域と中流域と下流域とに、それぞれ熱交換バンドル(上流バンドル、中流バンドルおよび下流バンドル)を配置する構成が記載されている。熱交換バンドルとは、熱媒が流れる伝熱管の構成単位として、伝熱管を組合せてブロック化(ユニット化)した伝熱管群の構造体である。特許文献1には、上流バンドル、中流バンドルおよび下流バンドルの各々を、上下に重なる3段の熱交換バンドル(上段バンドル、中段バンドルおよび下段バンドル)によって構成する例が開示されている。 In Patent Document 1, in the exhaust gas treatment system, the gas flow passage of the GGH reheater is divided into an upstream region on the upstream side, a downstream region on the downstream side, and a middle basin region between the upstream region and the downstream region. A configuration is described in which heat exchange bundles (upstream bundle, midstream bundle, and downstream bundle) are arranged in the upstream region, the middle basin region, and the downstream region, respectively. A heat exchange bundle is a structure of a heat transfer tube group in which heat transfer tubes are combined and blocked (unitized) as a constituent unit of a heat transfer tube through which a heat medium flows. Patent Document 1 discloses an example in which each of the upstream bundle, the middle stream bundle, and the downstream bundle is composed of three stages of heat exchange bundles (upper stage bundle, middle stage bundle, and lower stage bundle) that are vertically stacked.

また、特許文献1には、GGH再加熱器の上流バンドルの伝熱管配列パターンを千鳥配列とし、中流バンドルおよび下流バンドルの伝熱管配列パターンを正方配列とし、熱媒が上流バンドルから下流バンドルを経由して中流バンドルへ流れるように各バンドル間を接続するように構成する例が記載されている。 Further, in Patent Document 1, the heat transfer tube arrangement pattern of the upstream bundle of the GGH reheater is a staggered arrangement, the heat transfer tube arrangement pattern of the middle stream bundle and the downstream bundle is a square arrangement, and the heat medium passes from the upstream bundle to the downstream bundle. An example is described in which each bundle is configured to be connected so as to flow to the middle-stream bundle.

国際公開第2018/139669号International Publication No. 2018/139669

特許文献1のGGH再加熱器では、上流バンドル、中流バンドルおよび下流バンドルが、高温予熱部、低温部および高温部としてそれぞれ機能し、導入された排ガスが千鳥配列の高温予熱部、正方配列の低温部および高温部の順に流通して昇温するので、GGH再加熱器での熱交換の効率を高めることができる。また、湿式排煙脱硫装置から飛散するミストが上流バンドルの伝熱管と衝突する効率(高温予熱部でのミスト蒸発効率)を高めることができ、低温部および高温部の伝熱管へのミストの付着を抑制して、経年使用による圧損の上昇を抑制することができる。 In the GGH reheater of Patent Document 1, the upstream bundle, the middle stream bundle, and the downstream bundle function as a high temperature preheating section, a low temperature section, and a high temperature section, respectively, and the introduced exhaust gas is a staggered high temperature preheating section and a square low temperature section. Since the temperature is raised in the order of the part and the high temperature part, the efficiency of heat exchange in the GGH reheater can be improved. In addition, the efficiency with which the mist scattered from the wet flue gas desulfurization device collides with the heat transfer tube of the upstream bundle (mist evaporation efficiency in the high temperature preheating part) can be increased, and the mist adheres to the heat transfer tubes in the low temperature part and the high temperature part. It is possible to suppress an increase in pressure loss due to long-term use.

しかし、特許文献1のGGH再加熱器(ガスガス熱交換器)では、排ガスの流通方向に沿って3列の伝熱管バンドル(上流バンドル、中流バンドルおよび下流バンドル)を設け、各列の伝熱管バンドルの伝熱管配列パターンを同じ配列パターン(上流バンドルでは千鳥配列、中流バンドルおよび下流バンドルでは正方配列)に設定しているので、例えば排ガスの流通方向に沿って2列の伝熱管バンドルが設けられた既存のガスガス熱交換器に対して特許文献1の構成を適用するためには、既存の2列の熱交換バンドルに加えて、新たに1列の熱交換バンドルを設ける必要があり、大規模な改修が必要となる。 However, in the GGH reheater (gas gas heat exchanger) of Patent Document 1, three rows of heat transfer tube bundles (upstream bundle, middle flow bundle and downstream bundle) are provided along the flow direction of exhaust gas, and each row of heat transfer tube bundles is provided. Since the heat transfer tube arrangement pattern is set to the same arrangement pattern (staggered arrangement in the upstream bundle, square arrangement in the middle stream bundle and the downstream bundle), for example, two rows of heat transfer tube bundles are provided along the flow direction of the exhaust gas. In order to apply the configuration of Patent Document 1 to an existing gas gas heat exchanger, it is necessary to newly provide a one-row heat exchange bundle in addition to the existing two-row heat exchange bundle, which is a large scale. It needs to be repaired.

そこで本発明は、排ガスの流通方向に沿った熱交換バンドルの列数の増加を抑制しつつ、所望の伝熱管配列パターンをガス流通路に構成することが可能なガスガス熱交換器の提供を目的とする。 Therefore, an object of the present invention is to provide a gas gas heat exchanger capable of forming a desired heat transfer tube arrangement pattern in a gas flow passage while suppressing an increase in the number of rows of heat exchange bundles along the flow direction of exhaust gas. And.

上記目的を達成すべく、本発明の第1の態様は、伝熱管の複数の直線状管部が互いに離間してブロック状に並ぶ伝熱管群によって構成された熱交換バンドルを、排ガスの上流側から下流側へ直列状に複数列配置するとともに、複数列の熱交換バンドルの各々において、複数の直線状管部を排ガスの流通方向と交叉するように配置したガスガス熱交換器である。複数の熱交換バンドルは、直線状管部と略直交する管直交断面における複数の直線状管部の配管パターンが第1配列である第1配列管群と、第1配列管群の下流側に設けられ複数の直線状管部の配管パターンが第1配列とは異なる第2配列である第2配列管群とが、同一バンドル内に設けられて伝熱管群を形成する配管パターン混成バンドルを含む。 In order to achieve the above object, the first aspect of the present invention is to provide a heat exchange bundle composed of a group of heat transfer tubes in which a plurality of linear tube portions of the heat transfer tubes are arranged in a block shape separated from each other on the upstream side of the exhaust gas. This is a gas gas heat exchanger in which a plurality of rows are arranged in series from the side to the downstream side, and a plurality of linear pipe portions are arranged so as to intersect the flow direction of exhaust gas in each of the plurality of rows of heat exchange bundles. The plurality of heat exchange bundles are provided in the first arrangement pipe group in which the piping pattern of the plurality of linear pipe portions in the pipe orthogonal cross section substantially orthogonal to the linear pipe portion is the first arrangement, and on the downstream side of the first arrangement pipe group. A second array tube group, which is a second array in which the piping patterns of the plurality of linear tube sections provided are different from the first array, includes a piping pattern mixed bundle provided in the same bundle to form a heat transfer tube group. ..

上記構成では、1つの熱交換バンドル内に配管パターンが互いに異なる第1配列管群と第2配列管群とを設けているので、排ガスの流通方向に沿った熱交換バンドルの列数の増加を抑制しつつ、所望の伝熱管配列パターンをガス流通路に構成することができる。 In the above configuration, since the first arrangement pipe group and the second arrangement pipe group having different piping patterns are provided in one heat exchange bundle, the number of rows of the heat exchange bundle along the flow direction of the exhaust gas can be increased. A desired heat transfer tube arrangement pattern can be formed in the gas flow passage while suppressing the heat transfer tube arrangement pattern.

本発明の第2の態様は、排ガスから熱回収する熱回収器の下流側で、且つ排ガス中の硫黄酸化物を気液接触により除去する脱硫装置の下流側に、再加熱器として配置される第1の態様のガスガス熱交換器であって、複数の熱交換バンドルは、配管パターン混成バンドルと、配管パターン混成バンドルの下流側に配置される下流側熱交換バンドルとを含む。第1配列管群は、複数の直線状管部を千鳥状に配列した千鳥配列管群である。第2配列管群は、複数の直線状管部を正方格子状に配列した正方配列管群である。千鳥配列管群には、熱回収器から熱媒が流入する。千鳥配列管群と下流側熱交換バンドルの伝熱管群とは、千鳥配列管群を流通した熱媒が下流側熱交換バンドルの伝熱管群を流通するように、第1接続管によって接続される。下流側熱交換バンドルの伝熱管群と正方配列管群とは、下流側熱交換バンドルの伝熱管群を流通した熱媒が正方配列管群を流通するように、第2接続管によって接続される。 A second aspect of the present invention is arranged as a reheater on the downstream side of the heat recovery device that recovers heat from the exhaust gas and on the downstream side of the desulfurization device that removes sulfur oxides in the exhaust gas by gas-liquid contact. In the gas gas heat exchanger of the first aspect, the plurality of heat exchange bundles include a pipe pattern mixed bundle and a downstream heat exchange bundle arranged on the downstream side of the pipe pattern mixed bundle. The first array tube group is a staggered array tube group in which a plurality of linear tube portions are arranged in a staggered manner. The second array tube group is a square array tube group in which a plurality of linear tube portions are arranged in a square grid pattern. A heat medium flows into the zigzag array tube group from the heat recovery device. The staggered arrangement tube group and the heat transfer tube group of the downstream heat exchange bundle are connected by the first connecting tube so that the heat medium flowing through the staggered arrangement tube group flows through the heat transfer tube group of the downstream side heat exchange bundle. .. The heat transfer tube group and the square array tube group of the downstream heat exchange bundle are connected by a second connecting tube so that the heat medium flowing through the heat transfer tube group of the downstream side heat exchange bundle flows through the square array tube group. ..

上記構成では、千鳥配列管群、正方配列管群および下流側熱交換バンドル(下流側熱交換バンドルを構成する伝熱管群)が、高温予熱部、低温部および高温部としてそれぞれ機能し、導入された排ガスは、千鳥配列の高温予熱部、正方配列の低温部および高温部を順に流通して昇温するので、再加熱器(ガスガス熱交換器)での熱交換の効率を高めることができる。また、脱硫装置から飛散するミストが千鳥配列管群の直線状管部と衝突する効率(高温予熱部でのミスト蒸発効率)を高めることができ、低温部および高温部の伝熱管へのミストの付着を抑制して、経年使用による圧損の上昇を抑制することができる。 In the above configuration, the staggered arrangement tube group, the square arrangement tube group, and the downstream side heat exchange bundle (the heat transfer tube group constituting the downstream side heat exchange bundle) function as a high temperature preheating part, a low temperature part, and a high temperature part, respectively, and are introduced. Since the exhaust gas flows through the high-temperature preheating part in the staggered arrangement, the low-temperature part and the high-temperature part in the square arrangement in order to raise the temperature, the efficiency of heat exchange in the reheater (gas gas heat exchanger) can be improved. In addition, the efficiency at which the mist scattered from the desulfurization device collides with the linear tube portion of the staggered array tube group (mist evaporation efficiency in the high temperature preheating section) can be increased, and the mist to the heat transfer tube in the low temperature section and the high temperature section can be increased. Adhesion can be suppressed, and an increase in pressure loss due to long-term use can be suppressed.

本発明の第3の態様は、第2の態様のガスガス熱交換器であって、千鳥配列管群の直線状管部は、裸管仕様の裸管部で構成され、正方配列管群の直線状管部と下流側熱交換バンドルの直線状管部とは、フィン付管仕様のフィン付管部で構成されている。 The third aspect of the present invention is the gas gas heat exchanger of the second aspect, in which the linear tube portion of the staggered arrangement tube group is composed of the bare tube portion of the bare tube specification, and the straight tube portion of the square arrangement tube group. The shape tube portion and the linear tube portion of the downstream heat exchange bundle are composed of a finned pipe portion having a finned pipe specification.

上記構成では、千鳥配列管群の直線状管部を裸管仕様の裸管部で構成したので、高温予熱部の伝熱管へのミストの付着を抑制して、経年使用による圧損の上昇を抑制することができる。また、正方配列管群の直線状管部と下流側熱交換バンドルの直線状管部とをフィン付管仕様のフィン付管部で構成したので、低温部および高温部での熱交換の効率を高めることができる。 In the above configuration, since the linear tube portion of the staggered array tube group is composed of the bare tube portion of the bare tube specification, the adhesion of mist to the heat transfer tube of the high temperature preheating section is suppressed and the increase in pressure loss due to aged use is suppressed. can do. In addition, since the linear tube part of the square array tube group and the linear tube part of the downstream heat exchange bundle are composed of the finned tube part of the finned tube specification, the efficiency of heat exchange in the low temperature part and the high temperature part can be improved. Can be enhanced.

本発明の第4の態様は、第3の態様のガスガス熱交換器であって、正方配列管群の直線状管部のフィン付管部のフィンピッチを5.0mm以上10.0mm以下としている。また、本発明の第5の態様は、第3または第4の態様のガスガス熱交換器であって、下流側熱交換バンドルの直線状管部のフィン付管部のフィンピッチを5.0mm以上10.0mm以下としている。 A fourth aspect of the present invention is the gas gas heat exchanger of the third aspect, in which the fin pitch of the finned tube portion of the linear tube portion of the square array tube group is 5.0 mm or more and 10.0 mm or less. .. Further, the fifth aspect of the present invention is the gas gas heat exchanger of the third or fourth aspect, in which the fin pitch of the finned tube portion of the linear tube portion of the downstream heat exchange bundle is 5.0 mm or more. It is set to 10.0 mm or less.

上記構成では、隣接するフィン付管部の間にダスト等が経時的に詰まる問題が解消されるので、ガスガス熱交換器の安定した運用が可能となる。 With the above configuration, the problem that dust or the like is clogged between the adjacent pipes with fins over time is solved, so that the gas gas heat exchanger can be operated stably.

本発明の第6の態様は、第2〜第5の何れかの態様のガスガス熱交換器であって、千鳥配列管群の直線状管部の間を流れる排ガスの流速が8m/s以上16m/s以下となるように千鳥配列管群を配置している。 A sixth aspect of the present invention is the gas gas heat exchanger of any one of the second to fifth aspects, in which the flow velocity of the exhaust gas flowing between the linear pipe portions of the staggered arrangement pipe group is 8 m / s or more and 16 m or more. The staggered tube group is arranged so as to be less than / s.

上記構成では、再加熱器内の上流側である第1配列管群(千鳥配列管群)において、ミスト除去率(脱硫装置から飛散するミストの除去率)を高めることができ、ミスト除去性能が向上する。このため、下流側の第2配列管群や下流側熱交換バンドルの直線状管部(直線状管部をフィン付管部で構成した場合にはフィン付管部)の腐食(ミストによる腐食)を低減することができ、ガスガス熱交換器の安定した運用が可能となる。 In the above configuration, the mist removal rate (the removal rate of mist scattered from the desulfurization apparatus) can be increased in the first arrangement tube group (staggered arrangement tube group) on the upstream side in the reheater, and the mist removal performance can be improved. improves. For this reason, corrosion (corrosion due to mist) of the second array pipe group on the downstream side and the linear pipe part of the downstream heat exchange bundle (corrosion by the finned pipe part when the linear pipe part is composed of the finned pipe part). Can be reduced, and stable operation of the gas gas heat exchanger becomes possible.

本発明のガスガス熱交換器によれば、排ガスの流通方向に沿った熱交換バンドルの列数の増加を抑制しつつ、所望の伝熱管配列パターンをガス流通路に構成することができる。 According to the gas gas heat exchanger of the present invention, a desired heat transfer tube arrangement pattern can be formed in the gas flow passage while suppressing an increase in the number of rows of heat exchange bundles along the flow direction of exhaust gas.

本発明の一実施形態に係るガスガス熱交換器を備えた排ガス処理システムの構成例を模式的に示す図である。It is a figure which shows typically the structural example of the exhaust gas treatment system provided with the gas gas heat exchanger which concerns on one Embodiment of this invention. 図1の排ガス処理システムにおける熱媒の流れを模式的に示す図である。It is a figure which shows typically the flow of the heat medium in the exhaust gas treatment system of FIG. 図1のGGH再加熱器の概略構成を模式的に示す斜視図である。It is a perspective view which shows typically the schematic structure of the GGH reheater of FIG. 図3の配管パターン混成バンドルにおける直線状管部の配管パターンを示す断面図である。It is sectional drawing which shows the piping pattern of the linear tube part in the piping pattern mixed bundle of FIG. GGH熱回収器とGGH再加熱器とが2系統に分割された排煙処理ステムの構成例を模式的に示す図である。It is a figure which shows typically the structural example of the flue gas processing stem which divided into two systems of a GGH heat recovery device and a GGH reheater.

本発明の一実施形態について、図面を参照して説明する。なお、以後の説明において、図中で矢印X、−X、Y、−Y、Z、−Zで示す方向(側)を、それぞれ前方(前側)、後方(後側)、右方(右側)、左方(左側)、上方(上側)、下方(下側)とする。 An embodiment of the present invention will be described with reference to the drawings. In the following description, the directions (sides) indicated by arrows X, -X, Y, -Y, Z, and -Z in the figure are forward (front side), rear (rear side), and right side (right side), respectively. , Left side (left side), upper side (upper side), lower side (lower side).

図1に示すように、本実施形態に係る排煙処理ステム(プラント)Sの排ガス流通経路には、空気予熱器(A/H)3、ガスガス熱交換器(GGH:Gas Gas Heater)の一例としてのGGH熱回収器4、集塵装置(EP:Electrostatic Precipitator)5、ファン6、湿式排煙脱硫装置(FGD:Flue Gas Desulfurization)7、ガスガス熱交換器の一例としてのGGH再加熱器8、および煙突9が直列状に設けられ、ボイラ1からの排ガスは、空気予熱器3、GGH熱回収器4、集塵装置5、ファン6、湿式排煙脱硫装置7、およびGGH再加熱器8を順次流通して煙突9より排出される。本実施形態では、GGH再加熱器8に本発明を適用しているが、GGH熱回収器4に本発明を適用してもよい。また、他のシステムのGGHに本発明を適用してもよい。また、ボイラ1と空気予熱器3の間に排ガス中の窒素酸化物を除去する脱硝装置を設置してもよい。 As shown in FIG. 1, an example of an air preheater (A / H) 3 and a gas gas heat exchanger (GGH: Gas Gas Heater) is provided in the exhaust gas flow path of the flue gas desulfurization stem (plant) S according to the present embodiment. GGH heat recovery device 4, Dust collector (EP: Electrostatic Precipitator) 5, Fan 6, Wet flue gas desulfurization device (FGD: Flue Gas Desulfurization) 7, GGH reheater 8 as an example of gas gas heat exchanger, And the chimneys 9 are provided in series, and the exhaust gas from the boiler 1 includes an air preheater 3, a GGH heat collector 4, a dust collector 5, a fan 6, a wet flue gas desulfurization device 7, and a GGH reheater 8. It is sequentially distributed and discharged from the chimney 9. In the present embodiment, the present invention is applied to the GGH reheater 8, but the present invention may be applied to the GGH heat recovery device 4. Further, the present invention may be applied to the GGH of another system. Further, a denitration device for removing nitrogen oxides in the exhaust gas may be installed between the boiler 1 and the air preheater 3.

空気予熱器3では、排ガスがボイラ1への燃焼用空気と熱交換される。GGH熱回収器4では、排ガスからの熱回収が行われ、集塵装置5では、排ガス中の煤塵の大半が除去される。ファン6は排ガスを昇圧し、湿式排煙脱硫装置7では、気液接触により排ガス中の硫黄酸化物および煤塵の一部が除去される。湿式排煙脱硫装置7において飽和ガス温度まで冷却された排ガスは、GGH再加熱器8において、GGH熱回収器4で回収された熱を利用して昇温(熱交換、再加熱)された後、煙突9より排出される。 In the air preheater 3, the exhaust gas is heat-exchanged with the combustion air to the boiler 1. The GGH heat recovery device 4 recovers heat from the exhaust gas, and the dust collector 5 removes most of the soot and dust in the exhaust gas. The fan 6 boosts the exhaust gas, and in the wet flue gas desulfurization apparatus 7, a part of sulfur oxides and soot dust in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet flue gas desulfurization apparatus 7 is heated (heat exchange, reheating) by using the heat recovered by the GGH heat recovery device 4 in the GGH reheater 8. , Is discharged from the chimney 9.

図2に示すように、本実施形態の排煙処理システムSにおいて、GGH熱回収器4の伝熱管11とGGH再加熱器8の伝熱管12とは、連絡配管13によって連絡されている。連絡配管13は、GGH熱回収器4からGGH再加熱器8への熱媒の流路である連絡配管13Aと、GGH再加熱器8からGGH熱回収器4への熱媒の流路である連絡配管13Bとを有する。連絡配管13には熱媒循環ポンプ14が設けられ、熱媒循環ポンプ14によって熱媒を循環させる系統(熱媒循環系統)となっている。熱媒循環系統には、系内の熱媒の膨張を吸収するための熱媒タンク15が設けられている。GGH熱回収器4からGGH再加熱器8への熱媒の流路である連絡配管13Aには、様々な条件下で安定した運用を可能とするために熱媒温度を制御(所定温度以上に制御)する熱媒ヒータ16が設けられている。 As shown in FIG. 2, in the smoke exhaust treatment system S of the present embodiment, the heat transfer tube 11 of the GGH heat recovery device 4 and the heat transfer tube 12 of the GGH reheater 8 are connected by a connecting pipe 13. The connecting pipe 13 is a connecting pipe 13A which is a flow path of the heat medium from the GGH heat recovery device 4 to the GGH reheater 8 and a flow path of the heat medium from the GGH reheater 8 to the GGH heat recovery device 4. It has a connecting pipe 13B. A heat medium circulation pump 14 is provided in the connecting pipe 13, and is a system (heat medium circulation system) in which the heat medium is circulated by the heat medium circulation pump 14. The heat medium circulation system is provided with a heat medium tank 15 for absorbing the expansion of the heat medium in the system. The heat medium temperature is controlled (above a predetermined temperature) in the connecting pipe 13A, which is the flow path of the heat medium from the GGH heat recovery device 4 to the GGH reheater 8, in order to enable stable operation under various conditions. A heat medium heater 16 for controlling) is provided.

図3に示すように、GGH熱回収器4およびGGH再加熱器8は、筐体としてのハウジング31を有する。ハウジング31は、底板(下カバー)32と、背面板(背面カバー)33と、天板(上カバー)34とを有する。ハウジング31の前部には、上下方向に延びるバンドル間カバー35が支持されている。バンドル間カバー35は、上下方向(鉛直方向)に延びており、左右方向(排ガス流通方向)に予め設定された間隔をあけて複数配置されている。バンドル間カバー35によって覆われる領域は、点検時や部品交換時等に作業者が立入り可能な空間となる。 As shown in FIG. 3, the GGH heat recovery device 4 and the GGH reheater 8 have a housing 31 as a housing. The housing 31 has a bottom plate (lower cover) 32, a back plate (back cover) 33, and a top plate (upper cover) 34. An inter-bundle cover 35 extending in the vertical direction is supported on the front portion of the housing 31. A plurality of bundle-to-bundle covers 35 extend in the vertical direction (vertical direction) and are arranged at a predetermined interval in the left-right direction (exhaust gas flow direction). The area covered by the inter-bundle cover 35 is a space that can be accessed by an operator during inspections, parts replacement, and the like.

ハウジング31の内部には、熱交換バンドル41が複数収容される。熱交換バンドル41とは、熱媒が流れる伝熱管11,12の構成単位として、伝熱管11,12を組合せてブロック化(ユニット化)した伝熱管群の構造体である。各熱交換バンドル41は、伝熱管11,12の複数の直線状管部45が互いに離間してブロック状に並ぶ伝熱管群によって構成される。ハウジング31内の熱交換バンドル41は、排ガスの上流側から下流側へ直列状に複数列配置されるとともに、複数列の熱交換バンドル41の各々において、複数の直線状管部45が排ガスの流通方向と交叉するように配置される。本実施形態では、排ガス流通方向は略水平方向(図中の右方向)に設定され、直線状管部45は排ガス流通方向と略直交するように略水平方向(図中の前後方向)に直線状に延びる。 A plurality of heat exchange bundles 41 are housed inside the housing 31. The heat exchange bundle 41 is a structure of a heat transfer tube group in which heat transfer tubes 11 and 12 are combined and blocked (unitized) as a constituent unit of the heat transfer tubes 11 and 12 through which the heat medium flows. Each heat exchange bundle 41 is composed of a group of heat transfer tubes in which a plurality of linear tube portions 45 of the heat transfer tubes 11 and 12 are arranged in a block shape so as to be separated from each other. A plurality of rows of heat exchange bundles 41 in the housing 31 are arranged in series from the upstream side to the downstream side of the exhaust gas, and in each of the plurality of rows of heat exchange bundles 41, a plurality of linear pipe portions 45 flow the exhaust gas. Arranged so as to intersect the direction. In the present embodiment, the exhaust gas flow direction is set to be substantially horizontal (right direction in the figure), and the linear pipe portion 45 is linear in the substantially horizontal direction (front-back direction in the figure) so as to be substantially orthogonal to the exhaust gas flow direction. It extends like a shape.

各熱交換バンドル41は、第1のヘッダ42と、第2のヘッダ43とを有する。第1および第2のヘッダ42,43は、上下方向に延びる柱状に形成されている。各ヘッダ42,43は、内部が中空且つ上端及び下端が閉塞された形状に形成されており、内部に流動可能な空間が形成されている。また、各ヘッダ42,43には、左右方向に張り出す取付プレート44が支持されている。 Each heat exchange bundle 41 has a first header 42 and a second header 43. The first and second headers 42 and 43 are formed in a columnar shape extending in the vertical direction. Each of the headers 42 and 43 is formed in a shape in which the inside is hollow and the upper and lower ends are closed, and a flowable space is formed inside. Further, mounting plates 44 projecting in the left-right direction are supported on the headers 42 and 43.

各ヘッダ42,43の後面には、後方に延びる伝熱管11,12の直線状管部45が支持されている。伝熱管11,12は、ハウジング31の内部において、直線状管部45の後端または前端で湾曲して複数回前後方向に往復するように構成されている。なお、各ヘッダ42,43には、上下方向に間隔をあけて複数の伝熱管11,12が支持されている。各伝熱管11,12の両端は、ヘッダ42,43に支持されており、ヘッダ42,43から各伝熱管11,12に熱媒が入出可能に構成されている。 The linear tube portions 45 of the heat transfer tubes 11 and 12 extending rearward are supported on the rear surfaces of the headers 42 and 43. The heat transfer tubes 11 and 12 are configured to be curved at the rear end or the front end of the linear tube portion 45 so as to reciprocate in the front-rear direction a plurality of times inside the housing 31. A plurality of heat transfer tubes 11 and 12 are supported on the headers 42 and 43 at intervals in the vertical direction. Both ends of the heat transfer tubes 11 and 12 are supported by the headers 42 and 43, and the heat medium can be taken in and out of the heat transfer tubes 11 and 12 from the headers 42 and 43.

各伝熱管11,12の直線状管部45は、前後方向の中央部において、サポート部材47で支持されている。サポート部材47は、板に、伝熱管11,12が通過する穴が複数形成された形状に形成されている。したがって、伝熱管11,12は、ヘッダ42,43のみで片持ち状態で支持されておらず、ヘッダ42,43とサポート部材47で保持されている。なお、サポート部材47は、前後方向および左右方向に1つを図示しているが、伝熱管11,12の長さに応じて、前後方向に複数設けてもよく、左右方向に複数設けてもよい。 The linear tube portions 45 of the heat transfer tubes 11 and 12 are supported by the support member 47 at the central portion in the front-rear direction. The support member 47 is formed in a plate in which a plurality of holes through which the heat transfer tubes 11 and 12 pass are formed. Therefore, the heat transfer tubes 11 and 12 are not supported in the cantilever state only by the headers 42 and 43, but are held by the headers 42 and 43 and the support member 47. Although one support member 47 is shown in the front-rear direction and the left-right direction, a plurality of support members 47 may be provided in the front-rear direction or a plurality of support members 47 in the left-right direction depending on the lengths of the heat transfer tubes 11 and 12. Good.

各ヘッダ42,43には、伝熱管11,12に対応する位置にプラグ孔48が形成されている。プラグ孔48は、前後方向に貫通する孔であり、後端は伝熱管11,12の入口または出口に接続されている。また、プラグ孔48の前端は、通常の使用時には栓(図示省略)で塞がれている。伝熱管11,12のいずれかが故障して熱媒が漏れ出す場合には、プラグ孔48の栓を外し、プラグ孔48を通じて伝熱管11,12の入口または出口を閉止栓(図示省略)で塞ぐことで熱媒の漏出を止めることが可能である。 A plug hole 48 is formed in each of the headers 42 and 43 at positions corresponding to the heat transfer tubes 11 and 12. The plug hole 48 is a hole that penetrates in the front-rear direction, and its rear end is connected to the inlet or outlet of the heat transfer tubes 11 and 12. Further, the front end of the plug hole 48 is closed with a plug (not shown) during normal use. If any of the heat transfer tubes 11 and 12 fails and the heat medium leaks out, remove the plug in the plug hole 48 and close the inlet or outlet of the heat transfer tubes 11 and 12 through the plug hole 48 (not shown). It is possible to stop the leakage of the heat medium by closing it.

各ヘッダ42,43の間には、ケーシング板49が着脱可能に支持されている。ケーシング板49は、ヘッダ42,43の上下方向の高さに対応する高さを有する。ケーシング板49は、取付プレート44にボルト(図示省略)によって着脱可能に支持されている。なお、ケーシング板49を取付プレート44に対して着脱可能に固定する方法は、ボルトに限定されない。ケーシング板49を装着することによりヘッダ42,43が接続され、ヘッダ42,43および伝熱管11,12が高い剛性を有する状態で一体化されるとともに、ヘッダ42,43の間からの排ガスの漏出が抑制される。 A casing plate 49 is detachably supported between the headers 42 and 43. The casing plate 49 has a height corresponding to the height of the headers 42 and 43 in the vertical direction. The casing plate 49 is detachably supported on the mounting plate 44 by bolts (not shown). The method of detachably fixing the casing plate 49 to the mounting plate 44 is not limited to bolts. By attaching the casing plate 49, the headers 42 and 43 are connected, the headers 42 and 43 and the heat transfer tubes 11 and 12 are integrated in a state of having high rigidity, and the exhaust gas leaks from between the headers 42 and 43. Is suppressed.

熱交換バンドル41は、1つのユニットとして、ハウジング31に収納可能に構成されている。熱交換バンドル41がハウジング31に収納された状態では、底板32、背面板33、天板34、バンドル間カバー35、ヘッダ42,43、ケーシング板49で囲まれた内部に、排ガスが流れるガス流通路が構成される。そして、ガス流通路内に伝熱管11,12が配置されており、ガス流通路を流れる排ガスとの間で熱交換が可能に構成されている。 The heat exchange bundle 41 is configured to be housed in the housing 31 as one unit. When the heat exchange bundle 41 is housed in the housing 31, exhaust gas flows inside the bottom plate 32, the back plate 33, the top plate 34, the inter-bundle cover 35, the headers 42, 43, and the casing plate 49. The road is constructed. Heat transfer tubes 11 and 12 are arranged in the gas flow passage so that heat can be exchanged with the exhaust gas flowing through the gas flow passage.

本実施形態のGGH熱回収器4およびGGH再加熱器8の各々には、排ガスの流通方向に沿って熱交換バンドル41が2列に並ぶとともに、各列において熱交換バンドル41が上下方向に2段に積み重なるように、4つの熱交換バンドル41が設けられている。上流側の2段の熱交換バンドル41は、それぞれ上流側バンドル(上流側熱交換バンドル)41Aを構成し、下流側の2段の熱交換バンドル41は、それぞれ下流側バンドル(下流側熱交換バンドル)41Bを構成する。本実施形態では、各列において、上段の熱交換バンドル41のヘッダ42,43の下端は、下段の熱交換バンドル41の上端に直接積まれ、ボルト(図示省略)で固定される。なお、以下の説明では、上流側の2段の熱交換バンドル41をまとめて上流側バンドル41Aと称し、下流側の2段の熱交換バンドル41をまとめて下流側バンドル41Bと称する場合がある。また、熱交換バンドル41の列数は3列以上であってもよく、各列の熱交換バンドル41の段数は1段(単一の熱交換バンドル41で1列を構成)又は3段以上であってもよい。 In each of the GGH heat recovery device 4 and the GGH reheater 8 of the present embodiment, the heat exchange bundles 41 are arranged in two rows along the flow direction of the exhaust gas, and the heat exchange bundles 41 are arranged in two rows in the vertical direction in each row. Four heat exchange bundles 41 are provided so as to be stacked in a tier. The two-stage heat exchange bundle 41 on the upstream side constitutes the upstream bundle (upstream heat exchange bundle) 41A, and the two-stage heat exchange bundle 41 on the downstream side each constitutes the downstream bundle (downstream heat exchange bundle). ) 41B is configured. In the present embodiment, in each row, the lower ends of the headers 42 and 43 of the upper heat exchange bundle 41 are directly stacked on the upper end of the lower heat exchange bundle 41 and fixed with bolts (not shown). In the following description, the two-stage heat exchange bundle 41 on the upstream side may be collectively referred to as the upstream bundle 41A, and the two-stage heat exchange bundle 41 on the downstream side may be collectively referred to as the downstream bundle 41B. Further, the number of rows of the heat exchange bundle 41 may be 3 or more, and the number of stages of the heat exchange bundle 41 in each row is 1 stage (1 row is composed of a single heat exchange bundle 41) or 3 or more stages. There may be.

図2に示すように、GGH熱回収器4の上流側バンドル41Aと下流側バンドル41Bとは接続配管61によって各部で接続されており、上流側バンドル41Aと下流側バンドル41Bとの間で熱媒が移動可能に構成されている。また、本実施形態のGGH熱回収器4では、下流側バンドル41Bから上流側バンドル41Aへ熱媒が流れるように構成されている。熱媒が上流側バンドル41Aから下流側バンドル41Bへ流れる場合、上流側バンドル41Aでは、熱媒と排ガスの温度差が最大となり、下流側バンドル41Bでは、上流側バンドル41Aで温められた熱媒と、上流側バンドル41Aで熱交換されて冷やされた排ガスとの温度差が小さくなり、熱交換の効率が低下するため、本実施形態では、下流側バンドル41Bから上流側バンドル41Aへ熱媒が流れるように構成している。 As shown in FIG. 2, the upstream bundle 41A and the downstream bundle 41B of the GGH heat recovery device 4 are connected at each part by a connecting pipe 61, and a heat medium is provided between the upstream bundle 41A and the downstream bundle 41B. Is configured to be movable. Further, the GGH heat recovery device 4 of the present embodiment is configured so that the heat medium flows from the downstream bundle 41B to the upstream bundle 41A. When the heat medium flows from the upstream bundle 41A to the downstream bundle 41B, the temperature difference between the heat medium and the exhaust gas is maximized in the upstream bundle 41A, and the heat medium warmed by the upstream bundle 41A in the downstream bundle 41B. In this embodiment, the heat medium flows from the downstream bundle 41B to the upstream bundle 41A because the temperature difference from the exhaust gas cooled by heat exchange in the upstream bundle 41A becomes small and the efficiency of heat exchange decreases. It is configured as follows.

本実施形態では、GGH再加熱器8の上流側バンドル41Aを、配管パターン混成バンドルとして構成している。配管パターン混成バンドルとは、直線状管部45と略直交する管直交断面における複数の直線状管部45の配管パターンが上流側と下流側で相違するように構成した熱交換バンドル41である。図4に示す上流側バンドル41Aの例では、ガス流通方向に並ぶ10列の直線状管部45のうち、上流側の2列を千鳥状に配列した千鳥配列管群(第1配列管群)51とし、下流側の8列を正方格子状に配列した正方配列管群(第1配列管群とは異なる配管パターンの第2配列管群)52としている。本実施形態では、千鳥配列管群51において隣接する2列の直線状管部45の列間距離L1と、千鳥配列管群51と正方配列管群52との境界を挟んで隣接する2列の直線状管部45の列間距離L2と、正方配列管群52において隣接する2列の直線状管部45の列間距離L3とは、略同距離(L1=L2=L3)に設定されている。 In the present embodiment, the upstream bundle 41A of the GGH reheater 8 is configured as a piping pattern mixed bundle. The pipe pattern mixed bundle is a heat exchange bundle 41 configured so that the pipe patterns of a plurality of linear pipe portions 45 in a pipe orthogonal cross section substantially orthogonal to the linear pipe portion 45 are different on the upstream side and the downstream side. In the example of the upstream bundle 41A shown in FIG. 4, of the 10 rows of linear pipes 45 arranged in the gas flow direction, the two rows on the upstream side are arranged in a staggered pattern (first array pipe group). The number is 51, and the group of square arrangement pipes (second arrangement pipe group having a piping pattern different from that of the first arrangement pipe group) 52 in which eight rows on the downstream side are arranged in a square grid pattern is used. In the present embodiment, the distance L1 between the rows of the linear tube portions 45 of the two adjacent rows in the staggered tube group 51 and the two rows adjacent to each other across the boundary between the staggered tube group 51 and the square array tube group 52. The inter-row distance L2 of the linear tube portion 45 and the inter-row distance L3 of the two adjacent linear tube portions 45 in the square array tube group 52 are set to substantially the same distance (L1 = L2 = L3). There is.

本実施形態のGGH再加熱器8の下流側バンドル41Bは、配管パターン非混成バンドル(配管パターン単一バンドル)として構成されている。配管パターン非混成バンドルとは、上流側から下流側へ至る全域(全列)において、同じ配管パターン(本実施形態では正方配列)に設定された伝熱管バンドル41である。本実施形態のGGH熱回収器4の上流側バンドル41Aおよび下流側バンドル41Bは、何れもGGH再加熱器8の下流側バンドル41Bと同様に、上流側から下流側へ至る全域(全列)において、同じ配管パターン(本実施形態では正方配列)で構成された配管パターン非混成バンドルである。 The downstream bundle 41B of the GGH reheater 8 of the present embodiment is configured as a piping pattern non-mixed bundle (pipe pattern single bundle). The pipe pattern non-mixed bundle is a heat transfer tube bundle 41 set in the same pipe pattern (square arrangement in this embodiment) in the entire area (all rows) from the upstream side to the downstream side. The upstream bundle 41A and the downstream bundle 41B of the GGH heat recovery device 4 of the present embodiment are all in the entire area (all rows) from the upstream side to the downstream side, similarly to the downstream bundle 41B of the GGH reheater 8. , A pipe pattern non-mixed bundle composed of the same pipe pattern (square arrangement in this embodiment).

正方配列では、複数列のうち最上流列の直線状配管45に排ガスが接触するが、その下流側では、2列目以降の直線状配管45は、排ガスの流れ方向に対して最上流列の直線状配管45の陰に隠れるため、排ガスとの接触が低減されるとともに、接触が低減される分、排ガスは流れ易い。一方で、千鳥配列では、2列目以降(本実施形態では2列目)の直線状配管45は、前列(本実施形態では1列目)の直線状配管45の陰になり難く、排ガスとの接触は増えるが、その分排ガスにとって抵抗となる。また、排ガスにとって抵抗となるため、排ガスが整流される。 In the square arrangement, the exhaust gas comes into contact with the linear pipe 45 in the most upstream row of the plurality of rows, but on the downstream side thereof, the linear pipes 45 in the second and subsequent rows are in the most upstream row with respect to the flow direction of the exhaust gas. Since it is hidden behind the linear pipe 45, the contact with the exhaust gas is reduced, and the contact is reduced, so that the exhaust gas easily flows. On the other hand, in the staggered arrangement, the linear pipes 45 in the second and subsequent rows (second row in this embodiment) are less likely to be behind the linear pipes 45 in the front row (first row in this embodiment), and the exhaust gas is generated. The number of contacts increases, but it becomes a resistance to the exhaust gas. In addition, the exhaust gas is rectified because it becomes a resistance to the exhaust gas.

本実施形態のGGH再加熱器8では、GGH熱回収器4から流出した熱媒は、連絡配管13Aを流通して千鳥配列管群51の熱媒入口へ流入する。千鳥配列管群51の熱媒出口と下流側バンドル41Bの伝熱管群の熱媒入口とは、千鳥配列管群51を流通した熱媒が下流側バンドル41Bの伝熱管群を流通するように、第1接続管62によって接続されている。下流側バンドル41Bの伝熱管群の熱媒出口と正方配列管群52の熱媒入口とは、下流側バンドル41Bの伝熱管群を流通した熱媒が正方配列管群52を流通するように、第2接続管63によって接続されている。正方配列管群52の熱媒入口に下流側バンドル41Bからの熱媒が流入する。正方配列管群52を流通し、正方配列管群52の熱媒出口から流出した熱媒は、連絡配管13Bを流通してGGH熱回収器4へ戻る。 In the GGH reheater 8 of the present embodiment, the heat medium flowing out from the GGH heat recovery device 4 flows through the connecting pipe 13A and flows into the heat medium inlet of the staggered arrangement pipe group 51. The heat medium outlet of the staggered arrangement tube group 51 and the heat medium inlet of the heat transfer tube group of the downstream bundle 41B are such that the heat medium flowing through the staggered arrangement tube group 51 flows through the heat transfer tube group of the downstream bundle 41B. It is connected by a first connecting pipe 62. The heat medium outlet of the heat transfer tube group of the downstream bundle 41B and the heat medium inlet of the square array tube group 52 are such that the heat medium flowing through the heat transfer tube group of the downstream bundle 41B flows through the square array tube group 52. It is connected by a second connecting pipe 63. The heat medium from the downstream bundle 41B flows into the heat medium inlet of the square array tube group 52. The heat medium flowing out of the square array tube group 52 and flowing out from the heat medium outlet of the square array tube group 52 passes through the connecting pipe 13B and returns to the GGH heat recovery device 4.

このように、千鳥配列管群51、正方配列管群52および下流側バンドル41B(下流側バンドル41Bを構成する伝熱管群)が、高温予熱部、低温部および高温部としてそれぞれ機能し、導入された排ガスは、千鳥配列の高温予熱部、正方配列の低温部および高温部を順に流通して昇温する。上流の千鳥配列管群51に熱媒が最初に導入されることで、千鳥配列管群51には熱媒が最も熱い状態で流れ、湿式排煙脱硫装置7からのミストが速やかに蒸発し易い。また、熱媒が下流の下流側バンドル41Bから中流の正方配列管群52へ流れることで、熱媒の温度は、中流よりも下流の方が高くなる。熱媒の温度が中流よりも下流の方が低い場合、高温の中流で排ガスが温められた後に、低温の下流を通過することとなり、排ガスが下流で暖まり難く、熱交換の効率が低い。これに対して、本実施形態のように、熱媒の温度が中流よりも下流の方が高い場合、排ガスが低温の中流から高温の下流の順で温められるので、熱交換の効率が向上する。 In this way, the staggered array tube group 51, the square array tube group 52, and the downstream bundle 41B (the heat transfer tube group constituting the downstream bundle 41B) function as a high temperature preheating section, a low temperature section, and a high temperature section, respectively, and are introduced. The exhaust gas flows through the high-temperature preheating part in a staggered arrangement, the low-temperature part in a square arrangement, and the high-temperature part in this order to raise the temperature. By first introducing the heat medium into the upstream staggered arrangement tube group 51, the heat medium flows into the staggered arrangement tube group 51 in the hottest state, and the mist from the wet flue gas desulfurization apparatus 7 easily evaporates quickly. .. Further, since the heat medium flows from the downstream bundle 41B on the downstream side to the square array tube group 52 in the middle flow, the temperature of the heat medium becomes higher in the downstream side than in the middle flow. When the temperature of the heat medium is lower in the downstream than in the middle stream, the exhaust gas is warmed by the high temperature middle stream and then passes through the low temperature downstream, so that the exhaust gas is hard to warm in the downstream stream and the heat exchange efficiency is low. On the other hand, when the temperature of the heat medium is higher in the downstream than in the middle stream as in the present embodiment, the exhaust gas is warmed in the order of the low temperature middle stream to the high temperature downstream, so that the efficiency of heat exchange is improved. ..

本実施形態のGGH熱回収器4では、上流側バンドル41Aと下流側バンドル41Bの双方において、伝熱管11の直線状管部45を、ひだ状のフィンが多数設けられたフィン付管仕様のフィン付管部で構成している。フィン付管部で構成することにより、フィンが設けられていない裸管仕様の裸管部で構成する場合に比べて、排ガスとの接触面積が大きくなり、熱交換の効率が向上する。 In the GGH heat recovery device 4 of the present embodiment, in both the upstream bundle 41A and the downstream bundle 41B, the linear tube portion 45 of the heat transfer tube 11 is provided with a fin having a large number of fold-shaped fins. It consists of a tube part. By forming the pipe portion with fins, the contact area with the exhaust gas becomes larger and the efficiency of heat exchange is improved as compared with the case where the pipe portion has a bare pipe specification without fins.

本実施形態のGGH再加熱器8では、千鳥配列管群51の直線状管部45を裸管部で構成し、正方配列管群52の直線状管部45と下流バンドル41Bの直線状管部45とをフィン付管部で構成している。千鳥配列管群51の直線状管部45をフィン付管部で構成すると、湿式排煙脱硫装置7からのミストが付着して腐食し易くなるが、本実施形態では、千鳥配列管群51の直線状管部45を裸管部で構成しているので、フィン付管部で構成する場合に比べて腐食し難い。 In the GGH reheater 8 of the present embodiment, the linear tube portion 45 of the staggered arrangement tube group 51 is composed of a bare tube portion, and the linear tube portion 45 of the square arrangement tube group 52 and the linear tube portion of the downstream bundle 41B. 45 is composed of a pipe portion with fins. When the linear pipe portion 45 of the staggered arrangement pipe group 51 is composed of a pipe portion with fins, mist from the wet flue gas desulfurization apparatus 7 adheres and is easily corroded. Since the linear tube portion 45 is composed of a bare tube portion, it is less likely to corrode than a case where the linear tube portion 45 is composed of a tube portion with fins.

GGH熱回収器4では、正方配列とすることで、アッシュエロージョン(排ガス中の石炭灰で伝熱管表面が荒れたり、削れる現象)が低減される。なお、GGH熱回収器4では、フィン付管部で構成することにより、排ガスとの接触は確保されている。また、GGH再加熱器8の千鳥配列管群51では、湿式排煙脱硫装置7からのミストが流入し易く、千鳥配列とすることによりミストとの接触確率を高めてミストを除去し易くなっている。 In the GGH heat recovery device 4, the square arrangement reduces ash erosion (a phenomenon in which the surface of the heat transfer tube is roughened or scraped by coal ash in the exhaust gas). In the GGH heat recovery device 4, contact with the exhaust gas is ensured by forming the tube portion with fins. Further, in the staggered arrangement tube group 51 of the GGH reheater 8, mist from the wet flue gas desulfurization apparatus 7 easily flows in, and the staggered arrangement increases the contact probability with the mist and facilitates the removal of the mist. There is.

さらに、GGH再加熱器8のフィン付管部における腐食環境を緩和し、安定した運用を行うためには、フィン付管部の上流側である千鳥配列管群51でのミスト除去効率が60%以上であることが望ましく、そのためには、千鳥配列管群51の直線状管部(本実施形態では裸管部)45の間を流れるガス流速が8m/s〜16m/sの範囲になるように、千鳥配列管群51の直線状管部(裸管部)45を配置することが好ましい。 Further, in order to alleviate the corrosive environment in the finned pipe portion of the GGH reheater 8 and perform stable operation, the mist removal efficiency in the staggered arrangement pipe group 51 on the upstream side of the finned pipe portion is 60%. The above is desirable, and for that purpose, the gas flow velocity flowing between the linear pipe portions (bare pipe portions in this embodiment) 45 of the staggered arrangement tube group 51 is in the range of 8 m / s to 16 m / s. It is preferable to arrange the linear tube portion (bare tube portion) 45 of the staggered arrangement tube group 51.

また、GGH再加熱器8のフィン付管部(正方配列管群52及び下流バンドル41Bのうち少なくとも一方のフィン付管部)のフィンピッチを5.0mm〜10.0mmとすることにより、フィン付管部に経時的にダストが詰まる問題が解消され、より安定した運用が可能となる。 Further, by setting the fin pitch of the finned pipe portion of the GGH reheater 8 (the finned pipe portion of at least one of the square array pipe group 52 and the downstream bundle 41B) to 5.0 mm to 10.0 mm, the fins are attached. The problem that the pipe part is clogged with dust over time is solved, and more stable operation becomes possible.

以上説明したように、本実施形態によれば、GGH再加熱器8において、1つの熱交換バンドル41(上流側バンドル41A)内に、配管パターンが互いに異なる第1配列管群(千鳥配列管群)51と第2配列管群(正方配列管群)52とを設けているので、排ガスの流通方向に沿った熱交換バンドル41の列数の増加を抑制しつつ、所望の伝熱管配列パターンをガス流通路に構成することができる。 As described above, according to the present embodiment, in the GGH reheater 8, the first arrangement tube group (staggered arrangement tube group) having different piping patterns in one heat exchange bundle 41 (upstream side bundle 41A). ) 51 and the second arrangement tube group (square arrangement tube group) 52 are provided, so that a desired heat transfer tube arrangement pattern can be obtained while suppressing an increase in the number of rows of the heat exchange bundle 41 along the flow direction of the exhaust gas. It can be configured as a gas flow passage.

また、千鳥配列管群51、正方配列管群52および下流側バンドル41B(下流側バンドル41Bを構成する伝熱管群)が、高温予熱部、低温部および高温部としてそれぞれ機能し、導入された排ガスは、千鳥配列の高温予熱部、正方配列の低温部および高温部を順に流通して昇温するので、GGH再加熱器8での熱交換の効率を高めることができる。また、湿式排煙脱硫装置7から飛散するミストが千鳥配列管群51の直線状管部45と衝突する効率(高温予熱部でのミスト蒸発効率)を高めることができ、低温部および高温部の伝熱管12へのミストの付着を抑制して、経年使用による圧損の上昇を抑制することができる。 Further, the staggered tube group 51, the square tube group 52, and the downstream bundle 41B (the heat transfer tube group constituting the downstream bundle 41B) function as a high temperature preheating section, a low temperature section, and a high temperature section, respectively, and the introduced exhaust gas. Is able to improve the efficiency of heat exchange in the GGH reheater 8 because the high temperature preheating part in the staggered arrangement, the low temperature part and the high temperature part in the square arrangement are sequentially circulated to raise the temperature. In addition, the efficiency at which the mist scattered from the wet flue gas desulfurization apparatus 7 collides with the linear tube portion 45 of the staggered array tube group 51 (mist evaporation efficiency in the high temperature preheating section) can be increased, and the low temperature section and the high temperature section Adhesion of mist to the heat transfer tube 12 can be suppressed, and an increase in pressure loss due to long-term use can be suppressed.

また、千鳥配列管群51の直線状管部45を裸管部で構成したので、高温予熱部の伝熱管12へのミストの付着を抑制して、経年使用による圧損の上昇を抑制することができる。さらに、正方配列管群52の直線状管部45と下流側バンドル41Bの直線状管部45とをフィン付管部で構成したので、低温部および高温部での熱交換の効率を高めることができる。 Further, since the linear tube portion 45 of the staggered array tube group 51 is composed of a bare tube portion, it is possible to suppress the adhesion of mist to the heat transfer tube 12 of the high temperature preheating section and suppress the increase in pressure loss due to aged use. it can. Further, since the linear tube portion 45 of the square array tube group 52 and the linear tube portion 45 of the downstream bundle 41B are composed of the tube portion with fins, the efficiency of heat exchange in the low temperature portion and the high temperature portion can be improved. it can.

また、千鳥配列管群51の直線状管部(本実施形態では裸管部)45を流れるガス流速の最適化やフィン付管部のフィンピッチの最適化によって、フィン付管部の腐食を防止することやダスト等による詰まりを防止することができ、安定した運用が可能となる。 Further, by optimizing the gas flow velocity flowing through the linear pipe portion (bare pipe portion in this embodiment) 45 of the staggered arrangement pipe group 51 and optimizing the fin pitch of the finned pipe portion, corrosion of the finned pipe portion is prevented. It is possible to prevent clogging due to dust and dust, and stable operation is possible.

なお、本発明は、一例として説明した上述の実施形態及び変形例に限定されることはなく、上述の実施形態等以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 The present invention is not limited to the above-described embodiment and modification described as an example, and is not limited to the above-described embodiment and the like as long as it does not deviate from the technical idea of the present invention. , Various changes are possible depending on the design and the like.

例えば図5に示すように、GGH熱回収器4とGGH再加熱器8が複数系統(図5の例では2系統)に分割された排煙処理ステムSに本発明を適用し、複数のGGH熱回収器4の少なくとも1つや複数の再加熱器8の少なくとも1つを上記実施形態のように構成してもよい。 For example, as shown in FIG. 5, the present invention is applied to a smoke exhaust treatment stem S in which the GGH heat recovery device 4 and the GGH reheater 8 are divided into a plurality of systems (two systems in the example of FIG. 5), and a plurality of GGH At least one of the heat recovery devices 4 and at least one of the plurality of reheaters 8 may be configured as in the above embodiment.

また、上記実施形態では、排ガス流通方向を略水平方向に設定し、直線状管部45が延びる方向(延設方向)を排ガス流通方向と略直交する略水平方向に設定したが、排ガス流通方向および直線状管部45の延設方向は上記に限定されず、他の方向に設定(排ガス流通方向を略水平方向に設定し、直線状管部45の延設方向を上下方向(略鉛直方向)に設定)してもよい。 Further, in the above embodiment, the exhaust gas flow direction is set to a substantially horizontal direction, and the direction in which the linear pipe portion 45 extends (extension direction) is set to a substantially horizontal direction substantially orthogonal to the exhaust gas flow direction. And the extending direction of the linear pipe portion 45 is not limited to the above, and is set to another direction (the exhaust gas flow direction is set to be substantially horizontal, and the extending direction of the linear pipe portion 45 is set to the vertical direction (approximately vertical direction). ) May be set.

1:ボイラ
3:空気予熱器(A/H)
4:GGH熱回収器(ガスガス熱交換器)
5:集塵装置(EP)
6:ファン
7:湿式排煙脱硫装置
8:GGH再加熱器(ガスガス熱交換器)
9:煙突
11,12:伝熱管
13,13A,13B:連絡配管
31:ハウジング
41:熱交換バンドル
41A:上流側バンドル(上流側熱交換バンドル、配管パターン混成バンドル)
41B:下流側バンドル(下流側熱交換バンドル)
42:第1のヘッダ
43:第2のヘッダ
45:直線状管部
49:ケーシング板
51:千鳥配列管群(第1配列管群)
52:正方配列管群(第2配列管群)
61:接続配管
S:排煙処理システム
1: Boiler 3: Air preheater (A / H)
4: GGH heat recovery device (gas gas heat exchanger)
5: Dust collector (EP)
6: Fan 7: Wet flue gas desulfurization device 8: GGH reheater (gas gas heat exchanger)
9: Chimneys 11, 12: Heat transfer tubes 13, 13A, 13B: Connecting pipe 31: Housing 41: Heat exchange bundle 41A: Upstream bundle (upstream heat exchange bundle, piping pattern mixed bundle)
41B: Downstream bundle (downstream heat exchange bundle)
42: First header 43: Second header 45: Straight pipe portion 49: Casing plate 51: Staggered arrangement pipe group (first arrangement pipe group)
52: Square array tube group (second array tube group)
61: Connection pipe S: Smoke exhaust treatment system

Claims (6)

伝熱管の複数の直線状管部が互いに離間してブロック状に並ぶ伝熱管群によって構成された熱交換バンドルを、排ガスの上流側から下流側へ直列状に複数列配置するとともに、前記複数列の熱交換バンドルの各々において、前記複数の直線状管部を排ガスの流通方向と交叉するように配置したガスガス熱交換器であって、
前記複数の熱交換バンドルは、前記直線状管部と略直交する管直交断面における前記複数の直線状管部の配管パターンが第1配列である第1配列管群と、前記第1配列管群の下流側に設けられ前記複数の直線状管部の配管パターンが前記第1配列とは異なる第2配列である第2配列管群とが、同一バンドル内に設けられて前記伝熱管群を形成する配管パターン混成バンドルを含む
ことを特徴とするガスガス熱交換器。
A plurality of rows of heat exchange bundles composed of a group of heat transfer tubes in which a plurality of linear tube portions of the heat transfer tubes are arranged in a block shape separated from each other are arranged in series from the upstream side to the downstream side of the exhaust gas, and the plurality of rows are arranged. A gas gas heat exchanger in which the plurality of linear pipe portions are arranged so as to intersect the flow direction of exhaust gas in each of the heat exchange bundles of the above.
The plurality of heat exchange bundles include a first arrangement pipe group in which the piping patterns of the plurality of linear pipe portions in a pipe orthogonal cross section substantially orthogonal to the linear pipe portion are the first arrangement, and the first arrangement pipe group. A second array tube group, which is provided on the downstream side of the above and has a second arrangement in which the piping patterns of the plurality of linear tube portions are different from the first arrangement, is provided in the same bundle to form the heat transfer tube group. A gas gas heat exchanger characterized by including a piping pattern mixed bundle.
排ガスから熱回収する熱回収器の下流側で、且つ排ガス中の硫黄酸化物を気液接触により除去する脱硫装置の下流側に、再加熱器として配置される請求項1に記載のガスガス熱交換器であって、
前記複数の熱交換バンドルは、前記配管パターン混成バンドルと、前記配管パターン混成バンドルの下流側に配置される下流側熱交換バンドルとを含み、
前記第1配列管群は、前記複数の直線状管部を千鳥状に配列した千鳥配列管群であり、
前記第2配列管群は、前記複数の直線状管部を正方格子状に配列した正方配列管群であり、
前記千鳥配列管群には、前記熱回収器から熱媒が流入し、
前記千鳥配列管群と前記下流側熱交換バンドルの前記伝熱管群とは、前記千鳥配列管群を流通した熱媒が前記下流側熱交換バンドルの前記伝熱管群を流通するように第1接続管によって接続され、
前記下流側熱交換バンドルの前記伝熱管群と前記正方配列管群とは、前記下流側熱交換バンドルの前記伝熱管群を流通した熱媒が前記正方配列管群を流通するように第2接続管によって接続される
ことを特徴とするガスガス熱交換器。
The gas-gas heat exchange according to claim 1, which is arranged as a reheater on the downstream side of the heat recovery device that recovers heat from the exhaust gas and on the downstream side of the desulfurization device that removes sulfur oxides in the exhaust gas by gas-liquid contact. It ’s a vessel,
The plurality of heat exchange bundles include the pipe pattern mixed bundle and a downstream heat exchange bundle arranged on the downstream side of the pipe pattern mixed bundle.
The first array tube group is a staggered array tube group in which the plurality of linear tube portions are arranged in a staggered manner.
The second array tube group is a square array tube group in which the plurality of linear tube portions are arranged in a square grid pattern.
A heat medium flows into the staggered tube group from the heat recovery device, and the heat medium flows into the staggered tube group.
The staggered arrangement tube group and the heat transfer tube group of the downstream side heat exchange bundle are first connected so that the heat medium flowing through the staggered arrangement tube group flows through the heat transfer tube group of the downstream side heat exchange bundle. Connected by a pipe,
The heat transfer tube group and the square array tube group of the downstream heat exchange bundle are secondly connected so that the heat medium flowing through the heat transfer tube group of the downstream side heat exchange bundle flows through the square array tube group. A gas-gas heat exchanger characterized by being connected by pipes.
請求項2に記載のガスガス熱交換器であって、
前記千鳥配列管群の前記直線状管部は、裸管仕様の裸管部で構成され、
前記正方配列管群の前記直線状管部と前記下流側熱交換バンドルの前記直線状管部とは、フィン付管仕様のフィン付管部で構成されている
ことを特徴とするガスガス熱交換器。
The gas gas heat exchanger according to claim 2.
The linear tube portion of the staggered array tube group is composed of a bare tube portion having a bare tube specification.
A gas gas heat exchanger characterized in that the linear tube portion of the square array tube group and the linear tube portion of the downstream side heat exchange bundle are composed of a finned tube portion of a finned tube specification. ..
請求項3に記載のガスガス熱交換器であって、
前記正方配列管群の前記直線状管部の前記フィン付管部のフィンピッチを5.0mm〜10.0mmとした
ことを特徴とするガスガス熱交換器。
The gas gas heat exchanger according to claim 3.
A gas gas heat exchanger characterized in that the fin pitch of the finned tube portion of the linear tube portion of the square array tube group is 5.0 mm to 10.0 mm.
請求項3または請求項4に記載のガスガス熱交換器であって、
前記下流側熱交換バンドルの前記直線状管部の前記フィン付管部のフィンピッチを5.0mm〜10.0mmとした
ことを特徴とするガスガス熱交換器。
The gas gas heat exchanger according to claim 3 or 4.
A gas gas heat exchanger characterized in that the fin pitch of the finned pipe portion of the linear pipe portion of the downstream side heat exchange bundle is 5.0 mm to 10.0 mm.
請求項2〜請求項5の何れか1項に記載のガスガス熱交換器であって、
前記千鳥配列管群の前記直線状管部の間を流れる排ガスの流速が8m/s〜16m/sとなるように前記千鳥配列管群を配置した
ことを特徴とするガスガス熱交換器。
The gas gas heat exchanger according to any one of claims 2 to 5.
A gas gas heat exchanger characterized in that the staggered pipe group is arranged so that the flow velocity of the exhaust gas flowing between the linear pipe portions of the staggered pipe group is 8 m / s to 16 m / s.
JP2019199402A 2019-10-31 2019-10-31 gas gas heat exchanger Active JP7334105B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019199402A JP7334105B2 (en) 2019-10-31 2019-10-31 gas gas heat exchanger
KR1020227012589A KR20220061236A (en) 2019-10-31 2020-10-28 gas gas heat exchanger
PCT/JP2020/040533 WO2021085513A1 (en) 2019-10-31 2020-10-28 Gas-gas heat exchanger
CN202080073904.0A CN114599928A (en) 2019-10-31 2020-10-28 Gas-gas heat exchanger
TW109137797A TWI757942B (en) 2019-10-31 2020-10-30 gas to gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199402A JP7334105B2 (en) 2019-10-31 2019-10-31 gas gas heat exchanger

Publications (2)

Publication Number Publication Date
JP2021071263A true JP2021071263A (en) 2021-05-06
JP7334105B2 JP7334105B2 (en) 2023-08-28

Family

ID=75712828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199402A Active JP7334105B2 (en) 2019-10-31 2019-10-31 gas gas heat exchanger

Country Status (5)

Country Link
JP (1) JP7334105B2 (en)
KR (1) KR20220061236A (en)
CN (1) CN114599928A (en)
TW (1) TWI757942B (en)
WO (1) WO2021085513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163860A1 (en) * 2021-02-01 2022-08-04 三菱重工業株式会社 Heat exchanger and flue gas treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065801A (en) * 1999-08-24 2001-03-16 Hitachi Ltd Heat exchanger and boiler
WO2007079140A2 (en) * 2005-12-28 2007-07-12 Wabtec Holding Corp. Multi-fluid heat exchanger arrangement
WO2018139669A1 (en) * 2017-01-30 2018-08-02 三菱日立パワーシステムズ株式会社 Gas-to-gas heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2504330C (en) * 2002-11-05 2010-07-27 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065801A (en) * 1999-08-24 2001-03-16 Hitachi Ltd Heat exchanger and boiler
WO2007079140A2 (en) * 2005-12-28 2007-07-12 Wabtec Holding Corp. Multi-fluid heat exchanger arrangement
WO2018139669A1 (en) * 2017-01-30 2018-08-02 三菱日立パワーシステムズ株式会社 Gas-to-gas heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163860A1 (en) * 2021-02-01 2022-08-04 三菱重工業株式会社 Heat exchanger and flue gas treatment system

Also Published As

Publication number Publication date
CN114599928A (en) 2022-06-07
KR20220061236A (en) 2022-05-12
WO2021085513A1 (en) 2021-05-06
TWI757942B (en) 2022-03-11
JP7334105B2 (en) 2023-08-28
TW202124898A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US7691349B2 (en) Exhaust gas treating method
US9400102B2 (en) Heat exchanger including flow regulating plates
WO2021085513A1 (en) Gas-gas heat exchanger
KR20110136844A (en) A circulating fluidized bed boiler
JP6718525B2 (en) Gas gas heat exchanger
CN103968405B (en) A kind of flue gas heater with defrosting function
JP5209952B2 (en) High dust exhaust gas heat recovery treatment equipment
JP3868093B2 (en) Flue gas desulfurization device and its operation method
JP3852820B2 (en) Smoke removal equipment
JP4570187B2 (en) Exhaust gas heat exchanger
JP7221439B1 (en) Bundle, heat exchanger, flue gas treatment device, and method for manufacturing bundle
JPH08254397A (en) Heat exchanger for condenser
JP2022117579A (en) Heat exchanger and flue gas treatment system
JP7221437B1 (en) Heat transfer tube, heat exchanger, flue gas treatment device, and method for manufacturing heat transfer tube
JP7221438B1 (en) Heat exchanger, flue gas treatment device, and method for manufacturing heat exchanger
JPH10122761A (en) System and method for heat recovery of exhaust gas
JP7221440B1 (en) Bundle, heat exchanger, flue gas treatment device, and method for manufacturing bundle
JP6109716B2 (en) Finned tube heat exchanger
SU1573294A1 (en) Convection heat-exchange surface
CN112856377A (en) Lifting type boiler heating surface and working method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7334105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150